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The inclusive J/ψ production has been studied in Pb–Pb and pp collisions at the centre-of-mass energy 
per nucleon pair √

sNN = 5.02 TeV, using the ALICE detector at the CERN LHC. The J/ψ meson is 
reconstructed, in the centre-of-mass rapidity interval 2.5 < y < 4 and in the transverse-momentum 
range pT < 12 GeV/c, via its decay to a muon pair. In this Letter, we present results on the inclusive 
J/ψ cross section in pp collisions at 

√
s = 5.02 TeV and on the nuclear modification factor RAA. The 

latter is presented as a function of the centrality of the collision and, for central collisions, as a function 
of the transverse momentum pT of the J/ψ . The measured RAA values indicate a suppression of the 
J/ψ in nuclear collisions and are then compared to our previous results obtained in Pb–Pb collisions 
at √sNN = 2.76 TeV. The ratio of the RAA values at the two energies is also computed and compared 
to calculations of statistical and dynamical models. The numerical value of the ratio for central events 
(0–10% centrality) is 1.17 ± 0.04(stat) ± 0.20(syst). In central events, as a function of pT, a slight 
increase of RAA with collision energy is visible in the region 2 < pT < 6 GeV/c. Theoretical calculations 
qualitatively describe the measurements, within uncertainties.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

When heavy nuclei collide at ultrarelativistic energies, a state of 
strongly-interacting matter is formed, characterised by high tem-
perature and density, where quarks and gluons are not confined 
into hadrons (Quark–Gluon Plasma, QGP [1]). A detailed charac-
terisation of the QGP is the object, since more than 25 years, 
of an intense research activity at the CERN/SPS [2] and at the 
BNL/RHIC [3–6] and CERN/LHC [7] ion colliders. Charmonia and 
bottomonia, which are bound states of charm–anticharm (cc) or 
bottom–antibottom (bb) quarks, respectively [8], are among the 
most sensitive probes of the characteristics of the QGP. A sup-
pression of their yields in nucleus–nucleus (A–A) collisions with 
respect to expectations from proton–proton (pp) collisions was ex-
perimentally observed. For the J/ψ meson, the ground cc state with 
quantum numbers JPC = 1−− , a suppression was found at the SPS, 
in Pb–Pb and In–In interactions at the centre-of-mass energy per 
nucleon pair 

√
sNN = 17.2 GeV [9,10], RHIC, in Au–Au interactions 

at 
√

sNN = 200 GeV [11,12], and finally at the LHC, in Pb–Pb col-
lisions at 

√
sNN = 2.76 TeV [13,14]. Early theoretical calculations 

predicted J/ψ suppression to be induced by the screening of the 
colour force in a deconfined medium and to become stronger as 
the QGP temperature increases [15,16]. In a complementary way to 

� E-mail address: alice-publications@cern.ch.

this static approach, J/ψ suppression can also be seen as the result 
of dynamical interactions with the surrounding partons [17–19]. 
The LHC results, integrated over transverse momentum (pT) down 
to pT = 0, show a suppression of the J/ψ , quantified through the 
ratio between its yields in Pb–Pb and those in pp, normalised to 
the number of nucleon–nucleon collisions in Pb–Pb (nuclear modi-
fication factor, RAA). However, the observed suppression is smaller 
than at SPS and RHIC [20,21], in spite of the higher initial temper-
ature of the QGP formed at the LHC [22]. The effect is particularly 
evident for head-on (central) collisions. In order to explain these 
observations, theoretical models require a contribution from J/ψ
regeneration via a recombination mechanism [23,24] between the 
c and c quarks, during the deconfined phase and/or at the hadro-
nisation of the system, which occurs when its temperature falls 
below the critical value Tc ∼ 155 MeV [25]. The strength of this 
regeneration effect increases with the initial number of produced 
cc pairs relative to the total number of quarks and, therefore, in-
creases with the collision energy, explaining the reduced suppres-
sion at the LHC. Since the bulk of charm–quark production occurs 
at small momenta, recombination should be more important for 
low-pT J/ψ , as observed in the LHC results [21].

An important test of the suppression and regeneration pic-
ture of J/ψ production at the LHC can be obtained by comparing 
the centrality and pT dependence of the J/ψ RAA, measured at √

sNN = 2.76 TeV, to that obtained at 
√

sNN = 5.02 TeV, the highest 
energy available up to now in nuclear collisions. The suppression 

http://dx.doi.org/10.1016/j.physletb.2016.12.064
0370-2693/© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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effects related to colour screening should become stronger when 
increasing the collision energy, due to the higher QGP temperature, 
and also the recombination effects should become stronger, due to 
the expected increase of the cc production cross section. The two 
effects act in opposite directions and the comparison of the RAA at 
the different energies can provide insights in the evolution of the 
relative contribution of the two processes.

