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The propagator of the induced dynamically screened Coulomb interaction W ind(Q,ω,z,z′) is calculated for the
MoS2 monolayer. The energy-loss rate of a point charge placed near the MoS2 monolayer is calculated (using
the spatial resolution of the W ind in the direction perpendicular to the MoS2 plane) and successfully compared
with very recent electron-energy-loss spectroscopy measurements of Hong et al. [J. Hong et al., Phys. Rev. B
93, 075440 (2016)]. The induced propagator W ind, compared with its classical analogous propagator, is used to
determine the effective dielectric function εeff (ω) of atomically thick crystals. It is shown that εeff (ω) extracted
from W ind is in good agreement with the dielectric function of the MoS2 extracted from the ellipsometry
measurements. A recently proposed method for calculation of the dielectric tensor in quasi-two-dimensional
crystals is used to calculate the parallel ε‖(ω) and perpendicular ε⊥(ω) dielectric functions in MoS2, which are
compared with some previous measurements and calculations.

DOI: 10.1103/PhysRevB.94.165446

I. INTRODUCTION

Transition-metal dichalcogenides (TMDCs) recently be-
came widely studied systems because of their favorable
structural, electronic, and optical properties. They can be
prepared as stable monolayer (ML) crystals [1–3] with a
direct band gap, known as quasi-two-dimensional (q2D)
semiconductors. These days, the most common direct gap ML
semiconductors are molybdenum disulfide (MoS2-ML) [4,5]
and hexagonal boron nitride (hBN-ML) [6–8], but their
heterostructures in combination with graphene have recently
been fabricated and investigated [9] as well. The structural
stability and direct band gap make these materials suitable
for many applications such as electronics, optoelectronics,
light emitters, detectors, and photovoltaic devices [10–19].
For example, because of MoS2-ML high absorption in the
visible frequency range, it can be complementary to graphene,
which has low absorption in the visible frequency range and
high conductivity in the far-infrared region, and is therefore
suitable for solar cell technology [20]. On the other hand, the
interaction of longitudinal probe or excitations (e.g., charged
particle, dipole, or excitons in molecule) with MoS2-ML is
still poorly investigated. Also, various studies of MoS2-ML
dielectric function give quite contradictory, or at least different,
results [21–26].

The propagator of the dynamically screened Coulomb in-
teraction W ind(Q,ω,z,z′) and the complex dielectric function
ε(ω) are very useful theoretical tools for the study of charged
particle-crystal or light-crystal interactions. In addition, the
dielectric function also provides the connection between
theory and experiment. In this paper, we use the imaginary part
of the induced Coulomb propagator W ind(Q,ω,z,z′) [27,28] to
calculate the energy-loss rate of a blinking point charge placed
in the vicinity of a MoS2-ML as a function of the blinking
frequency ω. Since the blinking point charge loses energy
to various electronic excitations in the crystal, the ImW ind

*vito@phy.hr

defines the spectrum of electronic excitations in MoS2-ML
which can also be related to electron-energy-loss spectroscopy
(EELS) measurements. In EELS, the crystal (surface) is
exposed to a beam of electrons with monochromatic kinetic
energies which are inelastically scattered on various polar
excitations in the crystal, such as optical phonons, interband
and intraband electron-hole excitations, plasmon excitations,
etc. This results in the final measured electron spectra no longer
being monochromatic, but having satellites which represent
the energy losses to various excitations. Here, we explain
the origin of the particular features in excitation spectra of
MoS2-ML in detail, and compare it with very recent EELS
measurements [29].

The theoretically obtained dielectric function is primarily
related to EELS experiments, but it also provides useful
information about the optical properties of crystals, such as
optical absorption spectra, transmissivity, and reflectivity. At
the same time, the complex dielectric function extracted from
particular optical measurements defines a variety of crystal
properties. High anisotropy of extremely thin q2D crystals
results in a very ambiguous definition of its dielectric function.
To analyze this, we first study the widely used “macroscopic”
dielectric function εM (ω) [30] (obtained by inverting the 3D
dielectric matrix 1 − V χ in the reciprocal space), but we
also introduce the 2D dielectric function ε2D(ω) obtained
by averaging the nonlocal 3D response (over z and z′) and
reducing it to the z = 0 plane. We compare the result for
the 2D dielectric function ε2D with the result obtained by
using the recently proposed two-band effective tight-binding
approximation (TBA) model [31]. We show that “average”
dielectric functions εM and ε2D coincide. However, they are
not suitable for describing the dielectric properties of radically
anisotropic q2D crystals.

Another definition arises from studying the response
(induced polarizability P) of q2D crystal to external ho-
mogeneous electrical field E. Because of the strong crystal
anisotropy, the response depends on the direction of the
applied field, which enables decomposition into parallel (to
the q2D crystal plane) ε‖(ω) and perpendicular ε⊥(ω) dielectric
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function. We use our recently proposed theoretical formula-
tion of the current-current response tensor �μν(ω) [32] to
calculate these two dielectric functions [ε‖(ω) and ε⊥(ω)] and
compare the results with previous theoretical and experimental
results [23–26].

Finally, we explore a definition arising from the analysis of
the induced (reflected) potential W ind(Q,ω,z,z′) [27], which
is first calculated using the full quantum mechanical approach,
and then treating the q2D crystal as a dielectric slab with sharp
boundaries described by the “effective” dielectric function
εeff(ω). We show that the dielectric function obtained in this
way is in the best agreement with dielectric functions extracted
from ellipsometry measurements [21,22].

