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We report the first measurement of the fraction of J=ψ mesons coming from B-meson decay (FB→J=ψ ) in
pþ p collisions at

ffiffiffi
s

p ¼ 510 GeV. The measurement is performed using the forward silicon vertex
detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-
approach determinations, enabling the statistical separation of J=ψ due to B-meson decays from prompt
J=ψ . The measured value of FB→J=ψ is 8.1%� 2.3%ðstatÞ � 1.9%ðsystÞ for J=ψ with transverse momenta
0 < pT < 5 GeV=c and rapidity 1.2 < jyj < 2.2. The measured fraction FB→J=ψ at PHENIX is compared
to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-
leading-logarithm and color-evaporation-model predictions. The bb̄ cross section per unit rapidity
[dσ=dyðpp → bb̄Þ] extracted from the obtained FB→J=ψ and the PHENIX inclusive J=ψ cross section
measured at 200 GeV scaled with color-evaporation-model calculations, at the mean B hadron rapidity
y ¼ �1.7 in 510 GeV pþ p collisions, is 3.63þ1.92

−1.70 μb. It is consistent with the fixed-order-next-to-
leading-logarithm calculations.

DOI: 10.1103/PhysRevD.95.092002

I. INTRODUCTION

The measurement of bottom (B) mesons in pþ p and
pþ p̄ collisions is of interest to constrain the total bottom
cross section as well as test our understanding of bottom
quark production mechanisms and hadronization. There are

extensive direct measurements of various Bmesons, as well
as measurements of B → J=ψ contributions over a broad
range in J=ψ transverse momentum and rapidity from the
Tevatron in pþ p̄ at

ffiffiffi
s

p ¼ 1.8, 1.96 TeV [1–3] and the
Large Hadron Collider (LHC) in pþ p at

ffiffiffi
s

p ¼ 7–13 TeV
[4–8]. In contrast, measurements from UA1 in pþ p̄ atffiffiffi
s

p ¼ 630 GeV [9] are statistically limited and only for
pTðJ=ψÞ > 5 GeV=c. Adding new measurements at lower
energies and covering different kinematic regions is valu-
able for testing perturbative quantum chromodynamics

*PHENIX Spokesperson.
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(pQCD) calculations and constraining production
mechanisms.
The Relativistic Heavy Ion Collider (RHIC) provides

pþ p collisions at
ffiffiffi
s

p ¼ 200, 500 and 510 GeV, which
extends the kinematic reach for bottom measurements. At
these smaller energies, bottom production is dominated by
gluon-gluon fusion, while higher energy bottom production
contains a larger fraction of flavor excitation and gluon
splitting processes [10]. The STAR experiment measured
B→J=ψ at midrapidity for J=ψ pT > 5 GeV=c in pþ p atffiffiffi
s

p ¼ 200 GeV [11]. Our measurement at forward rapidity
and pT within 0–5 GeV=c in

ffiffiffi
s

p ¼ 510 GeV pþ p
collisions at PHENIX can provide the validation of parton
distribution functions (PDFs) in a different gluon fractional
momentum range 5 × 10−4 < xBj < 1 × 10−2. As the high-
est center of mass energy accessed by RHIC collisions,
bottom measurements at

ffiffiffi
s

p ¼ 510 GeV will also help us
understand the energy dependence from RHIC to LHC
energies.
Inclusive J=ψ production has a component referred to as

“prompt,”which includes direct J=ψ production, as well as
decays from ψ 0 and χc. The term prompt is in contrast to
“nonprompt,” which specifically refers to production
through more long-lived decay parent hadrons (i.e. B
mesons). The nonprompt J=ψ component that comes from
the decay of Bmesons provides a clean channel to measure
B-meson yields. At forward rapidities, the time dilation of
the B lifetime leads to a larger displacement from the event
vertex before decaying to J=ψ . We use this displacement
to separate J=ψ originating from B-meson decay from
prompt J=ψ through measurement of the decay particle’s
distance of closest approach (DCA) to the primary event
vertex.
In this paper, the ratio of J=ψ from B-meson decays to

inclusive J=ψ (FB→J=ψ ) is determined for J=ψ kinematics
in the range of 0 < pT < 5 GeV=c and rapidity 1.2 <
jyj < 2.2 through DCA distributions in pþ p collisions atffiffiffi
s

p ¼ 510 GeV, using the PHENIX muon arms plus the
forward and central silicon vertex tracker detectors. The bb̄
cross section per unit rapidity at the mean B hadron rapidity
y ¼ �1.7 in 510 GeV pþ p collisions is extracted from
the obtained FB→J=ψ and the PHENIX inclusive J=ψ
cross section measured at 200 GeV, scaled with color-
evaporation-model (CEM) calculations [12].
The paper is organized as follows. Section II discusses

the PHENIX detector setup for this analysis, in particular
the central and forward silicon vertex detectors which are
used for the primary vertex and the DCA determination.
Section III describes the data reconstruction and simulation
setup, signal and background determination, and fitting
procedure. The acceptance × efficiency correction factor to
achieve final results and the systematic uncertainty evalu-
ation are discussed in Sec. III as well. The results and
interpretation are discussed in Sec. IV and the conclusions
are summarized in Sec. V.

II. EXPERIMENTAL SETUP

The data set used in this analysis is from the 2012 run of
pþ p at

ffiffiffi
s

p ¼ 510 GeV and the detector configuration of
PHENIX for that running period is shown in Fig. 1. For this
measurement, the beam-beam counters (BBC) [13], the
muon arm spectrometers [14], the central silicon vertex
detector (VTX) [15,16] and the forward silicon vertex
detector (FVTX) [17] are used. The BBC detector, which
comprises 128 quartz Čerenkov counters with a pseudor-
apidity coverage of 3.0 < jηj < 3.9, determines when a
collision event has taken place. The BBC provides the
minimum-bias (MB) trigger, by requiring a coincidence
between at least one hit in both the positive- and negative-
rapidity acceptance of the BBC.
The PHENIX muon detectors are divided into the north

(1.2<y<2.4) and the south (−2.2<y<−1.2) arms. Each
muon arm spectrometer has full azimuthal coverage and is
composed of hadron absorbers, a muon tracker (MuTr)
which resides in a radial field magnet, and a muon identifier
(MuID). The MuTr comprises three cathode strip wire
chamber stations inside a magnet which provides a radial
magnetic field with an integrated bending power of around
0.8 T · m. The MuTr measures track momentum p with a
resolution of δp=p ≈ 0.05 at p < 10 GeV=c. The hadron
absorber comprises 19 cm of copper, 60 cm of iron and
36.2 cm of stainless steel along the beam axis. The absorbers
are situated in front of the MuTr to provide hadron (mostly
pion and kaon) rejection. The MuTr has a position reso-
lution at each station of around 100 μm, which, together
with a precisely determined vertex, results in a mass
resolution of around 95 MeV for dimuon pairs within the
J=ψ mass region and 0<pTðJ=ψÞ<5GeV=c. The down-
stream MuID comprises five sandwiched planes of Iarocci
proportional tubes and steel. The MuTr þMuID system
together with the steel absorbers have approximately 10
interaction lengths of material. In this analysis, the dimuon
trigger is used which requires two muonlike trajectories
(defined as a “road”) passing through at least three MuID
planes with at least one reaching the last plane of the MuID.