In this Letter, we present the first results on the J/ψ RAA mea-
sured by the ALICE Collaboration in Pb–Pb collisions at 

√
sNN =

5.02 TeV and the integrated and pT differential J/ψ production 
cross section in pp collisions at the same energy. In both Pb–Pb 
and pp collisions, the J/ψ is reconstructed via its dimuon decay 
channel at forward rapidity, 2.5 < y < 4 and for pT < 12 GeV/c. 
The measurements refer to inclusive J/ψ production, that includes 
both prompt J/ψ (direct J/ψ and feed-down from higher-mass res-
onances) and non-prompt J/ψ (from decay of beauty hadrons). 
The nuclear modification factor is obtained by normalising the J/ψ
yield in Pb–Pb collisions to the product of the nuclear overlap 
function times the corresponding J/ψ cross section measured in 
pp, at the same energy and in the same kinematic window. The 
results on RAA are presented as a function of the J/ψ pT and of 
the centrality of the collision.

2. Experimental apparatus and data sample

The ALICE detector design and performance are extensively de-
scribed in [26] and [27]. The analysis presented here is based on 
the detection of muons in the forward muon spectrometer [28], 
which covers the pseudo-rapidity range −4 < η < −2.5.1 In addi-
tion, the Silicon Pixel Detector (SPD) [29] is used to reconstruct 
the primary vertex. The V0 detectors [30] provide a minimum-
bias (MB) trigger and are used to determine the centrality of the 
collision, while the T0 Cherenkov counters [31] are used for the 
luminosity determination in pp collisions. Finally, the Zero Degree 
Calorimeters (ZDC) are used to reject electromagnetic Pb–Pb inter-
actions [32]. A brief description of these detectors is given here-
after.

The muon spectrometer contains a front absorber, made of car-
bon, concrete and steel, placed between 0.9 and 5 m from the 
Interaction Point (IP), which filters out hadrons, thus decreasing 
the occupancy in the downstream tracking system. The latter is 
composed of five stations, each one consisting of two planes of 
Cathode Pad Chambers (CPC). The third tracking station is placed 
inside the gap of a dipole magnet with a 3 T m field integral. 
Two trigger stations, each one equipped with two planes of Re-
sistive Plate Chambers (RPC), are located behind a 7.2 interac-
tion length iron wall, which absorbs secondary hadrons escaping 
the front absorber and low-momentum muons. The muon trig-
ger system delivers single-muon and dimuon triggers with a pro-
grammable transverse-momentum threshold. Finally, throughout 
its entire length, a conical absorber around the beam pipe (θ < 2◦) 
made of tungsten, lead and steel shields the muon spectrometer 
against secondary particles produced by the interaction of large-η
primary particles in the beam pipe.

The primary vertex is reconstructed using hit pairs in the two 
cylindrical layers of the SPD [26,29], which have average radii of 
3.9 and 7.6 cm, and cover the pseudo-rapidity intervals |η| < 2 and 
|η| < 1.4, respectively.

The two V0 detectors [30], with 32 scintillator tiles each, are 
placed on each side of the IP, covering the pseudo-rapidity ranges 

1 In the ALICE reference frame, the muon spectrometer covers a negative η range 
and consequently a negative y range. We have chosen to present our results with a 
positive y notation.

2.8 < η < 5.1 and −3.7 < η < −1.7. The coincidence of the signals 
from the two hodoscopes defines the MB trigger. Beam-induced 
background is reduced by applying timing cuts on the signals from 
the V0s and ZDCs. The latter are positioned along the beam di-
rection at ±112.5 m from the IP. Finally, the T0 detectors [31], 
made of two arrays of quartz Cherenkov counters, are placed on 
both sides of the IP, covering the pseudo-rapidity intervals −3.3 <
η < −3 and 4.6 < η < 4.9.

In Pb–Pb collisions, the centrality determination is based on 
a Glauber fit of the total V0 signal amplitude distribution as de-
scribed in [33,34]. A selection corresponding to the most central 
90% of the hadronic cross section was applied; for these events 
the MB trigger is fully efficient.

For both Pb–Pb and pp data taking, the trigger condition used 
in the analysis is a μμ-MB trigger formed by the coincidence of 
the MB trigger and an unlike-sign (US) dimuon trigger. The lat-
ter has a trigger probability for each of the two muon candidates 
that increases with the muon pT, is 50% at 1.0 GeV/c (0.5 GeV/c) 
in Pb–Pb (pp) collisions, and saturates at pT ≈ 2.5 GeV/c, where 
it reaches a value of about 98%. Like-sign dimuon triggers were 
also collected, mainly for background normalisation purposes in 
the Pb–Pb analysis.

The data samples used in this analysis correspond to an in-
tegrated luminosity LPb–Pb

int ≈ 225 μb−1 for Pb–Pb and Lpp
int ≈

106 nb−1 for pp collisions.

