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1 Introduction. Higher spins are everywhere

The idea we wish to support in this paper is that the one-loop effective action of a free

(massive) field theory coupled to external sources (via conserved currents) contains com-

plete information about the possible classical dynamics of the sources. We exhibit several

examples of this fact for (scalar and fermion) free field theories in various dimensions

d = 3, 4, 5, 6 coupled to (bosonic) sources with a large number of spins. In some cases we

also provide compact formulas for any dimension. In this paper we concentrate on two-point

correlators, so the one-loop effective action we construct contains only the quadratic part.

Consequently the equations of motion for the sources we obtain are the linearized ones.

We postpone to a future work the analysis of one-point and three-point correlators. But

our thesis is that the dynamics generated by the one-loop effective action (OLEA) contains

all the information we need to reconstruct complete interacting equations of motion.

This paper is a follow-up of [1], which contains a few (mostly parity odd) 3d examples

of what has just been said. The present paper is more general and systematic, not limited

to 3d, and devoted especially to the parity even sector.

As we have just mentioned, the crucial issue here is the calculation of the two-point

functions of free massive field theories coupled to external sources. We do it via Feynman

diagrams. This is in principle a simple calculation, and to carry it out we resort to a method

introduced by Davydychev and collaborators, [2–4]. However, as we will see, although we

can derive from it very general formulas they are expressed in terms of hypergeometric

functions and derivatives thereof and not easily ‘readable’. For this reason it is often very

useful to expand such results near their IR and UV fixed points. These expansions in

powers of the mass m in odd dimensions, and m and logm in even dimensions, allows us

to single out the dynamics of the sources and will be referred to as tomography. In other

words what we do is to describe RG trajectories of two-point current correlators that pass

through those of free massive theories, but we focus in particular on their IR and UV

expansions, where the physical content is more easily recognizable.

Such IR and UV expansions are necessary also for another reason: one has to check

that the IR and UV limits of the one-loop effective action are well defined. We find in fact

divergent and non-conserved term in the limit m → ∞. These terms are local and can

be subtracted. We subtract as well the IR finite terms, which are also local. This is to

make the OLEA well defined and scheme independent. The results obtained in this way, in

particular in the even parity sector, transferred to the OLEA, allow us to find the linearized

Fronsdal eom’s (see [5–9]) for all the source fields we have considered, in the nonlocal form

introduced by Francia and Sagnotti, [10, 11]. In 3d we consider also the odd parity sector,

and confirm the connection with Pope and Townsend’s generalizations of Chern-Simons

theory, already pointed out in [1].

In this paper, for the purpose of comparison, we also analyze massless free theories

beside the corresponding massive ones. The difference between the two is that the latter

– 2 –



J
H
E
P
1
2
(
2
0
1
6
)
0
8
4

allow us to control not only the UV but also the IR, while in the former only the UV is

regularized. This explains the difference in the results. In general in the massless case we

do not get all the information we can extract from the massive theory and many results

are scheme dependent. Briefly stated, at least for the purpose of this paper, to make sure

we get a complete information we must use massive models.

The subject of this paper is inspired by the idea of exploring theories with infinite many

fields, [12, 13], in particular string theories and Vasiliev-type higher spin theories, [14–17].

As shown in the body of the paper higher spin fields appear naturally in the one-loop

effective action of the simplest free theories in any dimension and it is possible to make

contact with the literature on classical higher spin theories, [18–25]. Other sources of

inspiration have been [26–32]. The idea of exploring the one-loop effective action is far

from new: the list of works which may have some overlap with our paper includes [37–46],

but is likely to be incomplete. From a technical point of view this paper continues the line

of research started with [50–53] with more powerful techniques (a new Mathematica code).

The paper is organized as follows. In the next section we introduce the massive scalar

and fermion model and define the relevant OLEA’s. Section 3 is meant to explain the

motivation for this research by means of simple concrete examples. We also introduce

the issue of higher spin Fronsdal eom and their various forms. In section 4 we introduce

a new representation of higher spin eom’s in momentum space and their general form,

which is independent on the dimension of space-time. Section 5 contains a short summary

of Davydychev’s method to compute one-loop Feynman diagrams. In section 6 to 10 we

analyze the one-loop scalar and fermion model two-point functions and their IR and UV

expansion (tomography) in 3, 5, 4 and 6 dimensions, respectively. In section 11 we produce

the formulas for two-point correlators of spin 1, 2, 3 currents in any dimensions. Section 12

is devoted to the conclusion. Appendix A contains the demonstration of a result used in

section 4 and appendix B the analysis of the massless scalar and fermion models.

2 Free field theory models

In this paper we limit ourselves to two type of models, the free scalar and free fermion,

although it is not hard to extend the analysis to other models. By the first we mean the

complex scalar theory defined by the Lagrangian

L = ∂µφ
†∂µφ−m2φ†φ (2.1)

in any dimension. On shell the current

Jµ = i
(
φ†∂µφ− ∂µφ

†φ
)

(2.2)

is conserved. We can couple it to a gauge field via the action term
∫
ddxAµ(x)Jµ(x).

The scalar-scalar-gluon vertex with momenta p, p′, k, respectively, (p incoming and p′, k

outgoing), and the propagator are, respectively,

i(p+ p′)µδ(p− p′ − k) ,
i

p2 −m2
(2.3)

– 3 –
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But, of course we can define infinite many completely symmetric (on shell) conserved

currents, of which (2.2) is only the simplest example:

Jµ1...µs = isφ†
↔
∂µ1

. . .
↔
∂µs φ (2.4)

They couple minimally to external spin s fields, aµ1...µs . The on-shell current conservation

implies (to the lowest order) invariance under the gauge transformations

δaµ1...µs = ∂(µ1
Λµ2...µs) (2.5)

where round brackets stand for symmetrization.

In the case s = 2 the conserved current is the energy-momentum tensor and the

external source is the metric fluctuation hµν , where gµν = ηµν + hµν . In this case the

action is the integral of (2.1) multiplied by
√
g. The vertex for an incoming scalar with

momentum p and outgoing scalar with momentum p′ and an outgoing spin-s field with

momentum k is

Vsst : i(p+ p′)µ1
. . . (p+ p′)µsδ

(d)(p− p′ − k) (2.6)

The free fermion model is represented by a Dirac fermion coupled to a gauge field.

The action is

S[A] =

∫
d3x

[
iψ̄γµDµψ −mψ̄ψ

]
, Dµ = ∂µ +Aµ (2.7)

where Aµ = Aa
µ(x)T

a and T a are the generators of a gauge algebra in a given representation

determined by ψ. We will use the antihermitean convention, so [T a, T b] = fabcT c, and the

normalization tr(T aT b) = −δab.

The current

Ja
µ(x) = iψ̄γµT

aψ (2.8)

is (classically) covariantly conserved on shell as a consequence of the gauge invariance

of (2.7)

(DJ)a = (∂µδac + fabcAbµ)Jc
µ = 0 (2.9)

The next example involves the coupling to gravity

S[h] =

∫
d3x e

[
iψ̄Eµ

a γ
a∇µψ −mψ̄ψ

]
, ∇µ = ∂µ +

1

2
ωµbcΣ

bc, Σbc =
1

4

[
γb, γc

]
. (2.10)

The corresponding energy momentum tensor

T (g)
µν =

i

4
ψ̄
(
γµ

↔
∇ν +γν

↔
∇µ

)
ψ. (2.11)

is covariantly conserved on shell as a consequence of the diffeomorphism invariance of the

action,

∇µTµν(x) = 0. (2.12)

If we expand the metric around the flat spacetime, gµν(x) = ηµν + hµν(x), then, contrary

to spin-1 case, interaction is not linear in the gauge field, which is hµν . However, for the
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purposes of this paper, only linear term matters, and it is given by coupling the flat space

energy-momentum tensor

Tµν =
i

4
ψ̄
(
γµ

↔
∂ ν +γν

↔
∂ µ

)
ψ. (2.13)

to the metric fluctuation hµν .

Again we can couple the fermions to more general fields. Consider the free action

S0 =

∫
d3x

[
iψ̄γµ∂µψ −mψ̄ψ

]
, (2.14)

and the spin three conserved current

Jµ1µ2µ3
= −1

2
ψ̄γ(µ1

∂µ2
∂µ3)ψ − 1

2
∂(µ1

∂µ2
ψ̄γµ3)ψ+

5

3
∂(µ1

ψ̄γµ2
∂µ3)ψ

−1

3
η(µ1µ2

∂σψ̄γµ3)∂σψ+
m2

3
η(µ1µ2

ψ̄γµ3)ψ (2.15)

Using the equation of motion one can prove that

∂µJµνλ = 0 (2.16)

Jµ
µ
λ = −4

9
m

(
−i∂λψ̄ψ + iψ̄∂λψ + 2ψ̄γλψ

)
(2.17)

Therefore, the spin three current (2.15) is conserved on shell and its tracelessness is softly

broken by the mass term. Similarly to the gauge field and the metric, we can couple the

fermion ψ to a new external source bµνλ by adding to (2.14) the term
∫

d3xJµνλb
µνλ (2.18)

Due to the (on shell) current conservation this coupling is invariant (to lowest order) under

the infinitesimal gauge transformations

δbµνλ = ∂(µΛνλ) (2.19)

In the limit m → 0 we have also invariance under the local transformations

δbµνλ = Λ(µηνλ) (2.20)

which are usually referred to as (generalized) Weyl transformations and which induce the

tracelessness of Jµνλ in any couple of indices.

We can construct on-shell conserved currents for any spin s, but their form is more

complicated than in the scalar case. The explicit expressions can be found in [1].

We notice that to lowest order in the external sources the relevant action, in all cases

above, takes the form of the free action + a linear interaction term such as (2.18). We

make the identification aµ = Aµ, aµν∼hµν , aµνλ∼bµνλ, with the obvious exception of the

non-Abelian field in (2.7). The latter will be the only case in which we consider non-Abelian

external sources.1

1Also note that the nonlinearity present in spin-2 case, which is forced by the consistency requirements,

is a signal that we should expect the same for higher-spin fields. However, this is not relevant in our

two-point calculations.

– 5 –
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2.1 Generating functions and effective actions

In both scalar and fermion cases, the generating function for the external source aµ1...µs is

W [a, s] = W [0] +

∞∑

n=1

in−1

n!

∫ n∏

i=1

d3xia
µ11...µ1s(x1) . . . a

µn1...µns(xn)

× 〈0|T J (s)
µ11...µ1s

(x1) . . . J
(s)
µn1...µns

(xn)|0〉. (2.21)

In particular aµ = Aµ, aµν = 1
4hµν and J

(2)
µν = 2Tµν with aµνλ = bµνλ. The full one-loop

1-pt correlator for Jµ1...µs is

〈〈J (s)
µ1...µs

(x)〉〉 = δW [a, s]

δaµ1...µs(x)
=

∞∑

n=0

in

n!

∫ n∏

i=1

d3xia
µ11...µ1s(x1) . . . a

µn1...µns(xn)

× 〈0|T J (s)
µ1...µs

(x)J (s)
µ11...µ1s

(x1) . . . J
(s)
µn1...µns

(xn)|0〉. (2.22)

The full one-loop conservation law for the energy-momentum tensor is

∇µ〈〈Tµν(x)〉〉 = 0. (2.23)

A similar covariant conservation should be written also for the other currents, but for s > 2

we will content ourselves with the lowest nontrivial order in which the conservation law

reduces to

∂µ1〈〈J (s)
µ1...µs

(x)〉〉 = 0 (2.24)

Warning. One must be careful when applying the previous formulas for generating func-

tions. If the expression 〈0|T J
(s)
µ11...µ1s(x1) · · · J

(s)
µn1...µns(xn)|0〉 in (2.21) is meant to denote

the n-th point-function calculated by using Feynman diagrams, a factor in is already in-

cluded in the diagram themselves and so it should be dropped in (2.21). When the current

is the energy-momentum tensor an additional precaution is necessary: the factor in−1

n! must

be replaced by in−1

2nn! . The factor
1
2n is motivated by the fact that when we expand the action

S[η + h] = S[η] +

∫
ddx

δS

δgµν

∣∣∣
g=η

hµν + · · · ,

the factor δS
δgµν

∣∣∣
g=η

= 1
2Tµν . Another consequence of this fact will be that the presence

of vertices with one graviton in Feynman diagrams will correspond to insertions of the

operator 1
2Tµν in correlation functions.

Our purpose in this paper is to compute the effective action for the external source

fields at the quadratic order. As a consequence the first task is to compute the two-point

functions

〈0|T J (s)
µ1...µs

(x) J (s)
ν1...νs(y)|0〉 (2.25)

or their Fourier transforms

J̃µ1...µsν1...νs(k) = 〈0|T J̃ (s)
µ1...µs

(k) J̃ (s)
ν1...νs(−k)|0〉 (2.26)

– 6 –
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In the sequel we compute them by using the Feynman diagram technique. For all two-

point functions the only relevant diagram is the bubble diagram with one spin s line of

ingoing momentum k and one with the same outgoing momentum and one scalar or fermion

circulating in the internal loop. For instance the 2pt function for the current Ja in the

fermion model is

J̃ab
µν(k) = 〈J̃a

µ(k)J̃
b
ν(−k)〉 =

∫
d3p

(2π)3
Tr

(
γνT

b 1

/p−m
γµT

a 1

/p− /k −m

)
(2.27)

while for the e.m. tensor it is

T̃µνλρ(k) =
1

4
〈T̃µν(k)T̃λρ(−k)〉 (2.28)

= − 1

64

∫
d3p

(2π)3
Tr

(
1

/p−m
(2p− k)µγν

1

/p− /k −m
(2p− k)λγρ

)
,

where symmetrization of indices (µ, ν) and (λ, ρ) and the factor 1
4 is introduced accordingly

to the above warning.

3 An appetizer in 3d

In [1] we calculated in particular the two-point function of the current Ja in the fermion

model as well as its IR and UV limit. In the parity violating part we found a well-

known result: when Fourier antitransformed and inserted in the generating function of the

OLEA (2.21) it gives rise to the linearized version of the gauge CS action in 3d (which

is in fact conformal invariant). In [1] we did the same for the two-point correlator of the

e.m. tensor for the fermion model, and proceeding the same way we found the linearized

version of the gravity CS action. Something that was also known before, [38]. Repeating

the same thing for the spin 3 current above we found instead a previously unknown result:

the UV limit in particular leads to a linearized action that corresponds to a spin 3 CS

generalization postulated long ago by Pope and Townsend, [33–36].

These were the results found in the parity odd part (in [1] we were mostly interested in

the latter). But the even parity parts of the two-point correlators have perhaps even more

interesting interpretations, so let us briefly analyze the parity even parts of the linearized

effective actions obtained from 2-point current correlators in the free massive Dirac fermion

quantum field theory in 3d in [1].

3.1 Spin one and two — parity even sectors

The UV limit of the two-point function of the Ja currents are nonlocal conformal correla-

tors, according to expectations, see [30]. The same is true for the e.m. tensor two-point

function. But now let us focus on the IR limits. According to [1], for the Ja current

two-point function, for large m we have

J̃ab(even)
µν (k) =

i

4π

1

3|m|δ
ab(kµkν − k2ηµν) (3.1)

– 7 –
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This term is local. Fourier anti-transforming it and inserting it into (2.21) it gives rise to

the action

S ∼ 1

m

∫
d3x

(
Aa

µ∂
µ∂νAa

ν −Aa
ν�Aaν

)
(3.2)

which is the lowest term in the expansion of the YM action

SYM = − 1

gYM

∫
d3xTr (FµνF

µν) (3.3)

where gYM ∼ |m|.
Now let us go to the IR limit of the even part of the 2pt e.m. tensor correlator.

eq. (3.36) of [1] says

〈Tµν(k)Tλρ (−k)〉IReven =
i|m|
96π

[
1

2
((kµkληνρ + λ ↔ ρ) + µ ↔ ν)−

− (kµkνηλρ+kλkρηµν)−
k2

2
(ηµληνρ+ηµρηνλ)+k2ηµνηλρ

]
. (3.4)

This is a local expression multiplied by |m|. In fact Fourier anti-transforming it and

inserting it into (2.19) it gives rise to the action

S ∼ |m|
∫

d3x
(
−2∂µh

µλ∂νh
ν
λ − 2h ∂µ∂νh

µν − hµν�hµν + h�h
)

(3.5)

which is the linearized Einstein-Hilbert action:

SEH =
1

2κ

∫
d3x

√
g R (3.6)

where κ ∼ 1
|m| .

These results for spin-1 and -2 are known have been known for a long time, see for

instance [26]. Now, we ask the same question for the 2pt correlator of the 3-current (section

3.3). What action, if any, does it represent for the external source field?

3.2 Linearized equations for spin 3 in parity even sector

Before presenting our results in 3d, let us briefly review the status of the linearized equations

for the massless spin 3 field described by the completely symmetric field ϕµνλ. Historically

the first formulation of equations for the unconstrained free massless spin 3 field was given

by Fronsdal [5, 6]

Fµνλ ≡ �ϕµνλ − ∂µ∂ ·ϕνλ + ∂µ∂νϕ
′
λ = 0 (3.7)

where underlined indices mean the sum over the minimum number of terms necessary to

completely symmetrize the expression in µ, ν and λ, i.e. for instance

∂µ∂ ·ϕνλ = ∂µ∂αϕ
α
νλ + ∂ν∂αϕ

α
λµ + ∂λ∂αϕ

α
µν ,

and where a prime ′ means that the tensor is traced over a pair of indices. In some formulas

we shall use shorter notation in which all indexes are suppressed.

– 8 –
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Under the gauge variation (2.19), δϕµνλ = ∂µΛνλ +perm., the Fronsdal kinetic tensor

transforms as δFµνλ = 3∂µ∂ν∂λΛ
′. It follows that the Fronsdal equation is invariant only

on restricted gauge transformations satisfying Λ′ = 0 (this requirement holds for all higher

spins). Also, the Fronsdal tensor is not divergence-free, ∂ · F 6= 0, so one cannot directly

couple the spin 3 field to a conserved (i.e., divergence-free) current using the Fronsdal

equation. As we construct effective actions and corresponding equations for the higher

spin fields by (minimally) coupling to conserved currents, it is obvious that Fronsdal’s

formalism is not suited for our purposes.

The formulation appropriate for our purposes was proposed in [10, 11], and analyzed in

more detail in [47] (for a review, see [48]). It was shown that there is a one parameter class of

equations for unconstrained spin 3 field, which are order 2 in derivatives, fully gauge invari-

ant, and ready to be coupled to the external conserved current. These equations are most

elegantly expressed by using gauge invariant linearized spin 3 Riemann tensor defined by

Rµ1ν1µ2ν2µ3ν3 = ∂µ1
∂µ2

∂µ3
ϕν1ν2ν3 ( antisymmetrised in all (µj , νj) ) (3.8)

The spin 3 equations are parametrized by real number a and given by

G(a)µνλ ≡ A(a)µνλ − ηλν A(a)′µ = 0 (3.9)

A(a)µνλ ≡ 1

�
∂ ·R′

µνλ + a
∂ν∂λ
�2

∂ ·R′′
µ (3.10)

where spin 3 Ricci tensors are defined by

R′
µνρσ ≡ ηαβ Rµνρασβ = 2∂[µFν]ρσ

R′′
µν ≡ ηρσ R′

µνρσ = 2∂[µF ′
ν] (3.11)

while their divergences are defined by2

∂ ·R′
µνλ = ∂αR

′α
µνλ , ∂ ·R′′

µ = ∂αR
′′α

µ (3.12)

What is the difference between equations with different a? First of all, it can be shown

that regardless the value of a, the free field equation (3.9)–(3.10) is equivalent to Fronsdal

equation (3.7). They start to differ when interactions are introduced. Note that equations

(for any a) are non-local. From the purely mathematical side, the equation for a = 0 plays

a special role because it is the least singular on-shell,3 and because of this it was originally

promoted in [10, 11]. However, it was later shown in [47] that equations with different

parameters a propagate different set of excitations when coupled to a conserved external

current Jµνλ,

G(a) = J , ∂ · J = 0 (3.13)

2The Riemann tensor symmetries guarantee that the definitions for Ricci’s and corresponding divergences

(after symmetrization is taken into account) are essentially unique, in the sense that different choices for

contracting indexes can differ only by a sign, or are vanishing [36].
3In momentum space the on-shell condition is k2 = 0.
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In particular, it was shown that only equation with a = 1/2 propagates spin 3 massless

excitations and nothing else, if one does not introduce additional constraints on ϕ or J .

For a = 1/2 the tensor A can be also written as

A(1/2) = F − ∂3

�2
∂ · F ′ (3.14)

Let us emphasize that this by itself does not mean that the equation with a = 1/2 is the

“right one” to be used for the consistent coupling to the dynamical matter.

