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Abstract The production cross sections for prompt
charmed mesons D0, D+, D∗+ and D+

s were measured at
mid-rapidity in proton–proton collisions at a centre-of-mass
energy

√
s = 7 TeV with the ALICE detector at the Large

Hadron Collider (LHC). D mesons were reconstructed from
their decays D0 → K−π+, D+ → K−π+π+, D∗+ →
D0π+, D+

s → φπ+ → K−K+π+, and their charge conju-
gates.With respect to previous measurements in the same
rapidity region, the coverage in transverse momentum (pT)
is extended and the uncertainties are reduced by a factor of
about two. The accuracy on the estimated total cc produc-
tion cross section is likewise improved. The measured pT-
differential cross sections are compared with the results of
three perturbative QCD calculations.

1 Introduction

In high-energy hadronic collisions heavy quarks are pro-
duced by hard scatterings between partons of the two incom-
ing hadrons. The production cross section of hadrons with
charm or beauty quarks is calculated in the framework of
Quantum Chromodynamics (QCD) and factorised as a con-
volution of the hard scattering cross sections at partonic
level, the parton distribution functions (PDFs) of the incom-
ing hadrons and the non-perturbative fragmentation func-
tions of heavy quarks to heavy-flavour hadrons. Factorisation
is implemented in terms of the squared momentum trans-
fer Q2 (collinear factorisation) [1] or of the partonic trans-
verse momentum kT [2]. The hard scattering cross section
is expanded in a perturbative series in powers of the strong
coupling constant αs. State-of-the-art calculations based on
collinear factorisation implement a perturbative expansion
up to next-to-leading order (NLO) in αs, such as the general-
mass variable flavour number scheme (GM-VFNS) [3–5],
or next-to-leading order in αs with all-order resummation
of the logarithms of pT/mQ (FONLL) [6,7], where pT and
mQ are the heavy-quark transverse momentum and mass,

� e-mail: alice-publications@cern.ch

respectively. Calculations based on kT factorisation exist
only at leading order (LO) in αs [2,8,9]. All these calcu-
lations provide a good description of the production cross
sections of D and B mesons in proton–proton (and proton–
antiproton) collisions at centre-of-mass energies from 0.2
to 13 TeV over a wide pT range at both central and for-
ward rapidities (see e.g. [10] and references therein). In the
case of charm production the uncertainties of the theoreti-
cal calculations, dominated by the perturbative scale uncer-
tainties, are significantly larger than the experimental ones
[11–21]. However, it was recently pointed out that in ratios
of cross sections at different LHC energies and in different
rapidity intervals the perturbative uncertainty becomes sub-
dominant with respect to the uncertainty on the PDFs [22],
thus making the measurement sensitive in particular to the
gluon PDF at values of Bjorken-x down to 10−5 when the D-
meson pT approaches 0. This represents a strong motivation
for pursuing precise measurements of D-meson production
in pp collisions at LHC energies. Charm hadroproduction
measurements are also required for cosmic-ray and neutrino
astrophysics, where high-energy neutrinos from the decay of
charmed hadrons produced in particle showers in the atmo-
sphere constitute an important background for neutrinos from
astrophysical sources [23–26].

In the context of the heavy-ion programme at the LHC, D-
meson measurements in pp collisions represent an essential
reference for the study of effects induced by cold and hot
strongly-interacting matter in the case of proton–nucleus and
nucleus–nucleus collisions (see e.g. the recent reviews [10,
27]). In addition, the cc production cross section per nucleon–
nucleon collision is a basic ingredient for the determination of
the amount of charmonium production by (re)generation in a
quark-gluon plasma [28–30], a mechanism that is supported
by J/ψ measurements in nucleus–nucleus collisions at the
LHC [31,32]. A precise measurement of the cc production
cross section in pp collisions would enable a more stringent
comparison of model calculations with data.

In this article, we report the measurement of the pro-
duction cross sections of prompt D0, D+, D∗+ and D+

s
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mesons (as average of particles and anti-particles), and of
their ratios, in pp collisions at the centre-of-mass energy√
s = 7 TeV using the ALICE detector at the LHC. The mea-

surements cover mid-rapidity (|y| < 0.5) and the intervals
0 < pT < 36 GeV/c for D0 mesons, 1 < pT < 24 GeV/c
for D+ and D∗+mesons, and 2 < pT < 12 GeV/c for D+

s
mesons. The measurements cover complementary intervals
in pT and rapidity with respect to those published by the
ATLAS (3.5 < pT < 100 GeV/c, |η| < 2.1 [13]) and
LHCb (0 < pT < 8 GeV/c, 2 < y < 4.5 [19]) Collabo-
rations at the same centre-of-mass energy. In comparison to
previous ALICE publications based on the same data sample
[14,16,17], the present results have a significantly extended
pT coverage (for example, the previous coverage for D0

mesons was 0–16 GeV/c) and total uncertainties reduced
by a factor of about two. These improvements have several
sources: (i) changes in the detector calibration, alignment
and track reconstruction algorithm, which resulted in bet-
ter pT resolution, thus higher signal-to-background ratio; (ii)
optimization of the D-meson selection procedure; (iii) refine-
ments in the estimation of the systematic uncertainties, which
is now more data-driven; (iv) a data sample with 20% larger
integrated luminosity.

The article is organised as follows: the data sample and the
analysis procedure are described in Sect. 2, the estimation of
the systematic uncertainties is discussed in Sect. 3 and the
results are presented and compared to theoretical calculations
in Sect. 4.

