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Our recently proposed theoretical formulation [presented in D. Novko et al., Phys. Rev. B 93, 125413 (2016)]
is used to study optical absorption and transmission in molybdenum disulfide (MoS2) monolayer as a function of
incident photon energy and angle. The investigation is not focused on exploration of well-documented spin-orbit
split excitons around optical absorption onset, but rather on the most intensive features in absorption spectrum
in the visible and near-ultraviolet photon energy range (1.7–4 eV). It is shown that three most intensive peaks,
at 2.7, 3.1, and 3.7 eV, result from transitions between Mo(d) and S(p) valence and conduction bands and that
the character of their charge/current density fluctuations is intrinsically in plane, located in the molybdenum
plane. This also implies that MoS2 monolayer is completely transparent when illuminated by grazing incidence
p-polarized light. The validity of the presented results is supported by our effective two-band tight-binding model
and finally by good agreement with some recent experimental results.

DOI: 10.1103/PhysRevB.94.115428

I. INTRODUCTION

Intensive research of graphene [1] is getting saturated
and there is a need for other quasi-two-dimensional (q2D)
materials which would be complementary to graphene in the
way that they can improve its shortcomings. The lack of
natural band gap and low optical absorption in the visible light
range make graphene unsuitable for developing optoelectronic
and photovoltaic devices [2–4]. Also, the two-dimensional
plasmon-polariton (2DPP) mode in doped graphene is strongly
damped, diminishing graphene’s ability to serve as information
carrier [5], or as an active material in chemical sensing [6],
due to the very low oscillator strength of the mode. However, a
combination of graphene and other q2D materials can improve
their common characteristics significantly. The best candidates
are q2D materials with natural band gap, such as molybdenum
disulfide (MoS2) [7,8] or hexagonal boron nitride (h-BN)
[9–11]. Heterostructures which are combinations of graphene
monolayer and MoS2 or BN monolayers have recently been
fabricated and investigated [12]. Researchers from MIT
developed a new solar cell made of graphene and MoS2 [13],
where graphene low absorption and good conductivity enabled
it to serve as transparent electrode, while MoS2, being a good
absorber (in visible region), serves as optically active material.

In this paper, we use our recently proposed theoretical
formulation [14] to investigate angle-resolved optical
absorption and transmission in MoS2. We also make a brief
comparison with the optical properties in graphene, studied
in detail in other theoretical and experimental investigations
[4,15–18]. This theory is based on calculation of
current-current response tensor �μν within random phase
approximation (RPA), where the electromagnetic interaction
is mediated by free photon propagator D0

μν . The tensorial
character of the theory allows us to analyze the response to
transverse electric [s(TE)] and response to transverse magnetic
[p(TM)] external electromagnetic field and to analyze how
optical properties of q2D depend on external electromagnetic
field incident angle. The formulation also includes effects of
retardation which can strongly influence the dispersion rela-
tions of plasmon-polariton (PP) modes in metallic and doped
semiconductor systems. The optical properties of MoS2 are

also studied by using effective two-band tight-binding model
(2B-TBA), which allows easier classification of the features
in optical spectrum. The disadvantage of this formulation is
its inability to provide electron-hole bound state or excitons
in semiconducting q2D such as MoS2. However, there are
many other, very sophisticated, theoretical studies of optical
properties in MoS2 [19,20] which include quasiparticles GW
correction as well as solution of Bethe-Salpeter equation (BSE)
or so called GW-BSE scheme [21–23]. These calculations
provide excitonic features in optical spectra which are in very
good agreement with available experimental results [7,8,24].

This investigation is not focused on investigation of
excitons, which constitute only a tiny part of the optical
spectra, but rather on all other features which appear in visible
photon energy range (1.5 < �ω < 4 eV) of optical spectra.
We also show that our simple 2B-TBA model gives realistic
description of optical absorption spectra, which helps us
to understand the origin of particular features, such as the
position of various peaks in the spectra and their dependence
on the interband relaxation constant. Optical properties are
probed with electromagnetic waves with different incident
angles, which allows us to understand the spatial distribution
of the induced charge or current density oscillations.

In Sec. II A, we briefly present geometry of the system
and formulation of optical absorption and transmission in
terms of ab initio current-current response tensor �0

μν , as
well as our 2D-TBA model. In Sec. III, we analyze optical
absorption of p-polarized normal incidence (θ = 0) light, and
compare it with results of TBA model and with some recent
experimental results. We then analyze the optical absorbance
and transmittance of p-polarized light in MoS2 monolayer
as function of incident angle θ and photon energy �ω. We
also make a brief comparison with the angle-resolved optical
absorption in graphene. In Sec. IV, we present our conclusion.

II. FORMULATION OF THE PROBLEM

A. Optical absorption and transmission

In order to formulate the scattering of plane electromagnetic
wave on q2D crystal, we start from steps that have already been
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FIG. 1. Schematic description of the geometry of the system. The
q2D crystal lies in the x-y plane, a represents lattice constant in the
x-y plane and Luc is the lattice constant in the z direction. θ is incident
angle of s(TE) and p(TM) polarized electromagnetic field.

thoroughly derived in our previous work [14,25], and derive
expressions for angle-resolved absorbance and transmittance.

Our system, schematically shown in Fig. 1, consists of
a q2D crystal (crystal slab) parallel to the x-y plane, with
charge and current density fluctuations occupying the region
z ∈ [−Luc

2 ,Luc

2 ]. The incident electromagnetic field is a plane
wave of unit amplitude

Eext
s,p(r,t) = es,peiQy+iβze−iωt , (1)

where es = (1 0 0) and ep = (0 cos θ − sin θ ) repre-
sent polarization of s(TE) and p(TM) electromagnetic waves,
respectively. θ is incident angle with respect to negative −z

axis, sin θ = Qc

ω
, cos θ = βc

ω
, ω = kc, and k =

√
Q2 + β2.