The non-locality of equations (3.9)–(3.9) can be ‘cured’ by multiplying with �
r with

r large enough. It is obvious that the equation with a = 0 is special in that r = 1 already

does the job, while for a 6= 0 one needs r = 2. In this way one cures non-locality, but the

price paid is that equations become higher-derivative (order 4 for a = 0 and order 6 for

a 6= 0). This opens up an additional question when one considers coupling to the conserved

current J : should we do this as in (3.13), or should we couple the current in the local way,

�
rG(a) = J , ∂ · J = 0 (3.15)

with r large enough?

The moral of the above analysis is that, due to several reasons, there is a large degen-

eracy in formulating equations of motion for the free massless spin 3 field, and it is not

obvious that all formulations can be used as a basis for constructing consistent interact-

ing quantized theories. It would be advantageous to know which formulation(s) are more

promising, before embarking into such enterprise. We shall now argue that the induced

action method may give us a hint.

In section 3.2.4 of [1] it was shown that the parity even part of the spin 3 two-point

current correlator for a massive Dirac fermion in 3d is given by

J̃ (even)
µ1µ2µ3ν1ν2ν3(k) = τb

(
k2

m2

)
|k|5π(k)

µ1µ2
π(k)
µ3ν1π

(k)
ν2ν3 + τ ′b

(
k2

m2

)
|k|5π(k)

µ1ν1π
(k)
µ2ν2π

(k)
µ3ν3

(3.16)

where τb and τ ′b are form factors presented in [1], and

π(k)
µν = ηµν −

kµkν
k2

(3.17)

are projectors which guarantee conservation. From (2.22) it follows that the linearized

effective equation in momentum space for the background spin 3 field minimally coupled

to a conserved current in free QFT with massive Dirac field in 3d, is given by

J̃µ1µ2µ3ν1ν2ν3(k) ϕ̃
ν1ν2ν3(k) = 〈〈J̃ (3)

µ1µ2µ3
(k)〉〉 , k · J̃ (3)(k) = 0 (3.18)

The form factors contain branch-cuts, which means that this equation is strongly non-

local. The fact that there are two independent conserved structures present in (3.16), and

so in (3.18), is directly connected with the one-parameter degeneracy introduced in (3.10).

In the IR region (|k2|/m2 < 4) the form factors are analytic, as expected, and the

equation is weakly nonlocal (infinite sum of local terms) when expanded around |k|/m = 0.
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Using the expansions of form factors from [1], we obtain that the leading term in the IR is

given by

J̃ (even)
µ1µ2µ3ν1ν2ν3(k) ∼ |m| k4

(
π(k)
µ1µ2

π(k)
µ3ν1π

(k)
ν2ν3 − π(k)

µ1ν1π
(k)
µ2ν2π

(k)
µ3ν3

)
(3.19)

Observe that this is the lowest derivative conserved local expression, which is unique. Now,

plugging (3.19) into (3.18) and Fourier antitransforming, we obtain for the linearized in-

duced equation in the coordinate space

|m|Gµνρ(x) ∼ 〈〈J (3)
µ1µ2µ3

(x)〉〉 , ∂ · J (3) = 0 (3.20)

where G is the conserved symmetric local tensor linear in ϕ, which is 4th-order in deriva-

tives. As there is a unique such tensor, we can conclude (without doing any calculations)

that it must be proportional to �G(0), with G(0) defined in (3.9)–(3.10). Explicitly written,

Gµνλ = ∂αF
α
(µνλ) (3.21)

where

Fαµνλ ≡ R′
αµνλ − 1

2
R′′

αµηνλ = 2∂[α

(
Fµ]νλ − 1

2
F ′
µ]ηνλ

)
(3.22)

The result (3.20)–(3.22) is, in some sense, natural. First of all, it is the lowest derivative

linear local parity invariant equation satisfying unrestricted gauge invariance and conserva-

tion condition. Also, the equation is of the same form as in spin 1 case, and we can identify

the tensor F as spin 3 Maxwell tensor, while G appears to be spin 3 Riemann tensor (it is

the lowest derivative local conserved gauge invariant parity even rank-3 tensor).4

Let us connect our result with the known constructions, reviewed above. It is obvious

that our result (3.20)–(3.22) is the same as (3.15) with a = 0 and r = 1, i.e., we have

obtained a local version of the equation proposed in [10, 11]. As we already mentioned,

this equation does not propagate only spin 3 massless excitations, unless the conserved spin

3 current of the Dirac theory has some special properties which takes care of the redundant

modes. This is the question we plan to investigate in the future.

Let us now briefly comment the UV limit (m/|k| → 0). After subtracting IR divergent

terms (for a full explanation of this issue, see below) form factors in the UV limit tend to

constants, which gives rise to a non-local correlator. However one of the subleading terms

gives a combination of the two conserved quantities

A : k2πµ1ν1πµ2ν2πµ3ν3

B : k2πµ1µ2
πµ3ν1πν2ν3 (3.23)

which is not the same combination as the one present in IR limit (3.19). So, the corre-

sponding induced linearized equation is also different.

A priori, one could freely linearly combine terms A and B and construct one parameter

candidate equations for the free spin 3 field. For example, A by itself gives the following

equation

�ϕµνλ − ∂µ∂ ·ϕνλ +
1

�
∂µ∂ν∂ ·∂ ·ϕλ − 1

�2
∂µ∂ν∂λ∂ ·∂ ·∂ ·ϕ = 0 (3.24)

4Conventions for naming objects in higher-spin metric-like formalism is notorious for its inconsistency. In

the literature different objects are called Ricci tensor and Riemann tensor. We believe that our conventions

are natural generalizations of spin 1 and 2 cases.
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By combining with the traced equation, it can be shown that it is equivalent to the Fronsdal

equation. The same can be shown for generic linear combination of A and B. There

is though the special case, the combination 4B − 3A, which is traceless, for which the

equation is

�ϕµνλ − 3∂µ∂ ·ϕνλ +
3

4
∂µ∂νϕ

′
λ − 3

4

1

�
∂µ∂ν∂λ∂ ·ϕ′ − 1

4

1

�2
∂µ∂ν∂λ∂ ·∂ ·∂ ·ϕ (3.25)

+
9

4

1

�
∂µ∂ν∂ ·ϕλ − 3

4
ηµν�ϕ′

λ +
3

4
ηµν∂λ∂ ·ϕ′ +

3

4
ηµν∂ ·∂ ·ϕλ − 3

4
ηµν

1

�2
∂λ∂ ·∂ ·∂ ·ϕ = 0

In conclusion, we see that our simple analysis, based solely on the classification of

possible conserved structures, recovers the Francia-Sagnotti analysis and gives an efficient

method for analyzing higher spin actions. But, we emphasize that the induced action

method, out of many possibilities, picks particular equations which are already coupled to

particular external currents.

Comment. The previous results are limited to 3d and to the lowest spins. They are nev-

ertheless enough to stir our interest and motivate a more in depth analysis. It is also clear

enough that equations in the coordinate space are not always the best fit to generalizations

to higher spins. Writing down the actions and equations of motion in the explicit form

used so far becomes rapidly unwieldy with increasing spins and dimensions. Fortunately

a language much sleeker than this and the formalism used so far in higher spin theories

is at hand. We simply must go to momentum space and use the projector (3.17). Before

plunging into the analysis of the results for 2pt correlators coming from Feynman diagrams,

we’d better prepare the ground with a general analysis of their expected structure.

4 Universal EOM and conserved structures for spin s

Our starting point is the 2-pt functions of symmetric conserved currents. We expect them

to be conserved too, i.e. we expect to find 0 if we contract any index with the external

momentum k. We exclude the presence of anomalies. In fact we will come across also some

non-conservations, but they can be fixed by subtracting local counterterms. This aspect of

our analysis is interesting in itself, but we will illustrate it later on in any detail. For the time

being we ignore this fact and suppose that all 2-pt functions we deal with are conserved.

This said, the form of the conserved structures is universal, in the sense that is does

not depend on the dimension d of spacetime. For spin s they can be easily constructed by

means of the projector (3.17) and polarization vectors n1, n2: n1µ, n2ν .

For spin s let us write down the structures:

Ã
(s)
0 (k ·n1 ·n2) =

1

(s!)2
(n1 ·π(k) ·n2)

s (4.1)

Ã
(s)
1 (k ·n1 ·n2) =

1

(s!)2
(n1 ·π(k) ·n2)

s−2(n1 ·π(k) ·n1)(n2 ·π(k) ·n2) (4.2)

. . . . . . . . .

Ã
(s)
l (k ·n1 ·n2) =

1

(s!)2
(n1 ·π(k) ·n2)

s−2l(n1 ·π(k) ·n1)
l(n2 ·π(k) ·n2)

l (4.3)

. . . . . . . . .

where n·π(k) ·m = nµπµνm
ν . There are ⌊s/2⌋ independent such terms.
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Let us set

Ẽ(s)(k ·n1 ·n2) =

⌊s/2⌋∑

l=0

alÃ
(s)
l (k ·n1 ·n2) (4.4)

where al are arbitrary constants. The explicit conserved structures are obtained by differ-

entiating s times E(s) with respect to n1 and s times with respect to n2. One obtains in this

way conserved tensors Ẽ
(s)
µ1...µs,ν1...νs(k). Conservation is a consequence of the transversality

property

kµπµν = 0 (4.5)

and Ẽ(s) writes

Ẽµ1...µs,ν1...νs(k) =

⌊s/2⌋∑

l=0

alÃl,µ1...µs,ν1...νs(k) (4.6)

This is the most general conserved structure for spin s (for a proof, see appendix A).

By Fourier anti-transforming and inserting into (2.21), one can construct the effective

action corresponding to (4.6) multiplied by k2 for the spin s field Bµ1...µs,ν1...νs as follows

SE ∼
∫

ddxBµ1...µs�E(∂)µ1...µs,ν1...νsB
ν1...νs (4.7)

where E(∂) is the formal Fourier transform of Ẽ(k), i.e. the same expression with kµ
replaced by −i∂µ. The eom is of course

�E(∂)µ1...µs,ν1...νsB
ν1...νs = 0 (4.8)

After canonically normalization, it depends on ⌊s/2⌋ − 1 arbitrary constants. This is the

most general linearized eom for a completely symmetric spin s field.

From Ẽ(s)(k) we can obtain the most general traceless combination, by taking the trace

of (4.6) and imposing it to vanish. This can be done by differentiating the implicit expres-

sions (4.1),. . . , (4.3),. . . with respect to ∂
∂n1µ

∂
∂nµ

1

. The resulting equation is the recurrence

relation

al = − (s− 2l + 2)(s− 2l + 1)

2l(2(s− l − 1) + d− 1)
al−1 (4.9)

Setting a0 = 1 the solution is

al =
(−1)l

22ll!

s!

(s− 2l)!

Γ
(
s+ d−3

2 − l
)

Γ
(
s+ d−3

2

) (4.10)

Replacing this in (4.6) we obtain a traceless conserved structure. In turn this gives rise to

a traceless eom.

4.1 Eom’s from conserved structures

Any conserved structure (4.4) in coordinate space is in general a non-local differential

operator. To each there corresponds a quadratic Lagrangian and a linearized eom. For

the EOM it is enough to differentiate s times with respect to nν
2 and saturate the exposed

indices with the spin s tensor field aν1...νs , multiply by k2, set the result to zero and then
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differentiate also s times w.r.t. nµ
1 . For the Lagrangian one saturates the l.h.s. of the EOM

with aµ1...µs and divide by 2.

Therefore we can represent the eom symbolically as

k2
⌊s/2⌋∑

l=0

alÃ
(s)
l (k ·n1 ·n2) = 0 (4.11)

In the following instead of contracting the n2 indices with the field a, we will always leave

n2 free and operate only on n1. The operation will be essentially tracing two n1 indices.

For instance tracing (n1 ·π(k) ·n1) over n1 gives d− 1.

Let us consider the spin 3 case. In this compact notation, the most general eom will be

k2
(
a(n1 ·π(k) ·n2)

3 + b(n1 ·π(k) ·n1)(n1 ·π(k) ·n2)(n2 ·π(k) ·n2)
)
= 0 (4.12)

Taking the trace over n1 gives

(6a+ (d+ 1)b)(n1 ·π(k) ·n2)(n2 ·π(k) ·n2) = 0 (4.13)

Thus, unless 6a+(d+1)b = 0, i.e. for generic coefficients a and b, the second piece of (4.12)

vanishes on shell and we can simply drop it. Therefore the relevant eom for spin 3 is

k2(n1 ·π(k) ·n2)
3 = 0 (4.14)

i.e. (3.24).

Now we wish to prove that this is general, that is, for any spin s, for generic coefficients,

the eom can be reduced to the form

k2(n1 ·π(k) ·n2)
s = 0 (4.15)

The strategy consists in taking the trace of (4.11) w.r.t. to n1 the maximum number of

times and replacing the results in (4.11). For instance, for spin 4 we have to trace twice.

Tracing p times (4.11) we get

⌊s/2⌋∑

l=p

[c
(p)
l−1(s− 2l + 2)(s− 2l + 1) + 2c

(p)
l (l − p+ 1)(s+ d− 2p− 1)]

·(n1 ·π(k) ·n1)
l−2(n1 ·π(k) ·n2)

s−2l(n2 ·π(k) ·n2)
l = 0 (4.16)

where c
(0)
l = al, c

(1)
l = al−1(s−2l+2)(s−2l+1)+2lal(s+d−3), etc. The complete expression

for c
(p)
l is not easy to compute, but these coefficients are generically non-vanishing. It is

however possible to infer the important property that

c
(p)
l = 0, l < p (4.17)

For s = 2n after n tracings, i.e. p = n, we arrive at

k2(n2 ·π(k) ·n2)
n = 0 (4.18)
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Now let us consider p = n− 1. Using (4.16) and (4.18) we arrive at

2k2(d+ 1)c
(n−1)
n−1 (n1 ·π(k) ·n2)

2l(n2 ·π(k) ·n2)
n−1 = 0

So, generically,

k2(n1 ·π(k) ·n2)
2l(n2 ·π(k) ·n2)

n−1 = 0 (4.19)

Now we proceed by induction. Suppose after q traces, i.e. p = n− q + 1, we have

k2(n1 ·π(k) ·n2)
2i(n2 ·π(k) ·n2)

n−i = 0, i = 0, . . . , q − 1

Then, at level p = n− q, we remain with

2k2c
(n−q)
n−q (d+ 2q − 1) (n1 ·π(k) ·n2)

2q(n2 ·π(k) ·n2)
n−q = 0 (4.20)

from which the conclusion (4.15) follows.

For s = 2n+ 1, we start from p = n

2k2c(n)n (d− 1) (n1 ·π(k) ·n2)(n2 ·π(k) ·n2)
n = 0 (4.21)

and we can repeat the induction procedure arriving at the same conclusion (4.15).

The next task is to recover the Fronsdal equation from (4.15).

To this end we take the trace of (4.15), i.e. apply to it ∂
∂nµ

1

ηµν ∂
∂nν

1

. This is easily seen

to give

tr(n1 ·π(k) ·n2)
2 = 2(n2 ·n2)− 2

(n2 ·k)2
k2

(4.22)

and, in general,

tr(n1 ·π(k) ·n2)
s = s(s− 1)(n1 ·π(k)n2)

s−2tr(n1 ·π(k) ·n2)
2 = 0 (4.23)

Using this we can easily calculate all the traces of (4.15). The end result is

tr(n1 ·π(k) ·n2)
s ∼

(
(n2 ·n2)− 2

(n2 ·k)2
k2

) s
2

= 0 (4.24)

for even s, and

tr(n1 ·π(k) ·n2)
s ∼

(
(n2 ·n2)− 2

(n2 ·k)2
k2

) s−1

2

(n1 ·π(k) ·n2) = 0 (4.25)

for odd s. These two equations have to be understood as follows: any solution that

satisfies (4.15) also satisfies either (4.24) or (4.25). Therefore we can replace these two eqs.

into (4.15). The viceversa is not true in general: i.e. if a solution satisfies (4.24) or (4.25),

it may not satisfy (4.15). For the time being we assume that eq. (4.24) and (4.25) imply

that in (4.15) we can make the replacement (n2·k)2 = k2(n2·n2) (see the comment below).

The result of this substitution is:

k2(n1 ·n2)
s − s(n1 ·n2)

s−1(n1 ·k)(n2 ·k) +
(
s

2

)
(n1 ·n2)

s−2(n1 ·k)2(n2 ·n2)

+
s∑

l=3

(−1)l

(
s

l

)
(n1 ·n2)

s−l (n1 ·k)l(n2 ·k)l−2

(k2)l−2
(n2 ·n2) = 0 (4.26)
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The first line gives the spin s Fronsdal operator. Therefore (4.26) identifies the spin s

nonlocal Fronsdal equation. The compensator takes the form

α(n1, n2) =
s∑

l=3

(−1)l

(
s

l

)
(n1 ·n2)

s−l (n1 ·k)l−3(n2 ·k)l−2

(k2)l−2
(n2 ·n2) (4.27)

4.2 Conserved odd parity structures

It is easy to obtain also all the odd parity structures. The spin 1 odd parity conserved

Lorentz structure (linear in n1 ·n2 ·k) can only be

C̃
(1)
0 (k ·n1 ·n2) = (n1ǫn2 ·k), (n1ǫn2 ·k) = ǫµνλn

µ
1n

ν
2k

λ (4.28)

It is easy to realize that, for higher spin, the epsilon tensor can only appear in the form

(n1ǫn2, k) in every single term, thus it can be factored out. What remains is an even spin

structure of one order less. So the most general odd conserved Lorentz structure will be a

combination of

C̃
(s)
0 (k ·n1 ·n2) = (n1ǫn2 ·k)Ã(s−1)

0 (k ·n1 ·n2)

C̃
(s)
1 (k ·n1 ·n2) = (n1ǫn2 ·k)Ã(s−1)

1 (k ·n1 ·n2)

. . . . . .

C̃
(s)
l (k ·n1 ·n2) = (n1ǫn2 ·k)Ã(s−1)

l (k ·n1 ·n2)

. . . . . . (4.29)

where A
(0)
0 = 1, by definition. Let us define

Õ(s)(k ·n1 ·n2) =

⌊s/2⌋∑

l=0

clC̃
(s)
l (k ·n1 ·n2) (4.30)

from which we can derive

Oµ1...µs,ν1...νs(∂) =

⌊s/2⌋∑

l=0

clCl,µ1...µs,ν1...νs(∂) (4.31)

The odd parity action is supposed to be local (and higher derivative)

SO =

∫
ddxBµ1...µs�

s−1O(∂)µ1...µs,ν1...νsB
ν1...νs (4.32)

Therefore the odd eom is

�
s−1Oµ1...µs,ν1...νs(∂)B

ν1...νs = 0 (4.33)

The tracelessness condition (for spin s > 1) implies a recursion relation for the coeffi-

cients cl:

cl = − (s− 2l + 1)(s− 2l)

2l(2(s− l − 2) + d+ 1)
cl−1 (4.34)

Setting c0 = 1 the solution is:

cl =
(−1)l

22ll!

(s− 1)!

(s− 2l − 1)!

Γ
(
s+ d−3

2 − l
)

Γ
(
s+ d−3

2

) (4.35)
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A comment on the non-local Fronsdal equation. In the previous derivations of

eqs. (4.26) and (4.33), we have simplified a few steps by disregarding a number of alterna-

tives. First, we have stated that several passages are generic, that is they do not hold in

some very specific cases, leaving out in this way several (probably pathological) possibilities.

Moreover, we have disregarded solutions that satisfy (4.24) or (4.25), but not (4.15). There-

fore our conclusions concerning eqs. (4.26) and (4.33) are generic. They do not address

more subtle questions, in particular the one pointed out in [47, 48]: the non-locality of the

Fronsdal equation contains a large freedom, so an important issue is to select the form of the

equation that gives rise to the correct propagator for the higher spin field, and not all non-

local equations which give rise to the Fronsdal equation upon gauge fixing also give the cor-

rect propagator.5 We cannot say, on the basis of our previous derivation, that our non-local

Fronsdal equations have the property of generating the correct propagator, but we can ver-

ify this a posteriori, by analyzing the effective actions we obtain for the massive scalar and

fermion models in various dimensions. We will return to this issue in the concluding section.

5 The general method

In this section we illustrate the method to compute the 2-pt functions with Feynman

diagrams. On first reading one can skip this section and go directly to the results in

the next one. The integrals we have to compute in this paper are like the ones in (2.27)

and (2.28), that is of the general form

J̃µ1...µp(d;α, β; q1, q2,m) =

∫
ddp

(2π)d
pµ1

. . . pµp

((p+ q1)2 −m2)α ((p+ q2)2 −m2)β
(5.1)

where, eventually, q1 = 0, q2 = −k. We will use the method invented by [2–4] to reduce

the tensor integral to a sum of scalar ones

J̃µ1...µp (d;α, β, γ; q1, q2,m) =
∑

λ,κ1,κ2

2λ+
∑

κi=p

(
−1

2

)λ

(4π)p−λ
{
[η]λ [q1]

κ1 [q2]
κ2

}

µ1...µp

× (α)κ1
(β)κ2

Ĩ(2)(d+ 2(p− λ);α+ κ1, β + κ2; q1, q2,m), (5.2)

where the symbol
{
[η]λ [q1]

κ1 . . . [qN ]κN

}

µ1...µM

stands for the complete symmetrization of

the objects inside the curly brackets, for example

{ηq1}µ1µ2µ3
= ηµ1µ2

q1µ3
+ ηµ1µ3

q1µ2
+ ηµ2µ3

q1µ1
.