FIG. 1. The PHENIX detector setup for the 510 GeV pþ p
data taking in 2012.
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The VTX (installed in 2011) comprises two inner pixel
layers and two outer strip layers distributed from 2.5 to
14.0 cm along the radial direction, covering Δφ ≈ 5.0
radians in azimuth and jzðVTXÞj < 10 cm along the z axis
(beamdirection). The radii of the inner silicon pixel detectors
are 2.5 and 5.0 cm, and the radii of the outer silicon strip
detectors are on average 10.0 and 14.0 cm. Each pixel of the
inner VTX layers covers a 50 μm × 450 μm active area
[15,16]. The FVTX, installed in front of the hadron absorb-
ers in 2012, comprises eight silicon disks perpendicular to
the beam axis and placed at approximately z ¼ �20.1,
�26.1, �32.2 and �38.2 cm. The rapidity coverage of
the FVTX overlaps the muon arm coverage. Each FVTX
disk comprises 48 individual silicon sensors (wedges) and
each wedge contains two columns of strips that each span an
azimuthal segmentation of 3.75°. The column comprises
mini stripswith 75 μmwidth in the radial direction. The strip
length in the azimuthal (φ) direction varies from 3.4 mm at
the inner radius to 11.5 mm at the outer radius for the largest
stations [17]. Tracks passing through the forwardmuon arms
are unlikely to pass through theVTXouter strip layers due to
the angular acceptance of the strips. In addition, the two inner
pixel layers can help improve the DCA resolutions as they
are closer to thevertex and have finer pixel sizes compared to
the outer strip layers. Therefore, for track reconstructionwith
the combined FVTXþ VTX detectors, only the two inner
pixel layers in the VTX are used.
The FVTX enhances the existing muon arm tracking

performance in several ways. The FVTX helps reject
hadrons that undergo multiple scattering or decay inside
the hadron absorber by requiring a good joint fit of FVTX
and MuTr tracks. It also provides a better opening angle
determination than the MuTr alone can provide, which
results in an improved mass resolution for dimuon pairs.
Finally, the additional precision tracking added in front of
the hadron absorber by the FVTX makes the measurement
of displaced tracks possible when combined with a deter-
mination of the primary vertex position.
Due to limited resolutions in the z and azimuthal φ

components of the FVTX detector, the separation of

prompt and decay muons is realized with the FVTX using
the DCA measurement instead of measuring the displaced
vertex of decayed muons. Because the FVTX has better
resolution in the radial direction than in the azimuthal
direction, the radial DCA (DCAR) is the primary variable
used in this analysis. The primary vertex is reconstructed
using all FVTX and VTX tracks which pass the track
quality cut χ2=NDF < 4, where NDF is the number of
degrees of freedom. Figure 2 illustrates the projection of a
muon from a Bmeson to J=ψ decay in the transverse vertex
plane and how to calculate the DCAR. A track recon-
structed in the FVTX is extrapolated to the transverse
plane (x-y) at the z location of the primary collision vertex.
DCA is defined as the vector ~LDCA formed between this
intersection point and the x-y collision vertex point in the
same transverse plane of the collision vertex. The DCAR is
the component of the DCAwhich is measured in the same
radial direction as the FVTX strips,

DCAR ≡ ~LDCA · R̂ ¼ ~LDCA ·
~R

j~Rj
: ð1Þ

Prompt particles from the primary collision vertex have a
symmetric DCAR distribution centered at zero, with the
width determined by the intrinsic detector and vertex
resolutions,while the shape is asymmetric for decay particles
from a displaced decay vertex. As illustrated in Fig. 2(b), the
definition of DCAR results in an asymmetric distribution for
muons from B → J=ψ decay due to the projection onto the
transverse x-y plane of the primary vertex. This is confirmed
by the full simulation shown in Sec. III C.

III. ANALYSIS PROCEDURE

This analysis starts with the identification of good J=ψ
candidates by selecting dimuon pairs found by theMuTr that
are matched to MuID tracks. Separately, track finding is
performed in the FVTX/VTX system where reconstructed
tracks are required to contain at least one FVTX hit and a
total of at least three FVTXþ VTX hits. Then, for each

FIG. 2. (a) 3D and (b) 2D projection of a muon from a B meson to J=ψ to dimuon decay to the transverse vertex plane (x-y) and
definition of DCAR.
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reconstructed MuTr track, the FVTX/VTX tracks are
searched for potential matches.
The collision point is determined from VTX and FVTX

tracks. First, regions where there is a concentration of track
crossings are determined. The center of gravity of each of
these regions defines a collision point. For each region, the
center of gravity is used to initiate a minimization of the
vector sum of the DCAs of the tracks. During the mini-
mization, tracks with large displacements are removed to
improve the fidelity of the final vertex reconstruction. The
vertex determination in each event is strongly affected by the
small VTX and FVTX track multiplicities in pþ p colli-
sions. Events containing bb̄ decay products can also skew
the vertex determination. Therefore, in this analysis we take
advantage of the beam stability in x and y during the fill
(5–12 hours) and use the measured average x and y position
of all events in the fill to determine our primary x and y
vertex. The spread of the primary x and y vertex position
based on the beam spot size is around 80 μm in RMS. The z
position is still determined on an event-by-event basis for
events that have a VTXþ FVTX track multiplicity ≥ 2.
Events with smaller multiplicity are thrown out. For events
with more than one reconstructed vertex, the vertex with the
best reconstruction quality is selected as the primary vertex.
For the reconstructed events, we obtain an average z
resolution of approximately 180 μm in 510 GeV pþ p
collisions. After matching to the FVTX tracks, the DCAR is
determined using the MuTr þMuIDþ FVTX=VTX com-
bined track fit and the primary vertex location.
The next step in the analysis is to characterize the DCAR

of muons from prompt J=ψ decay and J=ψ from B-meson
decay through simulation. The final analysis step uses a fit
function for the muon DCAR spectra that includes the
prompt J=ψ , J=ψ from B-meson decay, and background
components to extract the fraction of J=ψ from B-meson
decay in the data, using a log-likelihood fit. Details of
the analysis procedure are explained step by step in the
following sections.