In Sec. II, we present the methodology used to calculate
the ground state, noninteracting electrons response function
χ0(ω), and dynamically screened Coulomb interaction W (ω).
We also briefly present the derivation of model dielectric
functions ε2D(ω), εM (ω), ε⊥(ω), ε‖(ω), and εeff(ω). In Sec. III,
we analyze the spectra of electronic excitations in MoS2-ML
and compare them with EELS measurements. Then, we
analyze the results for various model dielectric functions in
MoS2-ML and compare these results with each other as well
as with corresponding measurements. In Sec. IV, we present
the conclusion.

II. METHODOLOGY

A. Ground-state calculation

The first part of the calculation consists of determining the
Kohn-Sham (KS) wave functions φnK and energy levels EnK,
i.e., band structure, of a MoS2-ML. For calculation of the KS
states, we use the plane-wave self-consistent field (PWSCF)
density functional theory (DFT) code within the QUANTUM

ESPRESSO (QE) package [33]. The core-electron interaction is
approximated by the norm-conserving pseudopotentials [34],
and the exchange-correlation (XC) potential by the Perdew-
Zunger local density approximation (LDA) [35]. For the
MoS2-ML unit-cell constant, we use the experimental value
of auc = 5.972 a.u. and the vertical separation between sulfur
layers is 5.868 a.u. [36]. Since the code requires periodicity
in the direction perpendicular to the ML as well, and we
want to investigate just one MoS2-ML, we formally observe
a superlattice constructed of the periodically placed MLs.
This means that the separation between the MLs in the
superlattice can be arbitrary and is important only to the
extent that there is no electronic density overlap between
neighboring monolayers, since an overlap could modify the
MoS2-ML orbital and band structure. Therefore, considering
that MoS2-ML thickness from sulfur to sulfur atom is almost
12 a.u. and that electronic density thickness is about 15 a.u.
(as can be seen in Fig. 2), we chose the separation between
MoS2-MLs to be L = 5auc = 29.86 a.u.

As shown in Fig. 1, we orient the reference frame so that
the MoS2 crystal is positioned in the x-y plane, the z direction
is perpendicular to the crystal plane, and the Mo atomic
layer occupies the z = 0 plane. The ground-state electronic
density of the MoS2-ML is calculated by using 12 × 12 × 1
Monkhorst-Pack K-point mesh [37] for the first Brillouin zone
(BZ), i.e., we use 31 special points in the irreducible Brillouin

FIG. 1. Schematic representation of molybdenum disulfide
monolayer. Molybdenum atomic layer (gray), surrounded by two
sulfur atomic layers (yellow), occupies the z = 0 plane.

zone (BZ). For the plane-wave cutoff energy, we choose 50 Ry
(680 eV).

The MoS2 ground-state electronic density profile

n(z) = 2

S

∑
K∈S.B.Z.

∑
n

fn(K)
∫

S

dρ|φnK(ρ,z)|2, (1)

where S is the normalization surface and fn(K) = θ [EF −
En(K)] is the Fermi-Dirac distribution at T = 0, is shown
in Fig. 2(a). For the effective positive background thickness,
we take a = 8.93 a.u., which corresponds to three times the
separation between S and Mo layers in bulk MoS2. The
positive background density is then determined from the
charge neutrality condition n+ = Nel

aSuc
, where the number of

valence electrons is Nel = 18 and the area of the surface unit
cell is Suc = 30.88 a.u.
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FIG. 2. (a) Ground-state electronic density profile [Eq. (1)] in
MoS2-ML; the rectangle represents the thickness of the effective
positive background. (b) The schematic representation of the MoS2

dielectric slab of thickness a.
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FIG. 3. The MoS2-ML band structure (left panel) and DOS (right
panel).

The MoS2 band structure along the high-symmetry 	 →
K → M → 	 directions shown in Fig. 3 is calculated along
the path with 201 k points.

The MoS2-ML density of states (DOS),

DOS(E) = 2

S

∑
K∈S.B.Z.

∑
n

δ(E − En,K),

shown in the right panel of Fig. 3, is calculated for denser 1
BZ K-point mesh sampling 401 × 401 × 1 in order to achieve
better resolution.

B. Response-function calculation

The 3D Fourier transform of the independent electron
response function, or the random-phase approximation (RPA)
irreducible polarizability [38], is given by

χ0
GG′(Q,ω) = 2

�

∑
K∈S.B.Z.

∑
n,m

fn(K) − fm(K + Q)

ω + iη +En(K) − Em(K + Q)

×MnK,mK+Q(G) M∗
nK,mK+Q(G′), (2)

where � = S × L is the normalization volume. In the summa-
tion over K, we used 201 × 201 × 1 K-point mesh sampling,
which corresponds to the 40 405 Monkhorst-Pack special
k points in the Brillouin zone and 6835 in the irreducible
Brillouin zone. Band summation (n,m) in (2) is performed
over 50 bands and we use the damping parameter η =
50 meV. The matrix elements in (2) have the form

MnK,mK+Q(G) = 〈
nK|e−i(Q+G)r|
nK+Q〉V , (3)

where Q is the momentum transfer vector parallel to the x-y
plane, G = (G‖,Gz) are 3D reciprocal lattice vectors, and r =
(ρ,z) is a 3D position vector. Integration is performed over the
normalization volume V . Plane-wave expansion of the wave
function has the form


nK(ρ,z) = 1√
�

eiKρ
∑

G

CnK(G)eiGr,

where the coefficients CnK are obtained by solving the LDA-
KS equations self-consistently.