3. Data analysis

The analysis procedure was very similar for the two data sam-
ples described in this Letter. In the following paragraphs, the Pb–
Pb analysis is first presented, followed by the description of the pp 
one.

The J/ψ candidates were formed by combining pairs of US 
tracks reconstructed in the geometrical acceptance of the muon 
spectrometer using the tracking algorithm described in [28]. The 
same single-muon and dimuon selection criteria as in previous 
analyses [21] were applied, and tracks in the tracking system were 
required to match a track segment in the muon trigger system 
(trigger tracklet).

The J/ψ raw yields were determined from the invariant mass 
distribution of US dimuons using two methods. In the first one, the 
US dimuon invariant mass distributions were fitted with the sum 
of a signal and a background function. In the second approach, 
the background, estimated using an event-mixing technique and 
normalised using the like-sign dimuon distributions [21], was sub-
tracted and the resulting spectra were fitted with the sum of a 
signal function and a (small) residual background component.

Various shapes were considered for the signal and background 
contributions. For the J/ψ signal either an extended Crystall Ball 
(CB2) function or a pseudo-Gaussian with a mass-dependent width 
were used [35]. The non-Gaussian tails of the signal functions were 
fixed either (i) to the values obtained in Monte Carlo (MC) sim-
ulations, where simulated J/ψ → μ+μ− are embedded into real 
events to account for the effect of the detector occupancy, or (ii) 
to the values obtained in a high-statistics pp collision sample at √

s = 13 TeV, collected under similar detector conditions. The tail 
parameters exhibit a dependence on the pT and rapidity of the 
J/ψ and a mild dependence on the centrality of the collision. The 
small contribution of the ψ(2S) signal was taken into account in 
the fits, its mass and width being tied to those of the J/ψ [36]. 
For the background, when the US dimuon mass spectrum was fit-
ted, a variable-width-Gaussian with a mass-dependent width or 
the ratio of a 2nd to a 3rd order polynomial were used. When 
considering the US dimuon distributions after subtraction of the 
background obtained with the event-mixing procedure, a small 
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Fig. 1. (Colour online.) Invariant mass distributions of US dimuons with 2.5 < y < 4 and pT < 12 GeV/c. The top (bottom) row shows the distribution before (after) background 
subtraction with the event-mixing technique. The left panels correspond to the most central events (0–10%) while the right panels to a peripheral (70–80%) centrality range. 
The fit curves shown in blue represent the sum of the signal and background shapes, while the red lines correspond to the J/ψ signal and the grey ones to the background.
dimuon continuum component is still present and was fitted us-
ing the sum of two exponentials. Several fitting sub-ranges, within 
the interval 2 < mμμ < 5 GeV/c2, were used for both signal ex-
traction procedures.

Fig. 1 shows examples of fits to the US dimuon invariant mass 
distributions with and without background subtraction using the 
event-mixing technique, for different selections in centrality. The 
raw J/ψ yield in each centrality or pT interval was determined 
as the average of the results obtained with the two fitting ap-
proaches, the various parameterisations of signal and background 
and the different fitting ranges, while the corresponding systematic 
uncertainties were defined as the RMS of these results. A further 
contribution to the systematic uncertainty was estimated by using 
a different set of resonance tails obtained using in the MC simu-
lation a different particle transport model (GEANT4 [37] instead of 
GEANT3 [38]). The total number of J/ψ , integrated over centrality, 
pT and y, is NJ/ψ = 2.77 ±0.02(stat) ±0.05(syst) ·105. The system-
atic uncertainty ranges from 1.6% to 2.8% as a function of centrality 
and from 1.2% to 3.1% as a function of pT.

The nuclear modification factor, as a function of the centrality 
class i of the collision and for the J/ψ transverse-momentum in-
terval �pT, is calculated as

Ri
AA(�pT) = Ni

J/ψ (�pT)

BRJ/ψ→μ+μ− Ni
MB Aεi(�pT)〈T i

AA〉σ pp
J/ψ(�pT)

, (1)

where Ni
J/ψ (�pT) is the number of extracted J/ψ in a given cen-

trality and pT range, BRJ/ψ→μ+μ− = 5.96 ± 0.03% is the branching 
ratio of the dimuon decay channel [39], Ni

MB is the number of 
equivalent minimum-bias events, Aεi(�pT) is the product of the 
detector acceptance times the reconstruction efficiency, 〈T i

AA〉 is 
the average of the nuclear overlap function, and σ pp

J/ψ (�pT) is the 
inclusive J/ψ cross section for pp collisions at the same energy and 
in the same kinematic range as the Pb–Pb data.