A. Data quality assurance

The precise primary z-vertex reconstruction is limited by
the VTX acceptance and therefore only events within a z-
vertex (zVTX) window of ð−10; 10Þ cm are selected for this
analysis. Events with poorly determined primary z vertices
are removed by requiring less than 400 μm calculated
uncertainty on the z vertex. Runs without an accurately
determined average x, y position of the beam center are
rejected. The number of events with MB and dimuon
triggers surviving after these vertex selections is 3.5 × 109,
which is equivalent to a total integrated luminosity of
0.47 pb−1. The event rejection fraction is around 67%.
During the 2012 pþ p run, there were some areas of the

FVTX detector which were not yet operational due to
various electronics issues. When the FVTX-MuTr match-
ing algorithm tries to find an FVTX track in a dead area,

there is a tendency for it to match to a track in a live region
neighboring the dead one instead, pulling the matching
distributions away from the central value of 0. Because
of this tendency to pull tracks away from a symmetric
distribution, fiducial cuts are applied to remove tracks that
point to the vicinity of a dead region in the FVTX detector.
Detector misalignments can shift the projected track

position in the vertex plane and thus distort the DCAR
distributions. Before proceeding with the data analysis,
alignment corrections are applied to the data in two stages,
before and after the track reconstruction. The preproduction
alignment left residual φ-dependent misalignments, which
were up to 100 μm in certain detector regions. Tilts which
shift the FVTX silicon sensors out of the normal x-y plane
were corrected in a postproduction alignment procedure,
reducing the final misalignment values to less than 30 μm.
A final verification of the FVTX alignment to the VTX,

which is the most critical alignment for DCA analyses, is
performed using real data. Tracks which show MuID
activity in the fourth Iarocci tube plane (gap), but not in
the last gap are first selected. The majority of these tracks
are from stopped hadrons, which are predominantly prompt
particles, and provide a high statistics sample for studying
alignment. Events with a large vertex uncertainty, tracks
next to dead areas, and bad quality FVTX tracks are
removed from this sample. To remove the hadron decay
component, a minimum longitudinal momentum cut of
(pz > 4 GeV=c) is required. After the misalignment cor-
rections described above are applied, the DCAR is then
extracted for these tracks and checked for any indications of
residual misalignments. The mean of these distributions is
found to be flat along the φ direction (within the meas-
urement precision) and the overall offsets of the distribu-
tions are within 30 μm in both arms. These offset values
are much smaller than the detector position resolution.
Variations of the DCAR mean and spread which could
occur if there were beam instability, detector, trigger or
acceptance × efficiency changes, are checked by examin-
ing the DCAR distributions as a function of run and BBC
instantaneous rate. The mean values of the DCAR distri-
butions across all runs are found to be within 1 standard
deviation (of the intrinsic DCAR distribution width) after
quality assurance checks.

B. J=ψ reconstruction

Tracks formed in theMuTr are required to contain at least
12 (out of 16) hits in the various cathode strip planes. We
start with a loose quality cut χ2=NDF < 10 on the MuTr
tracks tomake sure all potentially good tracks are included in
the analysis. TheMuTr tracks which reach the last gap of the
MuID and have longitudinal momentum >3 GeV=c are
treated as muon track candidates. Muon candidates in this
analysis need to have good associations between the MuTr
track and the MuID road in both position and angle.
The momentum-dependent position and angle differences
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between the MuTr track and the MuID road are required to
be within 3 standard deviations as calculated using the
Kalman Filter track fitting and error propagation method. In
addition, the associatedMuID road should contain at least 6
(out of 10) hits in different MuID planes. Because theMuID
road is not included in the fully reconstructed tracks, we
apply a tighter quality cut which is χ2=NDF < 3.
Good matching between the FVTX tracks and the

MuTr þMuID tracks is also required. This requirement
helps remove misreconstructed and bad quality tracks as
well as some hadronic background. The matched FVTX
tracks should contain at least 3 (out of 6 potential) FVTXþ
VTX hits. The differences in azimuthal angle, polar angle
and radial distance between matched FVTX and MuTr þ
MuID combined tracks are required to be within 3 standard
deviations as determined by the Kalman Filter fits and error
propagation. Fits on the combined FVTXþMuTr tracks
should satisfy χ2=NDF < 5. Dimuon pairs are created from
muons passing all the quality cuts. A slightly different
selection which requires at least one muon of the dimuon
pair passing through the quality cuts is tested. No bias is
found as consistent results are achieved between the two
selections. The fit of the vertex point plus the two muon
tracks with opposite charges must satisfy χ2=NDF < 3 to
ensure the two muon tracks are not separated by more than
1 mm at the vertex point. The complete set of quality cuts is
listed in Table I.
Raw yields of the invariant mass of dimuon pairs after

applying the quality cuts are shown in Figs. 3(a) and 3(b).
A smaller number of events is measured in the forward
than the backward rapidity due to larger MuTr dead areas
and lower MuID efficiency in the forward rapidity region
during this data taking period. These spectra contain a
combination of J=ψ events, combinatorial background
(random combinations of reconstructed tracks within an

event) and heavy flavor background. The heavy flavor
background determination will be discussed in Sec. III E 3.
Two methods are used to extract the combinatorial back-
ground. One uses the like-sign dimuon pairs within events,
and the other uses the unlike-sign dimuon pairs in mixed
events. To match the yields of the analyzed mixed events to
the (same) events, a normalization scale Normmix, defined
in Eq. (2), is applied to the mass distribution of dimuon
pairs and muon DCAR distribution in mixed events:

Normmix ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsameþþ · Nsame

−−

Nmixþþ · Nmix
−−

s
ð2Þ

where Nsameþþ , Nsame
−− are the like-sign yields in same events

and Nmixþþ, Nmix
−− are the like-sign yields in mixed events,

for dimuon mass ≥ 2 GeV=c2. As shown in Fig. 3, the
invariant mass distributions determined by these methods
are consistent with each other within statistical uncertain-
ties. The mixed event method is then used to determine the
combinatorial background for the final analysis in order to
reduce statistical fluctuations. After the combinatorial
background subtraction, clear J=ψ peaks are found in both
muon arms, as shown in Figs. 3(c) and 3(d). A mass
window cut (2.7 < mass < 3.5 GeV=c2) is applied to the
dimuon pair invariant mass distribution to select J=ψ
candidates. The signal (combinatorial background sub-
tracted yields) to the combinatorial background ratio in
the J=ψ mass window is 18.6 in the 1.2 < y < 2.2 region
and 19.9 in the −2.2 < y < −1.2 region.