The next step is to determine the screened-response
function. The free-response function defined as (2) has a 3D
character and it is periodic in the direction perpendicular to the
q2D crystal plane (z direction), i.e., it is periodically repeated
from supercell to supercell, separated by distance L (where
one supercell represents one q2D crystal). Therefore, if the
screened-response function is calculated by solving the RPA
Dyson equation,

χGG′(Q,ω) = χ0
GG′(Q,ω)

+
∑
G1G2

χ0
GG1

(Q,ω) V 3D
G1G2

(Q) χG2G′(Q,ω), (4)

where

V 3D
G1G2

(Q) = 4π

|Q + G1|2
δG1G2 (5)

represents the matrix of the bare Coulomb interaction, then
it will not represent the polarizability of a single independent
q2D crystal because it will contain the effects of interaction
with surrounding q2D crystals. However, the interaction
with the surrounding supercells can be easily completely
eliminated. Instead of performing the complete Fourier trans-
form (5), we can start from the partially Fourier-transformed
RPA Dyson equation,

χG‖G′
‖(Q,ω,z,z′)

= χ0
G‖G′

‖
(Q,ω,z,z′) +

∑
G‖1

∫ L/2

−L/2
dz1dz2

×χ0
G‖G‖1

(Q,ω,z,z1) v2D
G‖1(Q,z1,z2) χG‖1,G′

‖ (Q,ω,z2,z
′).

(6)

Since the z coordinate remains untransformed, the 2D Fourier
transform of the bare Coulomb interaction becomes

v2D
G‖ (Q,z,z′) = 2π

|Q + G‖|e
−|Q+G‖||z−z′|, (7)

and

χ0
G‖G′

‖
(Q,ω,z,z′) = 1

L

∑
GzG′

z

χ0
GG′(Q,ω)eiGzz−iG′

zz
′

(8)

represents the Fourier expansion of the independent electron
response function in the z and z′ directions.

Since the integrations in (6) are performed from −L/2
to L/2, the interaction between density fluctuations via the
Coulomb propagator v2D

G‖1
(Q,z1,z2) is possible only within

the same layer, while the interaction with the polarization in
surrounding layers is completely excluded. After inserting the
Fourier expansion (8), and a similar one for χ , in the RPA
Dyson equation (6) it again becomes a matrix equation,

χGG′(Q,ω) = χ0
GG′(Q,ω)

+
∑
G1G2

χ0
GG1

(Q,ω) V 2D
G1G2

(Q) χG2G′(Q,ω). (9)
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However, now the matrix of the bare Coulomb interaction
becomes

V 2D
G1G2

(Q) = V 3D
G1G2

(Q) − pGz1pGz2

4π (1 − e−|Q+G‖1|L)

|Q + G‖1|L

× |Q + G‖1|2 − Gz1Gz2(|Q + G‖1|2 + G2
z1

)(|Q + G‖1|2 + G2
z2

)δG‖1G‖2 ,

(10)

with

pGz
=

{
1, Gz = 2kπ

L

−1, Gz = (2k+1)π
L

, k = 0,1,2,3, . . . .

This means that the screened response function of q2D
crystals can be obtained the same way as in 3D (bulk)
calculation [Eqs. (2)–(5)], with the matrix of the bare Coulomb
interaction (5) replaced by (10). This method has already
been successfully applied to the calculation of the dynamically
screened Coulomb interaction in graphene [27,28,39–41].

The solution of Eq. (5) has the form

χGG′(Q,ω) =
∑
G1

E−1
GG1

(Q,ω)χ0
G1G′(Q,ω), (11)

where we have introduced the dielectric matrix

EGG′(Q,ω) = δGG′ −
∑
G1

V 2D
GG1

(Q)χ0
G1G′(Q,ω). (12)

In the calculation of (11), we neglect the crystal local-field
effects in the parallel direction, but not in the perpendicular
direction. This approximation is valid only for small values of
Q, but fortunately the most interesting features occur in that
part of the excitation spectra. Therefore, in all calculations,
we set G‖ = 0 and we use 20 Hartree (544 eV) as the energy
cutoff for the Fourier expansion over Gz’s (which corresponds
to 61 Gz vectors). This cutoff proved to be sufficient to give
a smooth, monotonically decaying, asymptotic behavior of
induced charge density for z > a/2.

C. Propagator of the dynamically screened Coulomb interaction

The propagator of the induced dynamically screened
Coulomb interaction can be calculated from the response
function (11) as

W ind
G‖ (Q,ω,z,z′) =

∫ L/2

−L/2
dz1dz2v

2D
G‖ (Q,z,z1)

×χG‖0(Q,ω,z1,z2) v2D
0 (Q,z2,z

′), (13)

where the index zero means that G′
‖ = 0. After using ex-

pansion (8) [where independent electron response matrix χ0

should be replaced by the RPA response matrix (11)] and (7),
the integrations over z1 and z2 can be performed analytically.
Then the induced dynamically screened interaction at z > a/2,
z′ > a/2 [i.e., in the region where the profile of electronic
density vanishes, as shown in Fig. 2(a)] can be written as

W ind
G‖ (Q,ω,z,z′) = e−|Q+G‖|z−Qz′

DG‖(Q,ω), (14)

where we introduced the propagator of surface excitations,

DG‖(Q,ω) =
∑

Gz1Gz2

χG‖,0,Gz1,Gz2 (Q,ω)FGz1 (Q + G‖)F ∗
Gz2

(Q).

