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1 Introduction. Higher spins are everywhere

The idea we wish to support in this paper is that the one-loop effective action of a free
(massive) field theory coupled to external sources (via conserved currents) contains com-
plete information about the possible classical dynamics of the sources. We exhibit several
examples of this fact for (scalar and fermion) free field theories in various dimensions
d = 3,4,5,6 coupled to (bosonic) sources with a large number of spins. In some cases we
also provide compact formulas for any dimension. In this paper we concentrate on two-point
correlators, so the one-loop effective action we construct contains only the quadratic part.
Consequently the equations of motion for the sources we obtain are the linearized ones.
We postpone to a future work the analysis of one-point and three-point correlators. But
our thesis is that the dynamics generated by the one-loop effective action (OLEA) contains
all the information we need to reconstruct complete interacting equations of motion.

This paper is a follow-up of [1], which contains a few (mostly parity odd) 3d examples
of what has just been said. The present paper is more general and systematic, not limited
to 3d, and devoted especially to the parity even sector.

As we have just mentioned, the crucial issue here is the calculation of the two-point
functions of free massive field theories coupled to external sources. We do it via Feynman
diagrams. This is in principle a simple calculation, and to carry it out we resort to a method
introduced by Davydychev and collaborators, [2-4]. However, as we will see, although we
can derive from it very general formulas they are expressed in terms of hypergeometric
functions and derivatives thereof and not easily ‘readable’. For this reason it is often very
useful to expand such results near their IR and UV fixed points. These expansions in
powers of the mass m in odd dimensions, and m and logm in even dimensions, allows us
to single out the dynamics of the sources and will be referred to as tomography. In other
words what we do is to describe RG trajectories of two-point current correlators that pass
through those of free massive theories, but we focus in particular on their IR and UV
expansions, where the physical content is more easily recognizable.

Such IR and UV expansions are necessary also for another reason: one has to check
that the IR and UV limits of the one-loop effective action are well defined. We find in fact
divergent and non-conserved term in the limit m — oco. These terms are local and can
be subtracted. We subtract as well the IR finite terms, which are also local. This is to
make the OLEA well defined and scheme independent. The results obtained in this way, in
particular in the even parity sector, transferred to the OLEA, allow us to find the linearized
Fronsdal eom’s (see [5-9]) for all the source fields we have considered, in the nonlocal form
introduced by Francia and Sagnotti, [10, 11]. In 3d we consider also the odd parity sector,
and confirm the connection with Pope and Townsend’s generalizations of Chern-Simons
theory, already pointed out in [1].

In this paper, for the purpose of comparison, we also analyze massless free theories
beside the corresponding massive ones. The difference between the two is that the latter



allow us to control not only the UV but also the IR, while in the former only the UV is
regularized. This explains the difference in the results. In general in the massless case we
do not get all the information we can extract from the massive theory and many results
are scheme dependent. Briefly stated, at least for the purpose of this paper, to make sure
we get a complete information we must use massive models.

The subject of this paper is inspired by the idea of exploring theories with infinite many
fields, [12, 13], in particular string theories and Vasiliev-type higher spin theories, [14-17].
As shown in the body of the paper higher spin fields appear naturally in the one-loop
effective action of the simplest free theories in any dimension and it is possible to make
contact with the literature on classical higher spin theories, [18-25]. Other sources of
inspiration have been [26-32]. The idea of exploring the one-loop effective action is far
from new: the list of works which may have some overlap with our paper includes [37-46],
but is likely to be incomplete. From a technical point of view this paper continues the line
of research started with [50-53] with more powerful techniques (a new Mathematica code).

The paper is organized as follows. In the next section we introduce the massive scalar
and fermion model and define the relevant OLEA’s. Section 3 is meant to explain the
motivation for this research by means of simple concrete examples. We also introduce
the issue of higher spin Fronsdal eom and their various forms. In section 4 we introduce
a new representation of higher spin eom’s in momentum space and their general form,
which is independent on the dimension of space-time. Section 5 contains a short summary
of Davydychev’s method to compute one-loop Feynman diagrams. In section 6 to 10 we
analyze the one-loop scalar and fermion model two-point functions and their IR and UV
expansion (tomography) in 3, 5, 4 and 6 dimensions, respectively. In section 11 we produce
the formulas for two-point correlators of spin 1, 2, 3 currents in any dimensions. Section 12
is devoted to the conclusion. Appendix A contains the demonstration of a result used in
section 4 and appendix B the analysis of the massless scalar and fermion models.

2 Free field theory models

In this paper we limit ourselves to two type of models, the free scalar and free fermion,
although it is not hard to extend the analysis to other models. By the first we mean the
complex scalar theory defined by the Lagrangian

L =0,6'0"¢ —m?¢¢ (2.1)
in any dimension. On shell the current
Ju =1 (01040 — 9,00) (2.2)

is conserved. We can couple it to a gauge field via the action term [ d%x A*(x)J,(z).
The scalar-scalar-gluon vertex with momenta p, p/, k, respectively, (p incoming and p', k
outgoing), and the propagator are, respectively,

i

i(p+p)udp—p —k), (2.3)

p2_m2



But, of course we can define infinite many completely symmetric (on shell) conserved
currents, of which (2.2) is only the simplest example:

Jpgoopps =0°0" Opy oo Oy @ (2.4)

They couple minimally to external spin s fields, a#*~#s. The on-shell current conservation
implies (to the lowest order) invariance under the gauge transformations

0apy s = Oy Mpia. ) (2.5)

where round brackets stand for symmetrization.

In the case s = 2 the conserved current is the energy-momentum tensor and the
external source is the metric fluctuation h,,, where g,, = 7., + hy,. In this case the
action is the integral of (2.1) multiplied by /g. The vertex for an incoming scalar with
momentum p and outgoing scalar with momentum p’ and an outgoing spin-s field with
momentum k is

Vi : i+ ) - (040D p—p' — k) (2.6)

The free fermion model is represented by a Dirac fermion coupled to a gauge field.
The action is

S[A] = / &z [ipy" Dy — mpyp], Dy =0, + A, (2.7)

where A, = AZ(:E)T“ and T® are the generators of a gauge algebra in a given representation
determined by v. We will use the antihermitean convention, so [T'%, T%] = f®°T*, and the
normalization tr(7TT?) = —§.
The current
Ju(x) = ihry, T (2.8)
is (classically) covariantly conserved on shell as a consequence of the gauge invariance
of (2.7)
(DJ)" = (9"6° + forcA™) J¢ =0 (2.9)

The next example involves the coupling to gravity

VR a n 1 c c 1 c
S[h] = /dgxe [m/JEfj’y V) — m@bw] , Vu=0,+ §wubc§]b , noe — 1 {vb,*y } . (2.10)

The corresponding energy momentum tensor

7 — “ —
T;Sg) = Zw (7}1 Vv +7 V,u) Y. (211)

is covariantly conserved on shell as a consequence of the diffeomorphism invariance of the
action,
VAT, (z) = 0. (2.12)

If we expand the metric around the flat spacetime, g, () = 1., + hyuw(x), then, contrary
to spin-1 case, interaction is not linear in the gauge field, which is h,,. However, for the



purposes of this paper, only linear term matters, and it is given by coupling the flat space
energy-momentum tensor

7 - — —
T = 10 (fm 9y +7 au) . (2.13)

to the metric fluctuation hy,,.

Again we can couple the fermions to more general fields. Consider the free action

So = / Bz [y 8, — map)] (2.14)
and the spin three conserved current
I- 1 _ 5 _
Jurpops = _§¢7(u18#28u3)¢ - §a(u1auz¢7u3)¢+§a(md’%z%aﬂ’
1 - m? -
_gn(mma qus)aﬂw"f'?n(muzw’Vus)w (2.15)

Using the equation of motion one can prove that
0"y =0 (2.16)

Ty = —gm (~idsgo + i0xh + 2010) (2.17)

Therefore, the spin three current (2.15) is conserved on shell and its tracelessness is softly
broken by the mass term. Similarly to the gauge field and the metric, we can couple the
fermion ¢ to a new external source b, by adding to (2.14) the term

/ AP J b (2.18)

Due to the (on shell) current conservation this coupling is invariant (to lowest order) under
the infinitesimal gauge transformations

Obun = B(MAM) (2.19)
In the limit m — 0 we have also invariance under the local transformations

(Sbm,,\ = A(/ﬂ?l/)\) (2.20)

which are usually referred to as (generalized) Weyl transformations and which induce the
tracelessness of J,,\ in any couple of indices.

We can construct on-shell conserved currents for any spin s, but their form is more
complicated than in the scalar case. The explicit expressions can be found in [1].

We notice that to lowest order in the external sources the relevant action, in all cases
above, takes the form of the free action + a linear interaction term such as (2.18). We
make the identification a, = A, ap~huw, ar~bu, with the obvious exception of the
non-Abelian field in (2.7). The latter will be the only case in which we consider non-Abelian

external sources.!

! Also note that the nonlinearity present in spin-2 case, which is forced by the consistency requirements,
is a signal that we should expect the same for higher-spin fields. However, this is not relevant in our
two-point calculations.



2.1 Generating functions and effective actions

In both scalar and fermion cases, the generating function for the external source ay, .., is

Wla, +Z p /Hd3x P Hs () | gHneRns ()

n=1

x (O|TJ) (). T (z,)]0). (2.21)

H11---H1s Hnl-.-fns

In particular a, = Ay, a0, = %h » and J,S,Q,) = 2T}, with a,,» = byn. The full one-loop

1-pt correlator for J,,, . ,, is

<<J’(j)“5(x)>> - 5aﬂ1 s ( Z n! /Hd?’x jal e () bt (g, )

<0|TJ£2 @IS @) TR (@a)]0).(2:22)

The full one-loop conservation law for the energy-momentum tensor is
VAT, (x)) = 0. (2.23)

A similar covariant conservation should be written also for the other currents, but for s > 2
we will content ourselves with the lowest nontrivial order in which the conservation law
reduces to

O (TS (@) =0 (2.24)

Warning. One must be careful when applying the previous formulas for generating func-
tions. If the expression (0|’7'J#11 s (1) - Jﬁil.,,“m (25,)]0) in (2.21) is meant to denote
the n-th point-function calculated by using Feynman diagrams, a factor " is already in-
cluded in the diagram themselves and SO it should be dropped in (2. 21) When the current

be replaced by Sapp- LThe factor - 5w is motivated by the fact that When we expand the action

08

Y 4 e
dgH lg=n

Sm+m=ﬂm+/ﬁx

the factor 53;?” = %TW. Another consequence of this fact will be that the presence
9=

of vertices with one graviton in Feynman diagrams will correspond to insertions of the
operator %Tw/ in correlation functions.

Our purpose in this paper is to compute the effective action for the external source
fields at the quadratic order. As a consequence the first task is to compute the two-point

functions
O[T () I, (1)|0) (2.25)
or their Fourier transforms

Tyt e () = (O[T, (k) IS, (—k)|0) (2.26)



In the sequel we compute them by using the Feynman diagram technique. For all two-
point functions the only relevant diagram is the bubble diagram with one spin s line of
ingoing momentum k and one with the same outgoing momentum and one scalar or fermion
circulating in the internal loop. For instance the 2pt function for the current J¢ in the
fermion model is

~ - ~ 3
Jhk) = (JAR)N-k) = /(ZWI;?’Tr (%pr_lm”“Tap_;;_m> (2.27)

while for the e.m. tensor it is

Tuno(k) = 5 T (RT3, () (2.28)

1 d3p 1 1
=~ (27r)3ﬂ <7§ — m(2p - k‘)u%m@p - k‘)/\%> )

where symmetrization of indices (11, v) and (A, p) and the factor } is introduced accordingly
to the above warning.

3 An appetizer in 3d

In [1] we calculated in particular the two-point function of the current J in the fermion
model as well as its IR and UV limit. In the parity violating part we found a well-
known result: when Fourier antitransformed and inserted in the generating function of the
OLEA (2.21) it gives rise to the linearized version of the gauge CS action in 3d (which
is in fact conformal invariant). In [1] we did the same for the two-point correlator of the
e.m. tensor for the fermion model, and proceeding the same way we found the linearized
version of the gravity CS action. Something that was also known before, [38]. Repeating
the same thing for the spin 3 current above we found instead a previously unknown result:
the UV limit in particular leads to a linearized action that corresponds to a spin 3 CS
generalization postulated long ago by Pope and Townsend, [33-36].

These were the results found in the parity odd part (in [1] we were mostly interested in
the latter). But the even parity parts of the two-point correlators have perhaps even more
interesting interpretations, so let us briefly analyze the parity even parts of the linearized
effective actions obtained from 2-point current correlators in the free massive Dirac fermion
quantum field theory in 3d in [1].

3.1 Spin one and two — parity even sectors

The UV limit of the two-point function of the J currents are nonlocal conformal correla-
tors, according to expectations, see [30]. The same is true for the e.m. tensor two-point
function. But now let us focus on the IR limits. According to [1], for the J* current
two-point function, for large m we have

Fab i1y 2

T k) = g0 (ks = K (3.1)



This term is local. Fourier anti-transforming it and inserting it into (2.21) it gives rise to

the action )
3 a v paQ a av
S ~ m/d x (AS0M0" Ay — AJLIA™Y) (3.2)
which is the lowest term in the expansion of the YM action
1
Sym = ——— [ d®x Tr (F,, F™) (3.3)
gym

where gyn ~ |m.
Now let us go to the IR limit of the even part of the 2pt e.m. tensor correlator.
eq. (3.36) of [1] says

im| |1
(T RT3 () = G |5 (bt +3 65 ) 165 )~
k.?
- (kukunkp‘i‘k)\kpnuu)_? (77u>\77up+77up77u/\)+k277uu77>\p] - (3.4)

This is a local expression multiplied by |m|. In fact Fourier anti-transforming it and
inserting it into (2.19) it gives rise to the action

S ~ |m| / &z (—za,jhwayhg — 21 8,0, — WOk, + hmh) (3.5)
which is the linearized Einstein-Hilbert action:
1
Sen = 5 /dS:c\/Z;R (3.6)

where K ~ ﬁ

These results for spin-1 and -2 are known have been known for a long time, see for
instance [26]. Now, we ask the same question for the 2pt correlator of the 3-current (section
3.3). What action, if any, does it represent for the external source field?

3.2 Linearized equations for spin 3 in parity even sector

Before presenting our results in 3d, let us briefly review the status of the linearized equations
for the massless spin 3 field described by the completely symmetric field ¢,,,». Historically
the first formulation of equations for the unconstrained free massless spin 3 field was given
by Fronsdal [5, 6]

FMV}\ = Dgow,)\ — (‘9&8@@ + Bﬁf)zgog =0 (37)

where underlined indices mean the sum over the minimum number of terms necessary to
completely symmetrize the expression in u,v and A, i.e. for instance

0,0 0ur = 0u0a?®r + 000" s + ONDa v »

and where a prime ' means that the tensor is traced over a pair of indices. In some formulas
we shall use shorter notation in which all indexes are suppressed.



Under the gauge variation (2.19), 0@,n = 0, Ayx + perm., the Fronsdal kinetic tensor
transforms as 0.F,,,\ = 30,0,0\A". It follows that the Fronsdal equation is invariant only
on restricted gauge transformations satisfying A’ = 0 (this requirement holds for all higher
spins). Also, the Fronsdal tensor is not divergence-free, 9 - F # 0, so one cannot directly
couple the spin 3 field to a conserved (i.e., divergence-free) current using the Fronsdal
equation. As we construct effective actions and corresponding equations for the higher
spin fields by (minimally) coupling to conserved currents, it is obvious that Fronsdal’s
formalism is not suited for our purposes.

The formulation appropriate for our purposes was proposed in [10, 11], and analyzed in
more detail in [47] (for a review, see [48]). It was shown that there is a one parameter class of
equations for unconstrained spin 3 field, which are order 2 in derivatives, fully gauge invari-
ant, and ready to be coupled to the external conserved current. These equations are most
elegantly expressed by using gauge invariant linearized spin 3 Riemann tensor defined by

RM1V1M2V2,LL3V3 - 8#1(9#28#3 Privovs (antisymmetrised in all (:U'j’ Vj) ) (3'8)

The spin 3 equations are parametrized by real number a and given by

G(a)uwr = Ala)wr — M A(a)lﬁ =0 (3.9)
0,0
Al@)ur = éa‘RLL)\ﬁ-aﬁQAa'Rg (3.10)

where spin 3 Ricci tensors are defined by

Riups = 1™ Rywpaos = 204uF oo
R, =1 R, ,, = 20, F, (3.11)

uvpo V]

while their divergences are defined by?

0 Ryyn = 0aR' ", 9 R) = 0.R", (3.12)

What is the difference between equations with different a? First of all, it can be shown
that regardless the value of a, the free field equation (3.9)-(3.10) is equivalent to Fronsdal
equation (3.7). They start to differ when interactions are introduced. Note that equations
(for any a) are non-local. From the purely mathematical side, the equation for a = 0 plays
a special role because it is the least singular on-shell,> and because of this it was originally
promoted in [10, 11]. However, it was later shown in [47] that equations with different
parameters a propagate different set of excitations when coupled to a conserved external
current Jy,,

Gla) = J, 9-J=0 (3.13)

2The Riemann tensor symmetries guarantee that the definitions for Ricci’s and corresponding divergences
(after symmetrization is taken into account) are essentially unique, in the sense that different choices for
contracting indexes can differ only by a sign, or are vanishing [36].