The Aε values were determined from MC simulations, with the 
generated pT and y distributions for the J/ψ adjusted on data, 
and separately tuned for each centrality class using an iterative 
approach. Unpolarised J/ψ production was assumed [21]. For the 

tracking chambers, the time-dependent status of each electronic 
channel during the data taking period was taken into account as 
well as the misalignment of the detection elements. The efficien-
cies of the muon trigger chambers were determined from data and 
were then applied in the simulations. Finally, the dependence of 
the efficiency on the detector occupancy was taken into account 
by embedding MC-generated J/ψ into real minimum-bias Pb–Pb 
events.

For J/ψ produced within 2.5 < y < 4 and pT < 12 GeV/c, in 
0–90% most central collisions, the Aε value is 0.136 ± 0.007(syst). 
A relative decrease of the efficiency by 14% was observed when 
going from peripheral to central collisions. As a function of pT, 
Aε has a minimum value of about 0.12 at pT ≈ 1.5 GeV/c, and 
then steadily increases up to about 0.4 at the upper end of the 
considered range. The following sources of systematic uncertainty 
on Aε were considered. A first contribution of 2% due to the in-
put MC pT and y distributions was estimated by (i) varying the 
input shapes that were tuned on data within their statistical un-
certainties and (ii) taking into account the effect of possible pT − y
correlations by comparing, as a function of centrality, the Aε val-
ues with the corresponding result of a 2-D acceptance calculation 
in classes of pT and y. A second contribution comes from the 
tracking efficiency and it was estimated by comparing the single-
muon tracking efficiency values obtained, in MC and data, with 
a procedure that exploits the redundancy of the tracking-chamber 
information [21]. A 3% systematic uncertainty on the dimuon track-
ing efficiency is obtained and is approximately constant as a func-
tion of centrality and kinematics. The systematic uncertainty on 
the dimuon trigger efficiency represents the third contribution and 
it has two origins: the intrinsic efficiencies of the muon trigger 
chambers and the response of the trigger algorithm. The first one 
was determined from the uncertainties on the trigger chamber ef-
ficiencies measured from data and applied to simulations and it 
amounts to 1.5%. The second one was estimated by comparing the 
pT dependence, at the single-muon level, of the trigger response 
function between data and MC and it varies between 0.2% and 4.6% 
as a function of pT. Combining the two sources, a systematic un-
certainty ranging from 1.5% to 4.8% as a function of the J/ψ pT is 
obtained. Finally, there is a 1% contribution related to the choice 
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Table 1
Summary of systematic uncertainties, in percentage, on RAA and d2σ

pp
J/ψ /dydpT. Values marked with an asterisk correspond to correlated uncertainties as a function of pT

(second and fifth column) or centrality (third column). There is no correlation between the uncertainties related to the analysis of the Pb–Pb and of the pp sample. The 
contents of the “pp reference” row correspond to the quadratic sum of the contributions indicated for d2σ

pp
J/ψ /dydpT, excluding only the BR uncertainty which cancels out 

when forming the RAA.

Source RAA d2σ
pp
J/ψ /dydpT

0–90% 
pT < 12 GeV/c

vs pT

(0–20%)
vs centrality 
(pT < 8 GeV/c)

pT < 12 GeV/c vs pT

Signal extr. 1.8 1.2–3.1 1.6–2.8 3 1.5–9.3
MC input 2 2 2∗ 2 0.7–1.5
Tracking eff. 3 3 3∗ 1 1
Trigger eff. 3.6 1.5–4.8 3.6∗ 1.8 1.5–1.8
Matching eff. 1 1 1∗ 1 1
F (Lpp

int) 0.5 0.5∗ 0.5∗ (2.1) (2.1∗)
BR – – – 0.5 0.5∗
〈TAA〉 3.2 3.2∗ 3.1–7.6
Centrality 0 0.1∗ 0–6.6
pp reference 5.0 3–10

⊕
2.1∗ (Lpp

int) 4.9∗
of the χ2 cut used in defining the matching between the recon-
structed tracks and the trigger tracklets.

The normalisation factor to the number of equivalent MB events 
was obtained as Ni

MB = F i · Nμμ-MB, where Nμμ-MB is the number 
of μμ-MB triggered events, and F i is the inverse of the proba-
bility of having a dimuon trigger in a MB event in the centrality 
range i. The F i values were calculated with two different meth-
ods, by applying the dimuon trigger condition in the analysis on 
minimum-bias events, or from the relative counting rate of the two 
triggers [40]. The obtained value, in the 0–90% centrality class, is 
F = 11.84 ± 0.06, where the uncertainty is dominated by a sys-
tematic contribution corresponding to the difference between the 
results obtained with the two approaches. As a function of cen-
trality, F i = F · �i , where �i is the fraction of the inelastic cross 
section of a given centrality class with respect to the whole 0–90% 
centrality range (e.g. 0.1/0.9 for 0–10% centrality and so on).