C. Simulation setup

The full simulation framework, which comprises
PYTHIA8[18]+GEANT4[19]þreconstruction, is set up to char-
acterize the DCAR distributions of muons from prompt J=ψ

TABLE I. Quality cuts for J=ψ candidates in pþ p collisions.

Variable (Meaning) 1.2 < jyj < 2.2

jzVTXj (collision vertex measured by the FVTX/VTX) <10 cm
jzVTXuncertaintyj (collision vertex uncertainty measured by the FVTX/VTX) <400 μm
p ·DG0 (Track momentum times the spatial <80 GeV=c · cm
difference between the MuTr and MuID tracks at the first MuID layer)
p ·DDG0 (Track momentum times the slope <40 GeV=c · °
difference between the MuTr and MuID tracks at the first MuID layer)
χ2MuTr (χ

2=NDF of the MuTr track) <10

χ2MuID (χ2=NDF of the MuID road) <3

Track χ2FVTX−MuTr (χ
2=NDF of the FVTX-MuTr matching μ track) <5

Radial residual between FVTX and MuTr projections at FVTX station 4 <3σ
Azimuthal residual between FVTX and MuTr projections at FVTX station 4 <3σ
Last gap (Last MuID plane that the μ track penetrated) ¼4
Nidhits (Number of hits in the MuID, out of the maximum 10) >6
Ntrhits (Number of hits in the MuTr, out of the maximum 16) >11
Nfvtxhits (Number of hits in the FVTXþ VTX, out of the maximum 6) >2
jpzjðGeV=cÞ (Momentum of the μ along the beam axis) >3
Dimuon pair vertex χ2=NDF <3
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and J=ψ from B-meson decay. Dead areas in the detector
are determined from data on a run-by-run basis and the
same vertex and tracking reconstruction algorithms as in
data analysis are used. The width of the simulated primary
vertex distributions along the x and y axes is 80 μm as
determined from Vernier Scan measurements [20]. The
vertex distribution along the z axis used in the simulation
has been determined from the real data. To get an accurately
reproduced z-vertex resolution in simulation, which is
dependent on the multiplicity in the event, additional
simulated MB events (with z vertex matched to the hard
QCD events) are embedded into the prompt J=ψ events, or
events with a J=ψ from B-meson decay. To ensure that the
accessed kinematic region of the probed PDF in the MB
events is the same in prompt J=ψ events or in B-meson →
J=ψ events, the renormalization scale Q2

renorm defined in
PYTHIA, which determines the PDF shape, is kept at the
same value between the MB event and the triggered event.
To verify that the simulations accurately represent the

real data, we have compared the simulated and measured
muon DCAR distributions from inclusive J=ψ events. The
inclusive J=ψ events in simulation are obtained by

combining 90% prompt J=ψ events and 10% J=ψ from
B-meson decay. This fraction of B-meson decays to J=ψ is
selected based on the average result from global data
measured in the same inclusive J=ψ pT region [3–7]. A
single Gaussian function is fit to the centroid of the DCAR
distributions in data and simulation to derive the resolutions
of the prompt component of the DCAR. The momentum
dependence of this DCAR resolution extracted from the
core region (jDCARj < 500 μm) is compared between data
and simulation. As shown in Fig. 4, good agreement
between data and simulation is achieved in both of the
measured rapidity regions.

D. Signal determination

The shapes of the DCAR distributions of muons from
prompt J=ψ and those from B-meson → J=ψ are charac-
terized using the full simulation. Figure 5 shows the
resulting normalized distribution of DCAR for muons from
prompt J=ψ events (blue open circle) and from B-meson →
J=ψ events (green circle). As explained at the end of Sec. II,
the shape of the muon DCAR distribution in prompt J=ψ
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FIG. 3. The invariant mass of dimuons in the (a),(c) 1.2 < y < 2.2 and (b),(d) −2.2 < y < −1.2 regions. Raw yields (black solid), the
combinatorial background using mixed events (red open rectangular) and like-sign dimuon pairs (green open triangle) are shown in
panels (a) and (b). The combinatorial background subtracted yields are shown in panels (c) and (d). The magenta dashed lines represent
the mass cut used to select J=ψ candidates.
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events is symmetric, which is consistent with expectations
for prompt particle decays. The Λb, B�, B0, B0

s hadrons
have a finite lifetime of 1.4–1.6 ps on average, resulting in a
displaced vertex at forward rapidity of approximately
0.8 mm from the primary collision vertex for the J=ψ
from B-meson decay. Due to the displacement between the
decay vertex and the primary collision vertex, the negative
side of the muon DCAR distribution shows a clear deviation
from symmetry for B-meson → J=ψ events. The respec-
tively symmetric and asymmetric DCAR distributions allow
the separation of prompt J=ψ from B-meson → J=ψ .
Several functions were tested to describe the line shapes

of the muon DCAR in both prompt J=ψ and J=ψ from B-
meson decay in simulations. The final fit functions which
will be described below are selected based on the best fits
to the simulation spectra with the maximum log-likelihood
method and a convolution of the intrinsic DCAR resolution
with a function which represents B-meson decay kinemat-
ics is used. Variations of the fit functions and the simulation
setup were then used to account for systematic uncertainties
in the fit function. A convolution fit is used to describe the
shape of the muon DCAR from prompt J=ψ decay, with the
definition shown in Eq. (3).