3In momentum space the on-shell condition is k? = 0.



In particular, it was shown that only equation with a = 1/2 propagates spin 3 massless
excitations and nothing else, if one does not introduce additional constraints on ¢ or J.
For a = 1/2 the tensor A can be also written as

83
A1/2)=F - =0-F (3.14)

Let us emphasize that this by itself does not mean that the equation with a = 1/2 is the
“right one” to be used for the consistent coupling to the dynamical matter.

The non-locality of equations (3.9)—(3.9) can be ‘cured’ by multiplying with (0" with
r large enough. It is obvious that the equation with a = 0 is special in that » = 1 already
does the job, while for a # 0 one needs r = 2. In this way one cures non-locality, but the
price paid is that equations become higher-derivative (order 4 for a = 0 and order 6 for
a # 0). This opens up an additional question when one considers coupling to the conserved
current J: should we do this as in (3.13), or should we couple the current in the local way,

0°G(a) = J, 9-J=0 (3.15)

with r large enough?

The moral of the above analysis is that, due to several reasons, there is a large degen-
eracy in formulating equations of motion for the free massless spin 3 field, and it is not
obvious that all formulations can be used as a basis for constructing consistent interact-
ing quantized theories. It would be advantageous to know which formulation(s) are more
promising, before embarking into such enterprise. We shall now argue that the induced
action method may give us a hint.

In section 3.2.4 of [1] it was shown that the parity even part of the spin 3 two-point
current correlator for a massive Dirac fermion in 3d is given by

7 (even k> k k 5 k
FiBnn ) = 7 (2 ) Wit 0 () Wil milorilh, 210

where 7, and 77 are form factors presented in [1], and

() kyky

7T/Ll/ = ’rhu/ k2

(3.17)

are projectors which guarantee conservation. From (2.22) it follows that the linearized
effective equation in momentum space for the background spin 3 field minimally coupled
to a conserved current in free QFT with massive Dirac field in 3d, is given by

Tusiapiginvavs (B) 81273 (k) = (T2),00, (B)) k- TP (k) =0 (3.18)

The form factors contain branch-cuts, which means that this equation is strongly non-
local. The fact that there are two independent conserved structures present in (3.16), and
so in (3.18), is directly connected with the one-parameter degeneracy introduced in (3.10).

In the IR region (|k?|/m? < 4) the form factors are analytic, as expected, and the
equation is weakly nonlocal (infinite sum of local terms) when expanded around |k|/m = 0.

,10,



Using the expansions of form factors from [1], we obtain that the leading term in the IR is
given by

7 4 k k k k k k

jﬁfﬁi%mugus (k) ~ |m| k <7Tl(11)u27rl(t3)l/17r(V2)V3 - 7Tl(t1)l/17Tl(L2)l/27r/(L3)V3) (3‘19)
Observe that this is the lowest derivative conserved local expression, which is unique. Now,
plugging (3.19) into (3.18) and Fourier antitransforming, we obtain for the linearized in-

duced equation in the coordinate space

m| Gup(x) ~ (TS, (@) 0-J% =0 (3.20)

where G is the conserved symmetric local tensor linear in ¢, which is 4th-order in deriva-
tives. As there is a unique such tensor, we can conclude (without doing any calculations)
that it must be proportional to (1 G(0), with G(0) defined in (3.9)—(3.10). Explicitly written,

G,u,z/A = aozFa(,uu)\) (321)
where
Y] 1 1 _ 1 /
Fa;w)\ = Rapv) — 2Rau771/)\ = 28[04 f,u}l//\ - 2]:“}771/)\ (322)

The result (3.20)—(3.22) is, in some sense, natural. First of all, it is the lowest derivative
linear local parity invariant equation satisfying unrestricted gauge invariance and conserva-
tion condition. Also, the equation is of the same form as in spin 1 case, and we can identify
the tensor F' as spin 3 Maxwell tensor, while G' appears to be spin 3 Riemann tensor (it is
the lowest derivative local conserved gauge invariant parity even rank-3 tensor).*

Let us connect our result with the known constructions, reviewed above. It is obvious
that our result (3.20)—(3.22) is the same as (3.15) with a = 0 and r = 1, i.e., we have
obtained a local version of the equation proposed in [10, 11]. As we already mentioned,
this equation does not propagate only spin 3 massless excitations, unless the conserved spin
3 current of the Dirac theory has some special properties which takes care of the redundant
modes. This is the question we plan to investigate in the future.

Let us now briefly comment the UV limit (m/|k| — 0). After subtracting IR divergent
terms (for a full explanation of this issue, see below) form factors in the UV limit tend to
constants, which gives rise to a non-local correlator. However one of the subleading terms
gives a combination of the two conserved quantities

. 2
A : k Tpav Tpove Tuzvs

B i KT T Mo (3.23)

which is not the same combination as the one present in IR limit (3.19). So, the corre-
sponding induced linearized equation is also different.

A priori, one could freely linearly combine terms A and B and construct one parameter
candidate equations for the free spin 3 field. For example, A by itself gives the following
equation

1 1
O = 0u0-up + 50,0,0-0-0 — =30,0,059-0-0-9 = 0 (3.24)

4Conventions for naming objects in higher-spin metric-like formalism is notorious for its inconsistency. In
the literature different objects are called Ricci tensor and Riemann tensor. We believe that our conventions
are natural generalizations of spin 1 and 2 cases.
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By combining with the traced equation, it can be shown that it is equivalent to the Fronsdal
equation. The same can be shown for generic linear combination of A and B. There
is though the special case, the combination 4B — 3A, which is traceless, for which the
equation is

3 31 11
O — 30,0-0ux + Z@,A&,cp& — Eiau&,@ﬁwpl BViar 0u,0,02\0-0-0-¢ (3.25)
91 3 3 3 31
+ 1500 0-ox = M BN+ w009 + 0w 0-0-px = (i 753020-0-0-¢ = 0

In conclusion, we see that our simple analysis, based solely on the classification of
possible conserved structures, recovers the Francia-Sagnotti analysis and gives an efficient
method for analyzing higher spin actions. But, we emphasize that the induced action
method, out of many possibilities, picks particular equations which are already coupled to
particular external currents.

Comment. The previous results are limited to 3d and to the lowest spins. They are nev-
ertheless enough to stir our interest and motivate a more in depth analysis. It is also clear
enough that equations in the coordinate space are not always the best fit to generalizations
to higher spins. Writing down the actions and equations of motion in the explicit form
used so far becomes rapidly unwieldy with increasing spins and dimensions. Fortunately
a language much sleeker than this and the formalism used so far in higher spin theories
is at hand. We simply must go to momentum space and use the projector (3.17). Before
plunging into the analysis of the results for 2pt correlators coming from Feynman diagrams,
we’d better prepare the ground with a general analysis of their expected structure.

4 Universal EOM and conserved structures for spin s

Our starting point is the 2-pt functions of symmetric conserved currents. We expect them
to be conserved too, i.e. we expect to find 0 if we contract any index with the external
momentum k. We exclude the presence of anomalies. In fact we will come across also some
non-conservations, but they can be fixed by subtracting local counterterms. This aspect of
our analysis is interesting in itself, but we will illustrate it later on in any detail. For the time
being we ignore this fact and suppose that all 2-pt functions we deal with are conserved.

This said, the form of the conserved structures is universal, in the sense that is does
not depend on the dimension d of spacetime. For spin s they can be easily constructed by
means of the projector (3.17) and polarization vectors ni,na: ni,, nay.

For spin s let us write down the structures:

~(s 1 s

A(() )(k'm-nz) = (51)? (ny-m®).ny) (4.1)
~(s 1 o

Ag )(kz-nl-ng) = (S')2 (n1~7r(k)~n2) 2(”1-W(k)-nl)(ng-ﬂ(k)-ng) (4.2)
» . .. 1 .. ~

Al( )(k~n1-n2) = (nl‘ﬂ(k)‘ng) 2l(n1-W(k)-nl)l(ng-ﬂ'(k)-ng)l (43)

k).

where n-m(®).m = n#m,,m". There are |s/2| independent such terms.
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Let us set
B ls/2]
EO (knyna) = 3 @Al (k-ning) (4.4)
=0
where a; are arbitrary constants. The explicit conserved structures are obtained by differ-
entiating s times E) with respect to ny and s times with respect to ne. One obtains in this
way conserved tensors E,SSI) [Ls 1 Vs (k). Conservation is a consequence of the transversality

property

k7 = 0 (4.5)
and E®) writes
) s/2)
E,ul...,us,yl...us(k) - Z alAl,ul...,us,ul...us (k) (46)
=0

This is the most general conserved structure for spin s (for a proof, see appendix A).
By Fourier anti-transforming and inserting into (2.21), one can construct the effective
action corresponding to (4.6) multiplied by k2 for the spin s field B, .. ps 1.0, as follows

SE N/ddfrB'ulMMS‘:’E(a)ul,_.us7yl...usBylmus (47)

where E(d) is the formal Fourier transform of E(k), i.e. the same expression with k,
replaced by —i0,,. The eom is of course

DE@) .o s B =0 (4.8)

After canonically normalization, it depends on |s/2] — 1 arbitrary constants. This is the
most general linearized eom for a completely symmetric spin s field.

From E®) (k) we can obtain the most general traceless combination, by taking the trace
of (4.6) and imposing it to vanish. This can be done by differentiating the implicit expres-
sions (4.1),..., (4.3),...with respect to %%. The resulting equation is the recurrence
relation

(s—=2l+2)(s—20+1)

TGl —1)+d_1)"t (4.9)

Setting ag = 1 the solution is

(-1 st T(s+452-))
2201 (s —20)! T (s+ %52)

a; =

(4.10)

Replacing this in (4.6) we obtain a traceless conserved structure. In turn this gives rise to
a traceless eom.

4.1 FEom’s from conserved structures

Any conserved structure (4.4) in coordinate space is in general a non-local differential
operator. To each there corresponds a quadratic Lagrangian and a linearized eom. For
the EOM it is enough to differentiate s times with respect to ny and saturate the exposed
indices with the spin s tensor field a*1*s, multiply by k2, set the result to zero and then
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differentiate also s times w.r.t. n/'. For the Lagrangian one saturates the Lh.s. of the EOM
with a#*#s and divide by 2.
Therefore we can represent the eom symbolically as

/2]
K2 @A) (konyng) = 0 (4.11)
=0

In the following instead of contracting the ng indices with the field a, we will always leave
ng free and operate only on n;. The operation will be essentially tracing two n; indices.
For instance tracing (n1~7r(k) -n1) over ny gives d — 1.

Let us consider the spin 3 case. In this compact notation, the most general eom will be

12 (a(m.ﬂ(k).w):’) n b(nl.ﬁ(k).nl)(nl.ﬁ(k).m)(m.ﬂ(k).mw —0 (4.12)
Taking the trace over n; gives
(6a + (d + 1)b)(n1-7* -ng) (ng-7™ .ny) = 0 (4.13)

Thus, unless 6a+ (d+1)b = 0, i.e. for generic coefficients a and b, the second piece of (4.12)
vanishes on shell and we can simply drop it. Therefore the relevant eom for spin 3 is

k2 (ny-m®).ng)3 =0 (4.14)

ie. (3.24).
Now we wish to prove that this is general, that is, for any spin s, for generic coefficients,
the eom can be reduced to the form

k2(ny-m®).ng)® =0 (4.15)

The strategy consists in taking the trace of (4.11) w.r.t. to n; the maximum number of
times and replacing the results in (4.11). For instance, for spin 4 we have to trace twice.
Tracing p times (4.11) we get

Ls/2]
Sl (s =20+ 2)(s — 20+ 1) + 26" (1 —p+ 1)(s +d — 2p—1)]
l=p
(ng-m®) )2 (g n®) )52 (g ) ng) = 0 (4.16)

where cl(o) = ay, cl(l) = aj—1(s—2l+2)(s—20+1)+2la;(s+d—3), etc. The complete expression

for cl(p ) is not easy to compute, but these coefficients are generically non-vanishing. It is

however possible to infer the important property that
=0, I<p (4.17)
For s = 2n after n tracings, i.e. p = n, we arrive at

E2(ng-m® .ng)™ = 0 (4.18)
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Now let us consider p = n — 1. Using (4.16) and (4.18) we arrive at
2k2(d + 1)el™ ) (ng-7® 1g) 21(ng-m® gyt = 0

So, generically,
k‘2(n1-7T(k)-TLQ)QZ(TLQ-?T(R)-ng)nil =0 (4.19)

Now we proceed by induction. Suppose after g traces, i.e. p =n — g+ 1, we have
k2(ng-m®) ng) % (ng-m k) .ng)nt = 0, 1=0,...,¢9—1

Then, at level p = n — ¢, we remain with
2k207(::;n(d +2¢ — 1) (n1-7® ng)2q(ng-w®) .ng)" "7 = 0 (4.20)

from which the conclusion (4.15) follows.
For s = 2n 4+ 1, we start from p =n

2k2c™ (d — 1) (ng-7®) ) (ng-m®) ny)™ = 0 (4.21)

and we can repeat the induction procedure arriving at the same conclusion (4.15).
The next task is to recover the Fronsdal equation from (4.15).

To this end we take the trace of (4.15), i.e. apply to it %nﬁ“’ 82{' This is easily seen
to give
no-k)?
tr(ny-7*n2)? = 2(ng-ny) — 2< 2}{2 ) (4.22)
and, in general,
tr(ng-m® ng)® = s(s — 1) (ny-7®ny)*2tr(ng -7 ng)? = 0 (4.23)
Using this we can easily calculate all the traces of (4.15). The end result is
no-k)2\ 2
tr(ng -7 ng)* ~ ((’I’Lg'nz) - 2( 2]{:2 ) ) =0 (4.24)
for even s, and
no-k)2\ 2
tr(ng-m®) ng) ~ <(n2‘n2) - 2( 2162 ) ) (n1-7®.ng) =0 (4.25)

for odd s. These two equations have to be understood as follows: any solution that

satisfies (4.15) also satisfies either (4.24) or (4.25). Therefore we can replace these two egs.

into (4.15). The viceversa is not true in general: i.e. if a solution satisfies (4.24) or (4.25),

it may not satisfy (4.15). For the time being we assume that eq. (4.24) and (4.25) imply

that in (4.15) we can make the replacement (no-k)? = k?(ng-n2) (see the comment below).
The result of this substitution is:

E*(n1-ng)® — s(n1-n2)*L(ny-k)(ng k) + <§> (n1-1n2)* "2 (n1-k)?(ng-ns)

u S ni-k)(ng k)2
+> (-1 (z) (a1 22812? (n2nz) = 0 (4.26)
=3
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The first line gives the spin s Fronsdal operator. Therefore (4.26) identifies the spin s
nonlocal Fronsdal equation. The compensator takes the form

s s B3 (1 - )2
a(ny,ng) =D (~1)f (l) (nq-na) 1! 1k)(k:2)(122 B (ngemo) (4.27)

=3

4.2 Conserved odd parity structures

It is easy to obtain also all the odd parity structures. The spin 1 odd parity conserved
Lorentz structure (linear in nj-ny-k) can only be

S (keny-ng) = (nyeng-k),  (nieng-k) = euaninik? (4.28)

It is easy to realize that, for higher spin, the epsilon tensor can only appear in the form
(n1eng, k) in every single term, thus it can be factored out. What remains is an even spin
structure of one order less. So the most general odd conserved Lorentz structure will be a
combination of

N((]S)(k‘nyng) = (nleng-k)Aésfl)(k-nl'ng)

~£8) (k:-nl 'TLQ) = (nleng 'k)xzigs_l) (k-nl 'TLQ)

C‘l(s)(k-m-m) = (n16n2'k)1‘1§s_1)(k'”1'"2>

(4.29)
where A(()O) = 1, by definition. Let us define
~ ls/2]
O(S)(k-m-ng) = Z CZCI(S)(]C-nl-TLQ) (4.30)
1=0
from which we can derive
ls/2]
O,Ul---,usﬂfl---Vs(a) = Z clcl,mmus,mmvs(a) (4.31)
=0
The odd parity action is supposed to be local (and higher derivative)
So = / dz BT 0(0) . B (4.32)
Therefore the odd eom is
O O ppon s (0) B+ = 0 (4.33)

The tracelessness condition (for spin s > 1) implies a recursion relation for the coeffi-
cients ¢;:

(s—20+1)(s—2])
202(s—1—-2)+d+1)

Cl = — Cl—1 (4.34)

Setting ¢g = 1 the solution is:

(-1 (s—1)! T(s+%2-1)
2201 (s =20 —1)! T (s+ 9%52)

= (4.35)
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A comment on the non-local Fronsdal equation. In the previous derivations of
eqs. (4.26) and (4.33), we have simplified a few steps by disregarding a number of alterna-
tives. First, we have stated that several passages are generic, that is they do not hold in
some very specific cases, leaving out in this way several (probably pathological) possibilities.
Moreover, we have disregarded solutions that satisfy (4.24) or (4.25), but not (4.15). There-
fore our conclusions concerning egs. (4.26) and (4.33) are generic. They do not address
more subtle questions, in particular the one pointed out in [47, 48]: the non-locality of the
Fronsdal equation contains a large freedom, so an important issue is to select the form of the
equation that gives rise to the correct propagator for the higher spin field, and not all non-
local equations which give rise to the Fronsdal equation upon gauge fixing also give the cor-
rect propagator.® We cannot say, on the basis of our previous derivation, that our non-local
Fronsdal equations have the property of generating the correct propagator, but we can ver-
ify this a posteriori, by analyzing the effective actions we obtain for the massive scalar and
fermion models in various dimensions. We will return to this issue in the concluding section.