The incident electromagnetic field interacts with
charge/current density fluctuations in the crystal slab and the
total electromagnetic field can be written as

E(r,t) = Eext(r,t) + Escatt(r,t), (2)

where the scattered electromagnetic field (in � = 0 gauge)
can be written as

Escatt(r,t) = −1

c

∂

∂t

∫
dt1dt2

∫
dρ1dρ2

∫ Luc/2

−Luc/2
dz1dz2

× D̂0(r,r1,t − t1)�̂(r1,r2,t1 − t2)Aext(r2,t2).

(3)

Here, D̂0 is free photon propagator, �̂ is current-current
response tensor of the crystal slab, Aext = −c

∫ t
dt ′Eext(t ′) is

the incident vector potential, and ρ = (x,y) is the radius vector
in the x-y plane so that the 3D radius vector can be written as
r = (ρ,z). All quantities denoted as T̂ represent tensors, i.e.,
3×3 matrices Tμν ; μν = x,y,z. In the optical limit, Q � 1/a,
where a is the unit-cell constant (as sketched in Fig. 1), it is
fully justified to ignore the crystal local field effects in the x-y
plane. In that case, the current-current response tensor � can

be Fourier expanded as

�̂(r,r′,t − t ′) = 1

Luc

∑
GzG′

z

eiGzz−iG′
zz

′
∫

dω

2π
e−iω(t−t ′)

×
∫

dQ
(2π )2

eiQ(ρ−ρ ′) �̂Gz,G′
z
(Q,ω), (4)

where Gz are reciprocal lattice vectors in direction perpen-
dicular to the slab, and Q = (Qx,Qy) is wave vector in the
x-y plane. In this case, it is also convenient to perform partial
Fourier expansion (z remains untransformed) of free photon
propagator

D̂0(r,r1,t − t ′) =
∫

dω

2π
e−iω(t−t ′)

×
∫

dq
(2π )2

eiQ(ρ−ρ ′) D̂0(Q,ω,z,z′). (5)

Since we assume the isotropy in the crystal (x-y) plane, it is
sufficient to analyze only one q direction, and we choose that
to be the y direction (the direction of incident electromagnetic
field). In that case, the Fourier transform of free photon
propagator can be explicitly written as 3×3 matrix presented
in Appendix A [25].

After inserting (1), expansions (4) and (5), and defini-
tions (A2)–(A5) in (3), the scattered or “reflected” electro-
magnetic field in the region z < −Luc/2 can be written as

Escatt
s (ρ,z < −Luc/2,t) = Rs

⎛
⎝1

0
0

⎞
⎠ei(Qy−βz−ωt) (6)

and

Escatt
p (ρ,z < −Luc/2,t) = Rp

⎛
⎝ 0

cos θ

sin θ

⎞
⎠ei(Qy−βz−ωt). (7)

Here, the amplitude of reflected s wave is

Rs = 2πi

cβ
Dxx(Q,ω), (8)

and the amplitude of reflected p wave is

Rp = 2πi

ω
[Dyy(Q,ω) cos θ − Dzz(Q,ω) sin θ tan θ ], (9)

where we introduce the surface electromagnetic field propa-
gator

Dμν(Q,ω) =
∑
GzG′

z

I+
Gz

�μν,Gz,G′
z
(Q,ω)I−

G′
z
,

and where the form factors are

I±
Gz

= 2√
L

sin[(β ± Gz)Luc/2]

β ± Gz

.

The reflected electromagnetic field energy flux (Poynting
vector) in the direction perpendicular to crystal surface,
normalized to incident flux Pext = c

8π
, is R = 2[E × B]z.

After using B = ∇ × A, A = −c
∫ t

dt ′E(t ′) and E =
{Escatt + [Escatt]∗}/2, and time averaging, the reflected energy

115428-2



OPTICAL ABSORPTION AND TRANSMISSION IN A . . . PHYSICAL REVIEW B 94, 115428 (2016)

flux becomes

Rs,p = |Rs,p|2. (10)

As shown before [14], the normalized absorption power per
unit area is given by

As,p = 4π

ω
S(Q,ω), (11)

where spectral function is

Ss,p(Q,ω) = Im

⎧⎨
⎩
∑
μ,ν

es,p
μ es,p

ν

∑
Gz,G′

z

I+
Gz

�μν,GzG′
z
(Q,ω)I+

G′
z

⎫⎬
⎭.

The transmitted electromagnetic energy flux can be obtained
by using the energy conservation law

Ts,p = 1 − Rs,p − As,p. (12)

The main quantity appearing in the above expressions for
absorbance, reflectivity, and transmittance (10)–(12) is the
screened current-current response tensor �μν , and the method
we use to obtain it is described in Appendix B.

B. Band-structure calculation

In order to anticipate the contribution of various electronic
excitations to various features in the optical absorption (or
transmission), we first analyze the orbitally decomposed MoS2

band structure and then use the obtained conclusions to
construct effective two-band TBA model, which helps us to
identify the particular peaks in the absorption spectra.

For calculation of the MoS2 ground-state band structure,
we use plane-wave self-consistent field DFT code (PWSCF)
within QUANTUM ESPRESSO(QE) package [26]. The core-
electron interaction is approximated by the norm-conserving
pseudopotentials [27], and the exchange correlation (XC)
potential by the Perdew-Zunger local density approxima-
tion (LDA) [28]. The ground-state electronic densities of

MoS2 monolayer (ML) are calculated by using 12×12×1
Monkhorst-Pack K-point mesh [29] of the first Brillouin
zone (BZ), and for the plane-wave cutoff energy we choose
50 Ry (680 eV). For MoS2-ML unit-cell constant we use
the experimental value of a = 5.972 a.u. and the vertical
separation between sulfur layers is 5.868 a.u. [30]. The
neighboring MoS2-MLs (in supercell) are separated by the
distance Luc = 5a = 29.86 a.u. The MoS2 band structure
along the high-symmetry 
-K-M-
 directions is calculated
along the path with 201 k points.

Because the main features in absorption spectra come from
the transition between several bands below Fermi energy and
several bands above Fermi energy, here we first define the name
of such bands in order to reduce confusion when we refer to
them. The highest valence band and the lowest conduction
band we call just valence and conduction bands, respectively.
The next band lower in energy than valence band we call
second valence band, the next lower band we call third valence
band, and so on. Similarly, the next band upper in energy than
conduction band we call second conduction band, the next
upper band we call third conduction band, and so on.