(15)

Here the form factors F are

FGz
(Q) = 4πpGz

Q
√

L

sh
(

QL

2

)
Q + iGz

. (16)

The imaginary part of the induced potential (14) can be
used to calculate the energy dissipation rate of a dynamical
external perturbation. For example, if the external perturbation
is a static point charge placed at z0 > a/2 and oscillating as
ρ(r,t) = δ(r − r0) cos(ωt) [39], then the Q Fourier component
of its energy dissipation rate is proportional to the imaginary
part of the induced potential (14). Generally, the Q Fourier
component of the external perturbation can excite electronic
modes with wave vectors Q + G, where G can be any
reciprocal lattice vector. This means that each Q component
simultaneously loses energy to the sum of all Q + G modes.
However, the energy transfer is most intense to the excitation
of Q + G mode with G‖ = 0. This means that the spectral
function, which defines the intensity of energy loss by an
external perturbation to excitation of (Q,ω) modes, can be
written as

S(Q,ω) = −ImDG‖=0(Q,ω). (17)

The induced potential can be written as

W ind(Q,ω,z,z′) = DG‖=0(Q,ω)e−Q(z+z′). (18)

D. Model dielectric functions

Considering the atomic thickness of q2D crystals, the first
attempt to derive its dielectric response is to consider it as
intrinsically two dimensional. Connection between the 3D
response function (2) and the corresponding 2D response
function (obtained by reducing the 3D response function to
the z = 0 plane) is simply given by

χ0
2D(Q,ω) = Lχ0

G=0,G′=0(Q,ω). (19)

The 2D dielectric function is then

ε2D(Q,ω) = 1 − vQχ0
2D(Q,ω), (20)

where vQ = 2π
Q

. The ε2D describes the dielectric response of
the MoS2-ML which has been forced to be an intrinsically
2D system. Therefore, in the long-wavelength limit (Q �
1/a), this model dielectric function is able to provide good 2D
screening. In other words, in this case for example, vQ/ε2D

can be considered as the 2D Fourier transform of the screened
Coulomb interaction in the z = 0 plane, i.e., the plane to which
the MoS2-ML is reduced. Since the tight-binding approach
(TBA) usually treats q2D crystals as purely two-dimensional
systems (e.g., effective two-band TBA model developed in
Ref. [31] and applied to MoS2-ML), it is useful to compare the
TBA and the ab initio 2D dielectric function obtained using
the density functional theory (DFT) approach. For example,
the TBA model provides much more refined structures in the
dielectric function which helps in the analysis of the DFT 2D
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dielectric function. Here we briefly describe the derivation of
the dielectric function in the spirit of the effective TBA model.

In order to obtain the TBA-2D response function (19)
[similar as for the DFT 3D density-density response func-
tion (2)], we need the TBA band structure En(K) and the charge
vertices MnK,mK+Q. The calculation of the band structure in
the effective two-band TBA model is described in Ref. [31],
and the charge vertices can be extracted from the current
vertices. The interaction Hamiltonian and the corresponding
current vertices are defined in Ref. [31] with the aide of
Peierls substitution, and here we briefly present the connection
between the charge and current vertices.

The μth Cartesian component of the current operator is
defined as

Ĵμ(Q) =
∑
nm

∑
K

J
μ

nK,mK+Qc
†
nKcmK+Q, (21)

where the current vertices J
μ

nK,mK+Q are calculated in Ref. [31].
The charge vertices can be express in terms of the current
vertices by using the continuity equation and the Heisenberg
equation,

iQμĴμ(Q) = i�
∂ρ̂(Q)

∂t
= [ρ̂(Q),Ĥ0], (22)

where the density operator in the two-band model representa-
tion is

ρ̂(Q) =
∑
nm

∑
Kσ

MnK,mK+Qc
†
nKσ cmK+Qσ . (23)

In (22), we have used the bare electron Hamiltonian,

Ĥ0 =
∑
nKσ

En(K)c†nKσ cnKσ . (24)

After using (22)–(24) and performing the commutation rela-
tions, it is easy to obtain the connection between the charge
and current vertices,

MnK,mK+Q = QμJ
μ

nK,mK+Q

Em(K + Q) − En(K)
. (25)

After inserting (25) in (19), we finally obtain the 2D response
function and the corresponding 2D dielectric function (20).
From the DFT point of view, the most frequently used model
dielectric function is the macroscopic dielectric function,
which can be obtained directly from the dielectric matrix (12)
as

εM (ω) = 1/E−1
G=0G′=0(Q → 0,ω). (26)

Assuming that in the long-wavelength limit the crystal local-
field effects become negligible, we can keep only G = G′ = 0
components and the Coulomb interaction matrix (10) becomes

lim
Q→0

V 2D
G=0G′=0(Q) = 2πL

Q
.

Moreover, after combining it with definitions (12), (19), (20),
and (26), one can easily show that

lim
Q→0

ε2D(Q,ω) = εM (ω). (27)

Therefore, the εM , like the ε2D , describes the dielectric
response of the “two-dimensional” MoS2-ML in the long-
wavelength limit. In other words, these dielectric functions

cannot be used if MoS2 is considered to be a dielectric slab of
finite thickness a. In that case, it would probably be better to
calculate the “bulk” macroscopic dielectric function εM of the
three-dimensional MoS2 crystal [in which case we would insert
the Coulomb interaction matrix (5) and response function (2)
for the 3D crystal into (12)], which would correspond to
some effective dielectric function of the MoS2 dielectric slab.
However, this 3D macroscopic dielectric function is still not
suitable for the description of a microscopically thin MoS2-ML
because in that case the effective dielectric function is still
heavily influenced by the MoS2 “slab” boundaries.