5 The general method

In this section we illustrate the method to compute the 2-pt functions with Feynman
diagrams. On first reading one can skip this section and go directly to the results in
the next one. The integrals we have to compute in this paper are like the ones in (2.27)
and (2.28), that is of the general form

o [ d Pus Py
J}j/l...ﬂp(d7a75’ Qh(]%m) - / (27T)d ((p—|— q1)2 B m2)a ((p—|— q2)2 B ’I7’L2)ﬁ (51)

where, eventually, ¢1 = 0,¢q2 = —k. We will use the method invented by [2-4] to reduce
the tensor integral to a sum of scalar ones

) N P—
T @aBoaam = X (3] @ {1 ol el
A K1L,K
2)\+ini2:p

X (), (B), IP(d+2(p — N+ K1, B+ K23 q1,02,m),  (5.2)

H1---Hop

where the symbol {[n]A []™ .. lan]™ } stands for the complete symmetrization of
Ko pM
the objects inside the curly brackets, for example

{77Q1}#1#2#3 = NprpaQips T Mpaps Qe + Mpopsz Qi -
The basic integral is now the scalar one

dp 1
@™ ((p+ q1)2 = m2)* ((p + g2)? — m2)°

(d; a, B: 41, o m) = / (5.3)

SWe thank the referee of this paper for stressing the importance of such an issue. On the other hand
our intention in this section is to stress the universal features of the non-local Fronsdal equation.
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For instance, the bubble integral for the s = 1 current in the scalar model

. q¢ 20— k), (2p — k),
*M“:/wﬁwiﬁmgiMJW> (54

reduces to
. 8 (47)?
meu@::—@—ﬁ@mw()M+2JJJ+8()MAkkl(Nd+£13) (5.5)
4o kkAﬂNd+212y+———kkf@Mt1D
(2 )d+2 P (27T)d J24474 »

The integral 1@ (d; v, B; k,m) can be cast into the form of a hypergeometric series

2)—a—ﬁ+% L(-§+a+h)
I'(a+p)

d
aaﬁ)_7+a+ﬁ
x sy | V0 Sarar \ (5.6)
( S5 lam?

This representation is valid for large m compared to k. When m is small compared to k

fl(;)(d;a,ﬁ;k,m) = 9~ dp—d/2;1-d (—m

another representation is available
d d d
[ _ ged_—dapp-d g2y-a—pri J(L(E =) T (5 - )T (=5 +a+p))
e e { D(@T(AId—a- B)

" —%—l—oc—i-ﬁ, fd+a2+ﬁ+17 fd+a2+,5+2 Am?2
X 312 d d L2
sta+1l,-5+8+1 k

2\ 2@ _d —otf+1 —atpf+2 2
+<_m> G ) e ‘ﬂz
§—a+L—a+B+1k

ZaRRaNCES NGRS S =
+<_k2> r@ P \opritta- B+1

In the sequel we consider also massless models. The relevant results can be obtained

(5.7)

from the massive models by taking the m — 0 limit. But they can also be obtained by
setting m = 0 from the very beginning. In such a case the basic integral is

dp 1
2m) (p+ q1)2)" ((p + 42)2)°

[(5-a)T(5-A)T(ath—3)
L(@)L(B)T(d = a = 5)

i(g)(d;aaﬁ;(han?O):/(

_ 2—dﬂ_—d/22-1—d(k,2)g—a—ﬁ

5.1 Guidelines for the calculations

We will now set out to do explicit calculations and derive results for two-point functions in
the scalar and fermion model in different dimensions. The method just outlined is the most
convenient for our purposes, but it is nevertheless one out of many. In fact, even within it
there are different possibilities or schemes. We expect that our results may depend on such
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schemes, but also to find a criterion to extract the scheme independent part. In most cases
this is conservation and finiteness. In particular, by suitably choosing the scheme we will
be able, for instance, to obtain both finiteness and conservation for spin 1 current in any
dimension in the fermion model. The same is not as easy for higher spin currents. In generic
spin current correlators and, therefore, in the corresponding one-loop effective actions, we
will find, beside non-conserved terms, also terms that diverge in the IR limit m — oo.
Fortunately these terms are finite in number and easy to identify by expanding the OLEA
near the IR and the UV. Not only, all the nonconserved and all IR divergent terms are
local. It is thus possible to subtract all the terms that diverge in the IR, which include, in
particular, all the nonconserved ones and recover both conservation and finiteness in the IR.

In this process a particular attention has to be paid to the terms of order 0 in m, in
even dimensions. In some cases they are local and conserved, and appear both in the IR
and the UV. Even in this case we follow the attitude of subtracting the IR term from the
corresponding UV one, on the assumption that physical information is contained in the
difference between the UV and the IR, not in their absolute values.

Finally it should be added that the resulting IR and UV expansions are both conver-
gent.

The calculations in the sequel are mainly carried out using a new Mathematica
code [54].

To somewhat abbreviate the following formulas, at times we use the compact notation

Hg2)(k:,n1,n2) = <n1 ok nz) 24 a(ny ok ni)(ng - k. n2), (5.9)

Hgg)(k,nl,ng) = <n1 ok ng) 34 a(ny ok ni)(ny R ng)(ng - k. n2), (5.10)

where a is some constant.

The symbol k used in the above formula and in the sequel deserves an explanation: k
saturated with ni,ny represents the vector k,, while in the other cases it represents the
modulus |k|. Finally, contrary to ([1]), the latter is k = |k| = Vk2.

6 3d scalar effective field action tomography

In this section we start the analysis of the two-point functions of spin higher than 1 currents.

Before reporting on the general spin s case we would like to analyze in detail a few
low spin cases. It is in in general possible to obtain compact expressions of the one-loop
effective actions. However expanding it in powers of m near the IR and UV limits (an
operation we call tomography) provides the most interesting information.

It is possible to use the parameter m to cut to slices the two-point function of currents
of any spin. Let us consider the case of a massive scalar model (msm) in 3d. The basic
formulas are (2.1), (2.2), (2.4), (2.6) and (5.4) together with the analogous ones for higher
spins, with d = 3.
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6.1 3d msm: spin 1 current

This case is well known and simple, but it is excellent for pedagogical purposes. The exact
2-pt correlator for s =1 is

3

(n1-J(k)-ng) = i <4m2 coth™ (%T) + 2km + k? coth™ <2;”>) (k-ny) (k- na)

8k3

Ly - e P (e
+87T,I€ (n1 - n2) <4m coth ( . >+2km k* coth < 5 >> (6.1)
We can expand (6.1) in power of % (IR) or of 7+ (UV). In the IR case we find
O(m) im (n1-ng) (6.2)
27 )
LR e
O(m™): Y= (nl T n2> (6.3)
.k4
O(m™3) : L (nl-w(k) -ng) (6.4)

 4807m3

while the even powers of m vanish. The first is a (non-conserved and divergent in the IR
limit) local term ~ 7,,,, which must be subtracted away. The other terms are all conserved
and proportional to the conserved structure

ny-m®) g, (6.5)
The UV expansion is instead

O(m?) : _ (nl'ﬂ'(k) . ng) (6.6)

.16

im
O(m) 52 (k-n1) (k-na) (6.7)

2
2y. M (k)

O(m?) P (nl T n2> (6.8)

2im?
O(m?) m (m () '712) (6.9)

In fact we have O(m?") = 0 for n > 2. The only nonvanishing terms with even powers of
m are O(m?), O(m?). For these terms see the comment below.

Except (6.7) the other terms are conserved and proportional to (6.5). The terms
proportional to (6.5) are all non-local in the UV, and local in the IR, in particular (6.3) is
local and corresponds to the YM action in 3d, see (3.1).

The two nonconserved terms are (6.2) in the IR and (6.7) in the UV. The first is local
and the second is nonlocal, but their divergence is the same and local:

_% (k-na)
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This means that we can cancel it by subtracting a local term, ~ m [ d3z tr(A%). This
amounts to subtracting the IR contribution (which is local) from the UV one. Indeed we get
m

OUv(m> — (’)IR(m) = —% (nl-w(k) . TLQ) (6.10)

So the term of order m in the UV and IR conjure up to reform again the same conserved
structure as all the other terms. Taking the UV and IR limits splits apart this conserved
structure. The conclusion is that, up to a local term we can view the effective action as a
sum of infinite many terms, all proportional to ny - 7% - ny with coefficients proportional
to various monomials of m and k. In compact form:

U (ameoth= (2™ — 9km — k2 cotht (27 ) ny n®)
Sk <4m coth <k:> 2km — k* coth <k)>n17r ngy (6.11)

6.2 3d msm: e.m. tensor

We have to consider

(”% : T(k) : n%) = nT”TTuvkp(k)”g\ng

Expanding in the IR we have

O(m?) 2;7:3 (2 (n1-n2) * + (n1-n1) (n2-n2)) (6.12)
O(m) —%”7: (= (ng-nz) (k-n1)? — 4 (n1-nz) (k-ng) (k-n)

+2k§2 (n1 ~n2) 2 + k2 (n1 -’I’Ll) (’I’LQ'TLQ) — (nl-nl) (kng) 2) (613)

O(m™) 6éi;Hg2)(k,n1,n2) (6.14)

Om: —F 1Oy ny) (6.15)

1680mm3

while all the even powers vanish. The O(m?3) and O(m) terms are non-conserved, while
the other terms are all conserved and proportional to the same structure.
In the UV we have

k‘3

O(m®) : I (k,na,na) (6.16)
32 3
m
O(m) k2 (k-n1)? (k-na)? (6.17)
2
O(m?) : —mTkH(f)(k, ni,ns) (6.18)
2
2im?
O(m®) 5oty (=3 (kena) (k) ® + k2 (1) (o) ?
+4k2 (’I’Ll-ng) (k:nl) (king) + k> (n2~n2) (k‘nl) 2) (619)
4
O(m*) %H(f)(kml,nz) (6.20)
O(m??) : 0, for p>3
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In fact we have O(m?™) = 0 for m > 3. The only nonvanishing terms with even powers of
m are O(m®), O(m?), O(m*) (again, about these terms, see the comment below)

All the terms are conserved except O(m) and O(m?). But putting together the anal-
ogous non-conserved terms in the UV and IR (that is subtracting the local IR terms from
the (nonlocal) UV ones) we recover conservation.

Ouy(m) — O(m) = Z?ﬂ 1 (k, ny, no) (6.21)
2
4im?
Ovy(m?) = Om(m?) = —= =11 (k,ny, o) (6.22)

So we find a result analogous to the 1-current. Up to local terms the effective action is a
sum of infinite many terms, all proportional to the same conserved structure (6.22) with
coefficients proportional to various monomials of m and k. They form a convergent series
both in the IR and in the UV. In compact form:

i 2m 2 2 2,2 —1(2m
18k (48m coth™ <k> + 2km (5l<: —12m ) — 24k“m* coth e

2
+3k* coth™! <Z‘)> 1% (%, ny, mo) (6.23)
2

It should be noticed that the massless model case gives the result:

(n3-T(k)-n3) = o1 (k,n, ma) (6.24)
2

32
This is conserved but not traceless, which is not surprising because a scalar massless model
in d > 3 is not conformal invariant.

Eq. (6.21) is conserved. It does not coincide with the linearized Einstein-Hilbert action
(in particular it is nonlocal), but this is simply a nonlocal version of the same, in the same
sense as we have already seen for spin 3 and higher in section 3.

6.3 3d msm: spin 3 current

For the 3-spin current we have in the IR

O(m°) 8?:5 (2 (n1-m2)® + 3 (n1-m1) (n2-n2) (n1-12)) (6.25)
O(m?) 2;’:3 (3 (n1-m1) (1 -12) (k-12) >3 (2 (m-12) 2+ (1 -ma) (n-n2)) (k-ma) (ko)
+ (n1-n2) (3 (nama) (k-m1)* — k% (2 (n1-n2)® + 3 (n1-n1) (na- ng)))) (6 26)
O(m) fg;<3 (n2n2) (k-na) (k-n1)® + 3 (n1-n2) (3 (k-n2)? — k* (nan2)) (k-ny)
+3 (k'n2) ((n1-m1) (k'n2)? — k% (2 (n1-n2) 2 + (n1-n1) (n2-n2))) (k-ny)
+k2 (n1-n2) (K (2 (n1-n2) 2 + 3 (n1-m1) (n2-n2)) — 3 (n1-n1) (k-ng) ?) > (6.27)
Om™): 4i§:mﬂ(g3)(k,n1,n2) (6.28)

— 922 —



The coeflicients of even powers in m vanish, while the negative odd powers are all pro-
portional to the conserved structure (6.28). The terms O(m?®), O(m3), O(m) are local and
non-conserved.

In the UV we have

5
O(m") e (k,n1,m2) (6.29)
64 5
m
O(m) oS (knp)? (kng)? (6.30)
21.3
Om?) : K1 (1, ny, o) (6.31)
16 3
3 2im? 2 2 2 2
O(m?) 37rk4(k~n1)(k:'n2) (—5 (k-ny)© (k-ng) =+ 3k%(n1-n1) (k-n2)
—|-9k:2(n1 ng) (knl)(k:ng) + 3k2(n2-n2) (k:nl) 2) (632)
4
Om®y: —2"FH®) (ks ny o) (6.33)
5 8/L-m5 4 . 2 . . 4 . . . 2
O(m?) I 6k (n1-n2) “(k-n1)(k-n2) + 3k (n1-n1)(n1-n2) (k-n2)
+3k4(n1-n1)(n2-n2)(k ni (kng) + 3k4(n1-n2)(n2 TLQ) (k 711)2
*3]{32(’01-7711)(]{5'7711) ( -712) — 9k2(n1'n2) (k‘nl) 2 (k‘ ng)
—3k%(ng-ny) (k-ny)>(k-ng) 4+ 5 (k-n1) > (k-ns) 3) (6.34)
6
O(m®) + 11 (ko o)
The terms O(m?") with n > 4 vanish. All terms are conserved, except

O(m), O(m?), 0(m°).
Proceeding as above we subtract from the non-conserved terms in the UV the homo-

geneous local non-conserved terms in the IR and obtain conserved terms:

imk*

Ouy(m) - Om(m) = — = 1Y) (k, n1,na) (6.35)
2
4im3
Ouy(m®) = Om(m’) = =k H(%g)(k,nl,m) (6.36)
16im®
Opv(m?) — Om(m®) = —— 1 (k, ny, no) (6.37)
2

Therefore up to local terms the effective action is a sum of infinite many terms, all propor-
tional to the same conserved structure with coefficients proportional to various monomials
of m and k.They form a convergent series both in the IR and in the UV. In compact form:

. ) 2
SR <960m6 coth™! (;”) — 480km® — 720k>m* coth™! <;”> 320 (k) ¥/2m?

2 2
+180k*m2 coth ™" <Z‘> — 66k*km — 155 coth™? (Z‘) ) (k,ni,ns)  (6.38)

M\w’\
=
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The term (6.36) is local and gives rise to an eom, which is the nonlocal version of the
Fronsdal spin 3 equation of motion we have already met above.

6.4 3d msm: higher spin currents

This scheme repeats itself for higher spin currents. For spin 4 there are 4 non-conserved
terms in the IR and 4 in the UV, while the others are conserved or 0. Subtracting the IR
non-conserved terms from the corresponding UV ones all the nonvanishing terms turn out
to be proportional to the conserved structure:

% (m-ﬂ(k)-ng) 4+% <n1-7r(k)-n1> 2 <n2-7r(k)-n2) 2

—I—(nl W(k) -nl) <TL1 7T(k) -77,2) 2(%2 7T(k) . TLQ) (6.39)
All terms with even powers of m vanish, except m®, m2, m*, m%, m8.
For spin 5 there are 5 non-conserved terms in the IR and 5 in the UV, while the others
are conserved or 0. Subtracting the IR non-conserved terms from the corresponding UV
ones all the nonvanishing terms turn out to be proportional to the conserved structure:

(nl-w<k>-n2) 5+% (nl.ﬂmnl) 2y ¥ ) (m.ﬁu«).m) 2

+5(n1~7r(k) ~n1) (nl-ﬂ(k) -nz) 3(n2~7r(k) . TLQ) (6.40)

All terms with even powers of m vanish, except m®, m?, m*, m®,m8 m!0.
Comment 1. As we have seen above any conserved structure is connected to a (non-
local) higher spin field equation of motion. In particular egs. (6.3) and (6.21) are conserved
structures which represent the linearized YM and EH actions, respectively, the second one
in a nonlocal version. Eq. (6.36) is non-local and gives rise to a variant of the nonlocal
Fronsdal equation discussed in section 3. It is clear that any two-point correlator structure
can be uniquely related to a given (linearized) equation of motion. The structure of the
2pt-functions conform to the general discussion in section 4. This will be confirmed by the
forthcoming analysis.