Figure 2 shows the intensities of contributions of the
molybdenum 4[dxz, dyz, dz2 , dxy , and dx2−y2 ] orbitals (left
panel), denoted as Mo(d), and sulfur 3[px,py] orbitals (right
panel), denoted as S(p), to the MoS2 band structure. The
intensities of Mo(s), Mo(p), S(s), and S(d) orbitals are not
shown because their contribution is negligible in the presented
energy interval. The energy scale is aligned so that the Fermi
energy is equal to zero.

We can see that the 1.78-eV LDA gap (direct gap at K point)
almost coincides with the LDA gap reported in Ref. [19],
but in that paper the authors reported that the quasiparticle
(G1W0) correction increases the gap to 2.84 eV. Therefore, as
expected in semiconductors or insulators, the LDA strongly
underestimates the quasiparticle gap, which makes our RPA
response theory based on LDA wave functions and energies
inadequate. Fortunately, since optical gap (excitation gap)

Mo(d)

Γ K M Γ
Wave vector K

-4

-2

 0

 2

 4

E
n(

K
) 

[e
V

]

 0

 0.2

 0.4
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 0.8

 1

S(p)

Γ K M Γ
Wave vector K

-4

-2

 0

 2

 4

E
n(

K
) 

[e
V

]

 0

 0.2

 0.4
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 1

FIG. 2. The intensities of contributions of the Mo(d) orbital (left panel) and S(p) orbital (right panel) to MoS2 band structure.
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almost coincides with LDA gap (as reported in many theoret-
ical and experimental papers [7,8,19,20,24,31]), it means that
excitonic effect (electron-hole attraction), also not included
in our RPA formulation, cancels the quasiparticle correction
almost exactly. This cancellation should be taken with care
because it could be valid only for valence and conductive
bands around the K point, but our optical spectra indicate that
it is valid for the majority of valence and conduction bands.
Exclusion of electron-hole attraction also excludes A and B

excitons [19] from the optical absorption spectra, but that part
of the spectrum is not an objective of our research.

It can be noticed (in the right panel) that the second and
third valence bands mainly consist of S(p) orbitals while
(in left panel) second and third conduction bands mainly
consist of Mo(d) orbitals. However, it can also be noticed
the small but not negligible contribution of Mo(d) orbitals in
the second and third valence bands and contribution of S(p)
orbitals in the second and third conduction bands. It is also
noticeable that the second valence band in the 
-K direction
has dominant S(p) character while the second conduction
band around the M point has dominant Mo(d) character,
etc. In the dipole approximation k−1 � a (which is in our
case completely justified), the electromagnetic field can, due
to dipole matrix elements selection rules, cause transitions
only between the states which angular momentum quantum
numbers differ for one. Therefore, the above-described angular
momentum composition of valence and conducting bands
tells us that electromagnetic field will be capable to cause
transition between them. Here, we are mostly interested in
optical absorption in visible energy range, up to 4 eV, mainly
contributed by transitions between conduction and valence
bands.

C. Effective 2B-TBA model

High-quality image of electronic bands in MoS2 can be
obtained in the tight-binding approximation (TBA) with the
nearest-neighbor hopping, taking into account a large number
of atomic orbitals [32,33]. However, if we want a model more
suitable for theoretical calculation of electronic properties for
energies comparable with the gap, it is sufficient to limit the
calculations to just a few bands. Keeping that in mind, we
construct a two-band TBA model which captures all significant
features of the valence bands.

As shown by DFT calculations, these bands are constructed
mainly from S(p) and Mo(d) orbitals, and now we want to
implement this property in the TBA model. To do that, it is
helpful to view the system as one composed of Mo atom and
S2 molecule. Each sulfur molecule can be seen as a molecule
with two effective molecular orbitals, one symmetric and one
antisymmetric, which are linear combinations of atomic sp2

hybrids. Since molybdenum is located in the middle layer, we
can keep the overlap between molybdenum effective d orbital
and the symmetric sulfur orbital as the most relevant parameter
since the value of antisymmetric orbital vanishes in the middle
plane. The price to pay for choosing this “effective” two-
band model (where we have neglected effective asymmetric
sulfur orbital) is the inclusion of electron hopping between
the same orbitals in distant neighbors if we want to include,

FIG. 3. A top view of MoS2 plane with molybdenum atoms (red)
and sulfur atoms (blue). a1 and a2 are primitive vectors. Distance to
the four alike neighbors is shown.

quantitatively and qualitatively, all significant features of both
bands.

1. Hamiltonian

To construct the TBA Hamiltonian, we label the sulfur
and molybdenum orbitals with � = {s,m} and define c

†
R� as

an electron creation operator in the �th orbital at position r�

in the unit cell with a Bravais vector R. If we choose the
primitive vectors to be a1 = a(1,0) and a2 = a(1/2,

√
3/2)

(a = 3.16 Å) with the orbitals relative positions rs = 0 and
rm = r1 = (a1 + a2)/3 as shown Fig. 3, the Hamiltonian is

Ĥ0 =
∑
R,δ

∑
��′

H��′
0 (δ + r�′�)c†R�cR+δ�′ . (13)

The elements H��′
(δ + r�′�) are binding energies associated

with electron hopping processes between the two �,�′ orbitals,
depending solely on the distance between them. Vector δ is the
position of neighbor unit cells relative to R, and r�′� = r�′ − r�

is the distance between the two orbitals within the unit cell.
By Fourier transforming the Hamiltonian (13),

Ĥ0 =
∑

K

∑
��′

H��′
0 (K)c†�Kc�′K, (14)

we can define the matrix elements in a more familiar way. The
diagonal elements are the sum of the onsite orbital energy (δ =
0) and the contribution from hopping to most alike neighbors
at distance δ > 0. Since r�� = 0, we get

H��
0 (K) = ε�(K) = ε� +

∑
δ>0

2t��(δ)cos(K · δ). (15)

As for the nondiagonal elements, for example Hsm
0 , we retain

only the hopping to the three nearest neighbors located at r1 =
rms , r2 = rms − a1, and r3 = rms − a2 as shown schematically
in Fig. 3. Therefore,

Hsm
0 (K) = t∗sm(K) = tsm

3∑
j=1

eiK·rj . (16)

Note that the expression (16) is the usual parametrization of
the off-diagonal part of TBA Hamiltonian in graphene or h-BN
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TABLE I. δ ≡ |δ| is the distance to the neighbors and the tmm

and tss are the corresponding hopping parameters between the same
orbitals. For example, there are six sulfur orbitals |δ| = √

3a away
from the the sulfur orbital we choose as a reference one, at positions
δ = ±(2a2 − a1), ± (2a1 − a2), ± (a2 + a1), to which the electron
hopping parameter is the same tss = 15 meV.