The basic integral is now the scalar one

Ĩ(2)(d;α, β; q1, q2,m) =

∫
ddp

(2π)d
1

((p+ q1)2 −m2)α ((p+ q2)2 −m2)β
(5.3)

5We thank the referee of this paper for stressing the importance of such an issue. On the other hand

our intention in this section is to stress the universal features of the non-local Fronsdal equation.
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For instance, the bubble integral for the s = 1 current in the scalar model

J̃µν(k) =

∫
ddp

(2π)d
(2p− k)µ(2p− k)ν

(p2 −m2)((p− k)2 −m2)
(5.4)

reduces to

J̃µν(m, k) = − 8π

(2π)d+2
ηµν Ĩ

(2)(d+ 2; 1, 1) + 8
(4π)2

(2π)d+4
kµkν Ĩ

(2)(d+ 4; 1, 3) (5.5)

+
16π

(2π)d+2
kµkν Ĩ

(2)(d+ 2; 1, 2) +
1

(2π)d
kµkν Ĩ

(2)(d; 1, 1)

The integral Ĩ(2)(d;α, β; k,m) can be cast into the form of a hypergeometric series

Ĩ
(2)
IR (d;α, β; k,m) = 2−dπ−d/2i1−d

(
−m2

)−α−β+ d
2
Γ
(
−d

2 + α+ β
)

Γ(α+ β)

× 3F2

(
α, β,−d

2 + α+ β
α+β
2 , α+β+1

2

∣∣∣
k2

4m2

)
(5.6)

This representation is valid for large m compared to k. When m is small compared to k

another representation is available

Ĩ
(2)
UV(d;α, β; k,m) = 2−dπ−d/2i1−d

(
k2
)−α−β+ d

2

{(
Γ
(
d
2 − α

)
Γ
(
d
2 − β

)
Γ
(
−d

2 + α+ β
))

Γ(α)Γ(β)Γ(d− α− β)

× 3F2

(
−d

2 + α+ β, −d+α+β+1
2 , −d+α+β+2

2

−d
2 + α+ 1,−d

2 + β + 1

∣∣∣
4m2

k2

)
(5.7)

+

(
−m2

k2

) d
2
−α Γ

(
α− d

2

)

Γ(α)
3F2

(
β, −α+β+1

2 , −α+β+2
2

d
2 − α+ 1,−α+ β + 1

∣∣∣
4m2

k2

)

+

(
−m2

k2

) d
2
−β Γ

(
β − d

2

)

Γ(β)
3F2

(
α, α−β+1

2 , α−β+2
2

−β + d
2 + 1, α− β + 1

∣∣∣
4m2

k2

)}

In the sequel we consider also massless models. The relevant results can be obtained

from the massive models by taking the m → 0 limit. But they can also be obtained by

setting m = 0 from the very beginning. In such a case the basic integral is

Ĩ(2)(d;α, β; q1, q2, 0) =

∫
ddp

(2π)d
1

((p+ q1)2)
α ((p+ q2)2)

β
(5.8)

= 2−dπ−d/2i1−d(k2)
d
2
−α−β Γ

(
d
2 − α

)
Γ
(
d
2 − β

)
Γ
(
α+ β − d

2

)

Γ(α)Γ(β)Γ(d− α− β)

5.1 Guidelines for the calculations

We will now set out to do explicit calculations and derive results for two-point functions in

the scalar and fermion model in different dimensions. The method just outlined is the most

convenient for our purposes, but it is nevertheless one out of many. In fact, even within it

there are different possibilities or schemes. We expect that our results may depend on such
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schemes, but also to find a criterion to extract the scheme independent part. In most cases

this is conservation and finiteness. In particular, by suitably choosing the scheme we will

be able, for instance, to obtain both finiteness and conservation for spin 1 current in any

dimension in the fermion model. The same is not as easy for higher spin currents. In generic

spin current correlators and, therefore, in the corresponding one-loop effective actions, we

will find, beside non-conserved terms, also terms that diverge in the IR limit m → ∞.

Fortunately these terms are finite in number and easy to identify by expanding the OLEA

near the IR and the UV. Not only, all the nonconserved and all IR divergent terms are

local. It is thus possible to subtract all the terms that diverge in the IR, which include, in

particular, all the nonconserved ones and recover both conservation and finiteness in the IR.

In this process a particular attention has to be paid to the terms of order 0 in m, in

even dimensions. In some cases they are local and conserved, and appear both in the IR

and the UV. Even in this case we follow the attitude of subtracting the IR term from the

corresponding UV one, on the assumption that physical information is contained in the

difference between the UV and the IR, not in their absolute values.

Finally it should be added that the resulting IR and UV expansions are both conver-

gent.

The calculations in the sequel are mainly carried out using a new Mathematica

code [54].

To somewhat abbreviate the following formulas, at times we use the compact notation

Π
(2)
a (k, n1, n2) =

(
n1 · πk · n2

)
2 + a(n1 · πk · n1)(n2 · πk · n2), (5.9)

Π
(3)
a (k, n1, n2) =

(
n1 · πk · n2

)
3 + a(n1 · πk · n1)(n1 · πk · n2)(n2 · πk · n2), (5.10)

where a is some constant.

The symbol k used in the above formula and in the sequel deserves an explanation: k

saturated with n1, n2 represents the vector kµ, while in the other cases it represents the

modulus |k|. Finally, contrary to ([1]), the latter is k ≡ |k| =
√
k2.

6 3d scalar effective field action tomography

In this section we start the analysis of the two-point functions of spin higher than 1 currents.

Before reporting on the general spin s case we would like to analyze in detail a few

low spin cases. It is in in general possible to obtain compact expressions of the one-loop

effective actions. However expanding it in powers of m near the IR and UV limits (an

operation we call tomography) provides the most interesting information.

It is possible to use the parameter m to cut to slices the two-point function of currents

of any spin. Let us consider the case of a massive scalar model (msm) in 3d. The basic

formulas are (2.1), (2.2), (2.4), (2.6) and (5.4) together with the analogous ones for higher

spins, with d = 3.

– 19 –



J
H
E
P
1
2
(
2
0
1
6
)
0
8
4

6.1 3d msm: spin 1 current

This case is well known and simple, but it is excellent for pedagogical purposes. The exact

2-pt correlator for s = 1 is

(n1 ·J̃(k)·n2) =
i

8πk3

(
−4m2 coth−1

(
2m

k

)
+ 2km+ k2 coth−1

(
2m

k

))
(k · n1) (k · n2)

+
i

8πk
(n1 · n2)

(
4m2 coth−1

(
2m

k

)
+ 2km− k2 coth−1

(
2m

k

))
(6.1)

We can expand (6.1) in power of k
m (IR) or of m

k (UV). In the IR case we find

O(m) :
im (n1 ·n2)

2π
(6.2)

O(m−1) : − ik2

24πm

(
n1 ·π(k) · n2

)
(6.3)

O(m−3) : − ik4

480πm3

(
n1 ·π(k) · n2

)
(6.4)

. . . . . .

while the even powers of m vanish. The first is a (non-conserved and divergent in the IR

limit) local term ∼ ηµν , which must be subtracted away. The other terms are all conserved

and proportional to the conserved structure

n1 ·π(k) ·n2, (6.5)

The UV expansion is instead

O(m0) : − k

16

(
n1 ·π(k) · n2

)
(6.6)

O(m) :
im

2πk2
(k ·n1) (k ·n2) (6.7)

O(m2) :
m2

4k

(
n1 ·π(k) · n2

)
(6.8)

O(m3) :
2im3

3πk2

(
n1 ·π(k) · n2

)
(6.9)

. . . . . .

In fact we have O(m2n) = 0 for n ≥ 2. The only nonvanishing terms with even powers of

m are O(m0),O(m2). For these terms see the comment below.

Except (6.7) the other terms are conserved and proportional to (6.5). The terms

proportional to (6.5) are all non-local in the UV, and local in the IR, in particular (6.3) is

local and corresponds to the YM action in 3d, see (3.1).

The two nonconserved terms are (6.2) in the IR and (6.7) in the UV. The first is local

and the second is nonlocal, but their divergence is the same and local:

− i

2π
(k ·n2)
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This means that we can cancel it by subtracting a local term, ∼ m
∫
d3x tr(A2). This

amounts to subtracting the IR contribution (which is local) from the UV one. Indeed we get

OUV(m)−OIR(m) = − im

2π

(
n1 ·π(k) · n2

)
(6.10)

So the term of order m in the UV and IR conjure up to reform again the same conserved

structure as all the other terms. Taking the UV and IR limits splits apart this conserved

structure. The conclusion is that, up to a local term we can view the effective action as a

sum of infinite many terms, all proportional to n1 · π(k) · n2 with coefficients proportional

to various monomials of m and k. In compact form:

i

8πk

(
4m2 coth−1

(
2m

k

)
− 2km− k2 coth−1

(
2m

k

))
n1 ·π(k) · n2 (6.11)

6.2 3d msm: e.m. tensor

We have to consider

(n2
1 · T̃ (k) · n2

2) = nµ
1n

ν
1T̃µνλρ(k)n

λ
2n

ρ
2

Expanding in the IR we have

O(m3) : +
2im3

3π

(
2 (n1 ·n2)

2 + (n1 ·n1) (n2 ·n2)
)

(6.12)

O(m) : − im

6π

(
− (n2 ·n2) (k ·n1)

2 − 4 (n1 ·n2) (k ·n2) (k ·n1)

+2k2 (n1 ·n2)
2 + k2 (n1 ·n1) (n2 ·n2)− (n1 ·n1) (k ·n2)

2
)

(6.13)

O(m−1) :
ik4

60πm
Π

(2)
1

2

(k, n1, n2) (6.14)

O(m−3) :
ik6

1680πm3
Π

(2)
1

2

(k, n1, n2) (6.15)

. . . . . .

while all the even powers vanish. The O(m3) and O(m) terms are non-conserved, while

the other terms are all conserved and proportional to the same structure.

In the UV we have

O(m0) :
k3

32
Π

(2)
1

2

(k, n1, n2) (6.16)

O(m) :
im

2πk2
(k ·n1)

2 (k ·n2)
2 (6.17)

O(m2) : −m2k

4
Π

(2)
1

2

(k, n1, n2) (6.18)

O(m3) :
2im3

3πk4
(
−3 (k ·n1)

2 (kn2)
2 + k2 (n1 ·n1) (k ·n2)

2

+4k2 (n1 ·n2) (k ·n1) (k ·n2) + k2 (n2 ·n2) (k ·n1)
2
)

(6.19)

O(m4) :
m4

2k
Π

(2)
1

2

(k, n1, n2) (6.20)

O(m2p) : 0, for p ≥ 3
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In fact we have O(m2m) = 0 for m ≥ 3. The only nonvanishing terms with even powers of

m are O(m0),O(m2),O(m4) (again, about these terms, see the comment below)

All the terms are conserved except O(m) and O(m3). But putting together the anal-

ogous non-conserved terms in the UV and IR (that is subtracting the local IR terms from

the (nonlocal) UV ones) we recover conservation.

OUV(m)−OIR(m) =
imk2

3π
Π

(2)
1

2

(k, n1, n2) (6.21)

OUV(m
3)−OIR(m

3) = −4im3

3π
Π

(2)
1

2

(k, n1, n2) (6.22)

So we find a result analogous to the 1-current. Up to local terms the effective action is a

sum of infinite many terms, all proportional to the same conserved structure (6.22) with

coefficients proportional to various monomials of m and k. They form a convergent series

both in the IR and in the UV. In compact form:

i

48πk

(
48m4 coth−1

(
2m

k

)
+ 2km

(
5k2 − 12m2

)
− 24k2m2 coth−1

(
2m

k

)

+3k4 coth−1

(
2m

k

))
Π

(2)
1

2

(k, n1, n2) (6.23)

It should be noticed that the massless model case gives the result:

(n2
1 ·T̃ (k)·n2

2) =
k3

32
Π

(2)
1

2

(k, n1, n2) (6.24)

This is conserved but not traceless, which is not surprising because a scalar massless model

in d ≥ 3 is not conformal invariant.

Eq. (6.21) is conserved. It does not coincide with the linearized Einstein-Hilbert action

(in particular it is nonlocal), but this is simply a nonlocal version of the same, in the same

sense as we have already seen for spin 3 and higher in section 3.

6.3 3d msm: spin 3 current

For the 3-spin current we have in the IR

O(m5) :
8im5

5π

(
2 (n1 ·n2)

3 + 3 (n1 ·n1) (n2 ·n2) (n1 ·n2)
)

(6.25)

O(m3) :
2im3

3π

(
3 (n1 ·n1) (n1 ·n2) (k ·n2)

2+3
(
2 (n1 ·n2)

2+(n1 ·n1) (n2 ·n2)
)
(k ·n1) (k ·n2)

+ (n1 ·n2)
(
3 (n2 ·n2) (k ·n1)

2 − k2
(
2 (n1 ·n2)

2 + 3 (n1 ·n1) (n2 ·n2)
)))

(6.26)

O(m) :
im

10π

(
3 (n2 ·n2) (k ·n2) (k ·n1)

3 + 3 (n1 ·n2)
(
3 (k ·n2)

2 − k2 (n2 ·n2)
)
(k ·n1)

2

+3 (k ·n2)
(
(n1 ·n1) (k ·n2)

2 − k2
(
2 (n1 ·n2)

2 + (n1 ·n1) (n2 ·n2)
))

(k ·n1)

+k2 (n1 ·n2)
(
k2

(
2 (n1 ·n2)

2 + 3 (n1 ·n1) (n2 ·n2)
)
− 3 (n1 ·n1) (k ·n2)

2
))

(6.27)

O(m−1) : − ik6

140πm
Π

(3)
3

2

(k, n1, n2) (6.28)
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The coefficients of even powers in m vanish, while the negative odd powers are all pro-

portional to the conserved structure (6.28). The terms O(m5),O(m3),O(m) are local and

non-conserved.

In the UV we have

O(m0) : −k5

64
Π

(3)
3

2

(k, n1, n2) (6.29)

O(m) :
im

2πk2
(k ·n1)

3 (k ·n2)
3 (6.30)

O(m2) :
3m2k3

16
Π

(3)
3

2

(k, n1, n2) (6.31)

O(m3) :
2im3

3πk4
(k ·n1)(k ·n2)

(
−5 (k ·n1)

2 (k ·n2)
2 + 3k2(n1 ·n1) (k ·n2)

2

+9k2(n1 ·n2) (k ·n1)(k ·n2) + 3k2(n2 ·n2) (k ·n1)
2
)

(6.32)

O(m4) : −3m4k

4
Π

(3)
3

2

(k, n1, n2) (6.33)

O(m5) :
8im5

5πk6

(
6k4 (n1 ·n2)

2(k ·n1)(k ·n2) + 3k4(n1 ·n1)(n1 ·n2) (k ·n2)
2

+3k4(n1 ·n1)(n2 ·n2)(k ·n1)(k ·n2) + 3k4(n1 ·n2)(n2 ·n2) (k ·n1)
2

−3k2(n1 ·n1)(k ·n1) (k ·n2)
3 − 9k2(n1 ·n2) (k ·n1)

2 (k ·n2)
2

−3k2(n2 ·n2) (k ·n1)
3(k ·n2) + 5 (k ·n1)

3 (k ·n2)
3

)
(6.34)

O(m6) :
m6

k
Π

(3)
3

2

(k, n1, n2)

The terms O(m2n) with n ≥ 4 vanish. All terms are conserved, except

O(m),O(m3),O(m5).

Proceeding as above we subtract from the non-conserved terms in the UV the homo-

geneous local non-conserved terms in the IR and obtain conserved terms:

OUV(m)−OIR(m) = − imk4

5π
Π

(3)
3

2

(k, n1, n2) (6.35)

OUV(m
3)−OIR(m

3) =
4im3

3π
k2Π

(3)
3

2

(k, n1, n2) (6.36)

OUV(m
5)−OIR(m

5) = −16im5

5π
Π

(3)
3

2

(k, n1, n2) (6.37)

Therefore up to local terms the effective action is a sum of infinite many terms, all propor-

tional to the same conserved structure with coefficients proportional to various monomials

of m and k.They form a convergent series both in the IR and in the UV. In compact form:

i

480πk

(
960m6 coth−1

(
2m

k

)
− 480km5 − 720k2m4 coth−1

(
2m

k

)
+ 320

(
k2
)
3/2m3

+180k4m2 coth−1

(
2m

k

)
− 66k4km− 15k6 coth−1

(
2m

k

))
Π

(3)
3

2

(k, n1, n2) (6.38)
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The term (6.36) is local and gives rise to an eom, which is the nonlocal version of the

Fronsdal spin 3 equation of motion we have already met above.

6.4 3d msm: higher spin currents

This scheme repeats itself for higher spin currents. For spin 4 there are 4 non-conserved

terms in the IR and 4 in the UV, while the others are conserved or 0. Subtracting the IR

non-conserved terms from the corresponding UV ones all the nonvanishing terms turn out

to be proportional to the conserved structure:

1

3

(
n1 ·π(k) ·n2

)
4+

1

8

(
n1 ·π(k) ·n1

)
2
(
n2 ·π(k) ·n2

)
2

+(n1 ·π(k) ·n1)
(
n1 ·π(k) ·n2

)
2(n2 ·π(k) · n2) (6.39)

All terms with even powers of m vanish, except m0,m2,m4,m6,m8.

For spin 5 there are 5 non-conserved terms in the IR and 5 in the UV, while the others

are conserved or 0. Subtracting the IR non-conserved terms from the corresponding UV

ones all the nonvanishing terms turn out to be proportional to the conserved structure:

(
n1 ·π(k) ·n2

)
5+

15

8

(
n1 ·π(k) ·n1

)
2(n1 ·π(k) ·n2)

(
n2 ·π(k) ·n2

)
2

+5(n1 ·π(k) ·n1)
(
n1 ·π(k) ·n2

)
3(n2 ·π(k) · n2) (6.40)

All terms with even powers of m vanish, except m0,m2,m4,m6,m8,m10.

Comment 1. As we have seen above any conserved structure is connected to a (non-

local) higher spin field equation of motion. In particular eqs. (6.3) and (6.21) are conserved

structures which represent the linearized YM and EH actions, respectively, the second one

in a nonlocal version. Eq. (6.36) is non-local and gives rise to a variant of the nonlocal

Fronsdal equation discussed in section 3. It is clear that any two-point correlator structure

can be uniquely related to a given (linearized) equation of motion. The structure of the

2pt-functions conform to the general discussion in section 4. This will be confirmed by the

forthcoming analysis.

It is remarkable that the conserved structures that appear in the above expansions are

always the same for any fixed 2pt correlator. As we will see this is not the case for the

effective field action originating from a fermion model.

Comment 2. The nonvanishing even m power terms are a finite number in all cases.

They come from the fact that the UV expansion of coth−1

coth−1

(
2m

k

)
= − iπ

2
+

2m

k
+

8m3

3k3
+

32m5

5k5
+O

(
m6

)
(6.41)

contains the factor − iπ
2 . This is the reason why they are a finite number and do not contain

the factor i
π like the others. The factor − iπ

2 comes from the logarithmic cut of coth−1 and

it is determined by the choice of the Riemann sheet. So it is scheme dependent.
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It is interesting to compare the O(m0) results with the massless model case, obtained

via (5.8). In the massless case for spin 1 we get

− 1

16
k(n1 ·π(k) ·n2) (6.42)

for spin 2
k3

32
Π

(2)
1

2

(k, n1, n2) (6.43)

and for spin 3

− k5

64
Π

(3)
3

2

(k, n1, n2) (6.44)

These correlators are nonlocal and coincide with the OUV(m
0) terms evaluated above.6

To be precise there is an indeterminacy in their sign due to the branch point at k = 0

originated from the choice of sign of the square root
√
k2. This indeterminacy is present

also in the m → 0 limit of the massive model and it is related to the choice of Riemann

sheet mentioned above. As a consequence of it, in this paper we do not worry about the

sign in front of the Maxwell and EH kinetic terms that appear in the effective actions.

We postpone to a future work the task of finding a physically consistent prescription that

eliminates this indeterminacy.

7 3d fermion effective field theory action tomography

We consider now the same analysis for the massive fermion model (mfm). The starting

point are eqs. (2.7), (2.10), (2.27), (2.28) and the like for higher spins (see also [1]).

7.1 3d mfm: spin 1 current

This case is rather simple. It takes a very compact form

(n1 ·J̃(k)·n2) =
i

8πk

(
−
(
4m2 coth−1

(
2m

k

)
− 2km+ k2 coth−1

(
2m

k

))
(n1 ·π(k) ·n2)

+4im coth−1

(
2m

k

)
ǫ (k ·n1 ·n2)

)
(7.1)

and is conserved without any subtraction.