It is remarkable that the conserved structures that appear in the above expansions are
always the same for any fixed 2pt correlator. As we will see this is not the case for the
effective field action originating from a fermion model.

Comment 2. The nonvanishing even m power terms are a finite number in all cases.
They come from the fact that the UV expansion of coth™*

. (2m it 2m  8m3 = 32m°
coth A —_—

=—— et =+ 0 (m° 6.41

> % s e PO (6.41)
contains the factor —%T. This is the reason why they are a finite number and do not contain
the factor % like the others. The factor —%T comes from the logarithmic cut of coth™" and
it is determined by the choice of the Riemann sheet. So it is scheme dependent.

— 24 —



It is interesting to compare the O(m") results with the massless model case, obtained
via (5.8). In the massless case for spin 1 we get

1

- Tﬁk(nl-w(k)-ng) (6.42)
for spin 2

k3

511<f>(k,nl,n2) (6.43)

2
and for spin 3
k> q®)
— 674Hé (k, ni, n2) (644)
2

These correlators are nonlocal and coincide with the Oyy(m?) terms evaluated above.%
To be precise there is an indeterminacy in their sign due to the branch point at £ = 0
originated from the choice of sign of the square root vk2. This indeterminacy is present
also in the m — 0 limit of the massive model and it is related to the choice of Riemann
sheet mentioned above. As a consequence of it, in this paper we do not worry about the
sign in front of the Maxwell and EH kinetic terms that appear in the effective actions.
We postpone to a future work the task of finding a physically consistent prescription that
eliminates this indeterminacy.

7 3d fermion effective field theory action tomography

We consider now the same analysis for the massive fermion model (mfm). The starting
point are egs. (2.7), (2.10), (2.27), (2.28) and the like for higher spins (see also [1]).

7.1 3d mfm: spin 1 current

This case is rather simple. It takes a very compact form

- ' 2 2
(n1-J(k)-ng) = &Zrik ( - <4m2 coth™ (;n) — 2km + k? coth™? <;n)> (n1-m*) .ny)

+4im coth™! (22“) e(k~n1-n2)> (7.1)

and is conserved without any subtraction.

Expanding, the term

Ot - ~<Emn)

corresponds to the linearized CS action (here € (k-nq-ng) means €,,,k*n}nf), and the term

(7.2)

7

O(m™h): k2 (ng-m®) .ngy) (7.3)

12mm

in the IR corresponds to the linearized YM action.

5 Appendix B contains a complete analysis of two-point functions for massless scalar and fermion models.
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7.2 3d mfm: e.m. tensor — even part

For the e.m. tensor we have in the IR (all formulas below have to be multiplied by the

factor )

16
3 im? 2
Oo(m?) : —2§ ((n1-m2)* + (n1-n1) (ng-n2)) (7.4)
. k;2
O(m) : JTgﬂ 12 (k, n1, n2) (7.5)
1 ikt (2)
O(m™") 407Tmﬂ_%(k,n1,n2) (7.6)
1.6
Om=3): —"" 1) (k. ny, no) (7.7)

672m3T  —%

The even powers vanish. The O(m?) term is not conserved, while the other terms are all
conserved and proportional to different combinations of the two conserved structures.
In the UV we have

O(m°) g;l‘[(zi(k,nl,ng) (7.8)
O(m): 0 (7.9)
O(m?) : n:k(nl - () -n1)(ng - x(k) “n3) (7.10)
O(m?) : —2;:;34 ((k* (na-m2) — 2 (k-n2)?) (k-n1)? + 2k% (n1-n2) (k-n2) (k-n1)
—i—k‘Q (n1~n1) (k’ng) 2) (7.11)
O(m*) : —;:H?)(k,m,ng) (7.12)
O(m’) —2‘5frnli’nﬁ2>(k,nl,n2) (7.13)
Om®): 0

These are all conserved except O(m?). But putting together the analogous non-conserved
term in the UV and IR (that is subtracting the local IR term from the (nonlocal) UV one)
we recover conservation:

3

Ouv (m?) = Om(m?) = 211 (k, my, m) (7.14)
eq. (7.5) is the linearized and local version of the EH equation of motion (see section 3).
The other are non-local versions of the same (except (7.10). Actually, according to our
general philosophy the term Org (m), which is divergent in the IR limit, must be subtracted.

It will therefore appear in the place of the vanishing term (7.9) with inverted sign.
Once again up to local terms the effective action is a sum of infinite many terms,
which form a convergent series both in the IR and in the UV, all of them proportional to
various combinations of the conserved structures with coefficients proportional to various
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monomials of m and k. In compact form:

v 4 —1(2m) 3_ 413 — 6L -1 (2m ) ) 2
96k <96m coth ( i > 48km?°—4k’m — 6k” coth < A >> <n1 T ng)
_ 4 1 (2m) 3 2, 2 1 (2m 3
96k <48m coth ( ’ > 24km? — 24k“m~ coth ( A >+10k m
2
+3k* coth™! <]T>> (n1-7%) ny) (ng-w® ny). (7.15)

7.3 3d mfm: e.m. tensor — odd part
In the IR (all formulas below have to be multiplied by the factor 1)

om?®): 0

O(m?) : —n;f(nl-ng)e(k-nl-ng) (7.16)
O(m°) : f;re(k-nl-nQ) (n1-7*) .ny) (7.17)
Om=2) .~ (kny-ma) (ng-7® n) (7.18)

240m?2n

the odd powers vanish. The O(m?) term is not conserved, while the other terms are all
conserved and proportional to the unique odd conserved structure.

In the UV:
Om° : 0
O(m) : —Zk?me (k-ni-ng) (n1-7* .ny) (7.19)

2

O(m?) ] (k-n1) (k-n2) e (k-ni-n2) (7.20)

3. (k)

Oo(m?) : zﬁe(hnl-ng) (ny-m'"% -ng)
4

O(m4) am € (k-ni-ng) (TLl'?T(k)"rlz)

3k

O(m?) is not conserved, but

2
Ouy(m?) — Op(m?) = ”%e (k-n1-n2) (ny-7®) ny) (7.21)

is. In summary, after subtracting O (m?) the odd 2-pt correlator is:

= (a2 coth= (2™ Z 2km — k2 coth ! (27 - k
gy (4m coth (kz) 2km — k* coth <k>>e(k ni-ng) (ni-m",ng)  (7.22)

The term (7.17) and, in a scaling limit, also (7.19), give rise to the linearized CS action as
discussed in [1].
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7.4 3d mfm: spin 3, even part

This was already discussed in [1], so we report here only the final results. One must
subtract the local terms O(m?%), O(m?) in the IR, which are not conserved. After which

the effective action becomes

; 2 2
—21(;]{ (192m6 coth™! (;”) — 96km® — 48k*m* coth™? (;") (7.23)

2 2
+16k3m3 — 12k*m? coth™! <;n> — 6k°m + 3kS coth™* (Z) ) (nl-ﬂ(k)-m) 3

; 2 2
_288an (384m6 coth™! <Z‘) —192km5 — 128k%m* coth™! (Z’) T A8K3m?

+28k*m? coth ™! <2IT> +6k°m—3k5 coth™! <2;n>> (n1-7®) n1) (ng-7® ng) (ng-7w*) .ny)

The Or(m) term is conserved and has to be subtracted from it. The interpretation of
these conserved structures in terms of massless Fronsdal eom has been discussed above. At
each order they are different combinations of two conserved structures

(m (k) -n2> 3 and (ny -7 np) (ng-7® ng) (ng- 7 .ny) (7.24)
but it is actually easy to prove that all these combinations give rise to the same eom (after
taking the trace of the resulting equation and re-inserting it). The only condition is that
the coefficient of the first structure be nonvanishing.

7.5 3d mfm: spin 3, odd part

One must subtract the local terms O(m?), O(m?) in the IR, which are not conserved. After
which the effective action becomes:

1 2 2
<96m5 coth™* <ZL> — 48km* — 4k3m? — 3k*m coth ™! <m> )

2167k k
€ (k-ni-na) (n-7® ny) (ng-7w® .ngy) (7.25)
1 5 1 (2m) 4 2, 3 —1(2m 3, 2

P (48771 coth < 3 ) 24km™ — 24k*m? coth A + 10k°m

2
+3k*m coth™ (;n) )e (k-ny-n2) (nl.Tr(k) n2> 2
The meaning of the term O(m) in the UV (in the scaling limit)
1 1
_ i%e(k-nl-ng) E (36 <n1-7r(k)-n2) 2 - MA(nl'7T(k)'nl)(n2'7T(k)'7"02)> (7.26)
and O(m?) in the IR

() (2 n® o) (g ® ) — 25 (6., 2 (r.27)
€ ni-no 2407 ny-m ni)ng-m no) — 1357 (n1 s 712) .

have already been discussed in [1].
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8 Tomography in 5d

There is no substantial difference between 3d and 5d. We start from the same formulas as
in 3d and change only the dimension. For obvious reasons of readability we limit ourselves
to the even parity part and the lowest spins, although the generalization is at hand.

8.1 5d scalar model

8.1.1 5d msm: spin 1 current

The analog of eq. (6.1) is

7 _ i 2 3 2 2\ 2 1 (2m 3
(n1-J(k)-ng) = _7687r2k3<k (n1-n2) <40km + 3 (k* — 4m?) * coth <k> — 6k m>

+3 <8km3 — (k* — 4m®) ? coth™! <2;”> + 2k3m> (k-ny) (k-n2)> (8.1)

This is not conserved, but the divergence is local. Expanding in powers of m like in 3d, we
get in the IR

im?
O(m?) : ~ 9.2 (n1-mng) (8.2)
O(m) : 4;22/8(711-%(’“)%2) (8.3)
O(m™) L . (8.4)

T 960m2m

All terms corresponding to even powers of m vanish. In the UV we have instead

O(m) —5%1@3(711.77(@ no) (8.5)
O(m): 0

O(m?) m2£kz(n1'ﬂ'(k) ng) (8.6)
O(m’) S i’ ml){;gk ) (8.7)
O(m*): — 4327:;]{:(711%( )ngy) (8.8)

All even powers of m > 6 vanish. All these terms are conserved except Oig(m?) and

Ouv(m?). But once again Org(m?) is local and can be subtracted, and
B im3
- 1272

The term O(m) is conserved but divergent in the IR limit. Therefore, according to our

Ouy (m®) — O (m?) (n1 -7k -ny) (8.9)

recipe, it must be subtracted and will appear with opposite sign in the UV list, where the
corresponding term is missing. This term yields the Maxwell (or linearized YM) action
and EOM, with a coupling ~ m.
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8.1.2 5d msm: spin 2 current

For the full 2-pt function of the e.m. tensor is much too cumbersome see section 11. As
expected it is not conserved, as will be clear from the expansion in powers of m, but the
terms responsible for the non-conservation are local. In the IR we have

O(m?) : —f’;; (2 (n112) % + (m1-m1) (ma-nz) (8.10)
o(m?) : —;g; ((n2-n2) (k-n1) % + 4 (n1-n2) (k-n2) (k-n1)

S22 (nyomg)® — K2 (my-m) (ngma) 4 (miomy) (kemo)®) (8.11)

O(m) : —;;éﬁ ) (ki) (8.12)

OmY) : — gDy ny) (8.13)

3360m2m 3

The terms corresponding to odd powers of m vanish. In the UV we have

]{35
0 (2)
O(m™) : Jrae 17 (K, na, ma) (8.14)
2.3
2y . _MKY ()
3
3 tm 2 2
O(m?) : —15 575 (bn1) ~ (k-n2) (8.16)
m*k
O(m*) : EH<;>(/-e,m,ng) (8.17)
5 im® 2 2 2
O(m?) “15n2kd (k: (n1-m1) (k-ng) < + 4k (n1-n2) (k-ny) (k-ng)
+k% (n2-n2) (k-n1)? — 3k* (kon1) 2 (kn2) ?) (8.18)
6 m® @)
O(m ) Hl (k7n17n2) (819)
2

ST 247k

The terms O(m) and O(m?*) with k > 4 vanish. All the nonvanishing terms are conserved
except those of order 3 and 5. But the non-conserved terms in the IR are local and

2imP

5 5\ _ (2)
OUv(m )— OIR(m ) = ﬁné (k,nl,ng) (820)
312
Oy (m?) — Om(m?) = — K 1 (1 ) no) (8.21)
2

1872

These are conserved. Eq. (8.21) gives rise to a (nonlocal) version of the linearized EH action.
Also in this case the term Org(m) must be subtracted, although conserved, because it is
divergent in the IR; as a consequence it will appear with opposite sign in the UV list, where
the corresponding term is missing.
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8.1.3 5d msm: spin 3 current

Once again the 2pt correlators of spin 3 currents can be calculated exactly,see section 11,
but we will skip it here and go to the IR expansion. The terms O(m"), O(m®), O(m?) are
not conserved, but local, while

imk© (3)
.kg
om™): —— P (k 8.23
(M=) = 10080m2m g (Frmma) (8.23)
Moreover Orgr(m') = 0 for n even.
Near the UV the nonvanishing terms are:
k‘7
0y. _ 1 (& 24
215
2y . MK’ (3)
: II 2
O(m?) 256, 113 (k,n1,n2) (8.25)
3mik3
B - Y (k 2
O(m*) Tosn L8 (k,ni,mn2) (8.26)
kmS
6y, 2 ) 2
O(m?) T6x i (k,n1,n2) (8.27)
8
8 m (3)
T - 1157 (k 2
O(m) 1677]{3 % ( ,’I’Ll,ng) (8 8)

while O(m?") = 0 for n > 5. As for the odd m power terms they are conserved for n > 9:

-9
(’)(mg) . 32im

(3)
: —m H% (k,nl,'rLQ) (829)

while O(m) = 0 and O(m?), O(m?), O(m") are non-local and non-conserved. But once
again

8im”
Ouy(m7) — Or(m7) = — H(.;)(k,nl,ng) (8.30)
2imP° k2
Opy (m?) = Om(m’) = == H(%g)(k,nl,ng) (8.31)
3 3 im?*k* (3)
OUv(m )— OIR(m ) = 3071’2 H% (k‘,nl,TLQ)) (8.32)

The term (8.31) corresponds to the spin 3 Fronsdal EOM. As we see from these examples
the scheme for 5d is similar to 3d. Once again the term Oig(m) must be subtracted,
although conserved, because it is divergent in the IR; as a consequence it will appear with
opposite sign in the UV list, where the corresponding term is missing.
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8.2 5d fermion model

8.2.1 5d mfm: spin 1 current

The analog of eq. (7.1) (for the even part) is

F(k)m) = ——— (—16m coth—t [ 2™ 3 _ 8k2m? coth—! [ 2"
(n1-J(k)-ng) = 1287k ( 16m™~ coth ( 2 >+8km 8k“m~ coth < k; )
—6k3m +3k* coth™! (T)) (ny -7 ng) (8.33)

which is conserved.
Expanding in powers of m like in 3d, all coefficients have of course the same conserved

structure. In the IR all even m-power coefficient vanish and, for instance,

m

1272

O(m) : k2 (ny-m®) .ny) (8.34)

which (with reversed sign) corresponds to the Maxwell action. In the UV we have instead,

O(m®) : —%kzs(nlw(k)ng) (8.35)
O(m?) : m2£k(n1'w(k)'n2) (8.36)
O(m*) : m4ﬁ(n1-ﬂ(k)'n2) (8.37)
O(m?) : m5%(m-ﬂ(m-n2) (8.38)
O(mT) : M —2 (¥ ) (8.39)

" 0572kA

while O(m) = O(m?) = O(m™) = 0 for even n > 6. According to our recipe the term
O(m) must be subtracted and will appear in the UV list with opposite sign

8.2.2 5d mfm: e.m. tensor

In this subsection every result must be multiplied by a factor of 1—16.
In the IR the even m-power coefficients vanish. The nonvanishing ones are

s 2imd 5
O(m?) 152 ((n1-n2) % + (n1-n1)(n2-n2)) (8.40)
'kQ 3
O(m?) 118:; %) (k, ny, n2) (8.41)
.k4
O(m) —1407”;1_[(_2);(143,”1,”2) (8.42)
™ 3
.k6
O(m™): 1% (k,ny,no) (8.43)
5

672m2m  —
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Except O(m®) they are all conserved. In the UV we find O(m) = O(m?) = O(m*") = 0,
for even n > 4, and

k5

O(m°) : %H(_Q;(kml,nz) (8.44)
2 2 K@
O(m ) —m 64771' _%(kvnlana) (845)
k
O(m4) —m4%(n1'ﬂ(k)'n1)(n2'ﬂ( )'nz) (8.46)
6
m
O(m°) ork H(;)(k, ni, n2) (8.47)
T
o(m") s % (k, n1,n2) (8.48)

O(m?) is nonlocal and non-conserved, but

2im?®
Ouy(m®) = O (m®) = — 275 I (k. na o) (8.49)

The remaining terms are conserved. In particular Oyy(m?) corresponds to the linearized
EH action. The terms Og(m), Or(m?) are conserved but divergent in the IR limit. So
they must be subtracted and will appear in the UV list with opposite sign.

