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We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice
discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated
metric. We study spontaneous symmetry breaking of a real scalar field theory. We observe inhomogeneous
symmetry breaking induced by an inhomogeneous gravitational field.
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I. INTRODUCTION

The quantumMonte Carlo method is a reliable computa-
tional scheme used in fields ranging from condensed matter
physics to elementary particles. Although the method is
conventionally formulated in flat spacetimes, it is also
applicable to curved spacetimes [1]. We can study quantum
phenomena in gravitational backgrounds using the quan-
tum Monte Carlo method.
Black holes are an intriguing environment to explore

the phenomena of symmetry breaking. On the quantum
level, the Hawking temperature of a black hole with radius
R ¼ 2GM [2],

T ¼ 1

4πR
; ð1Þ

can trigger a phase transition provided it is higher than the
critical transition temperature of some field theory. Even
when the Hawking temperature is lower than the critical
temperature, it has been suggested that symmetry may be
restored near the horizon [3]. This can be important for the
description of primordial black holes in the early Universe,
or micro black holes that could be created at particle
colliders. Symmetry breaking is also interesting in the
context of vacuum polarization around compact stars [4]
and no-hair theorems [5]. A related question concerns
symmetry breaking in accelerated frames [6].
In this work, we perform quantum Monte Carlo simu-

lations of lattice scalar field theory in the presence of a
black hole in thermal equilibrium. The Compton wave-
length of the particle is taken to be much larger than the
black hole Schwarzschild radius. We consider a real scalar
field theory with spontaneously broken Z2 symmetry. We
analyze inhomogeneous symmetry breaking induced by the
inhomogeneity of the spacetime. It is known that the local
temperature increases near black holes because of the
Tolman-Ehrenfest effect [7]. This will simply suppress
symmetry breaking [3]. In quantum field theory, however,

this is only one of the many possible effects. A complete
result is given by the competition among many effects. Our
finding is that symmetry breaking is strengthened close to
the horizon.
The paper is organized as follows. In Sec. II, we explain

theoretical preliminaries in continuum theory. In Sec. III,
we present the formulation and results of lattice simula-
tions. Finally, Sec. IV is devoted to the summary.

II. PRELIMINARIES

Let us consider the real scalar field theory

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðxÞ

p �
1

2
gμνðxÞ∂μϕðxÞ∂νϕðxÞ

þ 1

2
ðm2 − ξRðxÞÞϕ2ðxÞ þ 1

4
λϕ4ðxÞ

�
; ð2Þ

in a general coordinate ds2 ¼ gμνdxμdxν with the Euclidean
signature det g > 0. Although the scalar curvatureR affects
symmetry breaking, the black hole spacetime has ξR ¼ 0.
The Z2 symmetry is spontaneously broken at low temper-
atures by a tachyonic mass m2 < 0.
We define a two-point function

Gðx; x0Þ ¼ hϕðxÞϕðx0Þi: ð3Þ

When the separation x − x0 is taken in the direction of the
Killing vector, Gðx; x0Þ is a function of jx − x0j, which is
denoted by Gðjx − x0jÞ. (Although it depends on the
coordinates in other directions, its dependence is omitted
for simplicity.) In the large-separation limit, the two-point
function gives the square of the condensate

Gð∞Þ ¼ hϕi2; ð4Þ

(the off-diagonal long-range order) [8]. In this work, we
consider the condensate fraction
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C ¼ Gð∞Þ
Gð0Þ ¼ hϕi2

hϕ2i ð5Þ

as a dimensionless order parameter. The physical inter-
pretation of the condensate fraction becomes especially
transparent in flat space. There it quantifies the ratio of the
number of condensed particles versus the total number of
particles. We will use the condensate fraction to quantify
the strength of symmetry breaking in curved spacetimes.
Note that, in quantum field theory in curved spacetimes,

the change of scale comes from classical gravity and also
from the ultraviolet cutoff (e.g., the lattice spacing in lattice
regularization). The scale is nontrivially modified by
inhomogeneous renormalization in curved spacetimes.
Although the condensate fraction is dimensionless, it
cannot eliminate this quantum correction.

III. LATTICE SIMULATION

We performed the conventional Monte Carlo simulation
of a real scalar field theory [9]. The scalar field action is
regularized on the hypercubic lattice, and then the path
integral with the lattice action is numerically calculated by
the Monte Carlo sampling.
Before considering the Schwarzschild coordinate, we

consider the simplified coordinate

ds2 ¼ fðrÞdτ2 þ 1

fðrÞ dr
2 þ dy2 þ dz2;

fðrÞ ¼ 1 −
R
r
: ð6Þ

This coordinate is derived by approximating the Euclidean
Schwarzschild coordinate into the region r ≫ y; z, namely,
by neglecting the curvature in the y and z directions. The
lattice action is given by