2 Analysis

A complete description of the ALICE experimental setup
and of its performance can be found in [33,34]. D mesons
were reconstructed at mid-rapidity from their decay products,
using the tracking and particle identification capabilities of
the ALICE central barrel detectors located within a large
solenoidal magnet, providing a field B = 0.5 T parallel to
the beam line (z axis of the ALICE reference frame). The
innermost detector, the Inner Tracking System (ITS), is used
to track charged particles within the pseudorapidity interval
|η| < 0.9 as well as for primary and secondary vertex recon-
struction. It consists of six cylindrical layers equipped with
Silicon Pixel Detectors (SPD), Silicon Drift Detectors (SDD)
and Silicon Strip Detectors (SSD) from inner to outer layers.
The ITS provides a resolution on the track impact parameter
d0 to the primary vertex in the transverse plane (rϕ) better
than 75 µm for transverse momentum pT > 1 GeV/c. As
compared to previous publications based on the same data
sample [14,16], the alignment of the ITS sensor modules
was improved and a new procedure for the calibration of the
drift velocity and of the non-uniformities of the drift field
in the SDD was used. The Time Projection Chamber (TPC)

provides track reconstruction as well as particle identifica-
tion via the measurement of the specific ionisation energy
loss dE /dx . The Time-Of-Flight detector (TOF) extends the
charged particle identification capabilities of the TPC via
the measurement of the flight time of the particles from the
interaction point. The event collision time is measured with
the T0 detector, which consists of two arrays of Cherenkov
counters located at +350 cm and −70 cm along the beam
line, or, for the events with sufficiently large multiplicity, it
is estimated using the particle arrival times at the TOF [35].
The V0 detector, used in the online trigger and offline event
selection, consists of two arrays of 32 scintillators each, cov-
ering the pseudorapidity intervals −3.7 < η < −1.7 and
2.8 < η < 5.1, placed around the beam vacuum tube on
either side of the interaction region. A minimum-bias (MB)
trigger was used to collect the data sample, by requiring
at least one hit in either of the V0 counters or in the SPD
(|η| < 2). Events were selected off-line by using the tim-
ing information from the V0 and the correlation between
the number of hits and track segments in the SPD detector
to remove background due to beam–gas interactions. Only
events with a primary vertex reconstructed within ±10 cm
from the centre of the detector along the beam line were used
for the analysis. The analysed data sample consists of about
370 million MB events, corresponding to an integrated lumi-
nosity L int = (6.0 ±0.2) nb−1, collected during the 2010 pp
run at

√
s = 7 TeV.

D mesons were reconstructed via their hadronic decay
channels D0 → K−π+ (with branching ratio, BR = 3.93
± 0.04%), D+ → K−π+π+ (BR = 9.46 ± 0.24%),
D∗+(2010) → D0π+ (strong decay with BR = 67.7 ± 0.5%)
with D0 → K−π+ and D+

s → φπ+ with φ → K−K+ (BR
= 2.27±0.08%), together with their charge conjugates [36].

D-meson candidates were defined using pairs or triplets
of tracks with the proper charge-sign combination. Tracks
were required to have |η| < 0.8, pT > 0.3 GeV/c, at least
70 associated TPC space points (out of a maximum of 159),
χ2/ndf < 2 in the TPC (where ndf is the number of degrees
of freedom involved in the track fit procedure), and at least
one hit in either of the two layers of the SPD. For the soft pion
produced in D∗+ decay, also tracks reconstructed only with
the ITS, with at least four hits, including at least one in the
SPD, and pT > 80 MeV/c were considered. With these track
selection criteria, the acceptance in rapidity for D mesons
drops steeply to zero for |y| > 0.5 at low pT and |y| > 0.8 at
pT > 5 GeV/c. A pT-dependent fiducial acceptance cut was
therefore applied on the D-meson rapidity, |y| < yfid(pT),
with yfid(pT) increasing from 0.5 to 0.8 in the transverse
momentum range 0 < pT < 5 GeV/c according to a second-
order polynomial function, and yfid = 0.8 for pT > 5 GeV/c.

D0, D+ and D+
s mesons have mean proper decay lengths

cτ of about 123, 312 and 150 µm, respectively [36]. Their
decay vertices are therefore typically displaced by a few hun-

123



Eur. Phys. J. C   (2017) 77:550 Page 3 of 21  550 

dred µm from the primary vertex of the interaction. Geo-
metrical selections on the D-meson decay topology were
applied to reduce the combinatorial background. The selec-
tion requirements were tuned so as to provide a large sta-
tistical significance for the signal and to keep the selection
efficiency as high as possible. The latter requirement was dic-
tated also by the fact that too tight cuts result in an increased
contribution to the raw yield from feed-down D mesons orig-
inating from decays of B mesons. In the D∗+ → D0π+
case, the decay vertex cannot be resolved from the primary
vertex and geometrical selections were applied on the sec-
ondary vertex topology of the produced D0. The geomet-
rical selections were mainly based on the displacement of
the tracks from the interaction vertex, the distance between
the D-meson decay vertex and the primary vertex (decay
length, L), and the pointing of the reconstructed D-meson
momentum to the primary vertex. The pointing condition
is applied by requiring a small value for the angle θpointing

between the directions of the reconstructed momentum of
the candidate and its flight line, defined by the vector from
the primary to the secondary vertex. In comparison to the
previous analysis of the same data sample, additional selec-
tion criteria were introduced. In particular, the projections
of the pointing angle and of the decay length in the trans-
verse plane (θrϕpointing and Lrϕ) were considered. Moreover, a
cut on the normalised difference between the measured and
expected impact parameters of each of the decay particles
(dreco

0,tr − dexp
0,tr )/σ was applied, where dreco

0,tr is the measured

track impact parameter, dexp
0,tr is defined as Lrϕ sin(θ

rϕ
tr,D), θrϕtr,D

is the measured angle between the momenta of the D meson
and of the considered track, and σ is the combination of the
uncertainties on the measured and expected d0. By requiring
(dreco

0,tr −dexp
0,tr )/σ < 3, a significant rejection of background

candidates (15–40% depending on D-meson species and pT)
and feed-down D mesons (up to 50% at high pT) is achieved
while keeping almost 100% of the prompt D mesons.

Further reduction of the combinatorial background was
obtained by applying particle identification (PID) to the
decay tracks. A 3σ compatibility cut was applied on the dif-
ference between the measured and expected signals for pions
and kaons for both the dE/dx and time-of-flight. Tracks
without TOF hits were identified using only the TPC informa-
tion with a 3 σ selection for D0, D+ and D∗+ decay products,
and a 2 σ selection for the D+

s . This stricter PID selection
strategy was needed in the D+

s case due to the large back-
ground of track triplets and the short D+

s lifetime, which
limits the effectiveness of the geometrical selections on the
displaced decay-vertex topology. Based on the PID informa-
tion and the charge sign of the decay tracks, D0 candidates
were accepted (as D0, D0, or both) or rejected, according to
the compatibility with the K∓ π± final state. For the D∗+
reconstruction, this ambiguity is resolved using the charge
of the soft pion. In the cases of the D+

s → K−K+π+ and

D+ → K−π+π+ decays, a candidate was rejected if the
track with charge opposite to that of the D meson was not
compatible with the kaon PID hypothesis.