8.2.3 5d mfm: spin 3 current

We give a brief account because this case varies with respect to the scalar model only in
one respect: the various conserved terms in the m expansion do not have always the same
conserved structure like in the latter case. In the IR the even power terms vanish, while
the odd power terms O(m™) are nonvanishing for n < 7. Moreover O(m7), O(m®) are not
conserved, while all the others are. For instance

8im3k*

3\ . ®3)

O(m?) : BTN 17 (k, 1, mo) (8.50)
4imkS

O(m): —iv 1), (k,n1,n2) (8.51)

94572 64

In the UV O(m) = O(m?) = O(m") = 0 for even n > 10, while O(m?), O(m?), O(m*),

O(m®), O(m?) are nonvanishing and conserved. For instance

O(m®) : m 1 (k, 1, ns) (8.52)
“18mk 3 bR ‘
The odd powers O(m'™) are nonvanishing for n > 0 and conserved except for n = 5,7. But
again
5 5 im’k? (k) (k) (k)
OUv(m )— (’)IR(m ) = 157[_2 <(n1-7r -nl)(nl-ﬂ 'TLQ)(TLQ"]T TLQ)) (8.53)
128im”
7 N _ (3)
Ouv(m') — Or(m') = — 9152 H% (k,n1,m2) (8.54)
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It is curious that the fermionic model in 5d does not reproduce exactly the spin 3 Fronsdal
operator. In fact the term (8.53) has the right form but lacks the essential &2 (n1 (k) ~n2) 3
part. This has to be considered a combinatorial coincidence. The terms Org(m), O (m?)
are conserved but divergent in the IR limit. So they must be subtracted and will appear
in the UV list with opposite sign.

Comment. The structure of the 2pt functions in 5d essentially repeats the scheme of
3d. The m-power expansions both in the IR and in the UV are similar: in the IR there
are non conserved local terms, while in the UV there are non-conserved nonlocal terms.
Subtracting the former from the latter one obtains conserved structures (and a finite IR
limit). All the other terms are conserved and have analogous types of structures in both
the fermionic and the scalar model.

9 Tomography in 4d

Even dimensional models present an additional problem concerning their regularization.
For odd d works by itself as a complete regulator in carrying out the integrals generated by
the Feynman diagrams. This is not anymore true for even d. The way out is well-known,
we will set d = 4+ . Another difference we will come across with, which is related to this,
is the appearance of log terms in the form factors. We will again expand the two-point
functions in powers of m near the IR and UV limits.

In almost all the two-point correlators and, therefore, in all the one-loop effective
actions, we will find non-conserved terms and terms that diverge in the IR m — oo, like
in the odd dimensional case, but we will find also e-divergent terms. Our general attitude
is to recover both conservation and finiteness in the IR. This is possible because all the
nonconserved and all divergent terms in the IR, as well as all e-divergent terms, are local.
We will therefore subtract all the terms that diverge in the IR and in €. They include, in
particular, all the nonconserved ones.

There remains however an ambiguity. Beside divergent and/or nonconserved terms, in
the case of m? we meet also finite contributions, both in the IR and in the UV. Also for
these terms we subtract the IR from the UV contribution, on the assumption that it is this
difference that contains the physical information.

9.1 4d scalar model
The basic formulas are again (2.1), (2.2), (2.4), (2.6) and (5.4) together with the analogous

ones for higher spins, with d = 4 + ¢.

9.1.1 4d msm: spin 1 current

The full formula for the 2pt correlator is expressed in terms of hypergeometric functions
and parameter derivatives thereof, and we dispense with writing it down explicitly here,
see however section 11. We will focus on the power of m expansions. As just mentioned,
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we have to consider also log(m) and 1 factors. In the IR we find

im?
O(m?) = (7 — 1 —log(4m) 4 2log(m) + z) (n1-n2) (9.1)
O(m): 0
Olog(m)) : 1;%“) k2(ny -7 o) 9.2)
i 2
O®) oz (1~ togtam) + 2 ) () (9.3
Om™1): 0
ik
O(m=2) (n1-7*) .ny) (9.4)

 48072m2

These coefficients are conserved except O(m?). All the odd powers of m vanish.
In the UV we find:

O(m): 0 (9.6)
O(m?) : —ZLT;I{Q< <—3log <—:;> 4 3) (k-n1) (k-ma)

+k2(ny-ng) (3(—2 + v — log(4m)) + 3log (—k?) + S) ) (9.7)
Om? : 0 (9-8)
O(m*) 16”““;2 ( 21og (—22) - 3) (n1-7®) .ny) (9.9)

All odd powers of m vanish. The even powers are conserved except (9.7). Subtracting from
the latter the analogous (local) non-conserved term in the IR we find a conserved term

Ouy(m?) — Or(m?) = Qm: <2 log <_:;> — 1) (n1-7®) .ny) (9.10)

The O(log(m)) term is divergent in the IR, and the O(m?) is divergent in the ¢ — 0 limit.
Luckily they are local and can be subtracted with the following result:

Oyy(m®) — O (m°) — O (log(m)) = — “‘i (—310g (—Zfi) +8) (n1-7™ ny)
(9.11)

This term corresponds to the linearized Maxwell action with an energy dependent coupling.
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9.1.2 4d msm: spin 2 current

In the IR the odd powers of m vanish. The nonvanishing even powers are

im* 4

(’)(m4) ;- = (2 (ny - ng) 2+(n1 -n1)(ng - ng)) (2y3210g(4ﬂ')+410g(m)+8>
(9.12)
O(m?) : —;Z; ((ng-m) (k1) ? + 4(n1-m) (kona) (k-nr) (9.13)

—k? (2 (n1-n2) 2+(n1-n1)(n2-n2)) + (n1-n1) (k-n9) 2)
. <7 — 1 —log(4m) + 2log(m) + i)
O(log(m)) —“gggk‘lﬂég)(k,m, n2) (9.14)
i 4

O(mo) — 1227‘_2 H(;)(k‘, ni, ng) <’7 — log(47r) + §> (915)
O(m™2) i H(;)(k, ni,n2) (9.16)

1680m?27?

The first two terms are not conserved, the logarithmic term is conserved but divergent in
the IR, the m® term is divergent in the limit € — 0. They all must be subtracted. The
remaining terms are conserved.

In the UV all the odd powers of m vanish. The nonvanishing even powers are

O(m°) : 18f;2 (46 — 157 + 15log(47) — 151og (—k?) — ?) (9.17)
-H(?(k:,nl,m)
O(m?) : —%’i( (S — 8+ 3y +log (64;3> + 3log (—k2)> (9.18)
X ((nz.ng) (k-n1) %+ 4(ny-n2)(k-na)(k-ny) + (n1-n1) (k-ng) 2
R (2(nama)? + (nl.m)(ng.ng)))
—% (—3log (—k?) + 6log(m) +5) (k-nq)? (k:-ng)2>
and
O(m?) : —15:;1#1 <k2 (2 log (—Z) ~ 1) (9.19)

-((n2~n2) (k-n1)? + 4(ny-n2)(k-ng)(k-ny) + (n1-n1) (k-n2) ? — 3 (k-n1) 2 (k-no) 2)
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+2k7 (2 (n1-mg)® + (nl'nl)(nQ‘n2)> (—2 + 7 — log(4r) — log (—k*) + i) >

6 2
6y, _im k (2)
O(mY) and all terms with even m power larger than 4 are conserved, while O(m?) and
O(m

4) are not. According to our prescription we have to subtract not only Orr(m?) and
Or(m*), but also Og(m") and Og(log(m)). We obtain

—

4 4 im4 k2 2)
OUv(m )— (’)IR(m ) = —7 (—I—Qlog <_77”L2) — 1) 1I (k:,nl,ng) (9.21)

872 3
2 2 im* 2 k? 2)
Ouv(m®) — O (m*) = 36 5k~ ( 3log —2 5 H% (k,n1,n2) (9.22)

and

- k*(—1510 R + 46)
= 180072 E\Tm2

TP (%, ny, mo) (9.23)
2

OUv(mO) — OIR(mO) - OIR(IOg(m)>

They are all conserved. (9.22) contains a nonlocal linearized version of the EH eom.

9.1.3 4d msm: spin 3 current

The scheme is the same as above. In the IR the odd power of m vanish. The even powers
m?" with n < 0 are conserved together with the term proportional to log(m). The terms
Or(m?), Or(m®), Or(m8) are not conserved. Of course O(log[m]) diverges in the IR,
while the term Orr(m?) diverges for ¢ — 0. According to our prescription all these terms,
which are local, have to be subtracted from the effective action. The result is as follows:

- ik®
O0n™) g 1y (o m2) (9:24)
'k10
O(m™) v Hg’)(k,m,nz) (9.25)

 110880mAn2

In the UV the odd m power terms vanish. The even power of order 2,4,6 are not
conserved, but

Ouv(m®) — Or(m”) — Orr (log(m)) (9.26)
_ ik ' (k ) [ —10510 LR PP
= 2040072 % VT2 \ T m2
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and

: 2k4 k2
Ouv(m?) ~ Orm(m?) = oo 25 115 () ((31 ~ 1510 (—mz» (9.27)
im*k? k?
OU\/(m4) - OIR(m4) = — Y Hg) (k‘,’l’Ll, ng) <(7 — 610g <T)’L2>> (928)
.6 2
m 3 k
Oy ~ Om(on) = 1o 1 ) (1 - 6108 (-2 ) 029

im8 k2
Ouv(m®) = 25 H(%S)(k,nl,ng) <(25 — 121log (W» (9.30)

are all conserved. Eq. (9.28) is related to a nonlocal version of the spin 3 Fronsdal equation.

9.2 4d fermion model

We consider now the same analysis for the fermion massive model. We start again from
egs. (2.7), (2.10), (2.27), (2.28) and the like for higher spins.

9.2.1 4d mfm: spin 1 current

The full formula for the 2pt correlator is similar to the scalar case and expressed in terms
of parameter derivatives of hypergeometric functions, see section 11. A full expression in
terms of simple functions can be found in appendix C. The m-power expansion in the IR
is as follows

2

O(m?) 277?25 (n1-n2) (9.31)

O(log(m)) il%i(f) k2(ng - my) (9.32)
O(m) —24;2<k2 <—2'y+ 1 + log(1672) — j) (1 -n2)

2 <7 _ Jog(4r) + i) (o) (k. n2)> (9.33)

O(m™2) —&)j:“;nﬂ(m k) ) (9.34)

All odd powers of m vanish. The above terms are all conserved except (9.31) and (9.33).
O(m?) and O(log(m)) are divergent in the IR and O(m”) is divergent in ¢.
In the UV all odd powers of m vanish, while

o(m°) : 24@? < <j - ? + 27 + 2im — log (167r2)) E*(ny-ng)
—% (S — 5+ 37 + 3im — log (167?) )(nl-k)(k.n2)> (9.35)
im?
O(m?) : —M<—2(k-n1)(k:~n2)+k2(n1-n2)> (9.36)
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» 4 k2
O(m*) e <2 log <m2) + 1) (n1-7*) .ny) (9.37)

All the terms are conserved except the first two. But, subtracting from them the corre-
sponding local terms in the IR we get

Ouv(m®) — Or(m°) — O (log(m)) = 361? (3 log (-ZZ) - 5> k2 (ng-m®) .ng) (9.38)
Ouy(m?) — Or(m?) = —gﬁ(nl-ﬂ(k)-ng) (9.39)

Clearly (9.38) reproduces the Maxwell action.

9.2.2 4d mfm: e.m. tensor

A full expression in terms of simple functions can be found in appendix C. In this subsection
every result must be multiplied by a factor of %. In the IR the odd powers of m vanish.
The nonvanishing even powers are

O(m?) ;"7:;1 ( (n1-ng) > <27 — 1 —2log(4n) + 4log(m) + i) (9.40)
+(n-nm)(nz-n2) <27 ~ 3~ 2log(dm) + dlog(m) + i‘) )
Om?): (((nz-m) (knt)2 + (ng-ma) (kni)? — kQ(nl-nl)(ng-n2)>
- (’y — 1 — log(4r) + 2log(m) + i) (9.41)
+(nng) (kony) (kna) (3 — 2y 4 log(4r) — 4log(m) — i) )
O(log(m)) —“§§7(r2””k4n<_2§(k,m,n2> (9.42)
and
om’): — 28%2 (1# (S 4 3y—1- 310g(47r)> (1 -ms) 2 (9.43)
+k2 <—1€2 —6y+1+ 610g(47r)> (n1-ng)(k-ny)(k-ng) + (i +y— log(47r)>
( k' (n1-m1) (na-n2)+k%(n1-n1) (k-na) >+ (k-n1) 2 (2 (k-na) 2+k2(n2~n2))>>
O(m=2): ——— 1T1®) (e, ny, my) (9.44)

336m2n2" %

The first two terms are not conserved, the logarithmic term is conserved but divergent
in the IR, the m" term is not conserved and divergent in the limit ¢ — 0. They all must
be subtracted. The remaining terms are conserved.
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In the UV all the odd powers of m vanish. The nonvanishing even powers are

O(m°) : 180%772 ( (350 +15log (—k?) — 46 + 157 — 15 10g(47r)> (9.45)
-(k4 ((n1-11)(na-n2) — 3 (n1-n2)2) — k2(n1-n1) (k-na) ? — k*(ng-na) (k-ny) 2)
+3k%(n1-ng) (k-ny) (k-ng) <6£ +301log (—k*) — 77 + 30y — 30 10g(47r)>
—2(k-ny)? (k-ng)? <350 + 151og (—k?) — 31 + 15y — 1510g(47r)>>

m2

O(m?) : —Wi<(—6(k.nl)2 (k-ng)? (9.46)
—k2(ny-ng) (k-ny) (k-ms) <—1€2 — 6log (—K?) +7— 6y + 610g(47r)>
+<k4 (= (n1-11)) (n2-n2) + k2(n1-n1) (k-n2) % + k*(ng-ns) (k-n1)2>
: (S + 3log (—k%) — 8+ 3y — 310g(47r)>

—k* (ny-ng) 2 (S + 3log (—k?*) — 3log (4m) — 5+ 37) >

and
O(m*) : 1(;7?;#1 <k2 <2 log <—:;> — 1) (9.47)
-((ng-ng) (k-n1)? + 4(ny-n2)(k-ng)(k-ny) + (n1-n1) (k-na)? — 3 (k-n1) 2 (k-no) 2)
—2k* (2 (n1-ng)? + (nl-nl)(nz-n2)> <—2 + v — log(4n) + log (—52) - :) >
O(mS) : —1;7252 (6 log <—:;> + 7) (r-7®)-m5) 2 (9.48)
+36T;k2 <6 log (—ZZ) + 117r> (ny-7®) np) (ng -7 ny)

All terms with even m power larger than 4, as well as O(log(m)), are conserved, while
O(mP), O(m?) and O(m*) are not. According to our prescription we have to subtract not
only Orr(m°), Or(m?) and Or(m?), but also Orr (log(m)). We obtain
4 ]{72
Ouv(m?) — Om(m?) = 2% <+2]og <_2> — 5) (nl-w(k)-r@) 2 (9.49)
T m

T4 k,2
+Z8% (2 log <_m2> - 1> ((’rll-W(k)-nl)(ng'ﬂ'(k)-ng))
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272 2
2y _ 2y _ m°k _ a®) iy ) 2
Ouv(m®) — Or(m*) = - <3log< m2) +1> <n1 0 ng) (9.50)

and

Ouy(m®) — Om(m®) — O (log(m)) = —— ! (9.51)

2
= <—15log <_:L2> +46> (m-ﬁ(k)-nl)(ng-ﬁ(k)-ng))

They are all conserved. (9.50) contains a nonlocal linearized version of the EH eom.

9.2.3 4d mfm: spin 3 current

A full expression of the correlator in terms of simple functions can be found in appendix C.
The scheme is the same as above. In the IR the odd power of m vanish. The even powers
m?" with n < 0 are conserved together with the term proportional to log(m). The terms
Orr(mP), O1r(m?), O1r(m°) and Or(m°) are not conserved. Of course O(log[m]) diverges
in the IR, while the term Orr(m) diverges for ¢ — 0. According to our prescription all
these terms, which are local, have to be subtracted from the effective action. The result is

as follows.
9 ik® (3)
—oo—5 5 11 .52
Om™")+ —ggmmeye s (k1 ma) (9.52)
2'k10
O(m™%) ' %) (k, n1,ns) (9.53)

- 93555mAn? T i
In the UV the odd m power terms vanish. The even power of order 2, 4, 6 are not conserved,
but again
OUv(mO) - OIR(mO) - OIR(log(m)) (954)
2ik5 k>
= 210log [~ ) + 599 ( ). ) 3
9922572 < ©8 ( m2> " > e

ik:6 k22
+m <_3885 log <_m2> + 13339> (n1 - 78 - ng)(ny - 7™ - ny)(ng - 7®) - ny)

and
4im2k4 k2
(’)UV(mQ) - OIR(mz) = —m <15 lOg <_7n2) — 16) (nl.ﬂ(k).nQ) 3 (955)
im2k4 /<72
W <48010g <_m2) - 857) (n1 - 7™ - ng)(ny - 7® - ny)(ng - 7 - ny)
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4im
4N k 3
Ovy(m") = Om(m") = —-—- (nl.ﬁ( ).nQ) (9.56)
im*k? 2
14472 <18 08 <_2> _23> (n1 7(®) na2)(ni (k) ni)(ng (k) ns)
4imS k2
6 6y A 5
Ouv(m”) — Or(m’) = 12 (6log <_m?> — 7> <n1.77( ),n2> (9.57)
imﬁ ]{72 ® " o
g2z (69108 (=5 | =70) (1 - 7™ mg) (na - 7™ i) (ng - 7 o)
2im8 k‘2
=i - ) ) 3
Ouv(m®) S12k2 <1210g< m2> + 19) (nl . n2) (9.58)
im%k* k2 . . )
 259277k2 <135610g <—mQ> + 1637) (n - 7® ) (g - 7® - ny) (g - 7))

are all conserved. Eq. (9.56) is related to a nonlocal version of the spin 3 Fronsdal equation.