In order to examine the response of the MoS2-ML to an
external homogeneous electrical field, it is more convenient
to use the dielectric tensor or the transversal dielectric
function [32,42,43],

εμν(ω) = δμν + 4πc

ω2
�0

μν(Q = 0,ω). (28)

The current-current response tensor �0
μν,GG′ in the long-

wavelength limit Q ≈ 0 can be written as [32]

�0
μν(Q,ω) = �0,intra

μν (Q,ω) + �0,inter
μν (Q,ω), (29)

where the intraband contribution is [44–46]

�0,intra
μν (ω,Q ≈ 0) = nμν

c

�ω

�ω + iηintra
, (30)

and where

nμν = 2

�

∑
K,n

∂f (EnK)

∂EnK
j

μ

nK,nK(G = 0) [jν
nK,nK(G′ = 0)]∗

(31)
represents the effective number of charge carriers. The inter-
band term is

�0,inter
μν (ω,Q ≈ 0) = 2

�c

∑
K,n
=m

�ω

EnK − EmK

× fnK − fmK

�ω + iηinter + EnK − EmK

×J
μ

nK,mK(G = 0) [J ν
nK,mK(G′ = 0)]∗. (32)

The calculation of the current vertices J
μ

nK,mK(G) is described
in detail in Ref. [32]. Using the dielectric tensor (28), we
can decompose the dielectric function in parallel x-y and
z directions and investigate the dielectric response in these
directions separately, so we introduce the notation

ε‖(ω) = εxx(ω), ε⊥(ω) = εzz(ω). (33)

Another way to determine the effective dielectric function
of q2D is to follow the methodology used in spectroscopic
ellipsometry experiments [22,47], where the dielectric func-
tion is extracted from the reflectivity coefficient calculated by
treating the q2D as a classical dielectric slab. Here we use a
similar method, but in the nonretarded c → 0 (electrostatic)
limit. We assume that the MoS2 monolayer is a dielectric slab
with thickness a and dielectric function εeff(ω), as sketched
in Fig. 2(b). After solving the Poisson equation for the
point charge placed in region z′ > a/2, and applying the
boundary condition, we determine the induced potential at
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point z > a/2,

W ind
cl (Q,ω,z,z′) = Dcl(Q,ω)e−Q(z+z′), (34)

where

Dcl(Q,ω) = vQDS(ω)
eQa − e−Qa

1 − [DS(ω)]2e−2Qa
, (35)

and where DS(ω) = [1 − εeff(ω)]/[1 + εeff(ω)]. By equating
classical induced potential (34) and induced potential (18)
(calculated from the first principles), i.e., Dcl = DG‖=0, we can
extract the effective dielectric function of the MoS2 monolayer
εeff(ω).

III. RESULTS

A. Spectra of electronic excitations in MoS2-ML

Figure 4 shows the spectra of electronic excitations in
MoS2-ML, i.e., the Q Fourier component of the energy-
loss rate of a blinking point charge placed at z = a/2
near MoS2-ML, as a function of the blinking frequency ω,
obtained from (17). This quantity can be compared with EELS
measurements.

The origin of particular peaks in the optical absorption
spectra is explained in detail in Ref. [31], and here we examine
the response to a longitudinal external perturbation at finite
wave vector Q, which leads to slightly different features in
the spectra. The characteristic peaks in the spectra are marked
by letters A,B, . . . ,G, and the corresponding electron-hole
transitions are marked by the same letters in the band structure
and the DOS shown in Fig. 3. Usually, the term valence
band is used for the highest occupied band, while the term
conductance band is used for the lowest unoccupied band,
but here we extend that terminology to a few more bands,
denoting them by numbers based on their distance from the
Fermi level. In other words, the lowest unoccupied band is
called the first conductance band, the one above it is called
the second conductance band, etc., while the highest occupied
band is called the first valence band, the one below it is called
the second valence band, etc. The main contribution to the
energy-loss rate comes from the transitions between the first
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FIG. 4. Spectra of electronic excitations in MoS2-ML obtained
from (17).

two valence bands and the first two conduction bands, which
are almost completely composed of Mo(d) and S(p) orbitals,
as shown in Ref. [31].

The excitation spectra first show an onset (denoted as A,B)
at about 1.75 eV and a slowly increasing plateau corresponding
to Mo(d)↔ S(p) excitations around the K point. The letters
A and B are reserved for two spin-orbit (SO) split excitons
[4,5,48–50], which do not appear here due to the fact that
we are using RPA which excludes excitonic effects. The
first intensive peak at 2.9 eV, denoted as C, corresponds to
Mo(d)↔ S(p) excitations between the states in the vicinity
of the H point and the states in the vicinity of P points,
which are both saddle points, i.e., the van Hove singularities
manifested as sharp peaks in DOS (Fig. 3). The peak at 3.15 eV,
denoted as D, corresponds to the transitions between van Hove
singularities in valence and conducting bands around the M

point, which are also manifested as intensive peaks in DOS. In
addition to the high density of states, valence and conducting
bands at the M point also exhibit predominant (∼80%) S(p)
and (∼80%) M(d) characters, respectively [31], which further
increases the intensity of the transitions between them. The
third, small maximum at 3.4 eV, denoted as X, originates from
the transitions between parallel (holelike) parabolic bands
around the 	 point. This is intriguing because this peak also
appears as a very intensive peak in the joint density of states
(JDOS) [31]. However, there are no van Hove singularities in
the DOS in Fig. 3 from which it would originate. If we look
at the expression for the two-dimensional DOS [51], even
at the top of the parabolic bands ∇KEn(K) = 0, it does not
necessarily mean that there is a singularity in the DOS. The
best example is the density of state of the 2D free-electron
gas. Even though the dispersion is parabolic E(K) = �

2K2

2m
, the

DOS is step function DOS(E) ∼ θ (E) which is not singular.
This step, which originates from the first valence parabolic
band around the 	 point, can also be observed in the DOS
of MoS2-ML, as indicated by the red arrow in Fig. 3. The
points in the band structure responsible for the singularities in
the two-dimensional DOS are the saddle points (e.g., points
H and P in the band structure in Fig. 3), and the hyperbolic
points which occur in almost any band around the M point of
the MoS2-ML band structure in Fig. 3. Therefore, the JDOS
is intense, not because of the high DOS of parabolic bands
but because the JDOS depends on the energy difference, and
there are many equally separated energy levels lying on the
“parallel” parabolas in the 	 point. Moreover, the X peak in
the excitation spectra is highly reduced, probably due to the
matrix elements (3) that are not present in JDOS. The peak
at 3.8 eV, denoted as E, is a result of the transitions between
the van Hove singularities in the second valence band and the
second conduction band at the M point. The peak at 4.5 eV
denoted by F and the peak at 5.2 eV denoted by G are the
results of transitions which again occur in the vicinity of the
M point. This time the transitions are from the third valence
to second conductance band (transition F in Fig. 3) and from
the first valence to the fourth conductance band (transition
G in Fig. 3). The third valence and fourth conductance bands
exhibit strong van Hove singularities in the M point, as denoted
by F and G in DOS of Fig. 3. The peaks A = 2.9 eV, B =
3.8 eV, C = 4.5 eV, and D = 5.5 eV reported in Ref. [24] are in
very nice agreement with our peaks C = 2.9 eV, E = 3.8 eV,
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F = 4.5 eV, and G = 5.2 eV, respectively, while the absence
of peaks X and D is probably due to lower resolution of their
calculations.

We can see that the spectral weight of all electronic
excitations rapidly decreases with the transfer wave vector
Q. The same trend is noticed in the EELS experiment [29],
and also in Ref. [31] where the absorption spectrum rapidly
decreases as incident electromagnetic field angle θ (or parallel
wave vector Q) increases. This means that MoS2 is completely
transparent for the grazing incidence light. This behavior is
attributed to the fact that all charge density modes (within
the shown frequency interval) have in-plane character and are
located in the molybdenum plane. The EELS experiment [29]
shows a group of strong transitions centered at α = 3.1 eV,
a sharp but weak peak at δ = 3.9 eV, and a broad peak at
β = 4.5 eV, which agrees well with our peaks C = 2.9 eV,
E = 3.8 eV, and F = 4.5 eV, respectively.

B. Dielectric function in MoS2-ML

As we already showed in Sec. II D, the definition of
the dielectric function in q2D materials is not unique. We
introduced the 2D dielectric function ε2D(ω) which is the
3D nonlocal dielectric function averaged over z and z′ and
reduced to the z = 0 plane, as well as the so-called “macro-
scopic dielectric function” εM (ω) obtained by the matrix
inversion (26) of the 3D nonlocal dielectric function. Another
definition arises from studying the response (polarization P)
of q2D immersed into the external homogeneous electrical
field E (gate voltage). Because of strong anisotropy, the
response depends on the direction of the applied electric field,
which provides division to the parallel (x-y plane) ε‖(ω) and
perpendicular (z direction) ε⊥(ω) dielectric functions. Finally,
we can define the dielectric function by analyzing the reflected
(or transmitted) electromagnetic field incident to q2D, which
is considered as a dielectric slab (with sharp boundaries)
described by some local effective dielectric function εeff(ω).
Here we present these dielectric functions, and compare them
with each other and with available experimental results.

The black solid lines in Fig. 5 show the ab initio DFT
result for the real (upper panel) and imaginary (lower panel)
parts of the two-dimensional dielectric function obtained from
Eq. (20). The transfer wave vector is Q = 0.006 a.u. and it is
chosen to be in the 	-M direction of the first Brillouin zone.
For comparison, blue dashed lines show the same dielectric
function obtained in the TBA model. We can see that the
TBA provides more intensive and refined structures than the
full numerical ab initio calculations. This is because the TBA
dielectric function is calculated using the charge vertices (25)
and energies En(K), which are calculated analytically, includ-
ing only two bands in the calculation. The TBA parameters
are adjusted to achieve the best agreement between the TBA
and the ab initio DFT band structures. However, since the
same parameters define the charge vertices (25), the TBA
spectral intensities do not necessarily agree with the DFT
spectral intensities. Moreover, since we want to emphasize
the appearance of certain structures in the spectrum, we
decreased the damping constant in the TBA calculation to
η = 10 meV, which additionally sharpened the structures in
the TBA dielectric function.
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FIG. 5. Two-dimensional dielectric function ε2D(Q,ω) given by
Eq. (20) obtained using the ab initio method (black solid line) and
by using the TBA model (blue dashed line). Macroscopic dielectric
function εM (ω) given by Eq. (26) (red dash-dotted line) is also shown
for comparison. The transfer wave vector is Q = 0.006 a.u. and is
chosen to be in 	-M direction of the first Brillouin zone.

As in the case of excitation spectra, the imaginary part of the
DFT dielectric function shows excitation onset at about 1.7 eV
(denoted by A,B), where the real part first exhibits the small
peak. At about 2.9 eV, the imaginary part shows a strong peak
and the real part drops down, which confirms the high density
of Mo(d)↔ S(p) excitations in that region. Peaks D (3.15 eV)
and X (3.4 eV), already discussed in the excitation spectra,
are also visible. The TBA results show even more pronounced
(sharper) structures. For example, the imaginary part of the
TBA dielectric function shows very sharp and intense peaks
C, D, and X. Moreover, they are very accurately followed by
corresponding drops in the real part of the dielectric function
(denoted by black dotted lines), which nicely confirms the
nature of the excitation spectra discussed in Sec. III A. The
red dash-dotted lines in Fig. 5 show the results for the real
and imaginary parts of the macroscopic dielectric function
obtained from Eq. (26). It is clear that ε2D exactly coincides
with εM . Considering the derivation of the Eq. (27), this
implies that the crystal local-field effects or dispersivity of
the dielectric response in the z direction (direction of high
anisotropy) are completely irrelevant in the long-wavelength
limit.