δ a
√

3a 2a
√

7a 3a 2
√

3a
√

13a 4a

tss/meV 45 15 60 0 5 −35 5 15
tmm/meV 20 100 10 −5 −5 10 0 −5

εm = 1.15 eV εs = −1.7 eV tsm = 0.3 eV

with a well-known dispersion [34,35]

|tsm(K)| =
√

3 + 2cosKxa + 4cos
Kxa

2
cos

√
3Kya

2
. (17)

Hamiltonian (14) can be diagonalized by unitary transforma-
tion, as shown in Appendix D, with the eigenvalues

E±(K) = εm(K) + εs(K)

2

± 1

2

√
[εm(K) − εs(K)]2 + 4|tsm(K)|2. (18)

The elements of (15) and (16) like atomic orbital energies εs

and εm, hopping parameters tmm, tss , and tsm are found by
using the method of least squares, that is, by requiring that
the difference of squares between the valence bands obtained
from the first principles (Fig. 2) and the expression (18) for
arbitrary chosen points in the Brillouin zone is minimal. The
parameters are given in Table I and the dispersions (18) are
shown in Fig. 4.

2. Interaction with external field and the dynamical
conductivity tensor

In the tight-binding approximation, the coupling between
valence electrons and the electromagnetic field given by a

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

E
(e

V
)

DOS (1/eV) Γ MK  Γ

Q

H

P

FIG. 4. The valence band (violet) and conduction band (red) and
their density of states (right panel). Notice the saddle points at P , H

and M which give singular contribution to the density of states. The
points Q and H are approximately at (2π /3a,0) as noted in Ref. [32].

vector potential A(r,t) is described by Peierls substitution [36]
in the bare Hamiltonian (13). That way, we obtain Ĥtot, as
shown in Appendix C, and the coupling Hamiltonian is defined
as Ĥext = Ĥtot − Ĥ0. For sufficiently small fields, we can
expand Ĥtot in powers of A(r,t) and keep only the linear term
to obtain

Ĥext = −1

c

∑
Q,μ

Aμ(Q,t)Ĵ para
μ (−Q). (19)

In (19), we have identified the paramagnetic current operator
and introduced Cartesian coordinates μ. For further calcula-
tions it is useful to present the paramagnetic current operator
in diagonal representation:

Ĵ para
μ (Q) =

∑
LL′

∑
K

JLL′
μ (K,K + Q)c†LKcL′K+Q, (20)

with the matrix elements JLL′
μ (k,k + Q) given in Appendix D.

The diagonal conductivity tensor is given by a well-known
expression [34]

σμμ(Q,ω) = i

ω
[�μμ(Q,ω) − �μμ(Q,0)], (21)

where we have defined

�μμ(Q,ω) =
∫ β

0
dτ eiωτ

〈
Tτ Ĵ

para
μ (Q,τ )Ĵ para

μ (−Q,0)
〉

(22)

as Matsubara current-current correlation function for the
homogeneous and isotropic system with the current opera-
tors (20). The static part of the correlation function is related
to the diamagnetic contribution to the conductivity and, using
continuity equation, it can be shown that it is given by the
effective number of charge carriers �μμ(Q,0) = e2nμμ(Q)/m.
Since this term is real, it gives no contribution to the real
part of conductivity. After performing analytical continuation
of expression (22), and introducing interband relaxation time
approximation by changing iη → i�γ , where the relaxation
constant γ is connected with the relaxation time τr in the usual
way γ = 1/τr , we obtain

�μμ(Q ≈ 0,ω) = 1

V

∑
K,σ,L �=L′

∣∣JLL′
μ (K)

∣∣2

× fL(K) − fL′(K)

�ω + EL(K) − EL′(K) + i�γ
. (23)

Since we are studying optical transitions, we are interested in
the interband conductivity in the Q ≈ 0 limit.

III. RESULTS AND DISCUSSION

A. Optical absorption in MoS2

Let us first analyze the optical absorbance calculated
using (11) with current-current response tensor �0

μν [Eq. (B3)].
The �0

μν is calculated from the Kohn-Sham (KS) wave
functions φLK(r) and energies EL(K) obtained by the ground-
state calculation, as described in Sec. II B. In the summation
over K in (B3) we use 201×201×1 K-point mesh sampling,
which corresponds to 40 405 Monkhorst-Pack special k points
in the Brillouin zone and 6835 points in the irreducible
Brillouin zone. Band summation (L,L′) in (B3) is performed
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over 50 bands and we use damping parameter η = 50 meV.
Broken symmetry in the z direction results in significant
inhomogeneity of induced current and charge densities in
that direction. This requires inclusion of the crystal local field
effects in the z direction, which is achieved by using 61 Gz

Fourier components, corresponding with 20 Ry (544 eV)
crystal local field effects cut off. After solving the Dyson
equation (B1) we obtain the screened current-current response
tensor �̂, which can be inserted in the expression for the optical
absorbance (11) or the expression for transmittance (12). The
validity of RPA result is tested by the f -sum rule check

2m

πe2

∫ ∞

0
dω Reσμμ(ω) = Nel ; μ = x,y

where Nel = 18 is the number of electrons per unit
cell and the conductivity is calculated as Reσμμ(ω) =
1
ω

Im�0
μμ,Gz=0,G′

z=0(Q = 0,ω). We found that described pa-
rameters give satisfactory 4% f -sum rule error. Results for
optical absorption can be compared with optical conductivity
in our 2B-TBA model (23) and with some recent experimental
results.