Expanding, the term

O(m0) : −ǫ (k ·n1 ·n2)

4π
(7.2)

corresponds to the linearized CS action (here ǫ (k ·n1 ·n2) means ǫµνρk
µnν

1n
ρ
2), and the term

O(m−1) : − i

12πm
k2 (n1 ·π(k) ·n2) (7.3)

in the IR corresponds to the linearized YM action.

6Appendix B contains a complete analysis of two-point functions for massless scalar and fermion models.
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7.2 3d mfm: e.m. tensor — even part

For the e.m. tensor we have in the IR (all formulas below have to be multiplied by the

factor 1
16)

O(m3) : −2
im3

3π

(
(n1 ·n2)

2 + (n1 ·n1) (n2 ·n2)
)

(7.4)

O(m) : − imk2

6π
Π

(2)
−1(k, n1, n2) (7.5)

O(m−1) :
ik4

40πm
Π

(2)

− 1

3

(k, n1, n2) (7.6)

O(m−3) :
ik6

672m3π
Π

(2)

− 1

5

(k, n1, n2) (7.7)

. . . . . .

The even powers vanish. The O(m3) term is not conserved, while the other terms are all

conserved and proportional to different combinations of the two conserved structures.

In the UV we have

O(m0) :
k3

32
Π

(2)

− 1

2

(k, n1, n2) (7.8)

O(m) : 0 (7.9)

O(m2) :
m2

8
k(n1 · π(k) · n1)(n2 · π(k) · n2) (7.10)

O(m3) : −2
im3

3πk4
((
k2 (n2 ·n2)− 2 (k ·n2)

2
)
(k ·n1)

2 + 2k2 (n1 ·n2) (k ·n2) (k ·n1)

+k2 (n1 ·n1) (k ·n2)
2
)

(7.11)

O(m4) : −m4

2k
Π

(2)
1

2

(k, n1, n2) (7.12)

O(m5) : −2
4im5

5πk2
Π

(2)
1

3

(k, n1, n2) (7.13)

O(m6) : 0

These are all conserved except O(m3). But putting together the analogous non-conserved

term in the UV and IR (that is subtracting the local IR term from the (nonlocal) UV one)

we recover conservation:

OUV(m
3)−OIR(m

3) = 2
im3

3π
Π

(2)
1 (k, n1, n2) (7.14)

eq. (7.5) is the linearized and local version of the EH equation of motion (see section 3).

The other are non-local versions of the same (except (7.10). Actually, according to our

general philosophy the term OIR(m), which is divergent in the IR limit, must be subtracted.

It will therefore appear in the place of the vanishing term (7.9) with inverted sign.

Once again up to local terms the effective action is a sum of infinite many terms,

which form a convergent series both in the IR and in the UV, all of them proportional to

various combinations of the conserved structures with coefficients proportional to various
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monomials of m and k. In compact form:

− i

96πk

(
96m4 coth−1

(
2m

k

)
− 48km3−4k3m− 6k4 coth−1

(
2m

k

))(
n1 ·π(k) ·n2

)
2

− i

96πk

(
48m4 coth−1

(
2m

k

)
− 24km3 − 24k2m2 coth−1

(
2m

k

)
+10k3m

+3k4 coth−1

(
2m

k

))
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2). (7.15)

7.3 3d mfm: e.m. tensor — odd part

In the IR (all formulas below have to be multiplied by the factor 1
16)

O(m3) : 0

O(m2) : −m2

π
(n1 ·n2) ǫ (k ·n1 ·n2) (7.16)

O(m0) :
k2

12π
ǫ (k ·n1 ·n2) (n1 ·π(k) ·n2) (7.17)

O(m−2) :
k4

240m2π
ǫ (k ·n1 ·n2) (n1 ·π(k) ·n2) (7.18)

. . . . . .

the odd powers vanish. The O(m2) term is not conserved, while the other terms are all

conserved and proportional to the unique odd conserved structure.

In the UV:

O(m0) : 0

O(m) : − ikm

8
ǫ (k ·n1 ·n2) (n1 ·π(k) ·n2) (7.19)

O(m2) : − m2

πk2
(k ·n1) (k ·n2) ǫ (k ·n1 ·n2) (7.20)

O(m3) : i
m3

2k
ǫ (k ·n1 ·n2) (n1 ·π(k) ·n2)

O(m4) : −4m4

3πk
ǫ (k ·n1 ·n2) (n1 ·π(k) ·n2)

. . . . . .

O(m2) is not conserved, but

OUV(m
2)−OIR(m

2) =
m2

π
ǫ (k ·n1 ·n2) (n1 ·π(k) ·n2) (7.21)

is. In summary, after subtracting OIR(m
2) the odd 2-pt correlator is:

− m

4πk

(
4m2 coth−1

(
2m

k

)
− 2km− k2 coth−1

(
2m

k

))
ǫ (k ·n1 ·n2) (n1 ·πk, n2) (7.22)

The term (7.17) and, in a scaling limit, also (7.19), give rise to the linearized CS action as

discussed in [1].
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7.4 3d mfm: spin 3, even part

This was already discussed in [1], so we report here only the final results. One must

subtract the local terms O(m5),O(m3) in the IR, which are not conserved. After which

the effective action becomes

− i

216πk

(
192m6 coth−1

(
2m

k

)
− 96km5 − 48k2m4 coth−1

(
2m

k

)
(7.23)

+16k3m3 − 12k4m2 coth−1

(
2m

k

)
− 6k5m+ 3k6 coth−1

(
2m

k

))(
n1 ·π(k) ·n2

)
3

− i

288πk

(
384m6 coth−1

(
2m

k

)
− 192km5 − 128k2m4 coth−1

(
2m

k

)
+ 48k3m3

+28k4m2 coth−1

(
2m

k

)
+6k5m−3k6 coth−1

(
2m

k

))
(n1 ·π(k) ·n1)(n1 ·π(k) ·n2)(n2 ·π(k) ·n2)

The OIR(m) term is conserved and has to be subtracted from it. The interpretation of

these conserved structures in terms of massless Fronsdal eom has been discussed above. At

each order they are different combinations of two conserved structures
(
n1 ·π(k) ·n2

)
3 and (n1 ·π(k) ·n1)(n1 ·π(k) ·n2)(n2 ·π(k) ·n2) (7.24)

but it is actually easy to prove that all these combinations give rise to the same eom (after

taking the trace of the resulting equation and re-inserting it). The only condition is that

the coefficient of the first structure be nonvanishing.

7.5 3d mfm: spin 3, odd part

One must subtract the local terms O(m4),O(m2) in the IR, which are not conserved. After

which the effective action becomes:

− 1

216πk

(
96m5 coth−1

(
2m

k

)
− 48km4 − 4k3m2 − 3k4m coth−1

(
2m

k

))

·ǫ (k ·n1 ·n2) (n1 ·π(k) ·n1)(n2 ·π(k) ·n2) (7.25)

− 1

54πk

(
48m5 coth−1

(
2m

k

)
− 24km4 − 24k2m3 coth−1

(
2m

k

)
+ 10k3m2

+3k4m coth−1

(
2m

k

))
ǫ (k ·n1 ·n2)

(
n1 ·π(k) n2

)
2

The meaning of the term O(m) in the UV (in the scaling limit)

− i
m

|k|ǫ (k ·n1 ·n2) k
4

(
1

36

(
n1 ·π(k) ·n2

)
2 − 1

144
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)
(7.26)

and O(m0) in the IR

ǫ (k ·n1 ·n2)

(
k4

240π
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)−

2k4

135π

(
n1 ·π(k) ·n2

)
2

)
(7.27)

have already been discussed in [1].
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8 Tomography in 5d

There is no substantial difference between 3d and 5d. We start from the same formulas as

in 3d and change only the dimension. For obvious reasons of readability we limit ourselves

to the even parity part and the lowest spins, although the generalization is at hand.

8.1 5d scalar model

8.1.1 5d msm: spin 1 current

The analog of eq. (6.1) is

(n1 ·J̃(k)·n2) = − i

768π2k3

(
k2 (n1 ·n2)

(
40km3 + 3

(
k2 − 4m2

)
2 coth−1

(
2m

k

)
− 6k3m

)

+3

(
8km3 −

(
k2 − 4m2

)
2 coth−1

(
2m

k

)
+ 2k3m

)
(k ·n1) (k ·n2)

)
(8.1)

This is not conserved, but the divergence is local. Expanding in powers of m like in 3d, we

get in the IR

O(m3) : − im3

12π2
(n1 ·n2) (8.2)

O(m) :
im

48π2
k2(n1 ·π(k) ·n2) (8.3)

O(m−1) : − i

960π2m
k4(n1 ·π(k) ·n2) (8.4)

. . . : . . .

All terms corresponding to even powers of m vanish. In the UV we have instead

O(m0) : − 1

512π
k3(n1 ·π(k) ·n2) (8.5)

O(m) : 0

O(m2) : m2 1

64π
k(n1 ·π(k) ·n2) (8.6)

O(m3) : −m3 i

12π2

(k ·n1) (k ·n2)

k2
(8.7)

O(m4) : −m4 1

32πk
(n1 ·π(k) ·n2) (8.8)

. . . . . .

All even powers of m ≥ 6 vanish. All these terms are conserved except OIR(m
3) and

OUV(m
3). But once again OIR(m

3) is local and can be subtracted, and

OUV(m
3)−OIR(m

3) =
im3

12π2
(n1 ·π(k) ·n2) (8.9)

The term O(m) is conserved but divergent in the IR limit. Therefore, according to our

recipe, it must be subtracted and will appear with opposite sign in the UV list, where the

corresponding term is missing. This term yields the Maxwell (or linearized YM) action

and EOM, with a coupling ∼ m.
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8.1.2 5d msm: spin 2 current

For the full 2-pt function of the e.m. tensor is much too cumbersome see section 11. As

expected it is not conserved, as will be clear from the expansion in powers of m, but the

terms responsible for the non-conservation are local. In the IR we have

O(m5) : − im5

15π2

(
2 (n1 ·n2)

2 + (n1 ·n1) (n2 ·n2)
)

(8.10)

O(m3) : − im3

36π2

(
(n2 ·n2) (k ·n1)

2 + 4 (n1 ·n2) (k ·n2) (k ·n1)

−2k2 (n1 ·n2)
2 − k2 (n1 ·n1) (n2 ·n2) + (n1 ·n1) (k ·n2)

2
)

(8.11)

O(m) : − imk4

120π2
Π

(2)
1

2

(k, n1, n2) (8.12)

O(m−1) :
ik6

3360π2m
Π

(2)
1

2

(k, n1, n2) (8.13)

. . . : . . .

The terms corresponding to odd powers of m vanish. In the UV we have

O(m0) :
k5

1536π
Π

(2)
1

2

(k, n1, n2) (8.14)

O(m2) : −m2k3

128π
Π

(2)
1

2

(k, n1, n2) (8.15)

O(m3) : − im3

12π2k2
(k·n1)

2 (k ·n2)
2 (8.16)

O(m4) :
m4k

32π
Π

(2)
1

2

(k, n1, n2) (8.17)

O(m5) : − im5

15π2k4
(
k2 (n1 ·n1) (k ·n2)

2 + 4k2 (n1 ·n2) (k ·n1) (k ·n2)

+k2 (n2 ·n2) (k ·n1)
2 − 3k4 (k ·n1)

2 (k ·n2)
2
)

(8.18)

O(m6) : − m6

24πk
Π

(2)
1

2

(k, n1, n2) (8.19)

. . . . . .

The terms O(m) and O(m2k) with k ≥ 4 vanish. All the nonvanishing terms are conserved

except those of order 3 and 5. But the non-conserved terms in the IR are local and

OUV(m
5)−OIR(m

5) =
2im5

15π2
Π

(2)
1

2

(k, n1, n2) (8.20)

OUV(m
3)−OIR(m

3) = − im3k2

18π2
Π

(2)
1

2

(k, n1, n2) (8.21)

. . . . . .

These are conserved. Eq. (8.21) gives rise to a (nonlocal) version of the linearized EH action.

Also in this case the term OIR(m) must be subtracted, although conserved, because it is

divergent in the IR; as a consequence it will appear with opposite sign in the UV list, where

the corresponding term is missing.
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8.1.3 5d msm: spin 3 current

Once again the 2pt correlators of spin 3 currents can be calculated exactly,see section 11,

but we will skip it here and go to the IR expansion. The terms O(m7),O(m5),O(m3) are

not conserved, but local, while

O(m) :
imk6

280π2
Π

(3)
3

2

(k, n1, n2) (8.22)

O(m−1) : − ik8

10080π2m
Π

(3)
3

2

(k, n1, n2) (8.23)

. . . . . .

Moreover OIR(m
n) = 0 for n even.

Near the UV the nonvanishing terms are:

O(m0) : − k7

4096π
Π

(3)
3

2

(k, n1, n2) (8.24)

O(m2) :
m2k5

256π
Π

(3)
3

2

(k, n1, n2) (8.25)

O(m4) : −3m4k3

128π
Π

(3)
3

2

(k, n1, n2) (8.26)

O(m6) :
km6

16π
Π

(3)
3

2

(k, n1, n2) (8.27)

O(m8) : − m8

16πk
Π

(3)
3

2

(k, n1, n2) (8.28)

while O(m2n) = 0 for n ≥ 5. As for the odd m power terms they are conserved for n ≥ 9:

O(m9) : − 32im9

315π2k2
Π

(3)
3

2

(k, n1, n2) (8.29)

. . . . . .

while O(m) = 0 and O(m3),O(m5),O(m7) are non-local and non-conserved. But once

again

OUV(m
7)−OIR(m

7) =
8im7

35π2
Π

(3)
3

2

(k, n1, n2) (8.30)

OUV(m
5)−OIR(m

5) = −2im5k2

15π2
Π

(3)
3

2

(k, n1, n2) (8.31)

OUV(m
3)−OIR(m

3) =
im3k4

30π2
Π

(3)
3

2

(k, n1, n2)) (8.32)

The term (8.31) corresponds to the spin 3 Fronsdal EOM. As we see from these examples

the scheme for 5d is similar to 3d. Once again the term OIR(m) must be subtracted,

although conserved, because it is divergent in the IR; as a consequence it will appear with

opposite sign in the UV list, where the corresponding term is missing.
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8.2 5d fermion model

8.2.1 5d mfm: spin 1 current

The analog of eq. (7.1) (for the even part) is

(n1 ·J̃(k)·n2) = − i

128π2k

(
−16m4 coth−1

(
2m

k

)
+ 8km3 − 8k2m2 coth−1

(
2m

k

)

−6k3m +3k4 coth−1

(
2m

k

))
(n1 ·π(k) ·n2) (8.33)

which is conserved.

Expanding in powers of m like in 3d, all coefficients have of course the same conserved

structure. In the IR all even m-power coefficient vanish and, for instance,

O(m) :
im

12π2
k2(n1 ·π(k) ·n2) (8.34)

which (with reversed sign) corresponds to the Maxwell action. In the UV we have instead,

O(m0) : − 3

256π
k3(n1 ·π(k) ·n2) (8.35)

O(m2) : m2 1

32π
k(n1 ·π(k) ·n2) (8.36)

O(m4) : m4 1

16πk
(n1 ·π(k) ·n2) (8.37)

O(m5) : m5 4i

15π2k2
(n1 ·π(k) ·n2) (8.38)

O(m7) : m7 32i

105π2k4
(n1 ·π(k) ·n2) (8.39)

. . . . . .

while O(m) = O(m3) = O(mn) = 0 for even n ≥ 6. According to our recipe the term

O(m) must be subtracted and will appear in the UV list with opposite sign

8.2.2 5d mfm: e.m. tensor

In this subsection every result must be multiplied by a factor of 1
16 .

In the IR the even m-power coefficients vanish. The nonvanishing ones are

O(m5) :
2im5

15π2

(
(n1 ·n2)

2 + (n1 ·n1)(n2 ·n2)
)

(8.40)

O(m3) :
ik2m3

18π2
Π

(2)
−1(k, n1, n2) (8.41)

O(m) : − ik4m

40π2
Π

(2)

− 1

3

(k, n1, n2) (8.42)

O(m−1) :
ik6

672π2m
Π

(2)

− 1

5

(k, n1, n2) (8.43)

. . . . . .
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Except O(m5) they are all conserved. In the UV we find O(m) = O(m3) = O(m2n) = 0,

for even n ≥ 4, and

O(m0) :
k5

384π
Π

(2)

− 1

4

(k, n1, n2) (8.44)

O(m2) : −m2 k3

64π
Π

(2)

− 1

2

(k, n1, n2) (8.45)

O(m4) : −m4 k

32π
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2) (8.46)

O(m6) :
m6

12πk
Π

(2)
1

2

(k, n1, n2) (8.47)

O(m7) :
8im7

35πk2
Π

(2)
1

3

(k, n1, n2) (8.48)

. . . . . .

O(m5) is nonlocal and non-conserved, but

OUV(m
5)−OIR(m

5) = −2im5

15π2
Π

(2)
1 (k, n1, n2) (8.49)

The remaining terms are conserved. In particular OUV(m
2) corresponds to the linearized

EH action. The terms OIR(m),OIR(m
3) are conserved but divergent in the IR limit. So

they must be subtracted and will appear in the UV list with opposite sign.

8.2.3 5d mfm: spin 3 current

We give a brief account because this case varies with respect to the scalar model only in

one respect: the various conserved terms in the m expansion do not have always the same

conserved structure like in the latter case. In the IR the even power terms vanish, while

the odd power terms O(mn) are nonvanishing for n ≤ 7. Moreover O(m7),O(m5) are not

conserved, while all the others are. For instance

O(m3) : −8im3k4

405π2
Π

(3)
−1(k, n1, n2) (8.50)

O(m) :
4imk6

945π2
Π

(3)

− 37

64

(k, n1, n2) (8.51)

. . . . . .

In the UV O(m) = O(m3) = O(mn) = 0 for even n ≥ 10, while O(m0),O(m2),O(m4),

O(m6),O(m8) are nonvanishing and conserved. For instance

O(m8) :
m8

18πk
Π

(3)
3

2

(k, n1, n2) (8.52)

The odd powers O(mn) are nonvanishing for n > 0 and conserved except for n = 5, 7. But

again

OUV(m
5)−OIR(m

5) =
im5k2

15π2

(
(n1 ·π(k) ·n1)(n1 ·π(k) ·n2)(n2 ·π(k) ·n2)

)
(8.53)

OUV(m
7)−OIR(m

7) = −128im7

945π2
Π

(3)
23

16

(k, n1, n2) (8.54)
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It is curious that the fermionic model in 5d does not reproduce exactly the spin 3 Fronsdal

operator. In fact the term (8.53) has the right form but lacks the essential k2
(
n1 ·π(k) ·n2

)
3

part. This has to be considered a combinatorial coincidence. The terms OIR(m),OIR(m
3)

are conserved but divergent in the IR limit. So they must be subtracted and will appear

in the UV list with opposite sign.

Comment. The structure of the 2pt functions in 5d essentially repeats the scheme of

3d. The m-power expansions both in the IR and in the UV are similar: in the IR there

are non conserved local terms, while in the UV there are non-conserved nonlocal terms.

Subtracting the former from the latter one obtains conserved structures (and a finite IR

limit). All the other terms are conserved and have analogous types of structures in both

the fermionic and the scalar model.

9 Tomography in 4d

Even dimensional models present an additional problem concerning their regularization.

For odd d works by itself as a complete regulator in carrying out the integrals generated by

the Feynman diagrams. This is not anymore true for even d. The way out is well-known,

we will set d = 4+ ε. Another difference we will come across with, which is related to this,

is the appearance of log terms in the form factors. We will again expand the two-point

functions in powers of m near the IR and UV limits.

In almost all the two-point correlators and, therefore, in all the one-loop effective

actions, we will find non-conserved terms and terms that diverge in the IR m → ∞, like

in the odd dimensional case, but we will find also ε-divergent terms. Our general attitude

is to recover both conservation and finiteness in the IR. This is possible because all the

nonconserved and all divergent terms in the IR, as well as all ε-divergent terms, are local.

We will therefore subtract all the terms that diverge in the IR and in ε. They include, in

particular, all the nonconserved ones.

There remains however an ambiguity. Beside divergent and/or nonconserved terms, in

the case of m0 we meet also finite contributions, both in the IR and in the UV. Also for

these terms we subtract the IR from the UV contribution, on the assumption that it is this

difference that contains the physical information.

9.1 4d scalar model

The basic formulas are again (2.1), (2.2), (2.4), (2.6) and (5.4) together with the analogous

ones for higher spins, with d = 4 + ε.

9.1.1 4d msm: spin 1 current

The full formula for the 2pt correlator is expressed in terms of hypergeometric functions

and parameter derivatives thereof, and we dispense with writing it down explicitly here,

see however section 11. We will focus on the power of m expansions. As just mentioned,
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we have to consider also log(m) and 1
ε factors. In the IR we find

O(m2) : − im2

8π2

(
γ − 1− log(4π) + 2 log(m) +

2

ε

)
(n1 ·n2) (9.1)

O(m) : 0

O(log(m)) :
i log(m)

24π2
k2(n1 ·πk ·n2) (9.2)

O(m0) :
ik2

48π2

(
γ − log(4π) +

2

ε

)
(n1 ·π(k) ·n2) (9.3)

O(m−1) : 0

O(m−2) : − ik4

480π2m2
(n1 ·π(k) ·n2) (9.4)

. . . . . .