S ¼
X
x

a4
�

1

2fðrÞa2 fϕðxÞ − ϕðx − τ̂Þg2

þ fðrÞ
2a2

fϕðxÞ − ϕðx − r̂Þg2

þ 1

2a2
fϕðxÞ − ϕðx − ŷÞg2

þ 1

2a2
fϕðxÞ − ϕðx − ẑÞg2

þ 1

2
m2ϕ2ðxÞ þ 1

4
λϕ4ðxÞ

�
; ð7Þ

where μ̂ is the unit vector in the μ direction. The geometry
is schematically shown in Fig. 1. There is a (2þ 1)-
dimensional flat event horizon at r ¼ R. From Eq. (1), R
is given by

R ¼ 1

4πT
¼ Nτa

4π
: ð8Þ

To avoid the coordinate singularity at r ¼ R, we
introduce the r coordinates of lattice sites as
r ¼ ½Rþ ε; Rþ εþ ðNr − 1Þa�, where 0 < ε ≪ a. We
take free boundary conditions in the r direction and
periodic boundary conditions in the y, z, and τ directions.
We set ðmaÞ2 ¼ −0.2, λ ¼ 0.2, and V ¼ NrNyNzNτ ¼
10 × 10 × 10 × 60.
On this lattice, we numerically calculate the two-point

function in the z direction. As shown in Fig. 2, we see clear
plateaus indicating the off-diagonal long-range order. We
define the condensate fraction as

C ¼ GðNza=2Þ
Gð0Þ ; ð9Þ

because Nza=2 is the largest distance. We show the r
dependence of the condensate fraction in Fig. 3. The
calculation is performed for ε ¼ 0.1a and ε ¼ 0.5a. The
results in both cases agree well with each other. We find that
the condensate fraction is enhanced by approaching the
horizon r=R ¼ 1. We can attribute this enhancement to the
gravitational redshift. At the horizon fðrÞ goes to zero and

r

y

R ε a

periodic boundary

black hole

a

FIG. 1. Geometry of the simplified coordinate (6).

FIG. 2. Two-point function GðzÞ in the simplified coordinate
(6). The data with ε ¼ 0.1a are shown.
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the coefficient of ð∂τϕÞ2 in the action diverges. As the
coefficient of the derivative term becomes larger, a con-
figuration with nonzero derivative has a large action and is
thus disfavored. This leads to a disfavoring of noncon-
densed configurations. Consequently, the condensate frac-
tion is enhanced. In Fig. 3 we also show the results in the
coordinate (6) without fðrÞ, i.e., in a flat spacetime. The
condensate fraction is finite and trivially independent of r
in the flat spacetime.
We numerically checked that symmetry is always pre-

served when m2 ¼ 0. This is consistent with the above
explanation. The coefficient of the derivative term changes
the magnitude of the condensate but does not trigger the
tachyonic mass.
Next, we consider the Euclidean Schwarzschild

coordinate

ds2 ¼ fðrÞdτ2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2sin2θdφ2;

fðrÞ ¼ 1 −
R
r
: ð10Þ

The lattice action is given by

S ¼
X
x

a2ΔθΔφr2 sin θ
�

1

2fðrÞa2 fϕðxÞ − ϕðx − τ̂Þg2

þ fðrÞ
2a2

fϕðxÞ − ϕðx − r̂Þg2

þ 1

2r2Δθ2
fϕðxÞ − ϕðx − θ̂Þg2

þ 1

2r2sin2θΔφ2
fϕðxÞ − ϕðx − φ̂Þg2

þ 1

2
m2ϕ2ðxÞ þ 1

4
λϕ4ðxÞ

�
; ð11Þ

with Δθ ¼ Θ=ðNθ − 1Þ and Δφ ¼ 2π=Nφ. We take the
geometry shown in Fig. 4. There is a (2þ 1)-dimensional

spherical event horizon at r ¼ R. To avoid the coordinate
singularity at r ¼ R and sin θ ¼ 0, we take r ¼ ½Rþ ε; Rþ
εþ ðNr − 1Þa� and θ ¼ ½π=2 − Θ=2; π=2þ Θ=2�. We take
free boundary conditions in the r and θ directions and
periodic boundary conditions in the φ and τ directions. We
set ðmaÞ2 ¼ −0.2, λ ¼ 1, Θ ¼ π=2, and V¼NrNθNφNτ¼
10×5×16×60.
We calculated the two-point function in the φ direction.

The condensate fraction is defined as

C ¼ GðπÞ
Gð0Þ : ð12Þ

Although physical distance is finite in the φ direction, the
condensate is well-defined if noncondensate components
are sufficiently small. The results are shown in Figs. 5
and 6. The result in the coordinate (10) without fðrÞ, i.e., in
an ordinary spherical coordinate, is shown as a comparison.
The difference between the condensate fraction with fðrÞ
and without fðrÞ increases near the event horizon. This is
essentially the same as in the simplified case. Unlike the
simplified case, the condensate fraction strongly depends
on r even without fðrÞ. Since the transformation to a

FIG. 3. Condensate fractionCðrÞ in the simplified coordinate (6).