The black solid line in Fig. 5(a) shows the RPA result
[obtained from Eq. (11)] for optical absorbance of p-polarized
normal incidence (θ = 0) light in the MoS2 monolayer.
The absorbance of normal incidence s-polarized light is not
shown because it coincides with the absorbance of normal
incidence p-polarized light, as is also obvious from Fig. 1.
Since all relevant features in absorption spectra correspond to
transitions between valence or conducting Mo(d) and valence
or conducting S(p) orbitals, such excitations are denoted as
Mo(d)↔ S(p) excitations.

We see optical absorption onset at about 1.75 eV and
slowly increasing plateau which corresponds to Mo(d)↔
S(p) excitations around the K point. The intensive peak
2.7 eV, denoted as C, corresponds to direct Mo(d)↔ S(p)
excitations at point P , as can be seen in Fig. 4. The peak
at 3.1 eV, denoted as D, corresponds to transitions between

Van Hove singularities at the M point, which exhibits very
intensive S(p) character in the valence band and very intensive
Mo(d) character in the conduction band. The peak at 3.7 eV,
denoted as E, is a result of transitions between the Van Hove
singularities in the second valence band [with dominant S(p)
character] and the second conduction band [with dominant
Mo(d) character] at the M point.

Blue dots in Fig. 5(a) show the experimental results for
optical absorption in MoS2 monolayer [31]. Qualitatively the
same experimental result is reported in Ref. [24], but in
arbitrary units so it cannot be quantitatively compared with
our result. The intensity of experimental peak at 2.85 eV is in
excellent agreement with intensity of the C peak. However,
the C peak is red-shifted to 2.7 eV. This disagreement
is due to the fact that our RPA result does not include
electron-hole attraction (which decreases excitation energy)
and quasiparticle correction of LDA electronic spectra (which
increases excitation energy). The best example of inadequacy
of RPA results is the lack of excitonic effect in the vicinity
of optical absorption onset. Experimental result shows two
peaks (denoted as A and B), corresponding with excitons
formed due to the interaction between an excited electron in the
lowest conduction band and an excited hole in the spin-orbit
(SO) split valence band at the K point. Very sophisticated
calculations of optical absorption spectra in MoS2-ML, which
include spin-orbit coupling, quasiparticle GW correction of
LDA states, and electron-hole attraction obtained by solving
Bethe-Salpeter equation (so-called GW-BSE scheme [21–23]),
are presented in [19,20]. All excitonic features obtained
in these papers are in very good agreement with available
experimental results [7,8,24]. However, here we are looking
for the physical origin of highly excited modes C, D, and E in
the optical spectra. For that purpose, we implement a different
method, two-band TBA model, which is complementary to ab
initio method in the sense that many of the parameters become
more controllable, and the computational effort for each set of
parameters is negligible.
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FIG. 5. (a) The optical absorbance of p-polarized normal incidence (θ = 0) light in MoS2-ML calculated from Eq. (11) (black solid line),
the experimental result taken from Ref. [31] (blue dots). (b) Real part of optical conductivity (23) in units of σ0 = e2/4� with increasing
relaxation constant �γ = 10 meV (turquoise), 30 meV (orange), 50 meV (red), and 100 meV (maroon). The inset shows the ab initio JDOS
(turquoise) and TBA-JDOS (red).
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The blue line in Fig. 5(b) inset represents ab initio joint
density of states (JDOS)

JDOS(ω) = 1

V

∑
K,σ

L,L′

[fL(K) − fL′(K)]

× δ[�ω + EL(K) − EL′(K)] (24)

in MoS2-ML. Around the optical absorption onset, the JDOS
shows characteristic step function behavior which is a fin-
gerprint of the direct transitions between two-dimensional
parabolic bands, as the square-root behavior would be in
the three-dimensional case. Optical absorption spectrum in
Fig. 5(a), which does not include excitonic effects, shows the
same character. Because of the absence of current vertices in
JDOS, all electronic excitations are equally permitted, so it
could contain extra structure in comparison with absorption
spectrum. For example, the JDOS contains X peak, at 3.4 eV,
which is missing in absorption spectrum. This issue will be
discussed below. The red line in Fig. 5(b) inset represents
TBA-JDOS, which is much more refined because of the
analytical treatment of two bands and due to the absence of
other bands.

The optical conductivity in MoS2 obtained in the two-band
TBA model is shown in Fig. 5(b). We can see that the optical
conductivity at energies right above the band gap is by an
order of magnitude smaller than the conductivity of doped
graphene [37], and about 20 times smaller than the experi-
mental value in MoS2 [31]. The reason for this discrepancy is
in the unrealistically small value of the molybdenum-sulfur
hopping parameter tsm used for this calculation, since it
can be seen from Appendix D that the interband current
vertices are proportional to tsm which is an order of magnitude
smaller than interatomic hopping parameter in graphene [38].
Unfortunately, we have to keep this value so small because
larger tsm would increase the number of neighbors needed to
fit the dispersions significantly. In addition to that, we would
also need to include a second-neighbor molybdenum-sulfur
hopping. In this approach, which resembles the construction
of the TBA Hamiltonian from the Fourier transformation of
the valence bands with the constraint of having two orbitals in
the unit cell, the calculation of current vertex would become
even more complicated than it already is. Since our aim is to
show the origin of some significant features in the absorption
spectrum like the positions of certain peaks which depend
mostly on the properties of the valence bands, we can use the
aforementioned two-band model. It will produce an accurate
qualitative picture of the optical spectra irrespective of the
quantitative disagreement.

In order to clarify why in Fig. 5(a) the nonzero absorp-
tion appears below the optical gap energy (long tail below
�ω = 1.78 eV) in Fig. 5(b), the TBA absorption (or optical
conductivity) is calculated for different relaxation constants
�γ . It can be seen that for �γ = 10 meV (turquoise) the
absorption behaves almost as step function with onset at �ω =
1.78 eV. However, for bigger relaxation constants, e.g., for
�γ = 50 meV (red) which corresponds to damping parameter
η = 50 meV used in ab initio calculation, the absorption
becomes more dispersive functions with long tail spreading
into the energy region below the optical gap, which is exactly

how the ab initio absorption behaves in Fig. 5(a). Therefore, the
finite absorption below the optical gap energy can be attributed
to absorption due to various dissipative mechanisms in the
system.