 (cm)RDCA

N
or

m
al

iz
ed

 s
ca

le

-110

1

10

210 1.2<y<2.2
Data
MC

(a)

 (cm)RDCA
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

N
or

m
al

iz
ed

 s
ca

le

-110

1

10

210
-2.2<y<-1.2

Data
MC

(b)

p (GeV/c)
4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

 (
cm

)
σ

R
D

C
A

0

0.01

0.02

0.03

0.04

0.05

0.06

1.2<y<2.2

 in DataψJ/

 MCψJ/

(c)

p (GeV/c)
4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

 (
cm

)
σ

R
D

C
A

0

0.01

0.02

0.03

0.04

0.05

0.06

-2.2<y<-1.2

 in DataψJ/

 MCψJ/

(d)

FIG. 4. Comparison of the normalized DCAR distributions of single muons from inclusive J=ψ events in data (red open circle)
and simulation (blue solid triangle). Panels (a) and (b) show the comparison for integrated momenta and panels (c) and (d) show the
comparison for the momentum-dependent DCAR resolution. There is good agreement between data and simulation.
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fpromptJ=ψ ðDCARÞ ¼
1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðDCAR − μÞ2

2σ2

�

⊗
σ21DCA

2
R

ðDCA2
R − μ21Þ2 þ DCA4

Rðσ21=μ21Þ
;

ð3Þ
where μ, σ, μ1 and σ1 are determined from the fit to the
prompt J=ψ simulation spectra. Parameter σ and σ1
determine the width of the muon DCAR shape in prompt
J=ψ events, which comes from the detector and vertex
resolutions. Values of these parameters defined in Eq. (3)

are fixed in the next step: the fit to the measured DCAR
distributions. For B-meson decay to J=ψ events, the
convolution fit function defined in Eq. (4) is used:

fB→J=ψ ðDCARÞ ¼ fpromptJ=ψðDCARÞ ⊗ fBðDCARÞ; ð4Þ

where the function fprompt J=ψðDCARÞ is defined in Eq. (3).
The parameters of fprompt J=ψðDCARÞ are already deter-
mined, as explained above, in the fit of muon DCAR in the
prompt J=ψ simulation. Function fBðDCARÞ, which stands
for the decay kinematics of B meson, is defined as

fBðDCARÞ ¼
8<
:

exp
h
− ðDCAR−μ2Þ2

2σ2
2

i
; DCAR−μ2

σ2
> −α

ð n
jαjÞn expð− jαj2

2
Þð n

jαj − jαj − DCAR−μ2
σ2

Þ−n; DCAR−μ2
σ2

≤ −α
ð5Þ

where μ2, σ2, n and α are parameters determined from the
fit to the B → J=ψ → μþμ− simulation. The average value
of the muon DCAR from B → J=ψ decay is determined by
μ2. Parameters σ2, n and α determine the asymmetric shape
of this DCAR distribution. The determined values of these
parameters defined in this section and used in Eq. (4) and
Eq. (5) are then fixed in the fit to the measured DCAR
distributions.
Fits of the simulated muon DCAR distributions for

prompt J=ψ (blue open circle) and B to J=ψ (green circle)
are shown in Fig. 5. The DCAR spectra can be modeled by
the two functions defined in Eq. (3) and Eq. (4).

E. Background determination

For this analysis, backgrounds come from three different
sources: combinatorial, MuTr-FVTX track mismatching
and heavy flavor decay continuum which represents unlike-
sign dimuon pairs from bb̄ → BB̄ → μþμ− þ X and cc̄ →
DD̄ → μþμ− þ X events. The combinatorial background
and the background from mismatching between FVTX
and MuTr tracks are determined by data-driven methods.
The fraction of the contribution from the heavy-flavor-
continuum background is determined by fitting the dimuon
pair invariant mass spectra in real data, and the DCAR
shape is determined from simulation. Details of the back-
ground determinations will be discussed in Secs. III E 1
through III E 3.

1. Combinatorial background determination

The combinatorial background, which comes from
combining randomly associated tracks in an event, is
evaluated using unlike-sign dimuons formed by muon
tracks from two different events (referred to as the mixed
event procedure). The events to be mixed are required to
have z vertices with no more than 1.5 cm difference from

each other. The muon DCAR distribution of the combina-
torial background from normalized mixed events [the
normalization factor is defined in Eq. (2)] is shown as
magenta open triangles in Fig. 6.

2. FVTX-MuTr mismatching determination

The last FVTX plane and the first MuTr station are
150 cm apart and have approximately 1 m of absorber
material in between. MuTr tracks with momentum above
3 GeV=c projected to the fourth station of the FVTX
therefore cover a circle with a radius of up to 2 cm for
muons, due to the multiple scattering in the absorber.
As a result, some fraction of the MuTr projections will find
more than one FVTX track or a single but incorrect FVTX
track inside its projected circle, and have a certain prob-
ability of selecting an incorrect FVTX match. We refer to
these incorrect matches as “mismatching background.”
To estimate the amount of mismatching, we attempt to

match MuTr tracks from one event to FVTX tracks from a
separate event (referred to as swapped events). To be as
realistic as possible, the swapped events need to belong
to the same z-vertex category, meaning the difference of the
z vertex between the swapped event and the true event
should be less than 1 mm. The selection of 1 mm z-vertex
difference does not introduce any bias to the DCAR
distribution. In addition to this, we also count the mis-
matching tracks from swapped events only when the
matching track in the swapped event has a better χ2 than
the matching track in the real event, so that we do not
overestimate the mismatches in real events. The mis-
matching background in the analyzed events is dominated
by J=ψ MuTr tracks which do not have a corresponding
FVTX track in the real event and accidentally match to a
random background track. The fraction of candidate FVTX
tracks in swapped events which are found to be wrongly
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associated with a MuTr track from a good J=ψ dimuon pair,
and that pass the quality cuts shown in Table I, is 3% (2%)
in the 1.2 < y < 2.2 (−2.2 < y < −1.2) rapidity region.

3. Heavy favor background determination

After subtracting the combinatorial background from the
dimuon invariant mass distribution within the 2–6 GeV=c2

region (shown in Fig. 3), there are remaining backgrounds
in the sideband regions outside the J=ψ mass window. This
remaining background is dominated by the heavy flavor
continuum and indicates that this continuum is not negli-
gible in the J=ψ mass region. To determine the fraction of

the heavy flavor background, a fit function which includes
yields from J=ψ , ψ 0, the combinatorial background and
heavy-flavor-continuum background is applied to the
invariant mass distribution of dimuon pairs. In the dimuon
pair mass region >4 GeV=c2, the heavy-flavor-continuum
background also contains Drell-Yan. Because the
fraction of Drell-Yan events within the J=ψ mass region
(2.7–3.5 GeV=c2) is negligible, the fit in this mass region
does not include a Drell-Yan component.
Figure 7 shows the fit of the dimuon mass distribution