x

y

ϕ 

black hole

R
ε 

x

z

R
ε 

black hole

θ 

a Θ 
Δθ 

Δϕ 

FIG. 4. Geometry of the Schwarzschild coordinate (10).
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spherical coordinate must not change the physics, this r
dependence is an artifact. This is due to the strong r
dependence of the overall prefactor

ffiffiffiffiffiffiffiffiffi
det g

p ¼ r2 sin θ. This
prefactor changes the unit cell a4 in the Cartesian coor-
dinate to a2ΔθΔφr2 sin θ in a spherical coordinate. This
change leads to the artificial r dependence of physical
parameters via renormalization. Moreover, as seen in
Fig. 6, the ε independence is lost near the event horizon.
Finally, we compare the simulation with other calcu-

lations in Fig. 7. The classical condensate fraction is unity
because the classical solution ϕc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
is homo-

geneous and thus the two-point function is constant. The
tree-level result is the sum of the classical solution and
the tree-level fluctuation around it. For details, see the
Appendix. The tree-level calculation is done with the same
lattice action, parameters, and boundary conditions as the
full simulation. While the tree-level calculation and the full

result are quantitatively different, we see the same quali-
tative behavior. Even at the tree level, the condensate
fraction without fðrÞ depends on r. This is because the tree-
level fluctuation already possesses ultraviolet divergence
and the result depends on the regularization to remove it.

IV. SUMMARY

We performed the first quantum Monte Carlo simulation
with a black hole. We considered a real scalar field theory
with spontaneously broken Z2 symmetry. We found that
spontaneous symmetry breaking is strengthened by redshift
near black holes. Unfortunately, the calculation in the
Schwarzschild coordinates (essentially in the spherical
coordinates) suffers from the artificial r dependence of
the regularization. It is intuitively suggestive that the
physical effect would be the difference of the condensate
fraction with and without the redshift factor fðrÞ. This is
clearly supported by the calculation in the simplified
coordinate. However, for the practical use of the
Schwarzschild coordinate, we need to solve the problem
of the artificial r dependence. Actually, this is not a specific
problem of lattice theory but rather a general problem of
quantum field theory in curved spacetimes. The theoretical
calculation of quantum field theory has finite ambiguity
stemming from regularization. The ambiguity can be
artificially inhomogeneous in curved spacetimes.
Physical inhomogeneity is hidden by such ambiguity.
Although it can be partially corrected by perturbative
renormalization, the complete correction by nonperturba-
tive renormalization is extremely difficult.
The application to chiral symmetry breaking in QCD is

an interesting future work. Although chiral symmetry is
spontaneously broken in our present Universe, it can be
changed locally by black holes. Not only redshift but also
other various gravitational effects have been predicted for

FIG. 5. Two-point function GðφÞ in the Schwarzschild coor-
dinate (10). The data with ε ¼ 0.1a and at θ ¼ π=2 are shown.

FIG. 6. Condensate fraction CðrÞ in the Schwarzschild coor-
dinate (10). The data at θ ¼ π=2 are shown.

FIG. 7. Classical solution, the tree-level results, and the full
simulation result of the condensate fraction CðrÞ. The data with
ε ¼ 0.1a and at θ ¼ π=2 are shown.
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fermions [10]. We can study the saga of chiral symmetry
around black holes by evaluating the competition among
them correctly in lattice QCD.
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APPENDIX: PERTURBATIVE CALCULATION

Here, we provide the calculation of the lattice perturba-
tion theory [9]. Since the Fourier transformation to
momentum is ineffective in curved spacetimes, we work
in coordinate space. The lattice spacing is omitted in the
following equations.
In a symmetric vacuum, the loop expansion is expressed

by the free massless lattice propagator D−1
x;y and the second

derivative of the potential

Mx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðxÞ

p
fm2 þ 3λϕ2ðxÞgδx;y: ðA1Þ

Now we consider the loop expansion in a broken vacuum.
The scalar field is shifted as

ϕðxÞ ¼ ϕc þ ΦðxÞ; ðA2Þ

where ϕc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
is a classical solution of the action.

We rewrite

DþM ¼ Aþ B; ðA3Þ

where

Ax;y ¼ Dx;y − 2m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðxÞ

p
δx;y; ðA4Þ

Bx;y ¼ 3λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðxÞ

p
f2ϕcΦðxÞ þ Φ2ðxÞgδx;y: ðA5Þ

These are V × V square matrices. The expansion by the
massless singular matrix D becomes the expansion by the
massive regular matrix A.
The two-point function of the original field ϕ is given by

Gðx; yÞ ¼ hϕðxÞϕðyÞi

¼ ϕ2
c þ ϕc½ΦðxÞ þ ΦðyÞ� þ

�
δ2Γ

δΦðxÞδΦðyÞ
�−1

;

ðA6Þ

where Γ is the perturbative effective action,

Γ ¼ Sþ 1

2
trLogðAþ BÞ

¼ Sþ 1

2
trLogAþ 1

2

X
n

1

n
ð−1Þn−1tr½ðA−1BÞn�: ðA7Þ

The second term in Eq. (A6) does not contribute to the tree
level. At the tree level, we get the two-point function

Gðx; yÞ ¼ ϕ2
c þ A−1

x;y; ðA8Þ

and the condensate fraction

C ¼ GðπÞ
Gð0Þ ¼

ϕ2
c þ A−1

x;xþπφ̂

ϕ2
c þ A−1

x;x
: ðA9Þ
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