The black solid line in Fig. 6 shows the real and imag-
inary parts of the effective dielectric function in MoS2-ML
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FIG. 6. Dielectric function in MoS2-ML calculated from D =
DG‖=0 (black solid line); experimental dielectric function taken
from Ref. [21] (turquoise dots) and from Ref. [22] (red squares).
Insets show parallel ε‖(ω) (black solid line) and perpendicular ε⊥(ω)
(blue dashed line) dielectric functions calculated from dielectric
tensor (28)–(33).

calculated by equating induced (or reflected) potentials (34)
and (18), i.e., from Dcl = DG‖=0. We compare the dielectric
function constructed this way with the dielectric function ex-
tracted from ellipsometry measurements taken from Ref. [21]
(turquoise dots) and from Ref. [22] (red squares). Taking into
account the fact that our RPA result does not include the
excitonic effects, the agreement with experimental dielectric
functions is satisfactory. Also, our results in the infrared
(IR) and visible frequency range show good quantitative
agreement with the dielectric functions extracted from optical
measurements reported in Refs. [52–54].

The insets in Fig. 6 show the imaginary and real parts
of the parallel ε‖(ω) (black solid line) and perpendicular
ε⊥(ω) (blue dashed line) dielectric function, calculated using
definitions (28)–(33). Very similar results have already been
theoretically obtained [24]. Even though the features appearing
in ε‖(ω) are qualitatively very similar to those appearing in
εeff(ω), it is clear that the results shown in the insets are
not quantitatively comparable with the dielectric function
extracted from optical measurements. For example, the ex-
perimental and theoretical values of the effective dielectric
function εeff in the IR frequency range (ω ≈ 1 eV) are 15
and 20, respectively, while the value of ε‖ in the same
frequency range is 6, which is about three times smaller.
This is reasonable because in the first method the q2D crystal
is considered as a dielectric slab described by εeff(ω) from
which the electromagnetic field reflects, while the second case
represents the realistic response to an homogeneous electric

TABLE I. Comparison of static dielectric constants in MoS2-ML
with other theoretical and experimental results.

ε‖(0) ε⊥(0)

This work 5.5 3.4
Ref. [24] 4.8, 3.0
Ref. [25] 7.36 1.6
Ref. [26] 4.2 2.8
Ref. [23] (expt.) 4.0

field. It can also be seen that the 2D and macroscopic dielectric
functions, presented in Fig. 5, are an order of magnitude
smaller than the effective and parallel dielectric functions. This
suggests that dielectric functions ε2D and εM are not suitable
for the description of the q2D response. However, the ε2D

and εM provide a good screened Coulomb interaction in q2D
considered as intrinsically 2D crystals, in the long-wavelength
limit (Q � 1/a). Moreover, it is safe to assume that the εeff

first rapidly changes with thickness (when the thickness is still
several MoS2 MLs), until it saturates in the 3D macroscopic
dielectric function for larger (macroscopic) thicknesses. Most
likely this is the reason why the ε2D or εM are quantitatively so
different from the εeff , where the MoS2-ML is treated neither
as a macroscopic slab cut from the bulk crystal nor as a 2D
material.

The static values of the dielectric functions ε‖(ω = 0) and
ε⊥(ω = 0) listed in Table I are calculated using the dielectric
tensor [Eqs. (28)–(33)]. We can see that our ε‖(0) = 5.5 is in
good agreement with the experimental value of 4.0 [23] mea-
sured within the study of a thickness-dependent static dielectric
constant in MoS2. Since it is possible that the electric field
applied in these measurements was not completely parallel to
the MoS2-ML plane, there is a possibility for the occurrence
of small ε⊥ admixture, which would reduce the measured
value of ε‖. The accuracy of the calculation of the statical
longitudinal dielectric function ε‖(0) can be significantly
affected by the accuracy of the calculation of the isothermal
response related to the intraband transitions, as investigated in
Refs. [55,56]. Here, in the calculation of the dielectric tensor,
we use the current-current response tensor (29) which includes
both the intraband and the interband transitions. However, the
derivative of the Fermi-Dirac distribution in (31) can, even
up to the room temperatures T ≈ 300 K, be considered as
a very narrow Lorentzian (in comparison with MoS2-ML
band gap) which is, for semiconductors such as MoS2-ML,
placed in the band gap. Therefore, the effective number of
charge carriers (31) is almost exactly zero, and the contribution
of the intraband term (30) to the ε‖(ω) is negligible, even
in the statistical (ω = 0) limit. Some previous theoretical
papers [24–26] also report very good agreement with the
measured value of ε‖.

IV. CONCLUSIONS

The spectra of electronic excitations in MoS2-ML is studied
and brought in connection with very recent EELS measure-
ments. The particular features in the spectra are associated
with the corresponding transitions in the band structure, which
is shown to be in accordance with the other calculations and
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measurements. The peaks in the visible frequency range are
composed of transitions between the valence and conducting
Mo(d) and S(p) bands in the region between the 	 and K

point, and at the M point of the Brillouin zone. It is shown
that the intensity of electronic excitations rapidly decreases
with transfer wave vector Q, which is attributed to the fact that
the excited charge density oscillations are mostly localized
in the Mo plane, as predicted in previous theoretical work.
The various model dielectric functions of the MoS2-ML are
studied and compared with previous experiments and theory. It
is shown that the widely used 2D dielectric function ε2D(ω) and
macroscopic dielectric functions εM (ω) are totally inadequate
to describe dielectric response (polarizability) of q2D crystals.
However, they provide good results for the screened Coulomb
interaction in q2D considered as intrinsically 2D crystals, in

the long-wavelength limit (Q � 1/a). On the other hand, it
is shown that the effective dielectric function εeff(ω) is an
appropriate tool for investigation of the interaction of q2D
crystals with an external electromagnetic field, while the
dielectric functions ε‖ and ε⊥ are very useful for investigation
of the response of q2D crystals to an external homogeneous
electrical field (gate voltage).
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Rev. B 86, 195429 (2012).