For shorter relaxation constants (e.g., for �γ = 10 and
30 meV), the optical conductivity shows two distinct (pro-
nounced) maxima. The first maximum, denoted as C, origi-
nates from the direct transitions between valence and conduc-
tion band at point P in the Brillouin zone. P , H , and M and
are saddle points, i.e., they represent Van Hove singularities
which can be seen as sharp peaks in DOS in Fig. 4. The same
transition at P point reflects a C peak in JDOS [Fig. 5(b)
inset]. The second maximum, denoted as D, originates from
transitions at the M point, which is also manifested as the
two most intensive peaks in DOS and as D peak in JDOS.
The third, small, maximum at 3.4 eV in Fig. 5(b), denoted
as X, is the most intriguing one. Namely, it does not appear
in ab initio absorption spectra [Fig. 5(a)], but it does appear
as the most intensive peak in JDOS, calculated using both
methodologies [X peak in Fig. 5(a) inset], and finally there
are no Van Hove singularities in DOS (Fig. 4) from which it
would originate. It originates from transitions between parallel
(holelike) parabolic bands around the 
 point. Even though
the DOS of both bands at the 
 point is negligible, the peak is
intensive because many equally separated energy levels laying
on parallel parabolas contribute to JDOS (which depends
on energy difference). Moreover, the X peak in the optical
conductivity is highly reduced due to the current vertices (not
present in JDOS) which filter just the dipole active transitions.
In Fig. 5(b), we can also see that how the relaxation constant
increases the X peak decreases, and finally disappears for
�γ = 50 meV. The damping parameter η appearing in ab initio
current-current response function (B3) corresponds exactly
to relaxation constant �γ appearing in TBA current-current
response function (23). The damping parameter used in ab
initio calculation is η = 50 meV, which corresponds to the
TBA relaxation constant �γ = 50 meV when the X peak
in Fig. 5(b) disappears, so this explains why the X peak in
Fig. 5(a) is also missing. The E peak at 3.7 eV does not appear
in the TBA result because it originates from the transition
between the higher-order valence and conduction bands, not
included in TBA.

B. Angle-resolved optical absorption and transmission
in MoS2 monolayer

Figure 6(a) shows optical absorbance and Fig. 6(b) shows
transmittance of p-polarized light in MoS2 monolayer as
function of incident angle θ and photon energy �ω. For
normal incidence, i.e., θ = 0 (electrical field is parallel to
crystal plane) the absorption spectrum is the same as in
Fig. 5(a). It can be noticed that the peaks in absorption
spectra coincide with the dips in the transmitted spectra,
and that the sum of the two is almost identical to the
incident flux. This means that only a negligible part of the
incident radiation is reflected. As incident angle increases,
the absorption monotonically decreases. For nearly grazing
incidence, i.e., θ = 80◦ (electrical field is perpendicular to
crystal plane), the absorption becomes negligible, i.e., smaller
than 1%, and the transmission is almost 100% in the whole
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FIG. 6. Angle-resolved optical absorbance (a) and transmittance
(b) in MoS2 monolayer (black lines) and in graphene monolayer
(blue dashed lines). The incident angle increases as θn = n�θ ; n =
0,1, . . . ,8, where �θ = 10◦, as denoted in the graphs. Normal
incidence (θ = 0) absorbance in graphene taken from Ref. [18] (red
dotted line) and Ref. [4] (green dashed-dotted line).

presented photon energy range. This leads to the conclusion
that the Mo(d)↔ S(p) transitions represent in-plane charge
or current density oscillations which can be excited only
with electrical field with nonzero parallel component. In
other words, this means that MoS2 monolayer is completely
transparent when it is illuminated with grazing incidence
p-polarized light. Presented results are in good qualitative
agreement with angle-resolved EELS measurements presented
in Figs. 2(a) and 3 of Ref. [39] which demonstrate that EELS
spectra decrease as in-plane component of momentum transfer
(qy) increases (which is analogous with increasing incident
angle).

It is intriguing that the character of Mo(d)↔ S(p) tran-
sitions is intrinsically in plane, even though they represent
transitions between Mo(d) orbitals with dz2 and dx2−y2 charac-
ter laying in molybdenum plane and S(p) orbitals with px and
py character maximally localized in sulfur planes. Therefore,

this kind of transition should also have partially out-of-plane
character because sulfur occupies every second site in the
honeycomb arrangement and is not positioned directly above
molybdenum. However, since there are two sulfur planes,
these out-of-plane transitions apparently do not have dipole
character, but rather some higher multipole, so they do not
couple to external electromagnetic field. Electromagnetic field
induces in-plane dipole moment, consisting of transitions
between Mo(d) orbitals and (even) linear combination of S(p)
orbitals in two sulfur planes with final weight in the molyb-
denum plane. The same arguments were used to construct
our two-band TBA model. Therefore, we can conclude that
the MoS2 modes are quite simple optical modes in visible
frequency range, consisting of dipole active charge or current
oscillations in the molybdenum plane.

C. Comparison with angle-resolved optical
absorption in graphene

The graphene can serve as useful reference for the analysis
of the optical properties of other quasi-2D crystals. Here,
we briefly analyze the normal incidence optical absorption
in pristine graphene obtained in other theoretical and ex-
perimental investigations [4,14–18] and its angle-resolved
optical absorption in order to emphasize its complementarity
to MoS2-ML.