These coefficients are conserved except O(m2). All the odd powers of m vanish.

In the UV we find:

O(m0) : −i
k2

144π2

(
8− 3γ − log

(
1

64π3

)
− 3 log

(
−k2

)
− 6

ε

)
(n1 ·π(k) ·n2) (9.5)

O(m) : 0 (9.6)

O(m2) : − im2

24π2k2

((
−3 log

(
− k2

m2

)
+ 3

)
(k ·n1)(k ·n2)

+k2(n1 ·n2)

(
3(−2 + γ − log(4π)) + 3 log

(
−k2

)
+

6

ε

))
(9.7)

O(m3) : 0 (9.8)

O(m4) : −i
m4

16π2k2

(
− 2 log

(
− k2

m2

)
− 3

)
(n1 ·π(k) ·n2) (9.9)

. . . . . .

All odd powers of m vanish. The even powers are conserved except (9.7). Subtracting from

the latter the analogous (local) non-conserved term in the IR we find a conserved term

OUV(m
2)−OIR(m

2) = − im2

8π2

(
2 log

(
− k2

m2

)
− 1

)
(n1 ·π(k) ·n2) (9.10)

The O(log(m)) term is divergent in the IR, and the O(m0) is divergent in the ε → 0 limit.

Luckily they are local and can be subtracted with the following result:

OUV(m
0)−OIR(m

0)−OIR(log(m)) = − ik2

144π2

(
−3 log

(
− k2

m2

)
+ 8

)
(n1 ·π(k) ·n2)

(9.11)

This term corresponds to the linearized Maxwell action with an energy dependent coupling.
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9.1.2 4d msm: spin 2 current

In the IR the odd powers of m vanish. The nonvanishing even powers are

O(m4) : − im4

16π2

(
2 (n1 · n2)

2+(n1 · n1)(n2 · n2)
)(

2γ−3−2 log(4π)+4 log(m)+
4

ε

)

(9.12)

O(m2) : − im2

24π2

(
(n2 ·n2) (k ·n1)

2 + 4(n1 ·n2)(k ·n2)(k ·n1) (9.13)

−k2
(
2 (n1 ·n2)

2+(n1 ·n1)(n2 ·n2)
)
+ (n1 ·n1) (k ·n2)

2

)

·
(
γ − 1− log(4π) + 2 log(m) +

2

ε

)

O(log(m)) : − i log(m)

60π2
k4Π

(2)
1

2

(k, n1, n2) (9.14)

O(m0) : − ik4

120π2
Π

(2)
1

2

(k, n1, n2)

(
γ − log(4π) +

2

ε

)
(9.15)

O(m−2) :
ik6

1680m2π2
Π

(2)
1

2

(k, n1, n2) (9.16)

. . . . . .

The first two terms are not conserved, the logarithmic term is conserved but divergent in

the IR, the m0 term is divergent in the limit ε → 0. They all must be subtracted. The

remaining terms are conserved.

In the UV all the odd powers of m vanish. The nonvanishing even powers are

O(m0) :
ik4

1800π2

(
46− 15γ + 15 log(4π)− 15 log

(
−k2

)
− 30

ε

)
(9.17)

·Π(2)
1

2

(k, n1, n2)

O(m2) : − im2

72π2

((
6

ε
− 8 + 3γ + log

(
1

64π3

)
+ 3 log

(
−k2

))
(9.18)

×
(
(n2 ·n2) (k ·n1)

2 + 4(n1 ·n2)(k ·n2)(k ·n1) + (n1 ·n1) (k ·n2)
2

−k2
(
2 (n1 ·n2)

2 + (n1 ·n1)(n2 ·n2)
))

− 3

k2
(
−3 log

(
−k2

)
+ 6 log(m) + 5

)
(k ·n1)

2 (k ·n2)
2

)

and

O(m4) : − im4

16π2k4

(
k2

(
2 log

(
− k2

m2

)
− 1

)
(9.19)

·
(
(n2 ·n2) (k ·n1)

2 + 4(n1 ·n2)(k ·n2)(k ·n1) + (n1 ·n1) (k ·n2)
2 − 3 (k ·n1)

2 (k ·n2)
2

)
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+2k4
(
2 (n1 ·n2)

2 + (n1 ·n1)(n2 ·n2)

)(
−2 + γ − log(4π)− log

(
−k2

)
+

2

ε

))

O(m6) :
im6

36π2k2

(
6 log

(
− k2

m2

)
+ 11

)
Π

(2)
1

2

(k, n1, n2) (9.20)

. . . : . . .

O(m0) and all terms with even m power larger than 4 are conserved, while O(m2) and

O(m4) are not. According to our prescription we have to subtract not only OIR(m
2) and

OIR(m
4), but also OIR(m

0) and OIR(log(m)). We obtain

OUV(m
4)−OIR(m

4) = − im4

8π2

(
+2 log

(
− k2

m2

)
− 1

)
Π

(2)
1

2

(k, n1, n2) (9.21)

OUV(m
2)−OIR(m

2) =
im2

36π2
k2

(
3 log

(
− k2

m2

)
−5

)
Π

(2)
1

2

(k, n1, n2) (9.22)

and

OUV(m
0)−OIR(m

0)−OIR(log(m)) =
i

1800π2
k4(−15 log

(
− k2

m2

)
+ 46)

·Π(2)
1

2

(k, n1, n2) (9.23)

They are all conserved. (9.22) contains a nonlocal linearized version of the EH eom.

9.1.3 4d msm: spin 3 current

The scheme is the same as above. In the IR the odd power of m vanish. The even powers

m2n with n ≤ 0 are conserved together with the term proportional to log(m). The terms

OIR(m
2),OIR(m

6),OIR(m
6) are not conserved. Of course O(log[m]) diverges in the IR,

while the term OIR(m
0) diverges for ε → 0. According to our prescription all these terms,

which are local, have to be subtracted from the effective action. The result is as follows:

O(m−2) : − ik8

5040m2π2
Π

(3)
3

2

(k, n1, n2) (9.24)

O(m−4) : − ik10

110880m4π2
Π

(3)
3

2

(k, n1, n2) (9.25)

. . . . . .

In the UV the odd m power terms vanish. The even power of order 2, 4, 6 are not

conserved, but

OUV(m
0)−OIR(m

0)−OIR(log(m)) (9.26)

= − ik6

29400π2
Π

(3)
3

2

(k, n1, n2)

(
−105 log

(
− k2

m2

)
+ 352

)
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and

OUV(m
2)−OIR(m

2) =
im2k4

300π2
Π

(3)
3

2

(k, n1, n2)

(
(31− 15 log

(
− k2

m2

))
(9.27)

OUV(m
4)−OIR(m

4) = − im4k2

24π2
Π

(3)
3

2

(k, n1, n2)

(
(7− 6 log

(
k2

m2

))
(9.28)

OUV(m
6)−OIR(m

6) =
im6

12π2
Π

(3)
3

2

(k, n1, n2)

(
(1− 6 log

(
− k2

m2

))
(9.29)

OUV(m
8) =

im8

48k2π2
Π

(3)
3

2

(k, n1, n2)

(
(25− 12 log

(
− k2

m2

))
(9.30)

. . . . . .

are all conserved. Eq. (9.28) is related to a nonlocal version of the spin 3 Fronsdal equation.

9.2 4d fermion model

We consider now the same analysis for the fermion massive model. We start again from

eqs. (2.7), (2.10), (2.27), (2.28) and the like for higher spins.

9.2.1 4d mfm: spin 1 current

The full formula for the 2pt correlator is similar to the scalar case and expressed in terms

of parameter derivatives of hypergeometric functions, see section 11. A full expression in

terms of simple functions can be found in appendix C. The m-power expansion in the IR

is as follows

O(m2) :
im2

4π2ε
(n1 ·n2) (9.31)

O(log(m)) :
i log(m)

6π2
k2(n1 ·πk ·n2) (9.32)

O(m0) : − i

24π2

(
k2

(
−2γ + 1 + log(16π2)− 4

ε

)
(n1 ·n2)

+2

(
γ − log(4π) +

2

ε

)
(k, n1) (k, n2)

)
(9.33)

O(m−2) : − ik4

60π2m2
(n1 ·π(k) ·n2) (9.34)

. . . . . .

All odd powers of m vanish. The above terms are all conserved except (9.31) and (9.33).

O(m2) and O(log(m)) are divergent in the IR and O(m0) is divergent in ε.

In the UV all odd powers of m vanish, while

O(m0) :
i

24π2

((
4

ε
− 13

3
+ 2γ + 2iπ − log

(
16π2

))
k2(n1 ·n2)

−2

3

(
6

ε
− 5 + 3γ + 3iπ − log

(
16π2

))
(n1 ·k)(k ·n2)

)
(9.35)

O(m2) : − im2

4π2k2

(
− 2(k ·n1)(k ·n2) + k2(n1 ·n2)

)
(9.36)
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O(m4) : −i
m4

4π2k2

(
2 log

(
− k2

m2

)
+ 1

)
(n1 ·π(k) ·n2) (9.37)

. . . . . .

All the terms are conserved except the first two. But, subtracting from them the corre-

sponding local terms in the IR we get

OUV(m
0)−OIR(m

0)−OIR(log(m)) =
i

36π2

(
3 log

(
− k2

m2

)
− 5

)
k2 (n1 ·π(k) ·n2) (9.38)

OUV(m
2)−OIR(m

2) = − im2

2π2
(n1 ·π(k) ·n2) (9.39)

Clearly (9.38) reproduces the Maxwell action.

9.2.2 4d mfm: e.m. tensor

A full expression in terms of simple functions can be found in appendix C. In this subsection

every result must be multiplied by a factor of 1
16 . In the IR the odd powers of m vanish.

The nonvanishing even powers are

O(m4) :
im4

8π2

(
(n1 ·n2)

2

(
2γ − 1− 2 log(4π) + 4 log(m) +

4

ε

)
(9.40)

+(n1 ·n1)(n2 ·n2)

(
2γ − 3− 2 log(4π) + 4 log(m) +

4

ε

))

O(m2) :
im2

12π2

((
(n2 ·n2) (k ·n1)

2 + (n2 ·n2)(k ·n1)
2 − k2(n1 ·n1)(n2 ·n2)

)

·
(
γ − 1− log(4π) + 2 log(m) +

2

ε

)
(9.41)

+(n1 ·n2) (k ·n1) (k ·n2)

(
3− 2γ + log(4π)− 4 log(m)− 4

ε

))

O(log(m)) : − i log(m)

20π2
k4Π

(2)

− 1

3

(k, n1, n2) (9.42)

and

O(m0) : − i

120π2

(
k4

(
6

ε
+ 3γ − 1− 3 log(4π)

)
(n1 ·n2)

2 (9.43)

+k2
(
−12

ε
− 6γ + 1 + 6 log(4π)

)
(n1 ·n2)(k ·n1)(k ·n2) +

(
2

ε
+ γ − log(4π)

)

·
(
− k4 (n1 ·n1) (n2 ·n2)+k2(n1 ·n1) (k ·n2)

2+(k ·n1)
2
(
2 (k ·n2)

2+k2(n2 ·n2)
))

)

O(m−2) :
i

336m2π2
k6Π

(2)

− 1

5

(k, n1, n2) (9.44)

. . . . . .

The first two terms are not conserved, the logarithmic term is conserved but divergent

in the IR, the m0 term is not conserved and divergent in the limit ε → 0. They all must

be subtracted. The remaining terms are conserved.
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In the UV all the odd powers of m vanish. The nonvanishing even powers are

O(m0) :
i

1800π2

((
30

ε
+ 15 log

(
−k2

)
− 46 + 15γ − 15 log(4π)

)
(9.45)

·
(
k4

(
(n1 ·n1)(n2 ·n2)− 3 (n1 ·n2)

2
)
− k2(n1 ·n1) (k ·n2)

2 − k2(n2 ·n2) (k ·n1)
2

)

+3k2(n1 ·n2)(k ·n1)(k ·n2)

(
60

ε
+ 30 log

(
−k2

)
− 77 + 30γ − 30 log(4π)

)

−2 (k ·n1)
2 (k ·n2)

2

(
30

ε
+ 15 log

(
−k2

)
− 31 + 15γ − 15 log(4π)

))

O(m2) : − m2

36π2k2
i

(
(−6 (k ·n1)

2 (k ·n2)
2 (9.46)

−k2(n1 ·n2)(k ·n1)(k ·n2)

(
−12

ε
− 6 log

(
−k2

)
+ 7− 6γ + 6 log(4π)

)

+

(
k4 (− (n1 ·n1)) (n2 ·n2) + k2(n1 ·n1) (k ·n2)

2 + k2(n2 ·n2) (k ·n1)
2

)

·
(
6

ε
+ 3 log

(
−k2

)
− 8 + 3γ − 3 log(4π)

)

−k4 (n1 ·n2)
2

(
6

ε
+ 3 log

(
−k2

)
− 3 log (4π)− 5 + 3γ

))

and

O(m4) :
im4

16π2k4

(
k2

(
2 log

(
− k2

m2

)
− 1

)
(9.47)

·
(
(n2 ·n2) (k ·n1)

2 + 4(n1 ·n2)(k ·n2)(k ·n1) + (n1 ·n1) (k ·n2)
2 − 3 (k ·n1)

2 (k ·n2)
2

)

−2k4
(
2 (n1 ·n2)

2 + (n1 ·n1)(n2 ·n2)

)(
−2 + γ − log(4π) + log

(
− k2

m2

)
+

2

ε

))

O(m6) : − im6

12π2k2

(
6 log

(
− k2

m2

)
+ 7

)(
n1 ·π(k) ·n2

)
2 (9.48)

+
im6

36π2k2

(
6 log

(
− k2

m2

)
+ 11π

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

. . . : . . .

All terms with even m power larger than 4, as well as O(log(m)), are conserved, while

O(m0),O(m2) and O(m4) are not. According to our prescription we have to subtract not

only OIR(m
0),OIR(m

2) and OIR(m
4), but also OIR(log(m)). We obtain

OUV(m
4)−OIR(m

4) =
im4

8π2

(
+2 log

(
− k2

m2

)
− 5

)(
n1 ·π(k) ·n2

)
2 (9.49)

+
im4

8π2

(
2 log

(
− k2

m2

)
− 1

)(
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)
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OUV(m
2)−OIR(m

2) =
im2k2

36π2

(
3 log

(
− k2

m2

)
+1

)(
n1 ·π(k) ·n2

)
2 (9.50)

− im2k2

36π2

(
3 log

(
− k2

m2

)
− 5

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

and

OUV(m
0)−OIR(m

0)−OIR(log(m)) =
i

1800π2
k4 (9.51)

·
(
9

(
−5 log

(
− k2

m2

)
+ 12

)(
n1 ·π(k) ·n2

)
2

−
(
−15 log

(
− k2

m2

)
+ 46

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

They are all conserved. (9.50) contains a nonlocal linearized version of the EH eom.

9.2.3 4d mfm: spin 3 current

A full expression of the correlator in terms of simple functions can be found in appendix C.

The scheme is the same as above. In the IR the odd power of m vanish. The even powers

m2n with n < 0 are conserved together with the term proportional to log(m). The terms

OIR(m
0),OIR(m

2),OIR(m
6) and OIR(m

6) are not conserved. Of course O(log[m]) diverges

in the IR, while the term OIR(m
0) diverges for ε → 0. According to our prescription all

these terms, which are local, have to be subtracted from the effective action. The result is

as follows.

O(m−2) : − ik8

2835m2π2
Π

(3)

− 3

16

(k, n1, n2) (9.52)

O(m−4) : − 2ik10

93555m4π2
Π

(3)
49

128

(k, n1, n2) (9.53)

. . . . . .

In the UV the odd m power terms vanish. The even power of order 2, 4, 6 are not conserved,

but again

OUV(m
0)−OIR(m

0)−OIR(log(m)) (9.54)

= − 2ik6

99225π2

(
−210 log

(
− k2

m2

)
+ 599

)(
n1 ·π(k) ·n2

)
3

+
ik6

1587600π2

(
−3885 log

(
− k2

m2

)
+ 13339

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)

and

OUV(m
2)−OIR(m

2) = −4im2k4

2025π2

(
15 log

(
− k2

m2

)
− 16

)(
n1 ·π(k) ·n2

)
3 (9.55)

+
im2k4

16200π2

(
480 log

(
− k2

m2

)
− 857

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)
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OUV(m
4)−OIR(m

4) =
4im4k2

27π2

(
n1 ·π(k) ·n2

)
3 (9.56)

− im4k2

144π2

(
18 log

(
− k2

m2

)
−23

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)

OUV(m
6)−OIR(m

6) =
4im6

81π2

(
6 log

(
− k2

m2

)
− 7

)(
n1 ·π(k) ·n2

)
3 (9.57)

+
im6

162π2

(
69 log

(
− k2

m2

)
− 70

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)

OUV(m
8) = − 2im8

81π2k2

(
12 log

(
− k2

m2

)
+ 19

)(
n1 ·π(k) ·n2

)
3 (9.58)

− im2k4

2592π2k2

(
1356 log

(
− k2

m2

)
+ 1637

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)

. . . . . .

are all conserved. Eq. (9.56) is related to a nonlocal version of the spin 3 Fronsdal equation.

10 Tomography in 6d

10.1 6d scalar model

The basic formulas are again (2.1), (2.2), (2.4), (2.6) and (5.4) together with the analogous

ones for higher spins, with d = 6 + ε. For the full two-point correlator formulas see next

section. Here we limit ourselves to IR and UV expansions.

10.1.1 6d msm: spin 1 current

Like in 4d, we have to consider also log(m) and 1
ε factors. In the IR the nonvanishing

terms are

O(m4) :
im4

128π3

(
2γ − 3− 2 log(4π) + 4 log(m) +

4

ε

)
(n1 ·n2) (10.1)

O(m2) :
im2k2

192π3

(
γ − 1− log(4π) + 2 log(m) +

2

ε

)
(n1 ·πk ·n2) (10.2)

O(log(m)) :
i log(m)

960π3
k4(n1 ·πk ·n2) (10.3)

O(m0) :
ik4

1920π3

(
γ − log(4π) +

2

ε

)
(n1 ·π(k) ·n2) (10.4)

O(m−2) : − ik6

26880π3m2
(n1 ·π(k) ·n2) (10.5)

. . . . . .

These coefficients are conserved except O(m4). All the odd powers of m vanish.

In the UV we find:

O(m0) :
ik4

28800π3

(
− 46+15γ−15 log (4π)+15 log

(
−k2

)
+
30

ε

)
(n1 ·π(k) ·n2) (10.6)

O(m2) :
im2k2

576π3

((
−3 log(−k2)− 3γ + 8 + 3 log(4π)− 6

ε

))
(n1 ·π(k) ·n2) (10.7)
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O(m4) :
im4

128π3k2

((
−2 log

(
− k2

m2

)
+ 1

)
(k ·n1)(k ·n2)

+2k2(n1 ·n2)

(
−2 + γ − log(4π) + log

(
−k2

)
+

2

ε

))
(10.8)

. . . . . .

All odd powers of m vanish. The even powers are conserved except (9.7). Subtracting from

the latter the analogous (local) non-conserved term in the IR we find a conserved term

OUV(m
4)−OIR(m

4) = − im4

128π3

(
− 2 log

(
− k2

m2

)
+ 1

)
(n1 ·π(k) ·n2) (10.9)

The O(m2),O(log(m)) terms are divergent in the IR, and the O(m0) is divergent in the

ε → 0 limit, but they are local and can be subtracted with the following result:

OUV(m
2)−OIR(m

2) =
im2k2

576π3

((
−3 log

(
− k2

m2

)
+5

))
(n1 ·π(k) ·n2) (10.10)

OUV(m
0)−OIR(m

0)−OIR(log(m)) = − ik4

28800π3

(
−15 log

(
− k2

m2

)
+ 46

)
(n1 ·π(k) ·n2)

(10.11)

(10.10) corresponds to the linearized Maxwell action with an energy dependent coupling.

10.1.2 6d msm: spin 2 current

In the IR the odd powers of m vanish. The nonvanishing even powers are

O(m6) :
im6

576π3

(
2 (n1 ·n2)

2 + (n1 ·n1)(n2 ·n2)
)(

6γ−11−6 log(4π)+12 log(m)+
12

ε

)

(10.12)

O(m4) :
im4

384π3

(
(k ·n2)

2 (n1 ·n1) + 4(n1 ·n2)(k ·n2)(k ·n1) + (n2, n2) (k ·n1)
2 (10.13)

−k2
(
2 (n1 ·n2)

2 + (n1 ·n1) (n2 ·n2)
))(

2γ − 3− 2 log(4π) + 4 log(m) +
4

ε

)

O(m2) :
im2k4

480π3

(
γ − 1− log(4π) + 2ε log(m) +

2

ε

)
Π

(2)
1

2

(k, n1, n2) (10.14)

O(log(m)) : − i log(m)

3360π3
k6Π

(2)
1

2

(k, n1, n2) (10.15)

O(m0) : − i

6720π3
k6

(
γ − log(4π) +

2

ε

)
Π

(2)
1

2

(k, n1, n2) (10.16)

. . . . . .