The D-meson raw yields, including both particles and anti-
particles, were obtained from fits to the D0, D+ and D+

s
candidate invariant-mass distributions and to the mass dif-
ference M = M(Kππ) − M(Kπ) distributions for D∗+
candidates. In the fit function, the signal was modeled with
a Gaussian and the background was described by an expo-
nential term for D0, D+ and D+

s candidates and by the func-
tion a

√
M − mπ · eb(M−mπ ) for D∗+ candidates. In the

case of D0 mesons, an additional term was included in the
fit function to account for the contribution of signal candi-
dates that are present in the invariant mass distribution with
the wrong daughter particle mass assignment (reflections). A
study with Monte Carlo simulations showed that about 70%
of these reflections are rejected by the PID selections. The
residual contribution was accounted for by including in the
fit a template consisting of the sum of two wide Gaussians
with centroids and widths fixed to values obtained in the
simulation and with amplitudes normalised using the signal
observed in data.

Figure 1 shows fits to the invariant-mass (mass-difference)
distributions in three pT intervals for D0, D+, (D∗+) and
D+

s candidates from top to bottom. The mean values of the
Gaussians in all transverse-momentum intervals were found
to be compatible within uncertainties with the world average
rest mass values for D0, D+ and D+

s and with the difference
MD∗+ − MD0 for the D∗+ [36]. The widths are consistent
with the results from Monte Carlo simulations and smaller
by 10–20% than the values in [14,16], as a consequence of
the improved pT resolution.

The pT-differential cross section of prompt D mesons was
computed as:

d2σD

dpTdy
= 1

cy pT

1

BR

1
2 fprompt · ND+D,raw

∣
∣
∣|y|<yfid

(Acc × ε)prompt

1

L int
,

(1)

where fprompt, ND+D,raw and (Acc×ε)prompt are pT-interval
dependent quantities. The raw yield values (sum of particles
and antiparticles, ND+D,raw) were corrected for the B-meson
decay feed-down contribution (i.e. multiplied by the prompt
fraction fprompt in the raw yield), divided by the acceptance-
times-efficiency for prompt D mesons (Acc × ε)prompt, and
divided by a factor of two to obtain the particle and antipar-
ticle averaged yields. The pT-differential yields for each D-
meson species, measured separately for particles and anti-
particles, were found to be in agreement within statistical
uncertainties. The corrected yields were divided by the decay
channel BR, the pT interval width pT, the correction factor
for the rapidity coverage cy , and the integrated luminos-
ity L int = Nev/σMB, where Nev is the number of analysed
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Fig. 1 Invariant-mass (mass-difference) distributions of D0, D+,
(D∗+) and D+

s candidates and charge conjugates in three pT intervals
for a sample of pp collisions at

√
s = 7 TeV with L int = 6.0 nb−1. The

curves show the fit functions as described in the text. The contribution

of reflections for the D0 meson is included. The values of mean (μ) and
width (σ ) of the signal peak are reported together with the signal counts
(S) in the mass interval (μ − 3σ,μ + 3σ )

events and σMB = 62.2 mb is the cross section for the MB
trigger condition [37].

The (Acc×ε) correction factor was determined using sim-
ulations of pp collisions generated with the PYTHIA 6.4.21
event generator [38] (Perugia-0 tune [39]), and particle trans-
port through the apparatus using GEANT3 [40]. The lumi-
nous region distribution and the conditions of all the ALICE
detectors were included in the simulations. The (Acc×ε) for
prompt and feed-down D0, D+, D∗+ and D+

s mesons with
|y| < yfid is shown in Fig. 2 as a function of pT. The effi-
ciencies for feed-down D mesons are higher than those for
prompt D mesons in most of the pT intervals, because the
decay vertices of the feed-down D mesons are on average
more displaced from the primary vertex due to the large B-
meson lifetime (cτ ≈ 500 µm [36]). However, the selection

on the difference between measured and expected decay-
track impact parameters rejects more efficiently feed-down
D mesons, thus reducing the difference between prompt
and feed-down efficiencies as compared to the previous
analyses.

The rapidity acceptance correction factor cy was com-
puted with the PYTHIA 6.4.21 event generator with Perugia-
0 tune as the ratio between the generated D-meson yield in
y = 2 yfid, (with yfid varying from 0.5 at low pT to 0.8 at
high pT) and that in |y| < 0.5. It was checked that calcula-
tions of the cy correction factor based on FONLL pQCD
calculations [7] or on the assumption of uniform D-meson
rapidity distribution in |y| < yfid would give the same result,
because both in PYTHIA and in FONLL the D-meson yield
is uniform within 1% in the range |y| < 0.8.
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The fprompt fraction was calculated using the B production
cross sections from FONLL calculations [6,41], the B →
D + X decay kinematics from the EvtGen package [42] and
the efficiencies for feed-down D mesons reported in Fig. 2:

fprompt = 1 − ND feed-down
raw

ND
raw

= 1 −
(

d2σ

dpTdy

)FONLL

feed-down

· (Acc × ε)feed-down · cypT · BR · L int

ND+D,raw/2
, (2)

where the pT dependence of fprompt, ND+D,raw and (Acc ×
ε)feed-down is omitted for brevity. The values of fprompt range
between 0.85 and 0.97 depending on D-meson species and
pT.

3 Systematic uncertainties

Systematic uncertainties were estimated considering several
sources. A summary is shown in Table 1 for two pT inter-
vals. New or refined procedures were used with respect to the
analyses presented in [14,16], in particular for the uncertain-
ties on the signal yield extraction, the track reconstruction
efficiency and the feed-down subtraction.