The thick blue dashed lines in Fig. 6 show the graphene opti-
cal absorption for normal incidence (θ = 0). The parameters of
calculations are the same as in Ref. [14]. Absorption onset ap-
pears already at �ω = 0 which is due to the gapless dipole ac-
tive π → π∗ interband transitions near the K point of the BZ.
In the whole infrared (IR) photon energy range (�ω < 1.7 eV),
the absorption is close to the universal value of πα = 2.3%
(where α = 1

137 is the fine-structure constant), denoted by the
horizontal magenta dashed line, as predicted experimentally in
Refs. [15,16]. In the visible photon energy range (1.7 < �ω <

3.5 eV), the absorption monotonically increases. The first
absorption maximum, which appears in the ultraviolet (UV) re-
gion at �ω = 4 eV, is a consequence of the dipole active inter-
band π ↔ π∗ transitions along the MM ′ and M
 directions of
the first Brillouin zone, as discussed in detail in [17]. This res-
onance absorbs about 12% of incident electromagnetic energy.
This result agrees well with the theoretical result obtained in
Ref. [18] (shown by red dotted line) and the experimental result
obtained in Ref. [4] (shown by green dashed-dotted line). How-
ever, our RPA absorption maximum shows the same symptoms
as the C peak in MoS2-ML, it is red-shifted (4.05 eV) in
comparison with theoretical and experimental peak at 4.62 eV.
In Ref. [18], the authors provided full GW-BSE calculation
(which includes quasiparticle corrections and electron-hole at-
traction) and the agreement with the experiment is much better.
However, our result is in excellent agreement with the theoret-
ical result in the whole IR and visible photon energy region,
which is the region of main future interest. For �ω < 0.5 eV,
both theoretical results start disagreeing with the experimental
absorption spectrum which suddenly decreases below the
universal value. This is probably due to the weak doping
which causes a shift of optical absorption onset from �ω = 0 to
�ω = 2EF .
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The thin blue dashed lines in Fig. 6(a) show the optical
absorbance for larger incident angles (θ = 10◦–80◦) of p-
polarized light in single-layer graphene. It can be seen that
the IR and visible photon energy (�ω < 3 eV) plateau, and
absorption maximum at 4 eV decrease as the incident angle
increases. Blue thick dashed line in Fig. 6(b) shows the
normal (θ = 0) and blue thin lines show larger angles (θ =
10◦–80◦) transmittance in single-layer graphene. Since the
reflectivity is negligible (or at least very small) in the presented
photon energy range, the transmittance can be obtained as
the incident flux reduced by the absorbance. For grazing
incidence when absorption becomes negligible the transmit-
tance is almost 100% and graphene is completely transparent.
This indicates intrinsically in-plane character of the π ↔ π∗
transitions in graphene, like the Mo(d)↔ S(p) transitions
in MoS2.

In the visible photon energy range (e.g., from 1.7 to
3.5 eV), where absorption of graphene is minimal and it
behaves as almost completely transparent, MoS2 absorption
is maximal. On the other hand, it is well known that pristine
graphene behaves as a very good conductor (it has very high
dc conductivity) [40]. In addition to that, small doping can
enhance graphene dc conductivity, and reduce absorption in the
visible frequency range. All this suggests that graphene/MoS2

composite can potentially be used in photovoltaic devices,
where MoS2 acts as the optically active element (light
absorber) and graphene acts as the transparent conductive
electrode (or so-called TCO in case of metal oxides), as
previously predicted in Ref. [13].

IV. CONCLUSION

The focus of this paper is to explore the physical origin of
the most prominent features in MoS2 optical spectra in visible
and near ultraviolet (NUV) photon energy range (1.7–4 eV)
by use of recently proposed theoretical tools. We showed
that optical spectra consist of three peaks originating from
transitions between valence and conducting Mo(d) and S(p)
bands. The most intensive C peak, at 2.7 eV, is due to
transitions between parabolic bands located between 
 and
K points of first Brillouin zone. The D peak, at �ω = 3.1 eV,
is due to transitions between Van Hove singularities at the
M point. Finally, the E peak, at 3.7 eV, is due to transitions
between Van Hove singularities in the second valence and
second conduction bands at the M point. The validity of the
results is supported by our 2B-TBA model which produced the
same results in the visible photon energy range. Calculation
of angle-resolved optical absorption and transmission showed
that the optical absorbance monotonically decreases, while the
transmittance increases, as the incident angle of p-polarized
light increases. This implies that the charge or current
fluctuations, which produce all features in the spectra, have
an in-plane character and that MoS2 is completely transparent
when it is illuminated by nearly grazing incidence p-polarized
light. The results are compared with angle-resolved optical
absorption and transmission in graphene, and it is shown that
MoS2 reaches maximal absorption in the visible photon energy
range, where graphene still behaves as transparent, making
these materials suitable for application in solar cells.
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APPENDIX A: FREE PHOTON PROPAGATOR

The Fourier transform of free photon propagator can be
explicitly written as [25]

D̂0 =

⎡
⎢⎣

D0
xx 0 0

0 D0
yy D0

yz

0 D0
zy D0

zz

⎤
⎥⎦, (A1)

where

D0
xx(Q,ω,z,z′) = 2πi

cβ
eiβ|z−z′ |, (A2)

D0
yy(Q,ω,z,z′) = 2πicβ

ω2
eiβ|z−z′ |, (A3)

D0
zz(Q,ω,z,z′) = −4πc

ω2
δ(z − z′) + 2πicQ2

βω2
eiβ|z−z′ |, (A4)

and

D0
yz(Q,ω,z,z′) = D0

zy(Q,ω,z,z′)

= −2πicQ

ω2
sgn(z − z′) eiβ|z−z′ |, (A5)

where β =
√

ω2

c2 − Q2.

APPENDIX B: CURRENT-CURRENT RESPONSE TENSOR

The main quantity appearing in the above expressions for
reflectivity, absorbance, and transmittance [Eqs. (10)–(12)]
is the current-current response tensor �μν . It describes the
microscopic current density fluctuations in the crystal slab. In
RPA, it can be obtained by solving the matrix Dyson equation

�Gz,G′
z
(Q,ω)=�0

Gz,G′
z
(Q,ω)+

∑
Gz1,Gz2

�0
Gz,Gz1

(Q,ω)D0
GzG′

z
(Q,ω)

×�Gz2,G′
z
(Q,ω), (B1)

where

D0
Gz,G′

z
(Q,ω) = 1

L

∫ Luc/2

−Luc/2
dz dz′e−iGzzD0(Q,ω,z,z′)eiG′

zz
′
.