The first two terms are not conserved, the logarithmic term is conserved but divergent in

the IR, the m0 term is divergent in the limit ε → 0. They all must be subtracted (including

the finite O(m0) part). The remaining terms are conserved.
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In the UV all the odd powers of m vanish. The nonvanishing even powers are

O(m0) :
ik6

705600π3

(
352− 105γ + 105 log(4π)− 105 log

(
−k2

)
− 210

ε

)
(10.17)

·Π(2)
1

2

(k, n1, n2)

O(m2) : − im2k4

7200π3

(
− 30

ε
+ 46− 15γ + 15 log (4π)− 15 log

(
−k2

))
(10.18)

·Π(2)
1

2

(k, n1, n2)

and

O(m4) :
im4

1152π3k2

(
2k2

(
3 log

(
−k2

)
− 8 + 3γ − 3 log(4π) +

6

ε

)(
(n2 ·n2) (k ·n1)

2

+4(n1 ·n2)(k ·n2)(k ·n1)+(n1 ·n1) (k ·n2)
2−k2

(
2 (n1 ·n2)

2+(n1 ·n1) (n2 ·n2)
))

(10.19)

+3

(
−6 log

(
− k2

m2

)
+ 7

)
(k ·n1)

2 (k ·n2)
2

)

O(m6) : − im6

576π3k4

(
6 log

(
− k2

m2

)
− 1

)
(10.20)

×
((

(n1 ·n1) (k ·n2)
2+4(n1 ·n2)(k ·n2)(k ·n1)+(k ·n1)

2 (n2 ·n2)
)
k2−3 (k ·n1)

2 (k ·n2)
2
)

−6k4
(
− 2 + γ − log(4π) + log(−k2) +

2

ε

)(
2 (n1 ·n2)

2 + (n1 ·n1) (n2 ·n2)

)

O(m8) :
im8

1152π3k6

(
− 25− 12 log

(
− k2

m2

))
Π

(2)
1

2

(k, n1, n2) (10.21)

. . . . . .

O(m0) and O(m2) as well as all terms with even m power larger than 6 are conserved,

while O(m4) and O(m6) are not. According to our prescription we have to subtract not

only OIR(m
4) and OIR(m

6), but also OIR(m
0),OIR(log(m)) and OIR(m

2). We obtain

OUV(m
6)−OIR(m

6) = − im6

288π3

(
−6 log

(
− k2

m2

)
+ 1

)
Π

(2)
1

2

(k, n1, n2) (10.22)

OUV(m
4)−OIR(m

4) =
im4

576π3
k2

(
−6 log

(
− k2

m2

)
+ 7

)
Π

(2)
1

2

(k, n1, n2) (10.23)

OUV(m
2)−OIR(m

2) =
im2

7200π3
k4

(
−15 log

(
− k2

m2

)
+ 31

)
Π

(2)
1

2

(k, n1, n2) (10.24)

and

OUV(m
0)−OIR(m

0)−OIR(log(m)) =
i

705600π3
k6

(
−105 log

(
− k2

m2

)
+ 352

)

·Π(2)
1

2

(k, n1, n2) (10.25)

They are all conserved. (10.23) contains a nonlocal linearized version of the EH eom.
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10.1.3 6d msm: spin 3 current

The scheme is the same as above. In the IR the odd power of m vanish. The even powers

m2n with n ≤ 2 are conserved together with the term proportional to log(m). The terms

OIR(m
4),OIR(m

6),OIR(m
8) are not conserved. Of course O(log(m)),OIR(m

2) diverge in

the IR, while the term OIR(m
0) diverges for ε → 0. According to our prescription all

these terms, which are local, have to be subtracted from the effective action. Using again

Π(3)(k, n1, n2), see (5.10), the result is as follows.

O(m−2) : − ik10

443520m2π3
Π

(3)
3

2

(k, n1, n2) (10.26)

O(m−4) : − ik12

11531520m4π3
Π

(3)
3

2

(k, n1, n2) (10.27)

. . . . . .

In the UV the odd m power terms vanish. The even power of order 4, 6, 8 are not

conserved, but

OUV(m
0)−OIR(m

0)−OIR(log(m)) (10.28)

=
ik8

6350400π3
Π

(3)
3

2

(k, n1, n2)

(
−315 log

(
− k2

m2

)
+ 1126

)

and

OUV(m
2)−OIR(m

2) =
im2k6

117600π3
Π

(3)
3

2

(k, n1, n2)

(
(247− 105 log

(
− k2

m2

))
(10.29)

OUV(m
4)−OIR(m

4) = − im4k4

4800π3
Π

(3)
3

2

(k, n1, n2)

(
(47−30 log

(
− k2

m2

))
(10.30)

OUV(m
6)−OIR(m

6) = − im6k2

288π3
Π

(3)
3

2

(k, n1, n2)

(
(−5 + 6 log

(
− k2

m2

))
(10.31)

OUV(m
8) = − im8

384π3
Π

(3)
3

2

(k, n1, n2)

(
(−1− 12 log

(
− k2

m2

))
(10.32)

. . . . . .

are all conserved. Eq. (9.29) is related to a nonlocal version of the spin 3 Fronsdal equation.

10.2 6d fermion model

We consider now the same analysis for the fermion massive model. We start again from

eqs. (2.7), (2.10), (2.27), (2.28) and the like for higher spins and set d = 6 + ε.

10.2.1 6d mfm: spin 1 current

We will limit ourselves to the power of m expansions in the IR. The terms proportional

to m4,m2,m0 and log(m) are local, nonconserved and/or divergent. Thus they must be

subtracted. Therefore the first nonvanishing term in the IR is:

O(m−2) : − ik6

1120π3m2
(n1 ·π(k) ·n2) (10.33)

. . . . . .
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In the UV, after subtracting the local terms we find:

OUV(m
0)−OIR(m

0)−OIR(log(m)) (10.34)

= − ik4

3600π3

(
−30 log

(
− k2

m2

)
+ 77

)
(n1 ·π(k) ·n2)

OUV(m
2)−OIR(m

2) =
im2k2

72π3

((
−3 log

(
− k2

m2

)
+ 2

))
(n1 ·π(k) ·n2) (10.35)

and

OUV(m
4)−OIR(m

4) =
im4

8π3
(n1 ·π(k) ·n2) (10.36)

OUV(m
6) = − im6

72π3k2

((
−6 log

(
− k2

m2

)
− 5

))
(n1 ·π(k) ·n2) (10.37)

. . . . . .

(10.35) corresponds to the linearized Maxwell action with an energy dependent coupling.

10.2.2 6d mfm: spin 2 current

In this subsection all results must be multiplied by a factor of 1
16 In the IR the odd powers

of m vanish. The terms proportional to m6,m4,m2,m0 and log(m) are local, nonconserved

and/or divergent. Thus they must be subtracted.

O(m−2) :
ik8

8640π3m2

((
n1 ·π(k) ·n2

)
2 − 1

7
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)
(10.38)

. . . . . .

In the UV all the odd powers of m vanish. After subtracting the above local terms we

have

OUV(m
0)−OIR(m

0)−OIR(log(m)) (10.39)

=
i

352800π3
k6

(
25

(
−21 log

(
− k2

m2

)
+ 62

)(
n1 ·π(k) ·n2

)
2

−
(
−105 log

(
− k2

m2

)
+ 352

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

OUV(m
2)−OIR(m

2) = − im2

3600π3
k4

(
9

(
−5 log

(
− k2

m2

)
+ 7

)(
n1 ·π(k) ·n2

)
2 (10.40)

+

(
15 log

(
− k2

m2

)
− 31

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

and

OUV(m
4)−OIR(m

4) = − im4

288π3
k2

((
6 log

(
− k2

m2

)
+ 5

)(
n1 ·π(k) ·n2

)
2 (10.41)

+

(
−6 log

(
− k2

m2

)
+ 7

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)
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OUV(m
6)−OIR(m

6) = − im6

144π3

((
6 log

(
− k2

m2

)
− 13

)(
n1 ·π(k) ·n2

)
2 (10.42)

+

(
6 log

(
− k2

m2

)
− 1

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

OUV(m
8) =

im8

576π3k2

(
3

(
12 log

(
− k2

m2

)
+ 17

)(
n1 ·π(k) ·n2

)
2 (10.43)

+

(
12 log

(
− k2

m2

)
+ 25

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

They are all conserved. (10.41) contains a nonlocal linearized version of the EH eom.

10.2.3 6d mfm: spin 3 current

The scheme is the same as above. In the IR the odd power of m vanish. The even powers

m2n with n ≤ 2 are conserved together with the term proportional to log(m). The terms

OIR(m
4),OIR(m

6),OIR(m
8) are not conserved. Of course O(log[m]),OIR(m

2) diverge in

the IR, while the term OIR(m
0) diverges for ε → 0. According to our prescription all these

terms, which are local, have to be subtracted from the effective action.

Using again Π(3)(k, n1, n2), see (5.10), the result is

O(m−2) : − ik10

93555m2π3
Π

(3)
49

128

(k, n1, n2) (10.44)

. . . . . .

In the UV the odd m powers vanish. The even powers of order 4, 6, 8 are not conserved.

After subtracting the local terms in the IR one gets

OUV(m
0)−OIR(m

0)−OIR(log(m)) (10.45)

= − ik8

57153600π3

(
32

(
−315 log

(
− k2

m2

)
+ 1021

)(
n1 ·π(k) ·n2

)
3

−3

(
−630 log

(
− k2

m2

)
+ 3617

)(
n1 ·π(k) ·n2

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

and

OUV(m
2)−OIR(m

2) =
im2k6

3175200π3

(
32

(
−210 log

(
− k2

m2

)
+389

)(
n1 ·π(k) ·n2

)
3 (10.46)

+

(
3885 log

(
− k2

m2

)
− 9454

)(
n1 ·π(k) ·n2

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

OUV(m
4)−OIR(m

4) =
im4k4

64800π3

(
16

(
−17 + 30 log

(
− k2

m2

))(
n1 ·π(k) ·n2

)
3 (10.47)

+

(
−480 log

(
− k2

m2

)
+ 617

)(
n1 ·π(k) ·n2

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)
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OUV(m
6)−OIR(m

6) = − im6k2

864π3

(
64

3

(
n1 ·π(k) ·n2

)
3 (10.48)

−
(
18 log

(
− k2

m2

)
− 17

)(
n1 ·π(k) ·n2

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

OUV(m
8)−OIR(m

8) =
im8

5184π3

(
16

(
(11− 12 log

(
− k2

m2

))
(10.49)

+

(
211− 276 log

(
− k2

m2

))(
n1 ·π(k) ·n2

)
(n1 ·π(k) ·n1)(n2 ·π(k) ·n2)

)

. . . . . .

are all conserved. Eq. (10.48) is related to a nonlocal version of the spin 3 Fronsdal equation.

11 Spin s current two-point correlators in any dimension

In this section we derive general formulas for the two-point correlators for spin s = 1, 2 and

3 in any dimension. The procedure is slightly different from the one used so far. In the

previous sections we fixed the dimension of space-time, that is we set d = 3, 4 + ε, 5, 6 + ε

in the scalar integrals (see section 5). In this section we leave the parameter d free and

evaluate specific cases at the end. The two procedures often lead to different intermediate

results. Of course the results of physical interest must coincide.

In the following we focus on the massive case, while the massless computations are

deferred to appendix B.

11.1 Fermion model

In this subsection we compute the even part of two point correlator for a fermion in d

dimensions for spin s = 1, 2, 3

J̃µ1...µsν1...νs(k) = −
∫

d3p

(2π)3
Tr

(
i

/p−m
γσ

i

/p− /k −m
γτ

)
V σ
µ1...µs

V τ
ν1...νs (11.1)

where the Feynman vertices are

V σ
µ1...µs

= i δσµ

⌊ s−1

2
⌋∑

j=0

i2s−2j−2(kµ − 2pµ)
s−2j−1(2(p·(p− k)−m2)ηµµ − 4(p− k)µpµ)

j

(2j + 1)!(n− 2j − 1)!

(11.2)

11.1.1 Fermion model — massive case

Let us compute the even part of two point correlator for a massive fermion in d dimensions

for spin 1. The one-loop contribution is

J̃µν(k) = −
∫

ddp

(2π)d
Tr

(
γν

1

/p−m
γµ

1

/p− /k −m

)

= −Tr(1)

∫
ddp

(2π)d
pν(p− k)µ + pµ(p− k)ν − p·(p− k)ηµν +m2ηµν

(p2 −m2)((p− k)2 −m2)
(11.3)
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Tr(1) is the trace of the identity operator on the vector space on which the Dirac matrices

act. Since we are working with the lowest dimensional complex spinors in each dimension

we have Tr(1) = 2⌊
d
2
⌋. In the odd dimensional cases d can be simply replaced by the

values 3, 5, . . ., so this factor is an overall numerical factor. In the even dimensional cases

we have to replace d by 2 + ε, 4 + ε, . . ., so the same factor contains an ε dependence in

addition to the overall numerical factor. The ε dependence cannot change the divergent

pole part in dimensional regularization but will only affect the finite local part. However

when subtracting the infinite and finite IR terms from the effective action this dependence

disappears. So we will ignore it.

Warning. In evaluating the scalar integral Ĩ(1)(k), which is our basic quantity, the re-

sults below have been obtained by choosing a reference value 4 for Tr(1). This value is

appropriate only for d = 4, 5, but must be corrected for the other dimensions: for d = 2, 3

the results must be divided by 2, for d = 6, 7 they must be multiplied by 2, and so on.

By Davydychev tensor reduction procedure it is possible to rewrite such an amplitude

in terms of scalar integrals as

J̃µν(k) = ηµν Ĩ(1)(k) + kµkν Ĩ(2)(k) = −4

(
ηµν

(
m2Ĩ(2)(d, 1, 1; k,m) (11.4)

−2π
(
2k2

(
Ĩ(2)(d+ 2, 2, 1; k,m) + 8πĨ(2)(d+ 4, 3, 1; k,m)

)

−(d− 2)Ĩ(2)(d+ 2, 1, 1; k,m)
))

+8πkµkν

(
Ĩ(2)(d+ 2, 2, 1; k,m) + 8πI(2)(d+ 4, 3, 1; k,m)

))

Because of dimensional reasons the superficial degree of divergence of Ĩ(1) and Ĩ(2) are

always such that deg(Ĩ(1)) = deg(Ĩ(2)) + 2 = d− 2. One can check the Ward identity

k2Ĩ(2)(k) + Ĩ(1)(k) = 0, (11.5)

which implies we can rewrite the amplitude (11.3) as

J̃µν(k) =

(
ηµν −

kµkν
k2

)
Ĩ(1)(k), (11.6)

This is in fact the main advantage of the regularization we are using in this section: the

two point function is conserved without any subtraction. This will not be true for higher

spin currents (see below).

The explicit form of Ĩ(1)(k) is

Ĩ(1)(k) = −21−d i e−
1

2
iπdπ− d

2

(
−m2

)d/2−1
Γ
(
2− d

2

)

(d− 2)
(11.7)

·
(
8

k2

4m2 2F1

(
2, 1− d

2
;
3

2
;
k2

4m2

)
− 4

(
d

k2

4m2
+ 1

)
2F1

(
1, 1− d

2
;
3

2
;
k2

4m2

)
+ 4

)

=
23−d i e−

1

2
iπdπ−d/2

(
−m2

) d−2

2 Γ
(
2− d

2

) (
((d− 2)z + 1) 2F1

(
1,−d

2 ;
1
2 ; z

)
+ 2z − 1

)

(d− 2)d(z − 1)z
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where z = k2

4m2 .

For d = 2 there is no pole. For even d > 2 the relevant ε-expansion is given by

Ĩ(1)(k) =
1

ε

24−did+1π−d/2md−2
(
((d− 2)z + 1) 2F1

(
1,−d

2 ;
1
2 ; z

)
+ 2z − 1

)

(d− 2)d(z − 1)zΓ
(
d
2 − 1

) (11.8)

− 23−did+1π−d/2md−2

(d− 2)2d2(z − 1)zΓ
(
d
2 − 1

)

·
(

− 2(d− 2)d

(
z 2F1

(
1,−d

2
;
1

2
; z

)
− 1

2
((d− 2)z + 1) 2F

(0,1,0,0)
1

(
1,−d

2
,
1

2
, z

))

+

(
((d− 2)z + 1) 2F1

(
1,−d

2
;
1

2
; z

)
+ 2z − 1

)

·
(
d2 log(4π)− 2(d− 2)d log(m)− 2d(log(4π)− 2)− 4

)

+(d− 2)d
(
H d

2
−2 − γ

)(
((d− 2)z + 1) 2F1

(
1,−d

2
;
1

2
; z

)
+ 2z − 1

))
(11.9)

where 2F
(0,1,0,0)
1

(
1,−d

2 ,
1
2 , z

)
means the derivative of 2F

(0,1,0,0)
1

(
1, β, 12 , z

)
with respect to

β at β = −d
2 , and H d

2
−2 are the harmonic numbers.

11.1.2 d even

Let us examine first the even d case. For even d the hypergeometric functions boil down

to finite order polynomials according to the formulas

2F1

(
2, 1− d

2
;
3

2
; z

)
=

d
2
−1∑

n=0

(2)n
(
1− d

2

)
n

n!
(
3
2

)
n

zn

2F1

(
1, 1− d

2
;
3

2
; z

)
=

d
2
−1∑

n=0

(1)n
(
1− d

2

)
n

n!
(
3
2

)
n

zn

so that one can easily check the 1/ε part is just

d = 4
2im2z

3π2
, (11.10)

d = 6
im4z(4z − 5)

30π3
,

d = 8
im6z

(
24z2 − 56z + 35

)

1680π4
,

d = 10
im8z

(
64z3 − 216z2 + 252z − 105

)

60480π5
,

d = 12
im10z

(
640z4 − 2816z3 + 4752z2 − 3696z + 1155

)

10644480π6
,

. . .

So in general the divergent part (for ε → 0) is a polynomial in z = k2

4m2 of degree d/2− 1,

where the constant term is missing because the front factor of highest dimension is md−2.
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According to Weinberg’s theorem this corresponds to the degree of divergence d− 4 of the

two point functions, which is therefore lower than the expected one d− 2 because of gauge

invariance. The above divergent terms are local and appear both in the IR and the UV

limit, as we have seen many times above. Some of them are divergent for m → ∞ and

must be subtracted to guarantee finiteness of the IR limit (or decoupling of infinite mass

modes). Others are of order m0. The reason why we subtract them from the effective

action is, according to our attitude, because the physical information is contained in the

difference between the IR and UV limits (rather than in their absolute value).

As for the finite part we cannot give a closed formula for generic d, but thanks to the

formulae

2F1

(
1,−d

2
;
1

2
; z

)
=

d/2∑

n=0

(1)n
(
−d

2

)
n(

1
2

)
n

zn

n!
(11.11)

=

d/2∑

n=0

Γ(−d
2 + n)

Γ(−d
2)

Γ(12)

Γ(12 + n)
zn

2F
(0,1,0,0)
1

(
1,−d

2
;
1

2
; z

)
= −2

∞∑

n=0

∂

∂d

Γ(−d
2 + n)

Γ(−d
2)

Γ(12)

Γ(12 + n)
zn

= −
∞∑

n=0

√
πΓ

(
n− d

2

) (
ψ(0)

(
−d

2

)
− ψ(0)

(
n− d

2

))

Γ
(
−d

2

)
Γ
(
n+ 1

2

) zn

we can recognize the IR behavior is analytic in z, which is to be expected as m acts as an

IR regulator. More explicitly, we get the following behaviors

d = 4 :
im2z(log(m

2

4π ) + γ)

3π2
− 4im2z2

15π2
− 4im2z3

35π2
− 64im2z4

945π2
+O(z5), (11.12)

d = 6 :
im4z(− log(m

2

4π )− γ + 1)

12π3
+

im4z2(log(m
2

4π ) + γ)

15π3

− im4z3

35π3
− 8im4z4

945π3
+O(z5),

d = 8 :
im6z(2 log(m

2

4π ) + 2γ − 3)

192π4
+

im6z2(− log(m
2

4π )− γ + 1)

60π4

+
im6z3(log(m

2

4π ) + γ)

140π4
− 2im6z4

945π4
+O(z5),

d = 10 :
im8z(−6 log(m

2

4π )− 6γ + 11)

6912π5
+

im8z2(2 log(m
2

4π ) + 2γ − 3)

960π5

+
im8z3(− log(m

2

4π )− γ + 1)

560π5
+

im8z4(log(m
2

4π ) + γ)

1890π5
+O(z5),

. . . . . .