10 Tomography in 6d

10.1 6d scalar model
The basic formulas are again (2.1), (2.2), (2.4), (2.6) and (5.4) together with the analogous

ones for higher spins, with d = 6 + . For the full two-point correlator formulas see next
section. Here we limit ourselves to IR and UV expansions.
10.1.1 6d msm: spin 1 current

Like in 4d, we have to consider also log(m) and % factors. In the IR the nonvanishing

terms are
4 4
O(m”) 1287r3 (27 3 — 2log(4m) 4 4log(m) + - (nq-ng9) (10.1)
27.2
9 im=k L 2 k.
O(m*) 199,85 \ ) 1 —log(4m) + 2log(m) + 5>(n1 T n2) (10.2)
1 log(m
O(log(m)) 96%)(7r3 ) k*(ny-m*-ng) (10.3)
Om®) s 2 (5~ togam) + 2 ) (ny-7¥)ma) (104
m T09073 7 ~1o8(dm) + = ) (n1-m™ -ny :
ik®
O(m™2) (n1-7*) .ny) (10.5)

 26880m3m2

These coefficients are conserved except O(m?). All the odd powers of m vanish.
In the UV we find:

7.4
(’)(mo) % ( — 46+ 15y—15log (47)+15log (—k2) —i—io) (n1-7r(k) -nz) (10.6)
Y
21,2
9y ImTkT ([ 2y 6 (k).
O(m?) 576W3<< 3log(—k?) — 3y + 8 + 3log(4n) 6>>(m mmg) - (10.7)
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O(m*) 12;’”7;2< <210g (:;) - 1> (k-n1)(k-ng)

+2k2(n1-n2) (—2 + 7 — log(4m) + log (—k?) + i) > (10.8)

All odd powers of m vanish. The even powers are conserved except (9.7). Subtracting from
the latter the analogous (local) non-conserved term in the IR we find a conserved term

4 4 im4 ]{72 (k)
OUv(m ) — (’)IR(m ) = _W — 2log _W +1 (n1-7r -n2) (10.9)

The O(m?), O(log(m)) terms are divergent in the IR, and the O(m") is divergent in the
€ — 0 limit, but they are local and can be subtracted with the following result:

Ouy(m?) — Or(m?) imh ((—3log <—7'j;> +5>) (n1-7*).ny) (10.10)

~ 57670
Ouv(m”)—Owr(m”) —Owr(log(m)) = ~98800,3 \ 1log | — 5 ) +46 (n1-m" ng)

(10.11)

(10.10) corresponds to the linearized Maxwell action with an energy dependent coupling.

10.1.2 6d msm: spin 2 current

In the IR the odd powers of m vanish. The nonvanishing even powers are

p imb 5 12

O(m®) : F63 (2 (n1-n2) % + (n1-n1)(nz-n2)) (67—11—610g(47r)+1210g(m)+ . )

(10.12)
o4

O(m*): % <(k'n2)2 (n1-n1) + 4(ny-n2)(k-ng)(k-n1) + (n2,ng) (k-ny)?  (10.13)

—k? (2 (n1-n2)? + (n1-n1) (ng‘ng)) ) (27 — 3 —2log(4m) + 4log(m) + j)

0214

O(m?) Zgofs <7 — 1 — log(4m) + 2¢log(m) + i) H(%Q)(’f, ni,m2) (10.14)
O(log(m)) —i?};gé:? R 1, m2) (10.15)
O(m°) : —67;@3 6 (w — log(4m) + z) H(;)(k:, ny,ms) (10.16)

The first two terms are not conserved, the logarithmic term is conserved but divergent in
the IR, the m" term is divergent in the limit £ — 0. They all must be subtracted (including
the finite O(m") part). The remaining terms are conserved.
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In the UV all the odd powers of m vanish. The nonvanishing even powers are
ik®
70560073
1P (k,n1,n2)

2
m2k*
720073
‘H(f) (k,n1,n2)
2

21
O(mY) : 352 — 1057 + 105log(47) — 1051og (—k?) — 210 10.17
15

O(m?) : ( - ? + 46 — 157 + 15log (47) — 15log (—k?) > (10.18)

and

im*

4y .
O™+ im0

<2k:2 (3 log (—k?) — 8 4+ 3y — 3log(4m) + S) ((ng-nQ) (k-ny)?

+4(n1'712)(]6'712)(]6'711)—{—(711'721) (k‘ng) 2—]€2 (2 (nl-ng) 2+(n1-n1) (7’@712))) (10.19)

+3 (—610g <—:;> + 7) (k-n1)? (k-ng) 2)

imb k2
O(mb) : ~ e (6 log (—m2> - 1) (10.20)

x(((nl-nl) (kn2) 2+4(n1-nz)(k-ng)(k-nl)—l—(k-nl)Q (n2-n2)) k2—3 (k‘nl) 2 (k‘ng) 2)

6](54( — 24~ —log(4m) + log(—k:2) + i) <2 (nq1-m2) 24 (n1-m1) (ng-ng) >

—~

. 8 2
8 im k )
" Tro e | 20— 12log | —— ) |1 10.21
O(m") 11527r3/<:6< g °g< m2>> (k1 m2) (10.21)

O(m%) and O(m?) as well as all terms with even m power larger than 6 are conserved,
while O(m*) and O(m®) are not. According to our prescription we have to subtract not
only Or(m?*) and Or(m®), but also Or(m?), Or(log(m)) and Orr(m?). We obtain

4 4 im* 2)
Ouy(m”) — Or(m®) = o sk | —6log Iy (k,n1,m2) (10.23)

(2)

1
2

1
2
9 9 im? 4 k?
Ouv(m®) — Or(m*) = 72007r3k —15log —2 + 31 | IIy (k,n1,n2) (10.24)

and

. k’2
1 (k, ny, no) (10.25)
2

They are all conserved. (10.23) contains a nonlocal linearized version of the EH eom.
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10.1.3 6d msm: spin 3 current

The scheme is the same as above. In the IR the odd power of m vanish. The even powers
m?"® with n < 2 are conserved together with the term proportional to log(m). The terms
Or(m*), Or(m®), Or(m?) are not conserved. Of course O(log(m)), Or(m?) diverge in
the IR, while the term Orr(m°) diverges for ¢ — 0. According to our prescription all
these terms, which are local, have to be subtracted from the effective action. Using again
113 (k, nq,na), see (5.10), the result is as follows.

‘k10

-2y . )

Om™) —35a0mzes g (ko mz) (10.26)
k,12 ( )

O(m™4): % (k,ni,mn2) (10.27)

 11531520m4 73

In the UV the odd m power terms vanish. The even power of order 4,6,8 are not
conserved, but

OU\/(TTLO) — OIR(TI’LO) — OIR(log(m)) (10.28)
ik8 ( ) k2
= m % (k nl,ng) < 315log< 2) + 1126)
and
. 916 2
2 2y _ _ImUY @) _ L
OU\/(TI’L ) (’)IR(m ) = 1176007‘(‘3 % (k’ 77,1,712) <(247 105 10 ( m2 (10.29)
A 4 4k‘4 (3) k2
Ouy(m®) — Or(m*) = 48007r3 5 (k,ni,m2) | (47—301og <_m2>> (10.30)

61.2 2
OUV(mG) B OIR(mﬁ) _ imPk (3)(k; nl,ng) <( 5+ 6log <_'rl:7,2>> (10.31)
2

28873
im® k2
Ouv(m®) = 0 (%)(k n1,ms) ((—1 — 12log <_m2)> (10.32)

are all conserved. Eq. (9.29) is related to a nonlocal version of the spin 3 Fronsdal equation.

10.2 6d fermion model

We consider now the same analysis for the fermion massive model. We start again from
egs. (2.7), (2.10), (2.27), (2.28) and the like for higher spins and set d = 6 + €.

10.2.1 6d mfm: spin 1 current

We will limit ourselves to the power of m expansions in the IR. The terms proportional
to m* m? m® and log(m) are local, nonconserved and/or divergent. Thus they must be
subtracted. Therefore the first nonvanishing term in the IR is:

ik©

-2y .
O(m™7) : 112073m2

(ny -7 ngy) (10.33)
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In the UV, after subtracting the local terms we find:

Ouy(m”) — Or(m°) — Orr(log(m)) (10.34)

ik4 k? )
= ~3600.3 —301log 3 + 77 ) (ny-7\" ng)

Ouv(m?) — Or(m?) = Z:;’f( <—3log (—52) + 2) >(n1-7r(k)-n2) (10.35)

and
im*

Ouv(m*) — Or(m*) = @(nl-ﬂ(k)-ng) (10.36)

Ouy(m®) = —%( (—Glog <—:;> — 5) )(n1~7r(k)~n2) (10.37)

(10.35) corresponds to the linearized Maxwell action with an energy dependent coupling.

10.2.2 6d mfm: spin 2 current

In this subsection all results must be multiplied by a factor of % In the IR the odd powers

of m vanish. The terms proportional to m®, m* m?, m® and log(m) are local, nonconserved

and/or divergent. Thus they must be subtracted.

.ks 1
O(m*Q) : m <(n1-7r(k)-n2> 2 _ 7(n1~7r(k)'n1)(n2~7r(k)~n2)> (10.38)

In the UV all the odd powers of m vanish. After subtracting the above local terms we
have

OUv(mO) — (’)IR(mO) — OIR(log(m)) (10.39)
_ 1 6 _ kK ) )2
— sk <25< 2110g< m2> +62) (m-7®) s

2
- (105 log (:;2> + 352) (n1~7r(k)-nl)(ng-ﬂ'(k)ﬂg))

2 2
Ovv(m?) — O (m?) = — ok (9 (510g (L) +7> (nl-ﬂ'(k)-n2> 2 (10.40)

360073

2
+ (1510g (:ﬁ) - 31) (nl-ﬂ'(k)-nl)(ng-ﬂ'(k)-ng)>

Ouy(m?) — Or(m?*) = — imﬁ k> ( (6 log <—:;> + 5) (nl-w(k)-m) 2 (10.41)

2
+ <—6log (—:LQ> + 7> (nl-ﬂ(k)-nl)(ng-ﬂ(k)-n2)>

and
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14473

(oo (<) 1)t )

im® k2
Ouyv(m®) = T (3 <1210g (—m2> + 17) (nl-w(k)-ng) 2 (10.43)

2
+ <12log <—:L2> + 25> (n1~7r(k)‘nl)(ng-w(k)~n2)>

They are all conserved. (10.41) contains a nonlocal linearized version of the EH eom.

Ouy (m®) — Or(m®) = _imt ( (6 log (—5) - 13> (nyﬂ'(k)-ng) 2 (10.42)

10.2.3 6d mfm: spin 3 current

The scheme is the same as above. In the IR the odd power of m vanish. The even powers
m?" with n < 2 are conserved together with the term proportional to log(m). The terms
Or(m?*), Or(m8), Or(m8) are not conserved. Of course O(log[m]), Orr(m?) diverge in
the IR, while the term O (m°) diverges for ¢ — 0. According to our prescription all these
terms, which are local, have to be subtracted from the effective action.

Using again 11 (k, n1, ng), see (5.10), the result is

1.10
K110 (ke ny, o) (10.44)

O(m™2) : _
(M) = assmmens Wi

In the UV the odd m powers vanish. The even powers of order 4, 6,8 are not conserved.
After subtracting the local terms in the IR one gets

Ouv(m") — O (m ) — Or(log(m (10.45)
K2 (k) 3
- 5715360%3 < 31510g< ) n 1021) <n1-7r '712)
2
-3 ( 630 1log ( k2> + 3617> <n1 7T(k)'7”L2> (n1-w(k)-nl)(ng-w(k)-n2)>

and

9 ) im2k6 k2 (k‘) 3
Ouv(m?) — Or(m?) = oot 32(~210log ( =) +389 (n1-7r -n2) (10.46)

2
+ <3885 log <—TI:L> — 9454> (nl-w(k)-m) (n1-7r(k)-nl)(ng-ﬂ(k)-n2)>
- 414 2
Ovy (m*) — Or(m?) = 2T (16 <—17 +301og <—:ﬂ>) (n1-7r<k>-n2) 3 (10.47)

6480073

2
+ <—480 log <_7I;2> + 617) (nl-w(k)-ng) (nl-ﬂ(k)-nl)(ng-ﬂ(k)-n2)>
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- 61.2 4
Ouy () — Org () = — L1 (6 CELENE (10.48)

86473 \ 3
kQ
- (1810g <—> - 17) (n1-7r(k)-n2) (ny-m®)ony) (ng- %) -my)
m
Opy(m®) — Or(m®) = 51132”% (16 ((11 —12log <—m2)> (10.49)

2
+ (211 — 276 log <—:;2>> (nl-ﬂ'(k)-ng) (nl-ﬂ'(k)-nl)(ng-ﬂ'(k)-ng)>

are all conserved. Eq. (10.48) is related to a nonlocal version of the spin 3 Fronsdal equation.

11 Spin s current two-point correlators in any dimension

In this section we derive general formulas for the two-point correlators for spin s = 1,2 and
3 in any dimension. The procedure is slightly different from the one used so far. In the
previous sections we fixed the dimension of space-time, that is we set d = 3,4+ ¢,5,6 4+ ¢
in the scalar integrals (see section 5). In this section we leave the parameter d free and
evaluate specific cases at the end. The two procedures often lead to different intermediate
results. Of course the results of physical interest must coincide.

In the following we focus on the massive case, while the massless computations are
deferred to appendix B.

11.1 Fermion model

In this subsection we compute the even part of two point correlator for a fermion in d
dimensions for spin s =1,2,3

- d®p i i . i
‘]Ml--#sl/l-..l/s(k) = _/ (27T)3 Tr <¢ — m’yap — % — > V#l usVul Vs (11'1)

where the Feynman vertices are

|

L2, — 9p,) 51000 (0 = K) = ) — 4 — K

VO' — - 50’
H1---Ms 1 17 = ( + 1)|(n — 2] — 1)
(11.2)
11.1.1 Fermion model — massive case

Let us compute the even part of two point correlator for a massive fermion in d dimensions
for spin 1. The one-loop contribution is

j;w(k‘) = /(;lip;dTr <%p—1m7“]ﬁ—kl—m>

_ dp pu(p — k) + pulp = k)v — p-(p = k) + mPn
— —Tl“(l)/ (27T)d (pz — m2)((p — k)2 — mz)

(11.3)
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Tr(1) is the trace of the identity operator on the vector space on which the Dirac matrices
act. Since we are working with the lowest dimensional complex spinors in each dimension
we have Tr(1) = 2l5). In the odd dimensional cases d can be simply replaced by the
values 3,5, ..., so this factor is an overall numerical factor. In the even dimensional cases
we have to replace d by 2 4+ ¢,4 + ¢,..., so the same factor contains an ¢ dependence in
addition to the overall numerical factor. The € dependence cannot change the divergent
pole part in dimensional regularization but will only affect the finite local part. However
when subtracting the infinite and finite IR terms from the effective action this dependence
disappears. So we will ignore it.

Warning. In evaluating the scalar integral jf(l)(k), which is our basic quantity, the re-
sults below have been obtained by choosing a reference value 4 for Tr(1). This value is
appropriate only for d = 4,5, but must be corrected for the other dimensions: for d = 2,3
the results must be divided by 2, for d = 6,7 they must be multiplied by 2, and so on.