The values for 〈T i
AA〉 and for the average number of partici-

pant nucleons 〈Ni
part〉 were obtained via a Glauber calculation [33,

34,41]. The systematic uncertainty is 3.2% for the 0–90% central-
ity range and was obtained by varying within uncertainties the 
density parameters of the Pb nucleus and the nucleon–nucleon in-
elastic cross section [34,41].

Finally, the effects of the uncertainty on the value of the V0 
signal amplitude corresponding to 90% of the hadronic Pb–Pb cross 
section were estimated by varying such a value by ±0.5% [33] and 
redefining correspondingly the centrality intervals. The systematic 
effect on RAA ranges from 0.1% to 6.6% from central to peripheral 
collisions.

The J/ψ cross-section values in pp collisions at 
√

s = 5.02 TeV, 
both integrated and pT differential, were obtained with an analysis 
procedure similar to the one described in the previous paragraphs 
for Pb–Pb. In particular, the same criteria for single-muon and 
dimuon selection were adopted.

The signal extraction was then performed by fitting the spec-
tra with the sum of a signal and a background contribution, using 
shapes similar to those adopted for the Pb–Pb analysis. The back-
ground subtraction via the event-mixing technique was not used, 
as the signal-over-background ratio is larger by a factor ∼ 40, in 
the pT-integrated spectra, with respect to central Pb–Pb collisions, 
making the influence of the background estimate much less im-
portant in the determination of the uncertainty on Npp

J/ψ . The value 
Npp

J/ψ = 8649 ± 123(stat) ± 297(syst) is obtained, with the system-
atic uncertainty determined as for the Pb–Pb analysis.

The determination of Aεpp was carried out via MC simulations. 
Since no appreciable dependence of the tracking efficiency as a 
function of the hadronic multiplicity can be seen in pp, a pure 
MC (i.e., without embedding) was used. The input pT and y dis-

tributions were obtained from the measured ones via an iterative 
procedure, and unpolarised J/ψ production was assumed [42]. The 
obtained value is Aεpp = 0.243 ± 0.007(syst), with the systematic 
uncertainties on the tracking, trigger and matching efficiency cal-
culated as in the Pb–Pb analysis. Because of the limited pp statis-
tics, the systematic uncertainty on the MC inputs was not obtained 
through a 2-D acceptance calculation, as done in the Pb–Pb analy-
sis, but it was determined comparing the Aε values obtained using 
J/ψ pT (y) distributions evaluated in various y (pT) intervals in pp 
collisions at 

√
s = 7 TeV [43].

The integrated luminosity was calculated as Lpp
int = (Npp

μμ-MB ·
F pp)/σ

pp
ref , where σ pp

ref is a reference-trigger cross section measured 
in a van der Meer scan, following the procedure detailed in [44], 
and F pp is the ratio of the reference-trigger probability to the 
μμ-MB trigger probability. The corresponding numerical value is 
Lpp

int = 106.3 ± 2.2(syst) nb−1, where the quoted uncertainty re-
flects the van der Meer scan uncertainty.

Finally, the inclusive J/ψ cross section in pp collisions at 
√

s =
5.02 TeV was obtained as

d2σ
pp
J/ψ

dydpT
= Npp

J/ψ(�pT)

BRJ/ψ→μ+μ− Lpp
int Aεpp(�pT)�pT�y

. (2)

Table 1 summarises the systematic uncertainties on the mea-
surement of the nuclear modification factors and d2σ

pp
J/ψ/dydpT.

The RAA values presented in the following refer to inclusive J/ψ
production, i.e. include both prompt and non-prompt J/ψ . Since 
beauty-hadron decays occur outside the QGP, the non-prompt J/ψ
RAA is related to the nuclear modification of the beauty-hadron 
pT distributions. The difference between the RAA of prompt and 
inclusive J/ψ can be estimated as in [21], using the fraction FB
of non-prompt to inclusive J/ψ in pp collisions and assuming two 
extreme cases for the Rnon-prompt

AA of non-prompt J/ψ , namely no 
medium effects on b-quarks (Rnon-prompt

AA = 1) or their complete 
suppression (Rnon-prompt

AA = 0). FB was obtained by an interpolation 
of the LHCb measurements in pp collisions at 

√
s = 2.76 and 7 TeV 

[43,45,46]. The quantitative effect on the inclusive J/ψ RAA is pro-
vided in the following along with the results.

4. Results

The pT-differential inclusive J/ψ cross section in pp collisions 
at 

√
s = 5.02 TeV, in the region 2.5 < y < 4, is shown in Fig. 2. 