So the dominating term is ∼ md−2(A(1) logm + B(1))z ≡ md−4(A(1) logm + B(1))k2,

whereas the term with highest power of momentum and dimensionless constant is ∼
md−2(A(d/2−1) logm + B(d/2−1))zd/2−1 ≡ (A(d/2−1) logm + B(d/2−1))kd−2. So, in coordi-
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nate space the following terms are dominating for large m

∼ (A(d/2−1) logm+B(d/2−1))Fµν
�

d/2−1Fµν , . . . ,m
d−4(A(1) logm+B(1))FµνFµν ,

whereas all the others are suppressed by negative powers of m. For d > 4 those terms would

give a non-decoupling of IR dynamics from high-energy physics, but we can notice they

are the same as the local counterterms appearing in the divergent part.7 So they have to

be subtracted, as we have done many times before. In (11.12) there are also terms of order

m0. They have to be subtracted from the effective action for the same reason explained

above: the physical meaning is contained in the difference between the UV and the IR.

In d = 2 no pole shows up. In fact we have

i
(

2F
(0,1,0,0)
1

(
1,−1, 12 , z

)
+ 2z(2z − 1)

)

2π(z − 1)z
,

whose IR expansion is

− 4iz

3π
− 16iz2

15π
− 32iz3

35π
− 256iz4

315π
− 512iz5

693π
− 2048iz6

3003π
+O

(
z7
)
, (11.13)

meaning all the local terms are suppressed by negative powers of the mass. There is no

need to remove them by finite subtraction in order to have decoupling.

The asymptotic behavior of the finite part in the UV (z → ∞) is determined by the

formulae

2F1

(
1,−d

2
;
1

2
; z

)
=

(1) d
2

(−z)
d
2

(
1
2

)
d
2

2F1

(
−d

2
,
1− d

2
;−d

2
;
1

z

)
(11.14)

= Γ

(
1

2

)
Γ
(
d+2
2

)

Γ
(
d+1
2

)(−z)
d
2 2F1

(
−d

2
,
1− d

2
;−d

2
;
1

z

)

= (−z)d/2

d
2∑

n=0

(
cos

(
πd
2

)
Γ
(
d
2 + 1

)
Γ
(
−d

2 + n+ 1
2

))
√
πΓ(n+ 1)

(
1

z

)n

and

2F
(0,1,0,0)
1

(
1,−d

2
;
1

2
; z

)
= −2

∂

∂d
2F1

(
1,−d

2
;
1

2
; z

)
(11.15)

= −zd/2 log(−z)

d
2∑

n=0

Γ
(
d
2 + 1

)
Γ
(
−d

2 + n+ 1
2

)
√
πΓ(n+ 1)

(
1

z

)n

+zd/2
∞∑

n=0

Γ
(
d
2 + 1

)
Γ
(
−d

2 + n+ 1
2

) (
H− d

2
+n− 1

2

−H d
2

)

√
πΓ(n+ 1)

(
1

z

)n

7This case corresponds, in ordinary interacting gauge theories, to the fact that the vertex for the spin 1

current is a non-renormalizable interaction for d > 4 and in fact higher derivatives operators are generated.

d = 4 is the special case when just the two-derivative operator with dimensionless front constant is generated

and it corresponds to the fact that spin 1 vertex in d = 4 is a renormalizable interaction. For d < 4 the

spin 1 vertex is super-renormalizable.
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We notice, as before, that the asymptotic expansion of 2F
(0,1,0,0)
1

(
1,−d

2 ;
1
2 ; z

)
contains

log(−z), which can have an imaginary part even for real −z. We should keep in mind that

the expansion is valid under the assumption | arg(−z)| < π, which means −z, if real, must

be assumed to be positive. This is for example the case for Euclidean momenta which are

such that
k2E
4m2 = − k2M

4m2 = −z. When the metric is Lorentzian a cut appears at z = 1 and

we have to rely on the analytic continuation by choosing a definite Riemann sheet: it is

not surprising that in this case an imaginary part of the correlator appear. Dimension by

dimension the UV expansions for the finite part are:

d = 4 :
im2z(3 log(m

2

π ) + 3 log(−z) + 3γ − 5)

9π2
− im2(2 log(−4z) + 1)

16π2z
(11.16)

− im2

2π2
+O

((
1

z

)2
)
,

d = 6 :
im4z2(30 log(m

2

π ) + 30 log(−z) + 30γ − 77)

450π3
+

im4(6 log(−4z) + 5)

576π3z

− im4z(3 log(m
2

π )) + 3 log(−z) + 3γ − 5)

36π3
+

im4

16π3
+O

((
1

z

)2
)
,

d = 8 :
im6z3(105 log(m

2

π ) + 105 log(−z) + 105γ − 317)

14700π4

− im6z2(30 log(m
2

π ) + 30 log(−z) + 30γ − 77)

1800π4

+
im6z(3 log(m

2

π ) + 3 log(−z) + 3γ − 5)

288π4
− im6(12 log(−4z) + 13)

18432π4z

− im6

192π4
+O

((
1

z

)2
)
,

d = 10 :
im8z4(1260 log(m

2

π ) + 1260 log(−z) + 1260γ − 4189)

2381400π5

− im8z3(105 log(m
2

π )) + 105 log(−z) + 105γ − 317)

58800π5

+
im8z2(30 log(m

2

π ) + 30 log(−z) + 30γ − 77)

14400π5

− im8z(3 log(m
2

π ) + 3 log(−z) + 3γ − 5)

3456π5
+

im8

3072π5

+
im8(60 log(−4z) + 77)

1843200π5z
+O

((
1

z

)2
)
,

. . . . . .

As it is to be expected the leading behavior is ∼ md−2zd/2−1 log(−z) corresponding to the

UV behavior of the divergent part. The presence of logarithms is to be interpreted as the

consequence of running of parameters. In ordinary (interacting) gauge theories, once these

logarithms are reabsorbed in the running parameters, the remaining polynomial behavior

can itself be subtracted by proper counterterms leading to a well-behaved amplitude in the

UV.
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11.1.3 d odd

Let us discuss now the odd dimensional case. In odd dimensions there is no divergent part

in the ǫ-expansion. For the IR we get the expansion

d = 3
√
−m2

(
− 2z

3π
− 4z2

15π
− 6z3

35π
− 8z4

63π
− 10z5

99π
+O

(
z6
))

,

d = 5
(
−m2

)3/2
(
− z

3π2
+

2z2

15π2
+

z3

35π2
+

4z4

315π2
+

5z5

693π2
+O

(
z6
))

,

d = 7
(
−m2

)5/2
(
− z

18π3
+

z2

15π3
− z3

70π3
− 2z4

945π3
− z5

1386π3
+O

(
z6
))

,

d = 9
(
−m2

)7/2
(
− z

180π4
+

z2

90π4
− z3

140π4
+

z4

945π4
+

z5

8316π4
+O

(
z6
))

,

d = 11
(
−m2

)9/2
(
− z

2520π5
+

z2

900π5
− z3

840π5
+

z4

1890π5
− z5

16632π5
+O

(
z6
))

. . . . . . (11.17)

Again the dominating term is ∼ md−2z2. The case d = 3 is the one in which no term with

positive power of m shows up.

For the UV behavior we get

d = 3
√
−m2

(
i
√
z

4
+

1

4
i

√
1

z
+O

((
1

z

)3/2
))

,

d = 5
(
−m2

)3/2

−3iz3/2

32π
+

i
√
z

16π
+

i
√

1
z

32π
− 1

15π2z
+O

((
1

z

)3/2
)
 ,

d = 7
(
−m2

)5/2

5iz5/2

384π2
− 3iz3/2

128π2
+

i
√
z

128π2
+

i
√

1
z

384π2
− 1

210π3z
+O

((
1

z

)13/2
)
 ,

d = 9
(
−m2

)7/2
(

− 7iz7/2

6144π3
+

5iz5/2

1536π3
− 3iz3/2

1024π3
+

i
√
z

1536π3
+

i
√

1
z

6144π3

− 1

3780π4z
+O

((
1

z

)13/2
))

,

d = 11
(
−m2

)9/2
(

3iz9/2

40960π4
− 7iz7/2

24576π4
+

5iz5/2

12288π4
− iz3/2

4096π4
+

i
√
z

24576π4

+
i
√

1
z

122880π4
− 1

83160π5z
+O

((
1

z

)13/2
)
 ,

. . . . . . (11.18)
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11.1.4 Spin 2

For spin s = 2 the two-point correlator in any dimension d is

J̃µµνν(k) =
22−d+⌊ d

2
⌋ i e− 1

2
iπdπ−d/2

(
−m2

)d/2
Γ
(
1− d

2

)

d(d+ 1)k2

×
[(

−
(
(d− 1)k2 + 8m2

)
2F1

[
1,−d

2
;
1

2
;
k2

4m2

]
− (d+ 1)k2 + 8m2

)
π2
µν

−
((

4m2 − k2
)

2F1

[
1,−d

2
;
1

2
;
k2

4m2

]
+ (d+ 1)k2 − 4m2

)
πµµπνν

]

+
22−d+⌊ d

2
⌋ i π−d/2mdΓ

(
1− d

2

) (
η2µν + ηµµηνν

)

d

We can check the Ward identity

kµJ̃µµνν(k) = −22−d+⌊ d
2
⌋ i π−d/2mdΓ

(
−d

2

)
(kνηµν + kµηνν) (11.19)

For spin s = 2 the two-point correlator is transverse up to local counterterms.

11.1.5 Spin 3

For spin s = 3 the two-point correlator in any dimension d can be written as

J̃µµµννν = −21−d+⌊ d
2
⌋ i e− 1

2
iπdπ−d/2

(
−m2

)d/2
(d+ 2)Γ

(
2− d

2

)

9d(d+ 3) (d4 − 5d2 + 4) k4
πµν

×
[
32

(
−
(
k2 − 4m2

)
2
(
dk2 + 12m2

)
2F1

[
1,−d

2
;−1

2
;
k2

4m2

]

+4m2
(
48m4 + 8(2d− 3)k2m2 + (3− 2d(d+ 1))k4

))
π2
µν

−
(
4k4m2

(
(d(9d− 44) + 219) 2F1

[
1,−d

2
;−1

2
;
k2

4m2

]
+ d(95d+ 68)− 219

)

+k6
(
(d((d− 6)d+ 3)− 54) 2F1

[
1,−d

2
;−1

2
;
k2

4m2

]
−18(d−1)(d+1)(d+3)

)

+9216m6

(
2F1

[
1,−d

2
;−1

2
;
k2

4m2

]
− 1

)

+128k2m4

(
(5d− 39) 2F1

[
1,−d

2
;−1

2
;
k2

4m2

]
− 23d+ 39

))
πµµπνν

]

−21−d+⌊ d
2
⌋ i e− 1

2
iπdπ−d/2

(
−m2

)d/2
Γ
(
2− d

2

)

9d (d2 − 4)

×
[
ηµν

[
ηνν

(
2ηµµ

(
208m2 − 9(d+ 2)k2

)
+ 21(d+ 2)kµkµ

)
+ 256m2ηµνηµν

]

+21(d+ 2)ηµµηµνkνkν + 18(d+ 2)ηµµηννkµkν ] (11.20)
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For spin s = 3 the two-point correlator is conserved up to local counterterms

kµJ̃µµµννν = −21−d+⌊ d
2
⌋ i e− 1

2
iπdπ−d/2

(
−m2

)d/2
Γ
(
2− d

2

)

9d (d2 − 4)

×
[
kν

(
ηνν

(
57(d+ 2)kµkµ + 416m2ηµµ

)
+ 768m2ηµνηµν

)

+2ηµνηννkµ
(
3(d+ 2)k2 + 416m2

)
+ 21(d+ 2)ηµµkνkνkν

+42(d+ 2)ηµνkνkν ] (11.21)

11.2 Scalar model

Let us compute the even part of two point correlator for a scalar in d dimensions for spin s

J̃µ1...µsν1...νs(k) =

∫
ddp

(2π)d
i

p2 −m2
Vµ1...µs

i

(p− k)2 −m2
Vν1...νs (11.22)

where the vertex for an incoming scalar with momentum p and outgoing scalar with mo-

mentum p′ and an outgoing spin-s field with momentum k is

Vµ1...µs = i(p+ p′)µ1
. . . (p+ p′)µsδ

(d)(p− p′ − k) (11.23)

11.2.1 Scalar model — massive case

Let us compute the two point correlator for the massive scalar in any dimension d for spin

s = 1

J̃µν(k) =
22−d i e−

1

2
iπdπ−d/2

(
−m2

)d/2
Γ
(
2− d

2

)

(d− 2)k2m2

×
((

k2ηµν − kµkν
)

2F1

[
1, 1− d

2
;
3

2
;
k2

4m2

]
+ kµkν

)
(11.24)

J̃µν is not conserved

kµJ̃µν(k) =
2−d i e−

1

2
iπdπ−d/2

(
−m2

)d/2
dΓ

(
−d

2

)

m2
kν (11.25)

To make J̃µν(k) conserved let us add a local counterterm with an arbitrary constant a

J̃µν(k) =
22−d i e−

1

2
iπdπ−d/2

(
−m2

)d/2
Γ
(
2− d

2

)

(d− 2)k2m2

×
(
ak2ηµν + kµkν +

(
k2ηµν − kµkν

)
2F1

[
1, 1− d

2
;
3

2
;
k2

4m2

])
(11.26)

We get conservation for a = −1. The conserved 2pt is

J̃µν(k) =
22−d i e−

1

2
iπdπ−d/2

(
−m2

)d/2
Γ
(
2− d

2

)

(d− 2)m2
πµν

×
(

2F1

[
1, 1− d

2
;
3

2
;
k2

4m2

]
− 1

)
(11.27)
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For massive scalar for spin s = 2 we get

J̃µµνν(k) = 22−d i e−
1

2
iπdπ−d/2

(
−m2

)d/2
Γ

(
−d

2

)(
2π2

µν + πµµπνν
)

×
(

2F1

[
1,−d

2
;
3

2
;
k2

4m2

]
− 1

)

+
2−d i e−

1

2
iπdπ−d/2(−m2)d/2Γ

(
−d

2

)

k2m2

×
(
d kµkµkνkν + 4k2m2 (2ηµνηµν + ηµµηνν)

)
(11.28)

J̃µµνν(k) is not conserved

kµJ̃µµνν(k) =
21−d i e−

1

2
iπdπ−d/2(−m2)d/2Γ

(
−d

2

)

m2

×
(
kµ

(
d kνkν + 4m2ηνν

)
+ 8m2ηµνkν

)
(11.29)

For spin s = 3 we have

J̃µµµννν(k) = −3 · 21−d i e−
1

2
iπdπ−d/2

(
−m2

)d/2
Γ

(
−d

2
− 1

)
πµν

(
2π2

µν + 3πµµπνν
)

×
(
8m2

(
2F1

[
2,−d

2
− 1;

3

2
;
k2

4m2

]
− 1

)
+ (d+ 2)k22F1

[
1,−d

2
;
3

2
;
k2

4m2

])

− i2−d−1e−
1

2
iπdπ−d/2(−m2)

d
2Γ

(
−d

2 − 1
)

k4m2

×
[
(d+ 2)k2 kµkν(kµkµ(d kνkν + 12m2ηνν) + 12m2ηµµkνkν + 36m2ηµνkµkν)

−20(d+ 2)m2kµkµkµkνkνkν + 48k4m4ηµν(2ηµνηµν + 3ηµµηνν))
]

(11.30)

J̃µµµννν(k) is not conserved

kµJ̃µµνν(k) =
3 · 2−d−1 i e−

1

2
iπdπ−d/2(−m2)

d
2Γ

(
−d

2 − 1
)

m2

×
[
24m2ηµνkµ((d+ 2)kνkν + 4m2ηνν)

+4m2kν(ηµµ((d+ 2)kνkν + 12m2ηνν) + 24m2ηµνηµν)

+(d+ 2)kµkµkν(d kνkν + 12m2ηνν)
]

(11.31)

11.2.2 Concluding remark

In this section we have produced two-point correlator formulas for spin 1,2 and 3 in any

dimension. In all the cases where it is possible to make a comparison between the results

obtained in this section and the previous ones (spin 1 in d=3,4,5,6) the results coincide.8

However they do only if we subtract the infinite and finite IR terms from the effective

action. In other words this confirms that only the difference between the UV and the IR

can have a physical meaning.

8In making the comparison one should not forget to correct the results of section 11.1.2 and 11.1.3 for

the Tr(1) factor as explained before eq. (11.4 ), i.e. by dividing the d = 2, 3 results by 2, multiplying the

d = 6, 7 ones by 2, etc.
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12 Conclusion

We have seen a large number of examples that the one-loop effective action of a free mas-

sive model coupled to external sources contains complete information about the (classical)

equations of motion of the sources. In this paper we have considered only the two-point

functions and so the relevant information involve the linearized equations of motion. More-

over we have considered only completely symmetric bosonic external sources. Within these

limitations we have produced overwhelming evidence that our previous statement is correct.

We have considered both a free scalar model and a free fermion model in different dimen-

sions, and shown that in all cases the two-point functions of conserved currents are built

out of the differential operators which define the linearized (Fronsdal) equations of motion

of the fields that couple to the currents. There is no doubt that such free field theories

know about the dynamics of the fields that can couple to them (via a conserved current).9

At this stage a specification is in order. Our intent in this paper was to show the

universal appearance of non-local Fronsdal (as well as Maxwell and EH) linearized eom in

the one-loop effective actions of a free scalar and boson field coupled to external currents,

while postponing other subtler questions to future research. In particular we did not tackle

the problem raised by [47, 48], concerning the form of the Fronsdal equation that guarantees

the right propagator for the relevant higher spin field. In order to do that one must first of

all specify to what equations one refers to, for we have seen that in the IR and UV limits of

the OLEA’s the conserved structures very often are different, and different from the various

tomographic sections, although for spin s they are all characterized by the presence of the

leading (4.1) term (the scalar model is in this sense a particular, though less interesting,

case, because the conserved structures are always the same for given spin). This part of

our research is work in progress, see [49].

The results of this paper opens a new research territory. Beside the just mentioned

problem, we would like to know whether the above results extend to other external sources,

fermionic fields as well as not completely symmetric fields. The next question is interaction,

which requires analyzing three-point functions. In this context interactions have been

considered for the simplest cases (spin 1 and 2) in 3d in [1]. From three-point functions

one expects to find information about the consistency of the (field or fields) interaction

with the source field symmetry. For instance, for spin 1 with gauge symmetry, for spin 2

with diffeomorphisms. For higher spins we do not know, in general, neither the interaction

nor the full form of the symmetry transformations. But knowing the three-point functions

may be the key to constructing both. There are anyhow some exceptions to our ignorance

in this field (higher spin theories in 3d, or Vasiliev’s higher spin theory in AdS4, or string

field theory). One can hopefully use this knowledge to test the approach suggested here.

If our conjecture is correct, that is if the analysis of three-point correlators in theories

coupled to external sources confirms their consistency with the dynamics of the latter, as

we believe, an obvious question comes next: what does this mean? The correspondence

between one free field theory and higher (or low) spin theories is not a type of duality we

9The limitation to free field theories does not seem to be essential provided the currents are conserved,

but of course explicit calculations are far more complicated in the case of interacting theories.
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are familiar with, like AdS/CFT. First of all it concerns models in the same dimension.

Secondly, from one free theory we retrieve knowledge about (infinite) many theories. So

the correspondence would be one to (infinite) many. And this is clearly not satisfactory.

The results of this paper points rather toward the possibility of a correspondence between

theories with infinite many fields. If, say, a starting free (or interacting) theory knows

about the dynamics of other fields, why shouldn’t the latter be included with the initial

one in a unique theory? Arguing this way one is led to a (for the time being, generic)

concept of involutive theory : a theory is involutive if it includes all the fields it is able to

couple with (in the OLEA) while preserving a fundamental symmetry.