By Davydychev tensor reduction procedure it is possible to rewrite such an amplitude
in terms of scalar integrals as

Juw (k) = IO (k) + k ke, I3 (k) = —4 <77w/ <m2f(2>(d, 1,1;k,m) (11.4)
o <2k2 (ﬂ?)(d 2,2, 1k, m) + 871 (d + 4,3,1; k, m)>

—(d—2)IP(d+2,1,1;k, m)) )
+87k, k., (f(Q)(d +2,2,1;k,m) + 8771(2)(d +4,3,1; k, m)) )

Because of dimensional reasons the superficial degree of divergence of ZM) and Z(?) are
always such that deg(Z(")) = deg(Z®) + 2 = d — 2. One can check the Ward identity

K22 (k) + W (k) = 0, (11.5)
which implies we can rewrite the amplitude (11.3) as
By Kok, \ =
o) = (1 = P15 ) 200 (11.6)

This is in fact the main advantage of the regularization we are using in this section: the

two point function is conserved without any subtraction. This will not be true for higher
spin currents (see below).
The explicit form of Z(M (k) is

ol—d ; ,—gind —4 (_m2)d/2—1 r (2 B %)

IOk = — 11.7
(k) d=2) (11.7)
k2 d 3 k2 k2 d 3 k2

. <84m2 2F1 (2, 1— 5, 5, 74 2) —1 <d4m2 + 1) QFl (1, 1— 5, 5, 4m2> —+ 4>

. a=2
23 j o= 5imdy—d/2 (_y2) =T 2-9)((d=2)z+1)2F (1,-%4:2) + 22— 1)

(d—2)d(z—1)z

— 49 —



k2
4m?2-
For d = 2 there is no pole. For even d > 2 the relevant e-expansion is given by

where z =

i‘(l) ) — 1 24*did+17{*d/2md*2 (((d 2)2 + 1) 2F1 ( , 27 27 ) + 2z — 1)
k=2 (d—2)d(z— 1)L (2-1)

93—djd+1,—d/2

(11.8)

md—2

(d—2)2d%(z — 1)2T (4 — 1)

(=2 ma(eam (13 352) - Sa- 2 a0 (182
(((d 2)z + 1) 2F1<1, 9, ,z)+gz_1>

2
- (d*log(4m) — 2(d — 2)dlog(m) — 2d(log(47) — 2) — 4)

+(d - 2)d (Hg_2 - ’y) <((d —2)z+ 1), 5 <1, ‘21 ; > 2z 1) ) (11.9)

[\3\,_\ l\.')\r—t

where F(O’l’0 0 1,—4. 1 2) means the derivative of QF(O’l’OO 1,8, 2) with respect to
272 2

b at = 2, and H a_y are the harmonic numbers.

11.1.2 d even

Let us examine first the even d case. For even d the hypergeometric functions boil down
to finite order polynomials according to the formulas

49
d 3 (2 (1-9)
2F1 <2,1—;;Z> = e — nzn
2°2 n=0 n! (é)n
43\ Z.1-9
2F1<1,1—2§2§Z>: n' 3 22n ,n

so that one can easily check the 1/e part is just

d=4 == 11.10
32 (11.10)
d—6 imiz(4z — 5),
3073
P imSz (242 — 56z + 35)
16807+ ’

J— 10 imPz (642 — 21627 + 252z — 105)

- 604807> ’
g1 im0z (640z* — 28162° + 47522% — 3696z + 1155)

1064448076 '

So in general the divergent part (for € — 0) is a polynomial in z = 4k 5

)

where the constant term is missing because the front factor of highest dimension is m?2.

— 50 —



According to Weinberg’s theorem this corresponds to the degree of divergence d — 4 of the
two point functions, which is therefore lower than the expected one d — 2 because of gauge
invariance. The above divergent terms are local and appear both in the IR and the UV
limit, as we have seen many times above. Some of them are divergent for m — oo and
must be subtracted to guarantee finiteness of the IR limit (or decoupling of infinite mass

modes). Others are of order mY.

The reason why we subtract them from the effective
action is, according to our attitude, because the physical information is contained in the
difference between the IR and UV limits (rather than in their absolute value).

As for the finite part we cannot give a closed formula for generic d, but thanks to the

formulae
21 (1,—3;}2) = jﬁi%;&‘i (11.11)
) gr(r_(g—;n) i
:_fo 322 g)(r(i) %)(0)(”—3))271

we can recognize the IR behavior is analytic in z, which is to be expected as m acts as an
IR regulator. More explicitly, we get the following behaviors

im?z(log (5= )—I—’y) 4im22%  4im?23  64im?24 5
d=4: — — 11.12
32 57 8w gase O (1112)
g, i loa(1) — 4 1) | imt2(0s(2) + )
' 1273 1573
7im4z3 - 8imz? n 0(25)’
3573 945 3
d—g-lm 62(2log (4= )+2fy 3)+zmz(—log( °y — v+ 1)
o 1927r4 60t
im®z3(log (4= )—i—v) 2im5 24 5
Ta0rt " oaset O,
i=10 - im®z(—6log (5 )—67—1—11) +zm Z%(2log(- )—1—27 3)
o 69127r5 9607T5
P log(TE) 4+ 1) | imS M loa(®) 1)
@
56075 180075 +0),

So the dominating term is ~ m%2(AMlogm + BW)z = mé4(AD logm + BMW)k2,
whereas the term with highest power of momentum and dimensionless constant is ~
“2(Al2=Dogm + BlA/2-1))d/2=1 = (Ad/2=1) Jog m 4 B(@/2-D)k?=2 So, in coordi-
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nate space the following terms are dominating for large m
~ (A2 Dogm + BW2-Dyprvyd/2-Lp o md=t (AW logm + BO)FWE,,

whereas all the others are suppressed by negative powers of m. For d > 4 those terms would
give a non-decoupling of IR dynamics from high-energy physics, but we can notice they
are the same as the local counterterms appearing in the divergent part.” So they have to
be subtracted, as we have done many times before. In (11.12) there are also terms of order
mP. They have to be subtracted from the effective action for the same reason explained
above: the physical meaning is contained in the difference between the UV and the IR.
In d = 2 no pole shows up. In fact we have
i (SR (1,1, 4,2) + 2222 - 1))
27(z — 1)z ’

whose IR expansion is

4iz  16iz°  32iz®  256iz'  512iz°  2048i2" Lo, (11.13)
37 15m 35T 31567 6937 30037

meaning all the local terms are suppressed by negative powers of the mass. There is no

need to remove them by finite subtraction in order to have decoupling.
The asymptotic behavior of the finite part in the UV (z — o0) is determined by the

formulae
d
d 1 (1)a(—2)2 d1l-d d1
Fll,—=2z2)=—2 " R (-, —i—; = 11.14
21( 22> (;);“<22 2,2) (11.14)
1\ I (42 P d1-d d1
—r(3) pla cten (<5505
L (%) z
d
2 d d d n
()i S (cos (F)T(+ YT (=§+n+3)) (1
— Val(n+1) z
and
0100 (, _d 1 N _ 0 a1
o F) (1, 272,2:)_ 28d2F1<1’ 5i g (11.15)
d
2 d d n
_ _Zd/QIOg(_Z)ZQ:F(§+1)F(7§+n+%) 1
Vrl(n+ 1) z

)F(—%—i—n—i— %) (H—§+n—% —H%) (1)71
Vrl'(n+1)

"This case corresponds, in ordinary interacting gauge theories, to the fact that the vertex for the spin 1

o T'(4+1
+29/2

current is a non-renormalizable interaction for d > 4 and in fact higher derivatives operators are generated.
d = 4 is the special case when just the two-derivative operator with dimensionless front constant is generated
and it corresponds to the fact that spin 1 vertex in d = 4 is a renormalizable interaction. For d < 4 the
spin 1 vertex is super-renormalizable.
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(0,1,0,0) (1 d 1

We notice, as before, that the asymptotic expansion of 9F7 ; z) contains

IO EIDR)
log(—2z), which can have an imaginary part even for real —z. We should keep in mind that
the expansion is valid under the assumption |arg(—z)| < m, which means —z, if real, must
be assumed 2to be pogitive. This is for example the case for Euclidean momenta which are
such that fﬁ = —f# = —z. When the metric is Lorentzian a cut appears at z = 1 and
we have to rely on the analytic continuation by choosing a definite Riemann sheet: it is
not surprising that in this case an imaginary part of the correlator appear. Dimension by

dimension the UV expansions for the finite part are:

im?z(3log(- ) +3log(—2) +37y-5) im?(2log(—4z) + 1)

d=14 11.16
972 1672z ( )
im? 1\?
UL Y
o ( z> ’
P im*22(30 1og(m72) +30log(—z) + 30y — 77) N im*(6log(—4z) + 5)
- 45073 576732
im*z(3 log(m?)) + 3log(—z) + 3y —5) N im* Lo 1 2
3673 1673 '
Q8 im®2z3(105 log (™~ ®) 4 105log(—=z) + 105y — 317)
B 1470074
zm z%(30log (™= ®) + 301log(—2) + 30y — 77)
180074
+zm 62(3 log(m?) 3log(—2) +3y—5) im®(12log(—42) +13)
28874 18432m42
im" 1\?
19201 T ( ) ’
1. mPE(1260 log (™) + 1260 log(—2) + 1260~ — 4189)
o 238140075
zm 23(105 log(m?)) + 105log(—%) + 105y — 317)
588007°
+2m z%(30log (- ®) + 301og(—z) + 30y — 77)
1440075
_im 82(3log (2~ ®) + 3log(—2) + 3y — 5) im®
345670 30727

im® (60 log(—4z2) + 77) 1\?
i 184320075 2 +o <z> ’

As it is to be expected the leading behavior is ~ m®=2z4/2-1 log(—z) corresponding to the
UV behavior of the divergent part. The presence of logarithms is to be interpreted as the
consequence of running of parameters. In ordinary (interacting) gauge theories, once these
logarithms are reabsorbed in the running parameters, the remaining polynomial behavior
can itself be subtracted by proper counterterms leading to a well-behaved amplitude in the
UV.
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11.1.3 d odd

Let us discuss now the odd dimensional case. In odd dimensions there is no divergent part
in the e-expansion. For the IR we get the expansion

222 z 44 5,5
(=) 32 T 152 T 3502 T 315a2 Taoa O )
Z 22 23 224
50 T 1507 70w oas?  13sent O )) :

< z 22 23 24 25

_ _ O 6
180n% T 907% ~ 1073+ oasnt T aziem T O )> ’
z 22 23 o4 5
252075 000m5 ~ 84075 T 180075 ~ Toezzms T O 2 )>

(11.17)

Again the dominating term is ~ m?~222. The case d = 3 is the one in which no term with
positive power of m shows up.

For the UV behavior we get

d=3 \/7< 4\[+O<<i>3/2>>’
dos (cmt)¥? (32 Ve Wi +o<<1>3/2> ,

327 1671' 321 1572z

38472 12872 1287r2 3847'(‘2 210732

5/2 3/2 13/2
d_7 5/2 5iz°/%  3iz z\f \[ 1 +O<<1> > 7

6144773 153673 102473 ' 153673 i 614473

oo ((2)7))

:.9/2 7/2

7/2< T 5 3i? | ive iz

Tiz 5i25/2 i23/2 iz

9/2 [ 3iz
d=11 (- — -
(=) (409607r4 2457674 * 1228874 409674 i 2457674

+ Wk L of(! o
122880714 83160752 z ’

(11.18)
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11.1.4 Spin 2

For spin s = 2 the two-point correlator in any dimension d is

2—d ind_— d/2
ooy tlalieaimdn=d/2 (_p2)*P 1 (1 - 4)
pwy d(d+ 1)k?

x| = ((d=1)k* +8m?) oF 93—2
241 2a 2a 4m2
1 2
— <(4m2 — k2) o F [1, —d 5 K ] + (d+ 1)k - 4m2> WMMWW]
_d
2

4m
_ d _
2>t Le)in=d/2mT (1~ ) (i, + mpurn)

] —(d+1)k* + 8m2> ™2,

+

We can check the Ward identity
w7 2—d+| 4|, —d/2,d d
' Ty (k) = =2 2lqm meT —3 (kunuw + Eunuw) (11.19)
For spin s = 2 the two-point correlator is transverse up to local counterterms.

11.1.5 Spin 3

For spin s = 3 the two-point correlator in any dimension d can be written as

5 _ _21 d+| 4] i e—3imd —d/2 ( )d/2 (d+2)T (2 %)ﬂ
ppy 9d(d + 3) (d* — 5d2 + 4) k4 “”
x [32 <— (k* — 4m?) % (dk? + 12m?) o Fy [1 a4 L ]‘;2]
T2 27 4m?
+4m? (48m* + 8(2d — 3)k*m? + (3 — 2d(d + 1))k*)) =
d 1 K
2072 am?

2
;4k2] 8(d—1)(d+1)(d+3)>

— <4k4m2 <(d(9d —44) 4 219) o Fy [1, — ] +d(95d + 68) — 219)

+k° <(d((d 6)d +3) — 54) o Fy [1,

d
PX
d 1
216mS | oFy [1, —=: —
+9 6m<21|:7 2) 24 2:| )

d 1
+128km? ((5d— 39) 2 Fy [ i ] - 23d+39)) WWW]

2° "2 4m?
ol—d+|§] ; p—%imd —d/2 (—m2)d/21“ (2 _ %)
9d (d2 — 4)
X [Maw 1w (200 (208m° = 9(d + 2)K?) + 21(d + 2)k,ik,.) + 256m° 11y
+21(d + 2) N koky + 18(d + 2)nuumunk,ky ] (11.20)
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For spin s = 3 the two-point correlator is conserved up to local counterterms
Wy = e O () TPr (2 )
prprry 9d (d? — 4)
x [k (Mo (57(d + 2)kuky, + 416m*n,,,) + T68m> 0 nu )
20k (3(d + 2)k% + 416m?) + 21(d + 2)nuuku kb,
+42(d + 2)nuky k] (11.21)

11.2 Scalar model

Let us compute the even part of two point correlator for a scalar in d dimensions for spin s

- dp i i
Ty sy (k) = @) 7 Vit bR Vi (11.22)

where the vertex for an incoming scalar with momentum p and outgoing scalar with mo-
mentum p’ and an outgoing spin-s field with momentum & is

Vigoose =104+ - 0+ )0 0D (p—p — k) (11.23)

11.2.1 Scalar model — massive case

Let us compute the two point correlator for the massive scalar in any dimension d for spin
s=1

~ 92—d ; ,—%imd —d/2 (_m2)d/2 T (2 _ %l)
Ty (R) = (d— 2)k2m?

2 d 3 k?
X (k Nuv — k,uky> of 1 1,1 — =5 D) + k“ky (1124)

2727 4m

Juv is not conserved

5 9—d ; p—3ind —d/2 (_,2\¥2 g (_d
K, (k) =52 T ﬂ§2m) ( 2)/@ (11.25)

To make J,, (k) conserved let us add a local counterterm with an arbitrary constant a

~ 92—d ; p—3ind —d/2 (—m2)d/2 r(2-9)

Juw (k) = 2
() (d — 2)k2m?
2 2 d3 k?
X\ ak™nu + kyuky + (k n;w_kuku) 2 b1 1,1—5;5;477%2 (11.26)
We get conservation for a = —1. The conserved 2pt is
~ 92—d ; p—%ind —d/2 (_2\¥2p (9 _ d
Juw (k) = e 2w ( m) ( 2)7TW
(d — 2)m?
d 3 k?
X <2F]_ |:1,1—2,2,4m2:| _1> (1127)
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For massive scalar for spin s = 2 we get

j‘u,u,z/l/(k> - 22_di€_%i7rd’ﬂ'_d/2 (—'mQ)d/Q T <—C2Z) (27Tiy + W#“']rz/l/)

d 3 Kk
X <2F1 [1,—2§2§4mQ] - 1>

2—die—%i7rd7.r—d/2(_m2)d/2r (_g)
k2m?
x (dkpkyukyky + 4*m? (2000 + Nuutio)) (11.28)

Jyuv (k) is not conserved

~ 9l—d; —dird_—d/2(_,,2 dj2p (_d
5 s () = Le m Y (=m?) (—3)

m2
x (kpu (dkyky + 4m®ny,) + 8m*nk, ) (11.29)

For spin s = 3 we have

- . d
(k) = =3 gl=d =3ty =d/2 (_mQ)d/2 r <_2 B 1) v (27r/2w + SWMMWW)

2 2
X<8m2 <2F1 |:2’_d_1,3.k:| _1>+(d+2)k322F1 |:1’ d 3‘ k :|>

2 72 4m? T202 am?
izfdfle—%iwdﬂfd/2<_m2)gr (_%l —1)
; k4m?

x [(d+ 2)k* kuky (kuk(d koky + 12m°n,,) + 12mP .k ky + 36m*n,k,k,)
—20(d + 2)m>kyk ke ko ki + 48K m* 1, (20,00 + 30uum0))] (11.30)

Jypvv (k) is not conserved

) 3.9-d-1; —Limd_—d/2(_,,2 %F _d_q
K Ty (k) = = i S ( : )

2
m
X [24m217wku((d + 2k ky, + 4m2771,,,)

—|—4m2k‘,,(77w((d + 2)k,k, + 12m2n,,) + 24m277;w77w)
+(d + 2)kyukyky (d ok, + 12m%n,,)] (11.31)

11.2.2 Concluding remark

In this section we have produced two-point correlator formulas for spin 1,2 and 3 in any
dimension. In all the cases where it is possible to make a comparison between the results
obtained in this section and the previous ones (spin 1 in d=3,4,5,6) the results coincide.®
However they do only if we subtract the infinite and finite IR terms from the effective
action. In other words this confirms that only the difference between the UV and the IR
can have a physical meaning.