The systematic uncertainties on the yield extraction
obtained from the fits to the invariant-mass distributions
(mass difference for D∗+ mesons) were evaluated by repeat-
ing the fits several times varying (i) the invariant-mass bin
width, (ii) the lower and upper limits of the fit range, (iii) the
background fit function (exponential function, first, second
and third order polynomials were used for D0, D+ and D+

s
and a power law for the D∗+), for a total of about few hundred
fits for each D-meson species and pT interval. In addition,
the same approach was used with a bin counting method,
in which the signal yield was obtained by integrating the

invariant-mass distribution after subtracting the background
estimated from a fit to the side-bands. The distributions of
the signal yield obtained from these variations are consistent
with a Gaussian shape and the mean of the distributions is
close to the central value of the yield. The systematic uncer-
tainty was defined as the R.M.S. of this distribution.

The systematic uncertainty on the track reconstruction
efficiency was estimated by varying the track-quality selec-
tion criteria and by comparing the probability to prolong
tracks from the TPC inward to the ITS (‘matching efficiency’)
in data and simulations. The variation of the track selection
criteria, such as the minimum number of clusters in the TPC,
was found to yield a 2% systematic effect on the cross section
of D0 mesons (two-prong final state) and 3% for the other
meson species (three-prong final states). The comparison of
the matching efficiency in data and simulations was made
after weighting the relative abundances of primary and sec-
ondary particles in the simulation to match those observed
in data. This weighting is motivated by the observation that
the matching efficiency is much larger for primary particles
than for secondary particles produced far from the interac-
tion point in decays of strange hadrons and in interactions
of primary particles with the material of the detector. The
fractions of primary and secondary particles were estimated,
as a function of pT, by fitting the inclusive track impact
parameter distributions in data and in the simulation with
a sum of three template distributions for primary particles,
for secondary particles from strange-hadron decays and for
secondary particles produced in interactions of primary par-
ticles in the detector material. The templates were obtained
from the simulation. After weighting the relative abundances
in the simulation to match those in data, the systematic uncer-
tainty on the matching efficiency was defined as the relative
difference of the matching efficiencies in data and in the simu-
lation. The study was made separately for particles identified
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Table 1 Summary of relative
systematic uncertainties for two
pT intervals

D0 D+ D∗+ D+
s

pT (GeV/c) 2–3 10–12 2–3 10–12 2–3 10–12 2–4 8–12

Signal yield 3% 4% 6% 5% 2% 2% 5% 5%

Tracking efficiency 4% 4% 4% 6% 6% 6% 5% 6%

Selection efficiency 5% 5% 10% 5% 5% 5% 7% 7%

PID efficiency 0 0 0 0 0 0 7% 7%

pT Shape in MC 0 0 1% 2% 2% 0 3% 2%

Feed-down +4
−4% +3

−5% +2
−3% +2

−3% +2
−2% +2

−3% +4
−5% +4

−5%

Branching ratio 1.0% 2.5% 1.3% 3.5%

Normalisation 3.5%

as pions and as kaons using the TPC and TOF PID selections
described in Sect. 2. The systematic uncertainty is 2% per
track in the interval 2 < pT < 6 GeV/c and 1% at lower and
higher pT. The per-track uncertainty was then propagated
to the D mesons, taking into account the number and trans-
verse momentum of their decay tracks, and added in quadra-
ture to the component estimated from the track selection
variation.

Systematic uncertainties can also arise from possible dif-
ferences in the distributions and resolution of the geometric
selection variables between data and the simulation. These
uncertainties were evaluated by repeating the analysis with
several sets of selection criteria and comparing the resulting
corrected cross sections. More details can be found in [14].

To estimate the uncertainty on the PID selection efficiency,
for the three non-strange D-meson species the analysis was
repeated without PID selection. The resulting cross sections
were found to be compatible with those obtained with the PID
selection. Therefore, no systematic uncertainty was assigned.
For the D+

s meson, the lower signal yield and the larger com-
binatorial background prevented a signal estimation without
particle identification, hence, in this case, a 3σ PID selection,
looser with respect to the PID strategy adopted in the anal-
ysis, was used to estimate a systematic uncertainty of about
7%.

The systematic effect on the efficiency due to a possible
difference between the simulated and real pT distribution of
D mesons was estimated by using alternative D-meson pT

distributions from the PYTHIA 6 generator with Perugia-0
tune and from the FONLL pQCD calculation. More details
can be found in [14].

The systematic uncertainty on the subtraction of feed-
down from beauty-hadron decays includes the uncertainties
of (i) the B-meson production cross section from FONLL cal-
culations, (ii) the branching ratios of B mesons into D mesons
[36] and (iii) the relative abundances of B-meson species pro-
duced in the beauty-quark fragmentation [36]. The dominant
contribution is the one originating from the FONLL calcu-
lations and it was estimated by varying the pT-differential

cross section of feed-down D mesons within the theoretical
uncertainties of the FONLL calculation. The procedure for
the variation of the b-quark mass, of the perturbative scales
and of the parton distribution functions is described in [7]. In
previous analyses, an alternative method based on the ratio
of the FONLL cross sections for feed-down and prompt D
mesons was also used in the estimation of the systematic
uncertainties. In this analysis it was no longer used, on the
basis of the observation that FONLL calculations at LHC
energies provide a good description of the production cross
sections of B0, B+ and B0

s mesons at both central and for-
ward rapidity, while it underestimates prompt charm produc-
tion [43–48]. Hence, the uncertainty due to the B feed-down
correction is significantly reduced and more symmetric as
compared to our previous publications.

The uncertainty on the D-meson production cross section
normalisation has a contribution from the 3.5% uncertainty
on the minimum-bias trigger cross section [37] and a contri-
bution from the uncertainties on the branching ratios of the
considered D-meson decay channels (see Table 1).

The total systematic uncertainties, which are obtained as
a quadratic sum of the contributions listed in Table 1, are
reduced by a factor that ranges from 1.5 to 5, depending
on D-meson species and pT interval, with respect to pre-
vious publications [14,16]. The systematic uncertainties on
PID, tracking and selection efficiencies are mostly correlated
among the different pT intervals, while the raw-yield extrac-
tion uncertainty is mostly uncorrelated.