to determine the heavy-flavor-continuum background. The
total background (yellow) determined by the fit to the
invariant mass spectrum, which comprises the combinato-
rial (red) and the heavy flavor background (blue), follows
the mass distribution outside the J=ψ mass window well.
The fraction of the heavy flavor background within the J=ψ
mass window is found to be 7.1%� 1.1% (5.5%� 0.8%)
in the 1.2 < y < 2.2 (−2.2 < y < −1.2) regions.
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FIG. 6. The raw yields of data ([black] closed circles) and
estimated background DCAR distributions within the J=ψ mass
window (2.7–3.5 GeV=c2) are shown for (a) rapidity 1.2<y<2.2
and (b) −2.2 < y < −1.2 The combinatorial background defined
as fcombinatorial in Eq. (8) ([magenta] open triangle), the heavy-
flavor-continuum (cc̄þ bb̄) background defined as fcc̄þbb̄ in
Eq. (8) ([green] solid triangle) and the detector mismatching
background defined as fmismatch in Eq. (8) ([blue] open circle) are
determined using techniques described in the text.
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FIG. 7. Fit of dimuon mass spectra to determine the heavy-
flavor-continuum background for (a) rapidity 1.2 < y < 2.2 and
(b) −2.2 < y < −1.2. The fit function ([black] solid curve)
includes the J=ψ and ψ 0 yields which already include the
FVTX-MuTr mismatching background, the combinatorial back-
ground ([red] dashed curve) and the heavy-flavor-continuum
background ([blue] dash-dotted curve). The total background
([yellow] solid-dotted curve) shows the combinatorial and the
heavy-flavor-continuum background.

MEASUREMENTS OF B → J=ψ AT FORWARD … PHYSICAL REVIEW D 95, 092002 (2017)

092002-11



The relative bb̄ and cc̄ dimuon contributions within the
J=ψ mass window are not well known, and extrapolation
from previous midrapidity dimuon invariant mass yields in
200 GeV pþ p collisions would introduce a large sys-
tematic uncertainty. We therefore first fit the unlike-sign
dimuon invariant mass spectrum near the J=ψ region
including the PYTHIA8-simulated shape of bb̄ and cc̄
components and an unconstrained normalization scale to
estimate the contribution. The fit suggests there is a 33% bb̄
fraction in the heavy flavor continuum within the J=ψ mass
region. However, we do note there is systematic uncertainty
in the PYTHIA8 shape. Because of this uncertainty, for this
analysis the fraction of the bb̄ contribution to the heavy
flavor yields within the J=ψ mass window is set to be 50%,
and varied from 0 to 100% to take into account all
possibilities in the systematic uncertainty.

F. Fitting procedure

The DCAR distributions are selected from dimuon pairs
within the mass window 2.7–3.5 GeV=c2. A fit function is
developed to simultaneously extract the prompt J=ψ and
B-meson → J=ψ yields from the real data DCAR distribu-
tions with the maximum log-likelihood method. This fit
function comprises five components: (1) muons from
prompt J=ψ , (2) muons from B-meson → J=ψ , (3) combi-
natorial background determined by mixed events, (4) mis-
matching between FVTX and MuTr determined by
swapped events, and (5) heavy flavor (cc̄þ bb̄) continuum
background. The fit function which is used to determine
the shape of muon DCAR distributions from prompt
J=ψ (B-meson → J=ψ) events is fpromptJ=ψðDCARÞ
[fB→J=ψðDCARÞ] as discussed in Sec. III D. Parameters
defined in both Eq. (3) and Eq. (4) are fixed according to
the fit to the simulated spectra and the detector resolution
smearing is fine-tuned in the data fit. The functions
which represent the three background contributions are
fcombinatorialðDCARÞ, fmismatchðDCARÞ and fcc̄þbb̄ðDCARÞ
as discussed in Sec. III E. Histograms of muon DCAR from
different background contributions after normalization are
used to represent each component in Eq. (8). Fluctuations
of the fit methods, signal and background determinations
are studied in the systematic uncertainty evaluations. These
functions used to describe the data spectrum are summa-
rized in Eq. (6),

ftotalðDCARÞ ¼ fsigðDCARÞ þ fbkgðDCARÞ; ð6Þ

fsigðDCARÞ ¼ Yieldincl J=ψ × ½FB→J=ψ × fB→J=ψðDCARÞ
þ ð1 − FB→J=ψÞ × fprompt J=ψðDCARÞ�; ð7Þ

fbkgðDCARÞ ¼ fcombinatorialðDCARÞ þ fmismatchðDCARÞ
þ fcc̄þbb̄ðDCARÞ; ð8Þ

where Yieldincl J=ψ is the total yield of inclusive J=ψ which
comprises both prompt J=ψ and B-meson decayed J=ψ .
Normalization and shapes of most of the components are
fixed in previous steps. In the final stage of the fit, the
fraction of muons from B-meson → J=ψ (i.e. FB→J=ψ ), is
the main free parameter in the total fit function [defined in
Eq. (6)], together with the J=ψ yield and a last tuning of the
resolution that is described below. As the DCAR resolution
in data can be affected by additional factors which may not
be well captured by the simulation (such as event-by-event
variations in the vertex resolution, additional smearing
from multiple scattering in the nonuniform detector mate-
rials, part of the detector randomly dropping out within a
run and beam-beam collision geometry fluctuations), an
additional free parameter, σ0, is introduced in the con-
volution fit functions for prompt J=ψ [defined in Eq. (3)]
and B-meson → J=ψ [defined in Eq. (4)]. It accounts for
detector resolution smearing and also captures any uncer-
tainty of the beam spot size. The fit is then performed with
the parameter σ�1 instead of σ1, where σ�1 ¼ σ1 þ σ0. The
resolution smearing parameter σ0 determined from the fit
to the data is within 20 μm with approximately 20 μm
statistical uncertainty for the 1.2 < jyj < 2.2 region. The
size of the smearing is much smaller than the average x-y
beam profile value (around 80 μm) and the DCAR reso-
lution (around 230 μm). The value of the resolution
smearing σ0 varies from 5 to 70 μm when different beam
profile values in the x-y plane are used in the simulation
(from 80 to 180 μm). Variation of the smearing parameter
σ0 will be included in the systematic uncertainty evaluation.
Applying the fit procedure to the DCAR distributions,
assuming 50% of the heavy-flavor-continuum contribution
comes from bb̄ (see discussions in III E 3), allows the raw
fraction of J=ψ mesons from B decays in inclusive J=ψ
yields to be extracted. The corresponding raw ratios
B → J=ψ are 7.3%� 3.7%ðstatÞ for (1.2 < y < 2.2) and
8.1%� 2.8%ðstatÞ for (−2.2 < y < −1.2). The spectra and
fit results are shown in Fig. 8. The fit parameter values are
summarized in Table II.