(B2)

We see that the z integration in (B2) is restricted exactly to the
−Luc/2 to Luc/2 interval, which implies that the interaction
of the current fluctuation created in the region −Luc/2 < z <

Luc/2 via photon propagator D0(Q,ω,z,z′) is only possible
with the current fluctuation in the region −Luc/2 < z′ <

Luc/2, even though the induced electromagnetic field is not
limited to that region. This restriction guarantees that �

contains information only about the electromagnetic modes
characteristic for the electronic system limited to the re-
gion −Luc/2 < z < Luc/2 (i.e., q2D systems). The similar
restriction is applied in the z integration in (3) which results
in “external” field coupling and inducing current fluctuation
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only in the region −Luc/2 < z < Luc/2. The current-current
response tensor of noninteracting electrons can be written
as [14]

�0
μν,Gz,G′

z
(Q,ω) = 1

V

∑
K,L,L′

�ω

EL(K) − EL′(K + Q)

× [
J ν

KL,K+QL′(G′
z)
]∗

J
μ

KL,K+QL′(Gz)

× fL(K) − fL′(K + Q)

�ω + iη + EL(K) − EL′(K + Q)
,

(B3)

where the current vertices are

J
μ

KL,K+QL′(Gz) =
∫

�

dr e−iQ·ρ−iGzzJ
μ

KL,K+QL′(r), (B4)

and where

J
μ

KL,K+QL′(r) = �e

2im
{φ∗

LK(r)∂μφL′K+Q(r)

− [∂μφ∗
LK(r)]φL′K+Q(r)}. (B5)

Here, V = S × Luc is the normalization volume, S is the
normalization surface, and fL(K) = (e[EL(K)−EF ]/kBT + 1)−1

is the Fermi-Dirac distribution at temperature T . Integration
in (B4) is performed over the normalization volume �.
Plane-wave expansion of the wave function has the form

�LK(ρ,z) = 1√
�

eiK·ρ ∑
G

CLK(G)eiG·r,

where the coefficients CLk are obtained by solving the
KS equations self-consistently and G = (Gx,Gy,Gz) are 3D
reciprocal lattice vectors.

APPENDIX C: PEIERLS SUBSTITUTION

Peierls substitution in the bare Hamiltonian is defined as
follows:

Ĥ0 =
∑
R,δ

∑
��′

H��′
0 (δ + r�′�)c†R�cR+δ�′

→
∑
R,δ

∑
��′

H��′
0 (δ + r�′�)c†R�cR+δ�′

× exp

{
ie

�c

∫ R+r�

R+δ+r�′
ds A(s,t)

}
= Ĥtot. (C1)

In the long-wavelength limit, the vector potential varies
negligibly between the two neighbors separated by δ, and the
integral can be approximated by the midpoint rule:

∫ R+r�

R+δ+r�′
ds A(s,t) ≈ −(δ + r�′�) · A

(
R + δ

2
+ r,t

)
(C2)

with r = (r� + r�′ )/2. Interacting Hamiltonian is defined and
obtained to the linear order in vector potential

Ĥ ext = Ĥtot − Ĥ0

≈ − ie

�c

∑
R,δ

�,�′

(δ + r�′�) · A
(

R + δ

2
+ r,t

)

×H��′
(δ + r�′�)c†�Rc�′R+δ.

Using momentum representation of the fermion operators and
vector potential

c
†
R� =

∑
K

e−iK·(R+r�)c
†
�K, A(r,t) =

∑
Q

eiQ·rA(Q,t),

and defining

H��′
(

K + Q
2

)
=
∑

δ

H��′
(δ + r�′�)ei(K+ Q

2 )·(δ+r��′ ), (C3)

we get

Ĥ ext = −1

c

∑
Q,μ

Aμ(Q,t)
∑
K,��′

e

�

∂H��′(
K + Q

2

)
∂kμ

c
†
�K+Qc�′K.

Evidently, the paramagnetic current operator is

Ĵ para
μ (−Q) =

∑
K,��′

e

�

∂H��′(
K + Q

2

)
∂Kμ

c
†
�K+Qc�′K. (C4)

APPENDIX D: CURRENT VERTEX

We define a Bloch creation operator in tight-binding
approximation

c
†
LK =

∑
�

UK(L,�)c†�K. (D1)

The sum
∑

� extends over all orbitals in the unit cell
participating in the valence bands, and the UK(L,�) are
elements of the transformation matrix between delocalized
orbital representation and the diagonal one, which can be
obtained by solving the Schrödinger equation∑

�′
UK(L,�′)[H��′

(K) − EL(K)δ��′] = 0. (D2)

After introducing notation

εms(K) = εm(K) − εs(K), tan θ (K) = 2|t(K)|
εms(K)

,

t(K) = |tsm(K)|eiϕ(K), tan ϕ(K) = ti(K)

tr (K)
, (D3)

where ti(K) = Im t(K) and tr (K) = Re t(K), the transforma-
tion matrix is

UK(L,�) =
(

e−iϕ(K) cos θ(K)
2 − sin θ(K)

2

e−iϕ(K) sin θ(K)
2 cos θ(K)

2

)
.

We can now verify that the inverse representation is given by

c
†
�K =

∑
L

UK(�,L)c†LK. (D4)
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To evaluate the current vertex in (C4) in long wave limit
(Q = 0), we use (D4) and get

JLL′
μ (K) =

∑
��′

e

�

∂H��′
(K)

∂Kμ

UK(�,L)U ∗
K(�′,L).

By noting that

∂ϕ(K)

∂Kμ

= 1

|t(K)|2
{
tr (K)

∂ti(K)

∂Kμ

− ti(K)
∂tr (K)

∂Kμ

}
, (D5)

∂θ (k)

∂Kμ

= (2/εms(K))
1 + tan2θ (K)

{
∂|t(K)|
∂Kμ

− tanθ (K)

2

∂εms(K)

∂Kμ

}
(D6)

for the interband case, we obtain

JPM
μ (K) = e

�

(
EPM (K)

2

∂θ (K)

∂Kμ

+ i|t(K)|∂ϕ(K)

∂Kμ

)
,

where EPM (K) = E+(K) − E−(K) is the difference between
the energy eigenvalues.
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