[28] V. Despoja, D. Novko, K. Dekanić, M. Šunjić, and L. Marušić,
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[32] D. Novko, M. Šunjić, and V. Despoja, Phys. Rev. B 93, 125413

(2016).
[33] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo
et al., J. Phys.: Condens. Matter 21, 395502 (2009).

[34] C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58,
3641 (1998); S. Goedecker, M. Teter, and J. Hutter, 54, 1703
(1996).

165446-9

https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1038/nphoton.2015.277
https://doi.org/10.1038/nphoton.2015.277
https://doi.org/10.1038/nphoton.2015.277
https://doi.org/10.1038/nphoton.2015.277
https://doi.org/10.1103/PhysRevLett.94.037405
https://doi.org/10.1103/PhysRevLett.94.037405
https://doi.org/10.1103/PhysRevLett.94.037405
https://doi.org/10.1103/PhysRevLett.94.037405
https://doi.org/10.1103/PhysRevB.44.7787
https://doi.org/10.1103/PhysRevB.44.7787
https://doi.org/10.1103/PhysRevB.44.7787
https://doi.org/10.1103/PhysRevB.44.7787
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1088/1674-1056/22/9/098106
https://doi.org/10.1088/1674-1056/22/9/098106
https://doi.org/10.1088/1674-1056/22/9/098106
https://doi.org/10.1088/1674-1056/22/9/098106
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nnano.2014.14
https://doi.org/10.1038/nnano.2014.14
https://doi.org/10.1038/nnano.2014.14
https://doi.org/10.1038/nnano.2014.14
https://doi.org/10.1126/science.1235547
https://doi.org/10.1126/science.1235547
https://doi.org/10.1126/science.1235547
https://doi.org/10.1126/science.1235547
https://doi.org/10.1038/nnano.2014.26
https://doi.org/10.1038/nnano.2014.26
https://doi.org/10.1038/nnano.2014.26
https://doi.org/10.1038/nnano.2014.26
https://doi.org/10.1038/nnano.2014.215
https://doi.org/10.1038/nnano.2014.215
https://doi.org/10.1038/nnano.2014.215
https://doi.org/10.1038/nnano.2014.215
https://doi.org/10.1021/nl500171v
https://doi.org/10.1021/nl500171v
https://doi.org/10.1021/nl500171v
https://doi.org/10.1021/nl500171v
https://doi.org/10.1021/nn500480u
https://doi.org/10.1021/nn500480u
https://doi.org/10.1021/nn500480u
https://doi.org/10.1021/nn500480u
https://doi.org/10.1038/nnano.2014.150
https://doi.org/10.1038/nnano.2014.150
https://doi.org/10.1038/nnano.2014.150
https://doi.org/10.1038/nnano.2014.150
https://doi.org/10.1038/nnano.2014.25
https://doi.org/10.1038/nnano.2014.25
https://doi.org/10.1038/nnano.2014.25
https://doi.org/10.1038/nnano.2014.25
https://doi.org/10.1021/nl401544y
https://doi.org/10.1021/nl401544y
https://doi.org/10.1021/nl401544y
https://doi.org/10.1021/nl401544y
https://doi.org/10.1103/PhysRevB.90.205422
https://doi.org/10.1103/PhysRevB.90.205422
https://doi.org/10.1103/PhysRevB.90.205422
https://doi.org/10.1103/PhysRevB.90.205422
https://doi.org/10.1103/PhysRevB.90.195434
https://doi.org/10.1103/PhysRevB.90.195434
https://doi.org/10.1103/PhysRevB.90.195434
https://doi.org/10.1103/PhysRevB.90.195434
https://doi.org/10.1038/ncomms7088
https://doi.org/10.1038/ncomms7088
https://doi.org/10.1038/ncomms7088
https://doi.org/10.1038/ncomms7088
https://doi.org/10.1016/j.matchemphys.2012.05.055
https://doi.org/10.1016/j.matchemphys.2012.05.055
https://doi.org/10.1016/j.matchemphys.2012.05.055
https://doi.org/10.1016/j.matchemphys.2012.05.055
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.86.195429
https://doi.org/10.1103/PhysRevB.86.195429
https://doi.org/10.1103/PhysRevB.86.195429
https://doi.org/10.1103/PhysRevB.86.195429
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1103/PhysRevB.87.075447
https://doi.org/10.1103/PhysRevB.93.075440
https://doi.org/10.1103/PhysRevB.93.075440
https://doi.org/10.1103/PhysRevB.93.075440
https://doi.org/10.1103/PhysRevB.93.075440
https://doi.org/10.1103/PhysRevB.33.7017
https://doi.org/10.1103/PhysRevB.33.7017
https://doi.org/10.1103/PhysRevB.33.7017
https://doi.org/10.1103/PhysRevB.33.7017
https://doi.org/10.1103/PhysRevB.94.115428
https://doi.org/10.1103/PhysRevB.94.115428
https://doi.org/10.1103/PhysRevB.94.115428
https://doi.org/10.1103/PhysRevB.94.115428
https://doi.org/10.1103/PhysRevB.93.125413
https://doi.org/10.1103/PhysRevB.93.125413
https://doi.org/10.1103/PhysRevB.93.125413
https://doi.org/10.1103/PhysRevB.93.125413
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevB.58.3641
https://doi.org/10.1103/PhysRevB.58.3641
https://doi.org/10.1103/PhysRevB.58.3641
https://doi.org/10.1103/PhysRevB.58.3641
https://doi.org/10.1103/PhysRevB.54.1703
https://doi.org/10.1103/PhysRevB.54.1703
https://doi.org/10.1103/PhysRevB.54.1703
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