G. Acceptance × efficiency correction

In pþ p collisions, the DCAR resolution is dominated
by the VTX/FVTX vertex resolution. Higher event multi-
plicity can lead to a better vertex resolution and a higher
probability that a vertex can be reconstructed for a given
event. The B → J=ψ events have higher average VTX/
FVTX multiplicity in comparison with prompt J=ψ events.
Conversely, due to their different pT distributions, B →
J=ψ events have a somewhat lower probability of having
both muons accepted into the muon arm than prompt J=ψ
events. These differences in VTX/FVTX event multiplic-
ities and kinematics result in somewhat different values
of the acceptance × efficiency for the two sets of events.
The raw ratio Fraw

B→J=ψ as discussed in Sec. III F must be
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corrected for the relative acceptance × efficiency difference
between prompt J=ψ and B → J=ψ events, using
the PYTHIA8þ GEANT4þ reconstruction simulation

described previously in Sec. III C, AεpromptJ=ψ→μμ

AεB→J=ψ→μμ
, where

AεpromptJ=ψ→μμ (AεB→J=ψ→μμ) is the acceptance×efficiency
for prompt J=ψ (B → J=ψ) events.
The acceptance × efficiency for prompt J=ψ events is

0.455%� 0.007% (0.506%� 0.008%) and for B → J=ψ
events is 0.446%� 0.007% (0.473%� 0.007%) in
the −2.2 < y < −1.2 (1.2 < y < 2.2) rapidity region.
The extracted relative ratio of B → J=ψ acceptance ×
efficiency to prompt J=ψ acceptance × efficiency is

0.980� 0.022 (0.935� 0.020) in the −2.2 < y < −1.2
(1.2 < y < 2.2) rapidity region. The B → J=ψ fraction

FB→J=ψ which is defined as NB→J=ψ

NpromptJ=ψþNB→J=ψ
(NpromptJ=ψ is

the yield for prompt J=ψ ,NB→J=ψ is the yield for B → J=ψ )
can be derived according to Eq. (9).

FB→J=ψ ¼ 1

1þ ð 1
Fraw
B→J=ψ

− 1Þ · εB→J=ψ→μμ

εpromptJ=ψ→μμ

ð9Þ

H. Systematic uncertainty

The systematic uncertainty for FB→J=ψ is evaluated by
taking into account any factors which can affect the DCAR
mean, the DCAR resolution, or the overall normalization
of the signals. The following items are considered in the
systematic uncertainty evaluation, along with a description
of the methods performed to extract the uncertainties. For
each item we compare the nominal B → J=ψ fraction
extracted from our analysis to that obtained with alternate
methods to extract the systematic uncertainty:
(a) pT uncertainties: the B-meson→ J=ψ pT distributions

were reweighted in B → J=ψ simulations according to
the prompt J=ψ pT distribution. The inclusive J=ψ pT
spectrum was also varied with different fractions of
prompt J=ψ and B-meson → J=ψ .

(b) Background determination uncertainties: smooth fit
functions were used to characterize the combinatorial,
mismatching and heavy flavor backgrounds instead
of histograms and their effects on the fit result were
evaluated.
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FIG. 8. B → J=ψ fraction fit to muon DCAR in the (a) 1.2 < y < 2.2 and (b) −2.2 < y < −1.2 regions. The ([red] solid curve) stands
for the total fit, which includes the prompt J=ψ (solid blue), the B-meson → J=ψ ([green] filled region), the combinatorial background
([magenta] dashed curve), the cc̄þ bb̄ background ([brown] long-dashed curve) and the detector mismatching background ([purple]
short-dashed curve).

TABLE II. Parameters as defined in Eq. (3) and Eq. (4). Most of
these parameters are fixed in preliminary steps. At the final fit
stage, free parameters are B → J=ψ fraction (FB→J=ψ ) (see text),
the total J=ψ yields and σ0. Uncertainties are not only from the
statistical fluctuations but also related with the systematic
uncertainty evaluations.

Fit Parameter −2.2 < y < −1.2 1.2 < y < 2.2

μ −15� 5 μm 6� 5 μm
σ 209� 8 μm 210� 6 μm
μ1 0 μm 0 μm
σ1 60� 11 μm 50� 9 μm
σ0 7� 14 μm 10� 18 μm
μ2 −135� 15 μm −123� 18 μm
σ2 169� 10 μm 150� 16 μm
α 0.74� 0.06 0.60� 0.08
n 3.50� 0.51 4.26� 0.75
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(c) Background determination uncertainties: deviation of
fit results from the averagevaluewith different fractions
of bb̄ contribution in the heavy flavor background. The
bb̄ fraction of the heavy flavor background was varied
from 0, 50% to 100%. Even though the assumption of 0
or 100% bb̄ heavy-flavor-continuum background is
unrealistic, to be conservative, the maximum variation
between the averagevalue of the fittedB to J=ψ fraction
and the fit result assuming 0 or 100% bb̄ fraction of
heavy flavor background is quoted as the systematic
uncertainty.

(d) Background determination uncertainties: the combi-
natorial background normalization Normmix defined in
Eq. (2) was calculated within different dimuon mass
ranges and compared to the nominal values.

(e) Fitting method uncertainties: multiple tests of the
DCAR fit function with varied DCAR means and
resolutions were applied to pseudodata, including
different fractions of prompt J=ψ and J=ψ from B-
meson decay with muon DCAR shape determined in
simulation and realistic backgrounds. The stability of
the extracted ratios was checked and deviation from
the average value is accounted for in the systematic
uncertainty.

(f) Signal determination uncertainties: different functions
were used to represent the muon DCAR distributions
in both prompt J=ψ and J=ψ from the B-meson decay
events in simulation. A triple Gaussian function was
used for prompt J=ψ events and a Crystal-Ball plus
single Gaussian function was used for J=ψ from the B-
meson decay events. The stability of the extracted
ratios was checked.

(g) J=ψ selection uncertainties: good J=ψ candidates
were selected in different dimuon pair mass windows
(shifted by 0.15 GeV=c2) and the extracted ratio
results were compared to the nominal ratios.

(h) Alignment determination uncertainties: different mis-
alignment residuals were applied to the DCAR mean to
determine their effect on the fit.

(i) Event quality cut uncertainties: different vertex resolu-
tion cuts were used and their effect on the fit evaluated.

(j) Dependence of simulation on different x-y vertex
smearing: the vertex smearing was varied from the
reconstructed value in real data (around 200 μm) to
the average beam profile value (around 80 μm) and the
effect on the fit evaluated.