4 Results

The pT-differential cross sections for prompt D0, D+, D∗+
and D+

s production in |y| < 0.5 are shown in Fig. 3. The
error bars represent the statistical uncertainties, while the
systematic uncertainties are shown as boxes around the data
points. The symbols are positioned horizontally at the centre
of each pT interval, with the horizontal bars representing the
width of the pT interval. For all D-meson species, the results
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Fig. 3 pT-differential inclusive production cross section of prompt D0,
D+, D∗+ and D+

s mesons in pp collisions at
√
s = 7 TeV. Statistical

uncertainties (bars) and systematic uncertainties (boxes) are shown. The
D∗+ cross section is scaled by a factor of 5 for better visibility

are consistent within uncertainties with those reported in our
previous publications on charmed-meson cross sections in
pp collisions at

√
s = 7 TeV [14,16], but the total uncertain-

ties (sum in quadrature of statistical and systematic errors)
are reduced by a factor 1.5–4, depending on the D-meson
species and the pT interval. The D0-meson cross section in
the interval 0 < pT < 1 GeV/c is obtained from the anal-
ysis without decay vertex reconstruction described in Ref.
[17]. At higher pT, the results of the analysis presented in
this paper, based on geometrical selections on the displaced
decay vertex, are more precise than those obtained without
decay vertex reconstruction.

In Figs. 4, 5, 6 and 7, the measured pT-differential cross
sections are compared with results from perturbative QCD
calculations, two of which are based on collinear factorisa-
tion (FONLL [6,7] and GM-VFNS [3–5]) and one is a lead-
ing order (LO) calculation based on kT-factorisation [9]. The
results of these calculations, performed in the same pT inter-
vals of the measurement, are shown as filled boxes spanning
the theoretical uncertainties and a solid line representing the
values obtained with the central values of the pQCD param-
eters. The theoretical uncertainties are estimated in all the
three frameworks by varying the renormalisation and fac-
torisation scales. In the FONLL and kT-factorisation calcu-
lations also the effect of the charm-quark mass uncertainty is
considered. In the FONLL and GM-VFNS calculations, the
CTEQ6.6 PDFs [49] were used, and the uncertainty on the
PDFs was included in the FONLL error boxes. The LO kT-
factorisation calculations were performed with an updated set
of unintegrated gluon-distribution functions computed from
the recent MMHT2014-LO PDFs [50]. For this reason, the
comparison to the measured D0-meson cross section differs
from that reported in Ref. [17]. In the FONLL calculation,
the fragmentation fractions f (c → D), i.e. the fractions of

charm quarks hadronising into each D-meson species, were
taken from Ref. [51]. For the D+

s mesons, only the com-
parisons to GM-VFNS and LO kT-factorisation predictions
are shown, because a calculation of the D+

s production cross
section within the FONLL framework is not available. The
central value of the GM-VFNS predictions lies systemati-
cally above the data, while that of the FONLL predictions
lies below the data. For FONLL, this feature was observed
also at other values of

√
s, from 0.2 to 13 TeV [11,12,15,19–

21]. The LO kT-factorisation calculation describes the data
within uncertainties for pT < 2 GeV/c and pT > 10 GeV/c,
while in the interval 2 < pT < 10 GeV/c the predictions
underestimate the measured production cross sections.

The average transverse momentum 〈pT〉 of prompt D0

mesons was measured by fitting the cross section reported in
Fig. 4 with a power-law function:

f (pT) = C
pT

(1 + (pT/p0)2)n
, (3)

where C , p0 and n are the free parameters. The prompt-D0

〈pT〉, defined as the mean value of the fit function, is:

〈pT〉prompt D0

pp, 7 TeV = 2.19 ± 0.06 (stat.) ± 0.04 (syst.) GeV/c.

(4)

The systematic uncertainty on 〈pT〉 was estimated as
described in Ref. [17] taking into account separately the con-
tributions due to the correlated and uncorrelated systematic
uncertainties on the measured pT-differential cross section.
The uncertainty due to the fit function was estimated from
the spread of the results obtained with different functions and
using an alternative method, which is not based on fits to the
distribution, but on direct calculations of 〈pT〉 from the data
points.

The ratios of the pT-differential cross sections of D0, D+,
D∗+ and D+

s mesons are reported in Fig. 8. In the evaluation
of the systematic uncertainties on these ratios, the sources of
correlated and uncorrelated systematic effects were treated
separately. In particular, the contributions of the yield extrac-
tion and cut efficiency were considered as uncorrelated, while
those of the feed-down from beauty-hadron decays and the
tracking efficiency were treated as fully correlated among the
different D-meson species. The measured D-meson ratios do
not show a significant pT dependence within the experimen-
tal uncertainties, thus suggesting a small difference between
the fragmentation functions of charm quarks to pseudoscalar
(D0, D+ and D+

s ) and vector (D∗+) mesons and to strange
and non-strange mesons. The data are compared to the ratios
of the D-meson cross sections from FONLL (only for D0,
D+ and D∗+ mesons), GM-VFNS and LO kT-factorisation
pQCD calculations. The ratios of the theoretical predictions
were computed assuming their uncertainties to be fully corre-
lated among the D-meson species, which results in an almost
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Fig. 4 pT-differential
production cross section of
prompt D0 mesons with
|y| < 0.5 in the interval
0 < pT < 36 GeV/c, in pp
collisions at

√
s = 7 TeV. The

data point in
0 < pT < 1 GeV/c is obtained
from the analysis without decay
vertex reconstruction described
in Ref. [17]. The cross section is
compared to three pQCD
calculations: FONLL [7]
(top-left panel), GM-VFNS [5]
(top-right panel) and a leading
order (LO) calculation based on
kT-factorisation [9] (bottom
panel). The ratios of the data to
the three calculated cross
sections are shown in the lower
part of each panel. In the
data-to-theory ratios the 3.5%
normalisation uncertainty due to
the luminosity determination is
not included in the systematic
uncertainty on the data points
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complete cancellation of the uncertainties in the ratio. Note
that in all these pQCD calculations, the relative abundances of
the different D-meson species are not predicted by the theory,
but the fragmentation fractions, f (c → D), are taken from
the experimental measurements [7,9,51–54]. In the FONLL
and GM-VFNS frameworks, the pT dependence of the ratios
of the D-meson production cross sections arises from the dif-
ferent fragmentation functions used to model the transfer of
energy from the charm quark to a specific D-meson species
[52,53,55], and from the different contribution from decays
of higher excited states. The parton fragmentation models
used in the calculations provide an adequate description of
the measured data. In the LO kT-factorisation calculations,
the same fragmentation function (Peterson [56]) is used for
D0, D+ and D+

s mesons, resulting in the same shape of the
pT distributions of these three meson species, while the frag-
mentation functions for vector mesons from Ref. [57] are
used for D∗+ mesons [9].