The cross section value, integrated over the interval 2.5 < y < 4, 
pT < 12 GeV/c is σ pp

J/ψ = 5.61 ± 0.08(stat) ± 0.28(syst) μb. These 
results are used as a reference in the determination of the nu-
clear modification factor for Pb–Pb collisions. Both the differential 



216 ALICE Collaboration / Physics Letters B 766 (2017) 212–224

Fig. 2. (Colour online.) The differential cross section d2σ
pp
J/ψ /dydpT for inclusive J/ψ

production in pp collisions at √s = 5.02 TeV. The error bars represent the statistical 
uncertainties, the boxes around the points the uncorrelated systematic uncertain-
ties. The uncertainty on the luminosity measurement represents a correlated global 
uncertainty.

Fig. 3. (Colour online.) The nuclear modification factor for inclusive J/ψ produc-
tion, as a function of centrality, at √sNN = 5.02 TeV, compared to published re-
sults at √sNN = 2.76 TeV [20]. The error bars represent statistical uncertainties, the 
boxes around the points uncorrelated systematic uncertainties, while the centrality-
correlated global uncertainties are shown as a filled box around RAA = 1. The widths 
of the centrality classes used in the J/ψ analysis at √sNN = 5.02 TeV are 2% from 0 
to 12%, then 3% up to 30% and 5% for more peripheral collisions.

and integrated pp cross section values are consistent with those 
obtained via an interpolation [45,47] of the measured values at √

s = 2.76 and 7 TeV [48,49], which were used for the deter-
mination of the nuclear modification factor in p–Pb collisions at √

sNN = 5.02 TeV [40,47,50].
The nuclear modification factor for inclusive J/ψ production in 

Pb–Pb collisions at 
√

sNN = 5.02 TeV, integrated over the central-
ity range 0–90%, and for the interval 2.5 < y < 4, pT < 12 GeV/c
is RAA(pT < 12 GeV/c) = 0.65 ± 0.01(stat) ± 0.05(syst), showing a 
significant suppression of the J/ψ with respect to pp collisions at 
the same energy. When restricting the pT range to 8 GeV/c, cor-
responding to the interval covered in the 

√
sNN = 2.76 TeV results, 

one obtains RAA(pT < 8 GeV/c)= 0.66 ± 0.01(stat) ± 0.05(syst). 
The ratio between the latter value and the corresponding one 
at 

√
sNN = 2.76 TeV, RAA(pT < 8 GeV/c)= 0.58 ± 0.01(stat) ±

0.09(syst) [20], is 1.13 ± 0.02(stat) ± 0.18(syst). When calculating 
the ratio, the quoted uncertainties on the two values are consid-
ered as uncorrelated, except for the 〈TAA〉 contribution.

Fig. 3 shows the centrality dependence of RAA at 
√

sNN =
5.02 TeV. The results are compared to the values obtained at √

sNN = 2.76 TeV [20], and correspond to the same transverse-

Fig. 4. (Colour online.) Comparison of the centrality dependence (with 10% width 
centrality classes) of the inclusive J/ψ RAA for 0.3 < pT < 8 GeV/c with theoreti-
cal models [17–19,52–55]. The model calculations do not include the pT cut (except 
for TM1), which was anyway found to have a negligible impact, since they only in-
clude hadronic J/ψ production. The error bars represent the statistical uncertainties, 
the boxes around the data points the uncorrelated systematic uncertainties, while 
the centrality-correlated global uncertainty is shown as a filled box around RAA = 1. 
The brackets shown in the three most peripheral centrality intervals represent the 
range of variation of the hadronic J/ψ RAA under extreme hypothesis on the photo-
production contamination on the inclusive RAA.

momentum range, pT < 8 GeV/c. The centrality dependence, char-
acterised by an increasing suppression with centrality up to 
Npart ∼ 100, followed by an approximately constant RAA value, is 
similar at the two energies. A systematic difference by about 15% 
is visible when comparing the two sets of results, even if the ef-
fect is within the total uncertainty of the measurements. The RAA
of prompt J/ψ would be about 10% higher if Rnon-prompt

AA = 0 and 
about 5% (1%) smaller if Rnon-prompt

AA = 1 for central (peripheral) 
collisions.

An excess of very-low pT J/ψ , compared to the yield expected 
assuming a smooth evolution of the J/ψ hadro-production and nu-
clear modification factor was observed in peripheral Pb–Pb colli-
sions at 

√
sNN = 2.76 TeV [51]. This excess might originate from 

the photo-production of J/ψ and could influence the RAA in pe-
ripheral collisions. To quantify the expected difference between 
the hadronic J/ψ RAA and the measured values the method de-
scribed in [21] was adopted. The hadronic J/ψ RAA, for 0 < pT <

8 GeV/c, is estimated to be about 34%, 17% and 9% smaller than 
the measured values in the 80–90%, 70–80% and 60–70% cen-
trality classes, respectively. The variation decreases to about 9%, 
4% and 2%, respectively, when considering the RAA for J/ψ with 
0.3 < pT < 8 GeV/c, due to the remaining small contribution of 
photo-produced J/ψ . Fig. 4 shows RAA as a function of centrality, 
for 0.3 < pT < 8 GeV/c.