A good playground to test this concept could be string field theory (SFT). Such a

theory is formulated in terms of a basic string field Φ. The latter, in the field theory

regime, is a superposition of Fock space states, each with a coefficient given by a suitable

ordinary spacetime field. Restricting ourselves to bosonic SFT, the action formulated by

Witten is well known, and is given by the formula below with Ψ replaced by Φ. Analyzing

it in the spirit of this paper amounts to studying the theory

S =
1

2go

∫ (
Φ ∗QΦ+

2

3
Φ ∗ Φ ∗Ψ

)
(12.1)

where the first piece is the free SFT and the second is the simplest interaction with the

source term (Ψ is the source string field). The first piece is invariant under the BRST

transformation δΦ = QΛ. The second term carries the invariance under δΨ = QΛ provided

that Φ is on shell, i.e. QΦ = 0. This mimics what we have done previously for simple field

theory models.
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A Proof that a conserved structure can be written in terms of products

of π alone

By induction in steps of 2. In the lowest case (spin 1), the most general Lorentz covariant

(dimensionless) conserved even structure can be written in terms of ηµν and
kµkν
k2

. Imposing

conservation the result is ∼ ηµν − kµkν
k2

= πµν . In the same way one can prove the

property for the case s = 2. Now we suppose that the proposition is true for s. So it

is true for the combination T (s)(k ·ns
1 ·ns

2) = Ẽ(s)(k) =
∑[s/2]

l=0 alÃ
(s)
l (see above), meaning

that kµ ∂
∂nµ

1

T (s) = 0. In order to construct T (s+1) we can multiply T (s) by (n1n2) or

(n1k)(n2k)
k2

or multiplying T (s−1) by (n1n1)(n2n2),
(n1k)(n1k)

k2
(n2n2), (n1n1)

(n2k)(n2k)
k2

or by
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(n1k)(n1k)
k2

(n2k)(n2k)
k2

, because the construction is in steps or 2. So we can have only

T (s+1) = a1(n1n2)T
(s) + a2(n1n1)(n2n2)T

(s−1) + b1
(n1k)(n2k)

k2
T (s)

+b2
(n1k)(n1k)

k2
(n2n2)T

(s−1) + b3(n1n1)
(n2k)(n2k)

k2
T (s−1)

+b4
(n1k)(n1k)

k2
(n2k)(n2k)

k2
T (s−1) (A.1)

Now applying kµ ∂
∂nµ

1

to this expression we find that conservation requires a1 = −b1, a2 =

−b2 = −b3 = b4. So that (A.1) becomes

T (s+1) = a(n1, π
(k) ·n2)T

(s) + b(n1, π
(k) ·n1)(n2, π

(k) ·n2)T
(s−1) (A.2)

with arbitrary a and b.

B Massless models

In this appendix we consider the massless case both for the scalar and the fermion models,

i.e. we set m = 0 in their action, and derive the relevant two-point functions for several

tensorial currents in any dimension. These results are based on the scalar integral (5.8).

The results we report below have to be compared with the results obtained in the

section 6-9, precisely with the OUV(m
0)−OIR(m

0)−OIR(log(m)) terms therein. It can be

easily checked that for odd d the results coincide exactly, as far as the even parity part of

the correlators is concerned, while the massless model approach is unable to reproduce the

odd parity part (at least perturbatively). In the even dimensional case the results of the

two approaches do not, in general, coincide. Only the terms proportional to log
(
−k2

)
are

the same in the two approaches. These differences are due to the lack of IR regularization

in the massless model approach.

For conciseness in this appendix we use a simplified notation, taken from the literature

on higher spin fields: the same repeated subscript, say µ . . . µ repeated s times, stand for

s completely symmetrized labels.

In this appendix we also construct traceless two-point correlators. As a matter of fact,

in this paper we are only marginally interested in zero trace currents. But the tracelessness

condition may be relevant for further developments.

B.1 Massless fermion model

Let us start with spin 1 case for massless fermions. The two point correlator is

J̃µν(k) = −
∫

ddp

(2π)d
Tr

(
γν

1

/p
γµ

1

/p− /k

)

= −Tr(1)

∫
ddp

(2π)d
pν(p− k)µ + pµ(p− k)ν − p·(p− k)ηµν

p2(p− k)2
(B.1)
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where Tr(1) = 2⌊ d
2
⌋. Using Davydychev methods, the two point correlator for spin s=1

and any dimension d reads

J̃µν = −22−2d+⌊ d
2
⌋π 3

2
− d

2

(
k2
) d

2
−1

(d− 2)

(−1 + eiπd) Γ(d+1
2 )

πµν (B.2)

where πµν is the usual projector.

In a similar way for spin 2 in the massless case we get

J̃µµνν =
21−2d+⌊ d

2
⌋π 3

2
− d

2

(
k2
) d

2 (d− 1)

(−1 + eiπd) Γ
(
d+3
2

)
(
π2
µν −

1

d− 1
πµµπνν

)
(B.3)

The two-point correlator in s = 2 case is traceless for any d.

For spin 3 we obtain

J̃µµµννν = −2−2−2d+⌊ d
2
⌋π 3

2
− d

2

(
k2
) d

2
+1

9 (−1 + eiπd) Γ
(
d+5
2

) πµν

×
(
32 d π2

µν + (d((d− 6)d+ 3)− 54)πµµπνν
)

(B.4)

We can check if this expression is traceless

ηµµJ̃µµµννν = −2−1−2d+⌊ d
2
⌋(d− 3)2

(
d2 + d− 6

)
π

3

2
− d

2

(
k2
) d

2
+1

9 (−1 + eiπd) Γ
(
d+5
2

) πµνπνν (B.5)

For dimension d = 3, the two-point correlator Jµµµννν is traceless. To obtain tracelessness

for other dimensions we can add local counterterms to the two point function

J̃µµµννν = −2−2−2d+⌊ d
2
⌋π 3

2
− d

2

(
k2
) d

2
+1

9 (−1 + eiπd) Γ
(
d+5
2

) πµν

×
(
(32 d+ a1)π

2
µν + (d((d− 6)d+ 3)− 54 + a2)πµµπνν

)
(B.6)

The counterterms are local only for even d. In this case it is easy to verify that for the full

expression to be traceless we must have

a1 =
1

3

(
−a2(d+ 1)−

(
d2 + d− 6

)
(d− 3)2

)

The traceless 2pt function is therefore

J̃µµµννν = −2−2−2d+⌊ d
2
⌋π 3

2
− d

2

(
k2
) d

2
+1

(1 + d)(−54 + 3d− 6d2 + d3 + a2)

9 (−1 + eiπd) Γ
(
d+5
2

)

×πµν

(
π2
µν −

3

(d+ 1)
πµµπνν

)
(B.7)

For spin s = 4 the two-point correlator is

J̃µµµµνννν =
2−3−2d+⌊ d

2
⌋π 3

2
− d

2

(
k2
) d

2
+2

9 (−1 + eiπd) Γ
(
d+7
2

)
(
(24(d+ 1))π4

µν

+((d− 7)(d(d+ 2) + 9))π2
µνπµµπνν + ((9− (d− 4)d))π2

µµπ
2
νν

)
(B.8)
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Again, unless d = 3, the expression for J̃µµµµνννν is not traceless For even d > 3 we can

add local counterterms

J̃µµµµνννν =
2−3−2d+⌊ d

2
⌋π 3

2
− d

2

(
k2
) d

2
+2

9 (−1 + eiπd) Γ
(
d+7
2

)
(
(24(d+ 1) + a1)π

4
µν (B.9)

+((d− 7)(d(d+ 2) + 9) + a2)π
2
µνπµµπνν + ((9− (d− 4)d) + a3)π

2
µµπ

2
νν

)

and we obtain a traceless 2pt correlator for

a1 = −(1/3)(1 + d)((−3 + d)2(5 + d)− a3(3 + d)), a2 = (d− 3)2(d+ 5)− 2a3(d+ 1)

The traceless two point correlator is now

J̃µµµµνννν = −2−3−2d+⌊ d
2
⌋π 3

2
− d

2

(
−a3 + d2 − 4d− 9

) (
k2
) d

2
+2

(d+ 1)(d+ 3)

27 (−1 + eiπd) Γ
(
d+7
2

)

×
(
π4
µν −

6

(d+ 3)
πµµπ

2
µνπνν +

3

(d+ 1)(d+ 3)
π2
µµπ

2
νν

)
(B.10)

In general, conserved and traceless 2pt function for spin s in any (even) dimension is

proportional to

J̃µ1...µsν1...νs ∼
⌊ s

2
⌋∑

l=0

(−1)l

22ll!

s!

(s− 2l)!

Γ
(
s+ d−3

2 − l
)

Γ
(
s+ d−3

2

) πs−2l
µν (πµµπνν)

l (B.11)

We can write the sum as

J̃µ1...µsν1...νs ∼ 2F1

(
1− s

2
,−s

2
;
5− d− 2s

2
;
πµµπνν
π2
µν

)
πs
µν (B.12)

B.2 Massless scalar model

Let us compute the two point correlator for a scalar in d dimensions for spin s = 1. Using

Davydychev methods we get:

J̃µν = −23−2d π
3

2
− d

2

(
k2
) d

2
−1

(−1 + eiπd) Γ(d+1
2 )

πµν (B.13)

The expression for J̃µν is traceless and conserved.

For spin 2 we get

J̃µµνν =
22−2d π

3

2
− d

2

(
k2
) d

2

(−1 + eiπd) Γ(d+3
2 )

(
2π2

µν + πµµπνν
)

(B.14)

which is conserved, but not traceless:

ηµµJ̃µµνν =
23−2d π

3

2
− d

2

(
k2
) d

2

(−1 + eiπd) Γ(d+3
2 )

(d+ 1)πνν (B.15)
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Let us consider the counterterms J̃µµνν

J̃µµνν =
22−2d π

3

2
− d

2

(
k2
) d

2

(−1 + eiπd) Γ(d+3
2 )

(
(2 + a1)π

2
µν + (1 + a2)πµµπνν

)
(B.16)

which is local for even d. Adding it to J̃µµνν , the trace becomes

ηµµJ̃µµνν =
23−2d π

3

2
− d

2

(
k2
) d

2

(−1 + eiπd) Γ(d+3
2 )

(d+ 1 + a1 + a2(d− 1))π2
νν (B.17)

If we choose

a1 = −(1 + d)− a2(d− 1)

we get a traceless J̃µµνν

J̃µµνν = − 22−2d π
3

2
− d

2

(
k2
) d

2

(−1 + eiπd) Γ(d+3
2 )

(1 + a2)(d− 1)

(
π2
µν −

1

d− 1
πµµπνν

)
(B.18)

This is possible only for even d.

For spin 3 we have

J̃µµµννν = −3 · 21−2d π
3

2
− d

2

(
k2
) d

2
+1

(−1 + eiπd) Γ(d+5
2 )

πµν
(
2π2

µν + 3πµµπνν
)

(B.19)

This expression is transverse but not traceless

ηµµJ̃µµµννν = −9 · 22−2d π
3

2
− d

2

(
k2
) d

2
+1

(−1 + eiπd) Γ(d+5
2 )

(3 + d)πµνπνν (B.20)

In even d we can add local counterterms and obtain

J̃µµµννν = −3 · 21−2d π
3

2
− d

2

(
k2
) d

2
+1

(−1 + eiπd) Γ(d+5
2 )

πµν
(
(2 + a1)π

2
µν + (3 + a2)πµµπνν

)
(B.21)

To make J̃µµµννν traceless we must have

a1 = −1

3
(3(3 + d) + a2(1 + d))

A traceless J̃µµµννν can now be written as

J̃µµµννν =
21−2d π

3

2
− d

2

(
k2
) d

2
+1

(−1 + eiπd) Γ(d+5
2 )

(3 + a2)(d+ 1)πµν

(
π2
µν −

3

d+ 1
πµµπνν

)
(B.22)

For spin 4 the two-point correlator is

J̃µµµµνννν = −3 · 2−2d π
3

2
− d

2

(
k2
) d

2
+2

(−1 + eiπd) Γ(d+7
2 )

(
8π4

µν + 24π2
µνπµµπνν + 3π2

µµπ
2
νν

)
(B.23)
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The expression for J̃µ1...µ4ν1...ν4 is not traceless

ηµµJ̃µµµµνννν = −9 · 22−2d π
3

2
− d

2

(
k2
) d

2
+2

(−1 + eiπd) Γ(d+7
2 )

(5 + d)πνν
(
4π2

µν + πµµπνν
)

(B.24)

Again in even d we can add local counterterms

J̃µµµµνννν = −3 · 2−2d π
3

2
− d

2

(
k2
) d

2
+2

(−1 + eiπd) Γ(d+7
2 )

·
(
(8 + a1)π

4
µν + (24 + a2)π

2
µνπµµπνν + (3 + a3)π

2
µµπ

2
νν

)
(B.25)

The tracelessness condition is now

a1 = −5 + a3 +
4

3
d(3 + a3) +

1

3
d2(3 + a3), a2 = −2(15 + 3d+ (1 + d)a3)

so that a traceless J̃µµµµνννν can be written

J̃µµµµνννν = −2−2d π
3

2
− d

2

(
k2
) d

2
+2

(−1 + eiπd) Γ(d+7
2 )

(3 + a3)(d+ 1)(d+ 3)

·
(
π4
µν −

6

(d+ 3)
π2
µνπµµπνν +

3

(d+ 1)(d+ 3)
π2
µµπ

2
νν

)
(B.26)

As in the case of fermions, the transverse and traceless 2pt function for spin s in even

dimensions is proportional to

J̃µ1...µsν1...νs ∼
⌊ s

2
⌋∑

l=0

(−1)l

22ll!

s!

(s− 2l)!

Γ
(
s+ d−3

2 − l
)

Γ
(
s+ d−3

2

) πs−2l
µν (πµµπνν)

l

= 2F1

(
1− s

2
,−s

2
;
5− d− 2s

2
;
πµµπνν
π2
µν

)
πs
µν (B.27)

C 4d full amplitudes

In view of the importance of the 4d case, we give in the following complete explicit

formulas in terms of elementary functions of the two point correlator for spin 1,2,3 in the

fermionic model.

C.1 Spin 1

ik2

π2
(n1 ·π ·n2)

(
−m2

3k2
+
√
4m2 − k2

(
m2

3k3
+

1

6k

)
csc−1

(
2m

k

)
+

1

12
L1 −

1

18

)

normalized with the understanding that in UV:
√
4m2 − k2 → −ik + i

2m

k2
+ . . . (C.1)

csc−1

(
2m

k

)
→ 1

2
i log

(
− k2

m2

)
− im2

k2
+ . . . (C.2)

Here,

Ln =
2

ε
+ log

(
m2

4π

)
+ γ −

n∑

k=1

1

k
(C.3)
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C.2 Spin 2

i

π2

m4

4k4
(
k2 (k ·n2)

2(n1 ·π ·n1) + 2k2(k ·n1)(k ·n2)(n1 ·π ·n2) + k2 (k ·n1)
2(n2 ·π ·n2)

+2 (k ·n1)
2 (k ·n2)

2
)
L2

+
i

π2
k4 (n1 ·π ·n2)

2

(
− 8m4

15k4
+

7m2

360k2
+

(
m4

4k4
+

m2

12k2
− 1

40

)
L2

+
√
4m2 − k2

(
8m4

15k5
+

m2

15k3
− 1

20k

)
csc−1

(
2m

k

)
+

9

400

)

+
i

π2
k4(n1 ·π ·n1)(n2 ·π ·n2)

(
− 4m4

15k4
+

41m2

360k2
+

(
m4

4k4
− m2

12k2
+

1

120

)
L2

+
√
4m2 − k2

(
4m4

15k5
− 2m2

15k3
+

1

60k

)
csc−1

(
2m

k

)
− 47

3600

)

C.3 Spin 3

i (n1 ·π ·n2)
3k6

1

π2

(
−128m6

315k6
+

32m4

315k4
+

218m2

14175k2
+

(
8m6

27k6
− 4m2

135k2
+

4

945

)
L3

+
√
4m2 − k2

(
128m6

315k7
− 64m4

945k5
− 8m2

189k3
+

8

945k

)
csc−1

(
2m

k

)
− 428

99225

)

+i (k ·n1)
2 (k ·n2)

2(n1 ·π ·n2)k
2 1

π2

(
m4

18k4
+

(
37m6

27k6
+

m4

6k4

)
L3

)

+i (k ·n1)
3 (k ·n2)

3 1

π2

(
7m4

72k4
+

(
7m6

9k6
+

7m4

24k4

)
L3

)

+im6(k ·n1)(k ·n2) (n1 ·π ·n2)
2 8

9π2k2
L3

+i(n1 ·π ·n1)(n1 ·π ·n2)(n2 ·π ·n2)
k6

π2

(
− 64m6

105k6
+

257m4

1512k4
− 1877m2

56700k2

+

(
13m6

27k6
− m4

8k4
+

4m2

135k2
− 37

15120

)
L3

+
√
4m2 − k2

(
64m6

105k7
− 152m4

945k5
+

187m2

3780k3
− 37

7560k

)
csc−1

(
2m

k

)
+

12433

3175200

)

+i
(
k2(k ·n2)(n2 ·π ·n2) (k ·n1)

3 + k2 (k ·n2)
3(n1 ·π ·n1)(k ·n1)

)

· 1
π2

(
7m4

144k4
+

(
13m6

27k6
+

7m4

48k4

)
L3

)

+13im6(k ·n1)(k ·n2)(n1 ·π ·n1)(n2 ·π ·n2)
1

27π2k2
L3

+i
(
(k ·n2)

2(n1 ·π ·n1)(n1 ·π ·n2)k
4 + (k ·n1)

2(n1 ·π ·n2)(n2 ·π ·n2)k
4
)

· 1
π2

(
m4

144k4
+

(
13m6

27k6
+

m4

48k4

)
L3

)
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Theor. 47 (1987) 277 [INSPIRE].

[37] R. Jackiw and S. Templeton, How superrenormalizable interactions cure their infrared

divergences, Phys. Rev. D 23 (1981) 2291 [INSPIRE].

[38] I. Vuorio, Parity violation and the effective gravitational action in three-dimensions,

Phys. Lett. B 175 (1986) 176 [INSPIRE].

– 67 –

http://dx.doi.org/10.1088/1742-6596/33/1/006
https://arxiv.org/abs/hep-th/0601199
http://inspirehep.net/search?p=find+EPRINT+hep-th/0601199
http://dx.doi.org/10.1142/S0217751X09043134
https://arxiv.org/abs/0805.1346
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1346
https://arxiv.org/abs/0807.0406
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0406
http://dx.doi.org/10.1393/ncr/i2010-10053-2
https://arxiv.org/abs/0910.3155
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3155
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(CORFU2011)106
https://arxiv.org/abs/1002.3388
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.3388
http://dx.doi.org/10.1143/PTPS.188.94
https://arxiv.org/abs/1103.0683
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.0683
http://inspirehep.net/search?p=find+J+%22Gen.Rel.Grav.,32,365%22
http://dx.doi.org/10.1088/1751-8113/46/21/214011
https://arxiv.org/abs/1112.1016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1016
http://dx.doi.org/10.1088/0264-9381/30/10/104003
https://arxiv.org/abs/1204.3882
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3882
http://dx.doi.org/10.1142/9789814522519_0020
https://arxiv.org/abs/1110.5841
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5841
http://dx.doi.org/10.1007/JHEP09(2012)091
https://arxiv.org/abs/1206.5218
http://inspirehep.net/search?p=find+J+%22JHEP,1209,091%22
http://dx.doi.org/10.1007/JHEP07(2013)105
https://arxiv.org/abs/1104.4317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4317
http://dx.doi.org/10.1140/epjc/s10052-012-2112-0
https://arxiv.org/abs/1110.4386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4386
http://dx.doi.org/10.1016/0370-2693(89)90813-7
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B225,245%22
http://dx.doi.org/10.1088/0264-9381/6/4/005
http://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,6,443%22
http://dx.doi.org/10.1103/PhysRevD.21.358
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D21,358%22
http://inspirehep.net/search?p=find+R+PRINT-87-0725
http://dx.doi.org/10.1103/PhysRevD.23.2291
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D23,2291%22
http://dx.doi.org/10.1016/0370-2693(86)90710-0
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B175,176%22


J
H
E
P
1
2
(
2
0
1
6
)
0
8
4

[39] T. Appelquist, M.J. Bowick, E. Cohler and L.C.R. Wijewardhana, Chiral symmetry breaking

in (2 + 1)-dimensions, Phys. Rev. Lett. 55 (1985) 1715 [INSPIRE].

[40] T.W. Appelquist, M.J. Bowick, D. Karabali and L.C.R. Wijewardhana, Spontaneous chiral

symmetry breaking in three-dimensional QED, Phys. Rev. D 33 (1986) 3704 [INSPIRE].

[41] T. Appelquist, M.J. Bowick, D. Karabali and L.C.R. Wijewardhana, Spontaneous breaking of

parity in (2 + 1)-dimensional QED, Phys. Rev. D 33 (1986) 3774 [INSPIRE].

[42] K.S. Babu, A.K. Das and P. Panigrahi, Derivative expansion and the induced Chern-Simons

term at finite temperature in (2 + 1)-dimensions, Phys. Rev. D 36 (1987) 3725 [INSPIRE].

[43] R. Delbourgo and A.B. Waites, Induced parity violation in odd dimensions,

Austral. J. Phys. 47 (1994) 465 [hep-th/9404164] [INSPIRE].

[44] G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].

[45] F.S. Gama, J.R. Nascimento and A. Yu. Petrov, Derivative expansion and the induced

Chern-Simons term in N = 1, D = 3 superspace, Phys. Rev. D 93 (2016) 045015

[arXiv:1511.05471] [INSPIRE].

[46] X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background,

JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

[47] D. Francia, J. Mourad and A. Sagnotti, Current exchanges and unconstrained higher spins,

Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].

[48] D. Francia, On the relation between local and geometric lagrangians for higher spins,

J. Phys. Conf. Ser. 222 (2010) 012002 [arXiv:1001.3854] [INSPIRE].

[49] L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, B. Lima de Souza and T. Štemberga,
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