The ratios of D0-meson production cross sections in dif-
ferent rapidity intervals, which are expected to be sensitive to
the gluon PDF at small values of Bjorken-x [22], were com-
puted from our measurement in the central rapidity region
(|y| < 0.5) and the results reported by the LHCb collab-
oration for pp collisions at

√
s = 7 TeV in different y

intervals at forward rapidity [19]. The results are reported
in Fig. 9, where the central-to-forward ratios are shown as
a function of pT for three different y intervals at forward
rapidity: 2 < y < 2.5 (left panel), 3 < y < 3.5 (middle
panel), 4 < y < 4.5 (right panel). The error bars represent
the total uncertainty obtained from the propagation of the
statistical and systematic uncertainties on the pT-differential
cross sections. The measured ratios are compared to FONLL
calculations, shown as boxes in Fig. 9. The central-to-forward
ratios computed using the central values of the factorisation
and renormalisation scales are found to describe the data
within their uncertainties. The upper edge of the FONLL
uncertainty band, which is also in agreement with the mea-
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Fig. 5 pT-differential
production cross section of
prompt D+ mesons with
|y| < 0.5 in the interval
1 < pT < 24 GeV/c, in pp
collisions at

√
s = 7 TeV. The

cross section is compared to
three pQCD calculations:
FONLL [7] (top-left panel),
GM-VFNS [5] (top-right panel)
and a leading order (LO)
calculation based on
kT-factorisation [9] (bottom
panel). The ratios of the data to
the three calculated cross
sections are shown in the lower
part of each panel. In the
data-to-theory ratios the 3.5%
normalisation uncertainty due to
the luminosity determination is
not included in the systematic
uncertainty on the data points
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sured values of the central-to-forward ratios, is determined by
the calculations with factorisation scale μF = 2mT, where

mT =
√

p2
T + m2

c andmc = 1.5 GeV/c2. The low edge of the
FONLL uncertainty band is determined by the calculations
with μF = 0.5mT, which provide a worse description of the
measured central-to-forward ratios at low pT for the most
forward rapidity interval. Note that in this forward rapidity
interval, the FONLL calculation with μF = 0.5mT uses the
PDFs for Bjorken-x values reaching down to about 10−5,
a region that is not constrained by experimental data, and
below Q2 = (1.3 GeV/c)2, where the CTEQ6.6 PDFs [49]
are kept constant to their values at (1.3 GeV/c)2.

The visible cross sections of prompt D mesons, obtained
by integrating the pT-differential cross sections in the mea-
sured pT range, are reported in Table 2. In addition, for D0

mesons the cross sections integrated over the pT intervals of
the D+, D∗+ and D+

s measurements are shown. The system-
atic uncertainty was defined by propagating the yield extrac-
tion uncertainties as uncorrelated among pT intervals and all

the other uncertainties as correlated. These values were used
to compute the ratios of the pT-integrated D-meson produc-
tion cross sections, which are reported in Table 3. The sys-
tematic uncertainties on the ratios were computed taking into
account the sources correlated and uncorrelated among the
different D-meson species as described above. The measured
ratios are compatible within uncertainties with the results
at

√
s = 2.76 TeV [15] and with the measurements of the

LHCb collaboration at forward rapidity (2.0 < y < 4.5)
at three different collision energies

√
s = 5, 7 and 13 TeV

[19–21]. The measured pT-integrated production ratios are
also compatible with the charm-quark fragmentation frac-
tions f (c → D) measured in e+e− collisions from the com-
pilation in [51]. These results indicate that the fragmentation
fractions of charm quarks into different D-meson species do
not vary substantially with rapidity, collision energy and col-
liding system.

The production cross sections per unit of rapidity, dσ/dy,
at mid-rapidity were computed for each meson species by
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Fig. 6 pT-differential
production cross section of
prompt D∗+ mesons with
|y| < 0.5 in the interval
1 < pT < 24 GeV/c, in pp
collisions at

√
s = 7 TeV. The

cross section is compared to
three pQCD calculations:
FONLL [7] (top-left panel),
GM-VFNS [5] (top-right panel)
and a leading order (LO)
calculation based on
kT-factorisation [9] (bottom
panel). The ratios of the data to
the three calculated cross
sections are shown in the lower
part of each panel. In the
data-to-theory ratios the 3.5%
normalisation uncertainty due to
the luminosity determination is
not included in the systematic
uncertainty on the data points
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Fig. 7 pT-differential
production cross section of
prompt D+

s mesons with
|y| < 0.5 in the interval
2 < pT < 12 GeV/c, in pp
collisions at

√
s = 7 TeV. The

cross section is compared to two
pQCD calculations: GM-VFNS
[5] (left panel) and a leading
order (LO) calculation based on
kT-factorisation [9] (right
panel). The ratios of the data to
the calculated cross sections are
shown in the lower part of each
panel. In the data-to-theory
ratios the 3.5% normalisation
uncertainty due to the
luminosity determination is not
included in the systematic
uncertainty on the data points
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Fig. 9 Ratios of D0-meson production cross section per unit of rapidity
at mid-rapidity (|y| < 0.5) to that measured by the LHCb Collaboration
[19] in three rapidity ranges, 2 < y < 2.5 (left panel), 3 < y < 3.5
(middle panel), 4 < y < 4.5 (right panel), as a function of pT. The

LHCb measurement were multiplied by 2 to refer them to one unit of
rapidity. The error bars represent the total (statistical and systematic)
uncertainty on the measurement. Predictions from FONLL calculations
are compared to the data points

extrapolating the visible cross section to the full pT range.
The extrapolation factor for a given D-meson species was
defined as the ratio between the total production cross sec-
tion in |y| < 0.5 and that in the experimentally covered
phase space, both of them calculated with the FONLL central

parameters. The systematic uncertainty on the extrapolation
factor was estimated by considering the contributions due to
(i) the uncertainties on the CTEQ6.6 PDFs [49] and (ii) the
variation of the charm-quark mass and the renormalisation
and factorisation scales in the FONLL calculation, as pro-
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Table 2 Visible production
cross sections of prompt D
mesons in |y| < 0.5 in pp
collisions at