Comparing the results of Fig. 3 and Fig. 4, a less pronounced in-
crease of RAA for peripheral events can indeed be seen when such 
a selection is introduced. The same extreme hypotheses as in [21]
were made to define upper and lower limits, represented with 
brackets on Fig. 4. Thus, the selection of J/ψ with pT > 0.3 GeV/c
makes the results more suitable for a comparison with theoretical 
models that only include hadronic J/ψ production.

We start by comparing the results to a calculation based on 
a statistical model approach [52], where J/ψ are created, like 
all other hadrons, only at chemical freeze-out according to their 
statistical weights. In this model, the nucleon–nucleon cc pro-
duction cross section is extrapolated from LHCb pp measure-
ments at 

√
s = 7 TeV [56] using FONLL calculations [57], obtaining 

dσcc/dy = 0.45 mb in the y range covered by the data. Then, the 
nuclear modification of the parton distribution functions (shadow-
ing) is accounted for via the EPS09 NLO parameterisation [58]. 
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Fig. 5. (Colour online.) The ratio of the inclusive J/ψ RAA for 0.3 < pT < 8 GeV/c be-
tween √sNN = 5.02 and 2.76 TeV, compared to theoretical models [17–19,52–55], 
shown as a function of centrality. The model calculations do not include the pT

cut (except for TM1), which was anyway found to have a negligible impact, since 
they only include hadronic J/ψ production. The error bars represent the statisti-
cal uncertainties and the boxes around the data points the uncorrelated systematic 
uncertainties. The centrality-correlated global uncertainty is shown as a filled box 
around r = 1 and is obtained as the quadratic sum of the corresponding global un-
certainties at √sNN = 2.76 and 5.02 TeV.

The corresponding 17% uncertainty on the extrapolated dσcc/dy
plus shadowing is used when calculating the uncertainty bands for 
this model. The results are also compared to the calculations of a 
transport model (TM1) [18,54,55] based on a thermal rate equa-
tion, which includes continuous dissociation and regeneration of 
the J/ψ both in the QGP and in the hadronic phase. The inclusive 
cc cross section is taken as dσcc/dy = 0.57 mb, consistent with 
FONLL calculations, while the J/ψ production cross section value 
in N–N collisions is dσJ/ψ/dy = 3.14 μb. The results of this model 
are shown as a band including a variation of the shadowing con-
tribution between 10% and 25% and a 5% uncertainty on the cc
cross section. The results are then compared to the calculations of 
a second transport model (TM2) [19], which implements a hydro-
dynamic description of the medium evolution. The input nucleon–
nucleon cross sections for cc and J/ψ are taken as dσcc/dy =
0.82 mb, corresponding to the upper limit of FONLL calculations, 
and dσJ/ψ/dy = 3.5 μb. Also for this model the band corresponds 
to the choice of either no shadowing, or a shadowing effect esti-
mated with the EPS09 NLO parameterisation. Finally, the data are 
compared to a ‘co-mover’ model [17,53], where the J/ψ are disso-
ciated via interactions with the partons/hadrons produced in the 
same rapidity range, using an effective interaction cross section 
σ co-J/ψ = 0.65 mb, based on calculations that described lower en-
ergy experimental results. Regeneration effects are included, based 
on dσcc/dy values ranging from 0.45 to 0.7 mb, which correspond 
to the uncertainty band shown for the model. Shadowing effects, 
calculated within the Glauber–Gribov theory [59], are included and 
are consistent with EKS98/nDSg predictions [60,61]. Finally, the 
contribution of non-prompt production is taken into account in the 
transport models TM1 and TM2, while it is not considered in the 
other calculations.

The data are described by the various calculations, the latter 
having rather large uncertainties, due to the choice of the corre-
sponding input parameters, and in particular of dσcc/dy. It can 
be noted that for most calculations a better description is found 
when considering their upper limit. For transport models this cor-
responds to a minimum contribution or even absence of nuclear 
shadowing, which can be clearly considered as an extreme as-
sumption for primary J/ψ , considering the J/ψ measurements in 
p–Pb collisions [47,50].

Fig. 6. (Colour online.) The pT dependence of the inclusive J/ψ RAA at √sNN =
5.02 TeV, compared to the corresponding result at √sNN = 2.76 TeV [20] and to the 
calculation of a transport model [18,54,55] (TM1), in the centrality interval 0–20%. 
The pT dependence of r is also shown for both data and theory. The error bars 
represent statistical uncertainties, the boxes around the points uncorrelated system-
atic uncertainties, while pT-correlated global uncertainties are shown as a filled box 
around RAA = 1.