8In making the comparison one should not forget to correct the results of section 11.1.2 and 11.1.3 for
the Tr(1) factor as explained before eq. (11.4 ), i.e. by dividing the d = 2,3 results by 2, multiplying the
d = 6,7 ones by 2, etc.
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12 Conclusion

We have seen a large number of examples that the one-loop effective action of a free mas-
sive model coupled to external sources contains complete information about the (classical)
equations of motion of the sources. In this paper we have considered only the two-point
functions and so the relevant information involve the linearized equations of motion. More-
over we have considered only completely symmetric bosonic external sources. Within these
limitations we have produced overwhelming evidence that our previous statement is correct.
We have considered both a free scalar model and a free fermion model in different dimen-
sions, and shown that in all cases the two-point functions of conserved currents are built
out of the differential operators which define the linearized (Fronsdal) equations of motion
of the fields that couple to the currents. There is no doubt that such free field theories
know about the dynamics of the fields that can couple to them (via a conserved current).”

At this stage a specification is in order. Our intent in this paper was to show the
universal appearance of non-local Fronsdal (as well as Maxwell and EH) linearized eom in
the one-loop effective actions of a free scalar and boson field coupled to external currents,
while postponing other subtler questions to future research. In particular we did not tackle
the problem raised by [47, 48], concerning the form of the Fronsdal equation that guarantees
the right propagator for the relevant higher spin field. In order to do that one must first of
all specify to what equations one refers to, for we have seen that in the IR and UV limits of
the OLEA’s the conserved structures very often are different, and different from the various
tomographic sections, although for spin s they are all characterized by the presence of the
leading (4.1) term (the scalar model is in this sense a particular, though less interesting,
case, because the conserved structures are always the same for given spin). This part of
our research is work in progress, see [49].

The results of this paper opens a new research territory. Beside the just mentioned
problem, we would like to know whether the above results extend to other external sources,
fermionic fields as well as not completely symmetric fields. The next question is interaction,
which requires analyzing three-point functions. In this context interactions have been
considered for the simplest cases (spin 1 and 2) in 3d in [1]. From three-point functions
one expects to find information about the consistency of the (field or fields) interaction
with the source field symmetry. For instance, for spin 1 with gauge symmetry, for spin 2
with diffeomorphisms. For higher spins we do not know, in general, neither the interaction
nor the full form of the symmetry transformations. But knowing the three-point functions
may be the key to constructing both. There are anyhow some exceptions to our ignorance
in this field (higher spin theories in 3d, or Vasiliev’s higher spin theory in AdSy, or string
field theory). One can hopefully use this knowledge to test the approach suggested here.

If our conjecture is correct, that is if the analysis of three-point correlators in theories
coupled to external sources confirms their consistency with the dynamics of the latter, as
we believe, an obvious question comes next: what does this mean? The correspondence
between one free field theory and higher (or low) spin theories is not a type of duality we

9The limitation to free field theories does not seem to be essential provided the currents are conserved,
but of course explicit calculations are far more complicated in the case of interacting theories.
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are familiar with, like AdS/CFT. First of all it concerns models in the same dimension.
Secondly, from one free theory we retrieve knowledge about (infinite) many theories. So
the correspondence would be one to (infinite) many. And this is clearly not satisfactory.
The results of this paper points rather toward the possibility of a correspondence between
theories with infinite many fields. If, say, a starting free (or interacting) theory knows
about the dynamics of other fields, why shouldn’t the latter be included with the initial
one in a unique theory? Arguing this way one is led to a (for the time being, generic)
concept of involutive theory: a theory is involutive if it includes all the fields it is able to
couple with (in the OLEA) while preserving a fundamental symmetry.

A good playground to test this concept could be string field theory (SFT). Such a
theory is formulated in terms of a basic string field ®. The latter, in the field theory
regime, is a superposition of Fock space states, each with a coefficient given by a suitable
ordinary spacetime field. Restricting ourselves to bosonic SFT, the action formulated by
Witten is well known, and is given by the formula below with ¥ replaced by ®. Analyzing
it in the spirit of this paper amounts to studying the theory

1 2
5—290/<<I>*Q<I)+3¢)*<I>*\If> (12.1)
where the first piece is the free SF'T and the second is the simplest interaction with the
source term (¥ is the source string field). The first piece is invariant under the BRST
transformation 6® = QA. The second term carries the invariance under ¥ = QA provided
that @ is on shell, i.e. @Q® = 0. This mimics what we have done previously for simple field
theory models.
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A Proof that a conserved structure can be written in terms of products
of 7 alone

By induction in steps of 2. In the lowest case (spin 1), the most general Lorentz covariant
Ky ky

(dimensionless) conserved even structure can be written in terms of 7, and ~4z*. Imposing
. . kuk
conservation the result is ~ 7., — <z* = m,. In the same way one can prove the

property for the case s = 2. Now we suppose that the proposition is true for s. So it

is true for the combination T) (k-n§-ng) = EG) (k) = ZE‘ZS] alfll(s) (see above), meaning

that k:“a%T(S) = 0. In order to construct TGtY) we can multiply ) by (ning) or
1

("IQM or multiplying T7C—1 by (nin1)(nany), %(ngng), (nml)("r"kg# or by
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(”1k,1§”1k) (”2’“,19”’“), because the construction is in steps or 2. So we can have only

nik)(nok
T = ay(n1n2) T + aa(ning) (nang) TE~Y + bl(ll)cgﬂ

D) (rana) 700 + by 202

(n1 k:lz:(in k) (n2 k:;gngk) )

()

+bo T(s_l)

+by (A.l)

Now applying k“({% to this expression we find that conservation requires a; = —by, a9 =
1

—by = —bg = by. So that (A.1) becomes

TEH = a(ng, 7™ 1) TG + b(ny, #F) ny) (ng, 7 ng) T (A.2)

with arbitrary a and b.

B Massless models

In this appendix we consider the massless case both for the scalar and the fermion models,
i.e. we set m = 0 in their action, and derive the relevant two-point functions for several
tensorial currents in any dimension. These results are based on the scalar integral (5.8).

The results we report below have to be compared with the results obtained in the
section 6-9, precisely with the Oyy(m) — Or(m?) — Orr (log(m)) terms therein. It can be
easily checked that for odd d the results coincide exactly, as far as the even parity part of
the correlators is concerned, while the massless model approach is unable to reproduce the
odd parity part (at least perturbatively). In the even dimensional case the results of the
two approaches do not, in general, coincide. Only the terms proportional to log (—k2) are
the same in the two approaches. These differences are due to the lack of IR regularization
in the massless model approach.

For conciseness in this appendix we use a simplified notation, taken from the literature
on higher spin fields: the same repeated subscript, say (... u repeated s times, stand for
s completely symmetrized labels.

In this appendix we also construct traceless two-point correlators. As a matter of fact,
in this paper we are only marginally interested in zero trace currents. But the tracelessness
condition may be relevant for further developments.

B.1 Massless fermion model

Let us start with spin 1 case for massless fermions. The two point correlator is

. d? 1 1
) = = [ g™ (o )
A pu(p — k) + D — K)oy — - (0 — k)
_ —Tr(l)/ (%z))dp (p—F) +pp§]()p—13;)2 p(p—Fkn (B.1)
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where Tr(1) = olz], Using Davydychev methods, the two point correlator for spin s=1
and any dimension d reads

N\R.

_ 22—2d+[ J 34 (k;2)
Jw = — (13 o) F(d— T (B.2)

o+
—
~—

where 7, is the usual projector.
In a similar way for spin 2 in the massless case we get

J 2 i () @1 (, B.3
T (1 e T (4 (F"” d—lﬂ’“ﬂrw> 3

The two-point correlator in s = 2 case is traceless for any d.
For spin 3 we obtain

) g—2-2d+| 4] 3 8 (k )%
J, vy — v
i 9(—1+em)I (B2) ¥
x (32d 7, + (d((d — 6)d + 3) — 54) w7 (B.4)

We can check if this expression is traceless

3

o712+ 5)(a — 3)% (42 + d— 6) w35 (k) 2F
9(—1+ eimd)T (4£3)

nuuj,uuuuuu = - Tuv Moy (B5)

For dimension d = 3, the two-point correlator J,,;,,... is traceless. To obtain tracelessness
for other dimensions we can add local counterterms to the two point function

; g—2-2d+(4] -4 (L (k )%
HppvvYy = 9( 1t em‘d) T (TS) T v
x ((32d + ar) mh, + (d((d — 6)d + 3) — 54 + az) Ty ) (B.6)

The counterterms are local only for even d. In this case it is easy to verify that for the full
expression to be traceless we must have

a; = % (—az(d+1) — (d* +d—6) (d — 3)*)

The traceless 2pt function is therefore
B 27272d+£ J % % (kZ) +1 (1 + d)

—54 + 3d — 6d? + d® + as)
gy = —

(
3T+ eI (2)
3
X Ty <7T/2“/ — (d—|—1)ﬂ—'u"uﬂ-yy) (B?)

For spin s = 4 the two-point correlator is

By o—3-2d+[ 5| 54 (k:2)
Juppgvvy = 9(—1+ emd) T (%)

+((d = 7)(d(d + 2) + ), T + (9 = (d — 4)d)mr,7,)  (B.S)

((24(d + 1),
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Again, unless d = 3, the expression for J,,,,uwvy is not traceless For even d > 3 we can

add local counterterms
- 2_3 2d+L JT['Qig(

J vvvr —
122292024 9(_1 4 em—d F(
+((d—=7)(d(d+2)+9) + a2)7riu77w7rw +((9

+)7; ((24(d + 1) + ay)my,, (B.9)

- (d - 4)d) + a’3) /,I,;L 12/V)

and we obtain a traceless 2pt correlator for
a1 =—(1/3) A1+ d)((=3+d)*(5+d) —az(3+d)),  az=(d—3)*(d+5)—2az(d+1)
The traceless two point correlator is now

27320 8] 8 —4 (—ay 4+ % — 4d — 9) (k) *? (d+ 1)(d + 3)
d+

j vvvy — .
e 27 (—1+ )T (47)
6
4 2 2 2
b B.10
X (WW @ 3>7TW7r LT CEE 3)7T u7rw> ( )

In general, conserved and traceless 2pt function for spin s in any (even) dimension is

proportional to

|5] d-3
j -~ - (_1)l s! r (8 + 2 l) 5= 21(7‘(‘ T ) (B 11)
M1 fhsV1 ... Vs 21 — | d—3 l“’ vy
— 22U (s —20)! F(5+ T)
We can write the sum as
~ 1—s s 5—d—2s mw,,m.
J, sV Vs 2F1 ( Yy T o ; e ) 7.rsy (B12)
H oLt 2 2 2 2, #

B.2 Massless scalar model
Let us compute the two point correlator for a scalar in d dimensions for spin s = 1. Using

Davydychev methods we get:

d
93—2d 5-4 (p2)2 !
T (B.13)

v — . T
g (—1+ eimd) T(dEL) "

The expression for J,, is traceless and conserved.

For spin 2 we get

d
~ 92-2d 15— (k2)2
pupvy — - (27[' + Wuuﬂ'yy) (B14)
(=1 eimd)T(2E3) VT
which is conserved, but not traceless

d

93—2d ﬂ_%,% k2) 2
. ( ) (B.15)
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Let us consider the counterterms J,,,.,

. d
} 92-2d - 5—4 (k2)>
S = 17 ond) (43 (2 + a2, + (1 + ag)muumy) (B.16)
2
which is local for even d. Adding it to jw,,,,, the trace becomes
. 93-2d 34 (kQ)% ,
Ny = — emd)l“(d23) (d+1+4+a1+a(d—1))=w (B.17)
If we choose
ap=—(14+d)—ax(d—1)
we get a traceless JNWW
d
~ 92-2d 54 (k2)5 1
2
Jﬂ/ﬂ/l/ = — (_1 n eiﬂd) I‘(d 3) 1+ a9 (d — 1) (71';“/ — d—lﬂ-#'uﬂ-yy) (B18)
2
This is possible only for even d.
For spin 3 we have
- 3.91-2 35 (j2)27! )
Sy = — (—1+ emd) F(%) Tuv (277“11 + 37TMH7TW) (B.19)
This expression is transverse but not traceless
d
B 9. 2272d W%_% 2
M gy = — 13 o) F(d)) (B+d) T (B.20)
In even d we can add local counterterms and obtain
d
i 3.912 pd-4 (2) 41 i
Jlm,uwu = — (_1 n eiwd) F(@) Ty ((2 + al)ﬂ',w + (3 + a2)77/w7rw/) (B-Ql)
2
To make juwww traceless we must have
1
a; = —§(3(3 +d) + as(1 + d))
A traceless jumww can now be written as
T N i . 3
Sy = 1+ emd) F(d 5) (34 az)(d+ 1)7T,uu <7T,w dr 17T,u#77w/> (B.22)
For spin 4 the two-point correlator is
) 3272585 (2)5°2 )
Jppppvy = — 13 o) F(d 7) (87TW + 247r VT Ty + 37TW W) (B.23)
2
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The expression for jmm pavr..vg 18 DOt traceless
9.92-2 ni~4 (32)5+2

(=1 + eimd) D)

Again in even d we can add local counterterms
; 3.2 535 (§2)3 2

pppprvvy. = T (—1 + eind) F(M)

((8+ a1)7r + (24 + az)wuywwﬂw (3+ a3)7r 2 J) (B.25)

nuuj,u,,u,p,yyyuy = - (5 + d)TFyV (47’(3,/ + W“M’n-l/y) (B24)

The tracelessness condition is now

4 1
a; = —5+az+ gd(3 + a3) + §d2(3 + as), az = —2(154+3d + (1 + d)as)

so that a traceless J;,, v can be written

) 92735 (k2)2+?
(

J vy — T - 3+ d+1)(d+3
HLLpLpL 1 emrd) F(d+27) ( Cbg)( )( )
* 7‘4 - 6 7( 7 Hl/l/ + 3 7‘2 7 2 (B.26)
puv ( l 3) pv ( / 1)( / 3) pup vy

As in the case of fermions, the transverse and traceless 2pt function for spin s in even
dimensions is proportional to

|5] d—3
j,ul...,u vi..vs ~ i (_l)l s 8 (S - Z__ l) 7TS;2l(7THﬂ7TVV)l
2 (s—2l) T (st %53) ¥

=0
1—-s s b—d—2s w7«
= F _— N pp vy S B27
2 1< 9 ) 2; 2 ) ﬂ_lgul ﬂ-;u/ ( )

C 4d full amplitudes

In view of the importance of the 4d case, we give in the following complete explicit
formulas in terms of elementary functions of the two point correlator for spin 1,2,3 in the
fermionic model.

C.1 Spin1l

ik? m? 2 1 2m 1 1
- . _ 2 2 -1 (27" _ _
3 (n1-m-ng) < 372 +Vam? —k <3k:3 6k:> csc < A > + 12L1 18)

normalized with the understanding that in UV:

2
VAm2 — k2 = —ik it (C.1)

L2
2m 1 k2 im?
1 .
Here,
m? "1
L,=-+1 — — —
+og<4ﬂ>+v 2% (C.3)
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C.2 Spin 2

)

T m

PE (kQ (kng) 2(711‘7‘('-711) + 2k2(k-n1)(k'n2)(n1-7r‘n2) -+ k2 (k-n1)2(n2-7r-n2)
+2 (k-n1)? (k-n2)?) Lo

+ik4(n n)z _%_FLTTLQ_’_ m74+m72_i

p2e AT 15k%  360k2 ' \4k* " 12k2  40) 2

8m*  m? 1 2m 9
Aam2 — k2 2 4 © -1 (22 .
Tvam (15k5 MR 20k> e < k ) i 400)

g2l A2 ) \ Traa Taeor2 T\ gt T 12k2 T 120 ) 2

Am* 2m? 1 2m 47
Am2 — k2 2 4 I it I
Tvam (15k5 5k 60k> e < k ) 3600)

C.3 Spin 3

2\ " 315k6 T 315k4 T 141k T \27k6 T 135K T 045

128m8  64m*  8m? 8 2m 428
4m2 — k2 _ _ i e
+VAm? — 2 < 315k7 945k  180K3 | 945k> e ( K ) )

1/ ma 3tmb  m?
. 2 2 2
+i (k-n1) = (k-ng) “(n1-mn2)k 7r2<18k4 * (W i 6’“4> L3>

i (k- 3 (k. 3 4 I
+i (k-n1)” (k-ng) 2 (72k34 + <9k6 + 24k4) 3>
' 8
+im®(k-n1)(k-ns) (nl,ﬂ_m)szS
+i(ny-mony)(ng-mng)(ng-mon )726 _ 64m° N 257m*  1877m?
1 1)(n1 2)(n2 2) 5 10568~ 15126~ 56700k2

1:’>m@’_m:Jr 4m? 37
27Tk6  8k* " 135k2  15120)

1 128m5 2m? 218m? 6 4m?2 4
i (ny-mng) k0L ( 8m°  32m 8m (8m m >L3

99225

e 64m° _152m4+187m2 _ BT N 1 (2 12433
105k7  945k> © 3780k3 7560k k 3175200

+i (k*(k-na)(ne-mno) (k-n)® + & (k-ng) *(ng-mn1) (k-ny))
1 mm? N 13m6+7m4 I
72\ 144k% "\ 27K6 T 48k1 ) P
1
+13im8 (k-ny) (k-n2)(n1 -7-n1) (ng-7-12)

27772k2L3
+i ((k-n2) 2(ny-mony)(ng-mong)k* + (k-ny) 2 (ng '7T'7’LQ)(TL2'7T‘TL2)I€4)

i m* + 13mS + m* I
72 \ 144%4 27kS T 48kA ) TP
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