√
s = 7 TeV

Kinematic range Visible cross section (µb)

D0 0 < pT < 36 GeV/c 500 ± 36(stat) ± 39(syst) ± 18(lumi) ± 5(BR)

1 < pT < 24 GeV/c 402 ± 24(stat) ± 28(syst) ± 14(lumi) ± 4(BR)

2 < pT < 12 GeV/c 210 ± 7(stat) ± 14(syst) ± 7(lumi) ± 2(BR)

D+ 1 < pT < 24 GeV/c 182 ± 14(stat) ± 20(syst) ± 6(lumi) ± 5(BR)

2 < pT < 12 GeV/c 89 ± 3(stat) ± 9(syst) ± 3(lumi) ± 2(BR)

D∗+ 1 < pT < 24 GeV/c 207 ± 24(stat) ± 20(syst) ± 7(lumi) ± 3(BR)

2 < pT < 12 GeV/c 101 ± 6(stat) ± 8(syst) ± 4(lumi) ± 1(BR)

D+
s 2 < pT < 12 GeV/c 40 ± 8(stat) ± 5(syst) ± 1(lumi) ± 1(BR)

Table 3 Ratios of the measured
pT-integrated cross sections of
prompt D mesons in |y| < 0.5
in pp collisions at

√
s = 7 TeV

Kinematic range Production cross section ratio

σ(D+)/σ (D0) 1 < pT < 24 GeV/c 0.45 ± 0.04(stat) ± 0.05(syst) ± 0.01(BR)

σ (D∗+)/σ (D0) 1 < pT < 24 GeV/c 0.52 ± 0.07(stat) ± 0.05(syst) ± 0.01(BR)

σ (D+
s )/σ (D0) 2 < pT < 12 GeV/c 0.19 ± 0.04(stat) ± 0.02(syst) ± 0.01(BR)

σ (D+
s )/σ (D+) 2 < pT < 12 GeV/c 0.45 ± 0.09(stat) ± 0.06(syst) ± 0.02(BR)

Table 4 Production cross
sections of prompt D mesons in
|y| < 0.5 and full pT range in
pp collisions at

√
s = 7 TeV

Extr. factor to pT > 0 dσ/dy ||y|<0.5 (µb)

D0 1.0002+0.0004
−0.0002 500 ± 36(stat) ± 39(syst) ± 18(lumi) ± 5(BR)

D+ 1.25+0.29
−0.09 227 ± 18(stat) ± 25(syst) ± 8(lumi) ± 6(BR)+52

−16(extrap)

D∗+ 1.21+0.28
−0.08 251 ± 29(stat) ± 24(syst) ± 9(lumi) ± 3(BR)+58

−16(extrap)

D+
s 2.23+0.71

−0.65 89 ± 18(stat) ± 11(syst) ± 3(lumi) ± 3(BR)+28
−26(extrap)

posed in [7]. For D0 mesons, which are measured down to
pT = 0, the extrapolation factor accounts only for the very
small contribution of D-mesons with pT > 36 GeV/c and
it has therefore a value very close to unity with negligible
uncertainty. In the case of D+

s mesons, for which a FONLL
prediction is not available, the central value of the extrapo-
lation factor was computed from the prediction based on the
pT-differential cross section of charm quarks from FONLL,
the fractions f (c → D+

s ) and f (c → D∗+
s ) from ALEPH

[54], and the fragmentation functions from [57], which have
one parameter, r , that was set to 0.1 as done in FONLL [53].
The D∗+

s mesons produced in the c quark fragmentation were
made to decay with PYTHIA and the resulting D+

s mesons
were summed to the primary ones to obtain the prompt yield.
An additional contribution to the systematic uncertainty was
assigned for D+

s mesons based on the envelope of the results
obtained using the FONLL pT-differential cross sections of
D0, D+ and D∗+ mesons to compute the D+

s extrapolation
factor. The resulting values for the extrapolation factors and
for the prompt D-meson production cross sections per unit
of rapidity dσ/dy are reported in Table 4.

The cc production cross section per unit of rapidity at
mid-rapidity (|y| < 0.5) was calculated by dividing the
prompt D0-meson cross section by the fraction of charm
quarks hadronising into D0 mesons f (c → D0) and correct-

ing for the different shapes of the distributions of yD0 and ycc

(cc pair rapidity). The correction factor and its uncertainty
were extracted from FONLL and MNR NLO pQCD [58] cal-
culations together with PYTHIA 6 [38] and POWHEG [59]
simulations, as described in detail in Ref. [17]. For the frag-
mentation fraction, the value f (c → D0) = 0.542 ± 0.024
derived in Ref. [51] by averaging the measurements from
e+e− collisions at LEP was used. As pointed out in Refs.
[60,61], measurements in e+e−, ep and pp collisions agree
within uncertainties, supporting the hypothesis that fragmen-
tation is independent of the specific production process.1 The
resulting cc cross section per unit of rapidity at mid-rapidity
is:

dσ cc
pp, 7 TeV/dy

∣
∣
∣|y|<0.5

= 954 ± 69 (stat) ± 74 (syst)

± 33 (lumi) ± 42 (FF) ± 31 (rap.shape) µb. (5)

We verified that the precision of the cc production cross-
section determination does not improve if the results calcu-
lated from D+, D∗+ and D+

s mesons, which have significantly

1 In Ref. [61], an average of the charm fragmentation fractions over
the measurements from all collision systems is calculated, imposing
the constraint that the sum of all weakly-decaying charmed hadrons is
unity, which results in f (c → D0) = 0.6086 ± 0.0076 (about 11%
larger that the value from [51]).
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larger extrapolation uncertainties as compared to the D0 one,
are included via a weighted average procedure, as done in
Ref. [15]. The total production cross section of prompt D0

mesons (average of particles and antiparticles) was calculated
by extrapolating to full phase space the cross section mea-
sured at mid-rapidity. The extrapolation factor was defined
as the ratio of the D0 production cross sections in full rapidity
and in |y| < 0.5 calculated with the FONLL central parame-
ters: 8.56+2.51

−0.42. The systematic uncertainty on the extrapola-
tion factor was estimated with the same procedure described
above for the pT extrapolation. The resulting cross section
is:

σ
prompt D0

pp, 7 TeV = 4.28 ± 0.31 (stat) ± 0.33 (syst) +1.26
−0.24 (extr.)