A correlation between the parameters of the models is present 
when comparing their calculations for 

√
sNN = 2.76 and 5.02 TeV. 

Therefore, the theoretical uncertainties can be reduced by form-
ing the ratio r = RAA(5.02 TeV)/RAA(2.76 TeV). Concerning data, 
the uncertainties on 〈TAA〉 cancel. In Fig. 5 the centrality de-
pendence of r, calculated for 0.3 < pT < 8 GeV/c, is shown and 
compared to models. For prompt J/ψ the ratio r would be about 
2% (1–2%) higher if beauty hadrons were fully (not) suppressed 
by the medium. The transport model of Ref. [18,54,55] (TM1) 
shows a decrease of r with increasing centrality, due to the larger 
suppression effects at high energy, followed by an increase, re-
lated to the effect of regeneration, which acts in the opposite 
direction and becomes dominant for central collisions. The other 
transport model (TM2) [19] also exhibits an increase for central 
collisions, while for peripheral collisions the behaviour is differ-
ent. In the co-mover model [17,53], no structure is visible as a 
function of centrality, and the calculation favours r-values slightly 
below unity, implying that in this model the increase of the sup-
pression effects with energy may be dominant over the regener-
ation effects for all centralities. Finally, the statistical model [52]
shows a continuous increase of r with centrality, dominated by 
the increase in the cc cross section with energy. The uncertainty 
bands shown in Fig. 5 correspond to variations of about 5% in 
the cc cross section at 

√
sNN = 5.02 TeV, plus a 10% relative varia-

tion of the shadowing contribution between the two energies in 
the case of TM1. The data are, within uncertainties, compatible 
with the theoretical models, and show no clear centrality depen-
dence. The ratio for central collisions and 0.3 < pT < 8 GeV/c is 
r0–10% = 1.17 ± 0.04(stat) ± 0.20(syst).

Finally, the study of the pT dependence of RAA has proven to 
be a sensitive test of the presence of a regeneration component 
which, in calculations, leads to an increase at low pT. Fig. 6 shows, 
for the centrality interval 0–20%, RAA as a function of transverse 
momentum, compared to the corresponding results obtained at √

sNN = 2.76 TeV, and to a theoretical model calculation. The re-
gion pT < 0.3 GeV/c was not excluded, because the contribution 
of J/ψ photo-production is negligible with respect to the hadronic 
one for central events [51]. In the same figure the pT dependence 
of r is also shown. A hint for an increase of RAA with 

√
sNN is vis-

ible in the region 2 < pT < 6 GeV/c, while the r-ratio is consistent 
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with unity elsewhere. This feature is qualitatively described by the 
theoretical model (TM1) also shown in the figure. The prompt J/ψ
RAA is expected to be 7% larger (2% smaller) for pT < 1 GeV/c and 
30% larger (55% smaller) for 10 < pT < 12 GeV/c when the beauty 
contribution is fully (not) suppressed. Assuming that Rnon-prompt

AA
does not vary significantly between the two collision energies, 
the ratio r appears to be less sensitive to the non-prompt J/ψ
contribution. The effect is negligible for the case of full suppres-
sion of beauty hadrons, while it varies from no increase at low 
transverse momentum up to a maximum increase of about 15% 
for 5 < pT < 6 GeV/c if no suppression is assumed. The transport 
model of Ref. [18,54,55] (TM1) fairly describes the overall shape of 
the RAA pT dependence.

5. Conclusion

We reported the ALICE measurement of inclusive J/ψ produc-
tion in pp and Pb–Pb collisions at 

√
sNN = 5.02 TeV at the LHC. 

A systematic difference by about 15% is visible when comparing 
the RAA measured at 

√
sNN = 5.02 TeV to the one obtained at √

sNN = 2.76 TeV, even if such an effect is within the total un-
certainty of the measurements. When removing very-low pT J/ψ
(pT < 0.3 GeV/c), the RAA shows a less pronounced increase for 
peripheral events, which can be ascribed to the removal of a large 
fraction of electromagnetic J/ψ production [51]. These results, as 
well as those on the ratio of the nuclear modification factors 
between 

√
sNN = 5.02 and 2.76 TeV, are described by theoreti-

cal calculations, and closer to their upper limits. The pT depen-
dence of RAA exhibits an increase at low pT, a feature that in 
the model which is compared to the data is related to an im-
portant contribution of regenerated J/ψ . A hint for an increase of 
RAA between 

√
sNN = 2.76 and 5.02 TeV is visible in the region 

2 < pT < 6 GeV/c, while the results are consistent elsewhere. The 
results presented in this paper confirm that also at the highest en-
ergies reached today at the LHC, data on J/ψ production support a 
picture where a combination of suppression and regeneration takes 
place in the QGP, the two mechanisms being dominant at high and 
low pT, respectively.
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