± 0.15 (lumi) ± 0.04 (BR) mb. (6)

The total charm production cross section was calculated by
dividing the total prompt D0-meson production cross section
by the fragmentation fraction reported above. The resulting
cc production cross section in pp collisions at

√
s = 7 TeV

is:

σ cc
pp, 7 TeV(ALICE) = 7.89 ± 0.57 (stat.)

± 0.61 (syst.) +2.32
−0.45(extr.) ± 0.28 (lumi.) ± 0.35 (FF) mb,

(7)

which is consistent with the value of Ref. [17] but has smaller
statistical and systematic uncertainties. It is also compatible
within uncertainties with the total charm production cross
section reported by the ATLAS collaboration [13], which is
calculated from D+ and D∗+ measurements in |η| < 2.1
and pT > 3.5 GeV/c and has larger uncertainties on the
extrapolation to full kinematic phase space as compared to
our result.

A more precise determination of the cc production cross
section can be obtained by summing our measurement of the
prompt D0-meson cross section in |y| < 0.5 and the LHCb
result in 2 < y < 4.5 for 0 < pT < 8 GeV/c [19], and
extrapolating to full rapidity and pT via the ratio of FONLL
calculations of the cross sections in full phase space and in
the measured y and pT intervals exploiting the symmetry
around y = 0. The result for the cc production cross section
is:

σ cc
pp, 7 TeV(ALICE, LHCb) = 7.44 ± 0.14 (stat.)

± 0.46 (syst.) +0.13
−0.07(extr.) ± 0.33 (FF) mb, (8)

where the +0.13 mb extrapolation uncertainty is deter-
mined by FONLL calculations with factorisation scale μF =
0.5mT, which do not describe the measured central-to-
forward ratios of Fig. 9. If this μF value is not considered,
the extrapolation uncertainty is reduced to ±0.07 mb.

5 Summary

We have presented a new measurement of the inclusive pT-
differential production cross sections of prompt D0, D+, D∗+
and D+

s mesons at mid-rapidity (|y| < 0.5) in pp collisions
at a centre-of-mass energy of

√
s = 7 TeV. The measure-

ments cover the transverse-momentum interval 0 < pT <

36 GeV/c for D0 mesons, 1 < pT < 24 GeV/c for D+ and
D∗+ mesons, and 2 < pT < 12 GeV/c for D+

s mesons. As
compared to previously published results based on the same
data sample [14,16], the present results have an extended pT

coverage and total uncertainties reduced by a factor of about
1.5–4 depending on the D-meson species and pT. The mea-
surements cover complementary ranges in pT and y with
respect to those of the ATLAS (3.5 < pT < 100 GeV/c,
|η| < 2.1 [13]) and LHCb (0 < pT < 8 GeV/c, 2 < y < 4.5
[19]) Collaborations at the same centre-of-mass energy. The
pT-differential cross sections are described within uncertain-
ties in the full pT range by the FONLL and GM-VFNS per-
turbative QCD calculations, which are based on collinear
factorisation, while a leading-order calculation based on kT

factorisation underestimates the measured cross sections for
2 < pT < 10 GeV/c. The pT-differential ratios of our mea-
surement at mid-rapidity and LHCb measurements at for-
ward rapidity [19] are described by FONLL calculations.
These central-to-forward ratios, once complemented with
similar measurements at different centre-of-mass energies,
could provide sensitivity to the gluon PDF at small values
of Bjorken-x [22]. The ratios of the cross sections of the
four D-meson species were found to be compatible with the
LHCb measurements at forward rapidity and different colli-
sion energies as well as with results from e+e− collisions,
indicating that the fragmentation fractions of charm quarks
into different D-meson species do not vary substantially with
rapidity, collision energy and colliding system.

The new measurement also allowed for a more accurate
determination of the pT-integrated cc production cross sec-
tion at mid-rapidity in pp collisions at

√
s = 7 TeV:

dσ cc
pp, 7 TeV/dy

∣
∣
∣|y|<0.5

= 954 ± 69 (stat) ± 97 (tot. syst.) µb.

In particular, the total systematic uncertainty of this measure-
ment is about ±10%, while it was +13

−21% for the previously-
published measurement [17].

The total cc production cross section in full phase space
was calculated by combining the above measurement at mid-
rapidity with that at forward rapidity by the LHCb Collabo-
ration:

σ cc
pp, 7 TeV(ALICE, LHCb) = 7.44 ± 0.14 (stat.)

± 0.58 (tot. syst.) mb.
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T. Antičić101, F. Antinori110, P. Antonioli107, R. Anwar126, L. Aphecetche116, H. Appelshäuser60, S. Arcelli26, R. Arnaldi113,
O. W. Arnold35,97, I. C. Arsene20, M. Arslandok60, B. Audurier116, A. Augustinus34, R. Averbeck100, M. D. Azmi17,
A. Badalà109, Y. W. Baek68, S. Bagnasco113, R. Bailhache60, R. Bala93, A. Baldisseri65, M. Ball44, R. C. Baral57,
A. M. Barbano25, R. Barbera27, F. Barile32,106, L. Barioglio25, G. G. Barnaföldi142, L. S. Barnby34,104, V. Barret71,
P. Bartalini7, K. Barth34, J. Bartke120,a, E. Bartsch60, M. Basile26, N. Bastid71, S. Basu139, B. Bathen61, G. Batigne116,
A. Batista Camejo71, B. Batyunya67, P. C. Batzing20, I. G. Bearden84, H. Beck96, C. Bedda30, N. K. Behera50,
I. Belikov135, F. Bellini26, H. Bello Martinez2, R. Bellwied126, L. G. E. Beltran122, V. Belyaev76, G. Bencedi142, S. Beole25,
A. Bercuci80, Y. Berdnikov89, D. Berenyi142, R. A. Bertens53,129, D. Berzano34, L. Betev34, A. Bhasin93, I. R. Bhat93,
A. K. Bhati91, B. Bhattacharjee43, J. Bhom120, L. Bianchi126, N. Bianchi73, C. Bianchin141, J. Bielčík38, J. Bielčíková87,
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