(k) Variation of the acceptance × efficiency: the renorm-
alization scale factors were varied in simulation to
get different pT distributions for prompt J=ψ and B-
meson decays, then the acceptance × efficiency cor-
rection factors were recalculated and their effect on
the fit was evaluated.

Table III gives the values and specific meanings for each
evaluated contribution to the systematic uncertainty on
the extracted fraction for J=ψ from B-meson decay. As
indicated, the total systematic uncertainty is 1.9% in
absolute scale for each muon arm in the 1.2 < jyj < 2.2
rapidity coverage.

IV. RESULTS AND DISCUSSIONS

After applying the acceptance × efficiency factors
shown in Table IV, the corrected B → J=ψ fraction in
the rapidity interval (1.2 < y < 2.2) is 7.8%� 3.9%ðstatÞ
and the fraction in the rapidity interval (−2.2 < y < −1.2)
is 8.3%� 2.9%ðstatÞ.
The final results are summarized in Table V. Because the

pþ p system is symmetric, the results from the two arms
are combined into a statistical average, giving a fraction of
J=ψ from B-meson decays in the 1.2 < jyj < 2.2 region of
8.1%� 2.3%ðstatÞ � 1.9%ðsystÞ. This result is integrated
in the interval 0 < pTðJ=ψÞ < 5 GeV=c.

TABLE III. Systematic uncertainty summary for the fraction of J=ψ from B-meson decay in the 1.2<y<2.2 and
−2.2 < y < −1.2 rapidity regions. Values are in absolute scale. See the specific meaning of each item in Sec. III H.

Source 1.2<y<2.2 −2.2<y<−1.2 Specific Meaning

a <0.1% <0.1% pT uncertainties.
b 0.1% 0.2% Background shape variations with fit functions.
c 1.4% 1.1% bb̄ fraction variations in the heavy flavor background.
d <0.1% <0.1% Combinatorial background normalization variation.
e 0.5% 0.5% Fit method variations.
f 0.3% 0.3% Signal determination variations.
g 0.4% 0.5% J=ψ selection variation.
h 0.3% 0.5% Alignment correction variations.
i 0.4% 0.6% Event quality cut variations.
j 1.0% 1.0% Vertex smearing in the x-y plane.
k 0.1% 0.2% Variations of the acceptance × efficiency.

Total systematic
uncertainty

1.9% 1.9%
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Comparisons to global measurements within the same
inclusive J=ψ pT region from CDF [3], ALICE [4], CMS
[5] and LHCb [6,7] experiments are shown in Fig. 9(a).
The result from PHENIX is also compared with the pT-
dependent fraction from other experiments using the
average pT ¼ 2.2 GeV=c of our inclusive J=ψ sample
as shown in Fig. 9(b). The LHCb experiment has mea-
surements over a wide rapidity range, 2.0 < y < 4.5; only
results from 2.0 < y < 2.5 and 3.0 < y < 3.5 are shown
in Fig. 9. The 2.0 < y < 2.5 rapidity range is close to
the kinematic range accessed by other measurements. The

FB→J=ψ result from this measurement is consistent with
those from the higher energy collisions within uncertain-
ties, although it does not exclude the possibility of a
decrease of the FB→J=ψ toward lower collision energy.
Figure 10 presents the comparison between the 510 GeV

pþ p PHENIX result and the fixed-order-next-to-leading-
log plus color-evaporation-model (FONLLþ CEM)
[12,21,22] predictions for the B→J=ψ fraction (FB→J=ψ )
in 500 GeV pþ p collisions. The CEM J=ψ calculation
uses the results of fitting the scale parameters to the energy
dependence of the open charm total cross section for the
charm quark mass mc ¼ 1.27� 0.09 GeV=c2. The factori-
zation and renormalization scales, relative to the mass of
the charm quark in the total cross section, were found to be
μF=m ¼ 2.1þ2.55

−0.85 and μR=m ¼ 1.6þ0.11
−0.12 [22]. The same

central values were used to fix the J=ψ normalization
parameter in the CEM to the total cross section at xF > 0
and y > 0 as a function of energy. The J=ψ distributions
were calculated with the same mass and scale parameters
but to include the pT dependence instead of μF;R=m,

μF;R=mT was used, where mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

Tc
þ p2

Tc̄
Þ=2þm2

c

q
.

The shape of the pT distribution at low pT is determined
by a kT kick of 1.29 GeV=c at

ffiffiffi
s

p ¼ 500 GeV. The
energy difference between 500 and 510 GeV is small,
so the difference in the B → J=ψ fraction is negligible.
The measured fraction at PHENIX is consistent with the
FONLL+CEM model prediction within uncertainties. The
CMS nonprompt and prompt J=ψ cross section measure-
ments at 7 TeV pþ p collisions [5] have been compared
to the FONLLþ CEM calculations as well. The old CEM

TABLE IV. Relative ratio of acceptance × efficiency between
prompt J=ψ and B → J=ψ events, uncorrected B → J=ψ fraction
(Fraw

B→J=ψ ) and corrected B → J=ψ fraction (FB→J=ψ ). Uncertain-
ties are statistical only.

AεB→J=ψ→μμ

AεpromptJ=ψ→μμ

Fraw
B→J=ψ FB→J=ψ

−2.2 < y < −1.2 0.980� 0.022 8.1%� 2.8% 8.3%� 2.9%
1.2 < y < 2.2 0.935� 0.020 7.3%� 3.7% 7.8%� 3.9%

TABLE V. Fraction of B-meson decays in J=ψ samples
obtained in pþ p collisions at

ffiffiffi
s

p ¼ 510 GeV.

FB→J=ψ

−2.2 < y < −1.2 8.3%� 2.9%ðstatÞ � 1.9%ðsystÞ
1.2 < y < 2.2 7.8%� 3.9%ðstatÞ � 1.9%ðsystÞ

1.2 < jyj < 2.2 8.1%� 2.3%ðstatÞ � 1.9%ðsystÞ
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FIG. 9. Comparison of PHENIX B → J=ψ fraction with the global data from CDF [3], ALICE [4], CMS [5] and LHCb [6,7]
experiments for J=ψ pT and also with 0 < pT < 5 GeV=c, (a) as a function of center of mass energy integrated in the Jψ interval
0 < pT < 5 GeV=c, and (b) as a function of inclusive J=ψ pT . The uncertainty of the PHENIX measurement is statistical and
systematic combined.
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model underestimated the prompt J=ψ cross section within
1.6 < jyj < 2.4 and J=ψ pT < 5 GeV=c region measured
by the CMS experiment in 7 TeV pþ p collisions, while
the nonprompt J=ψ cross section measured in the same
kinematic region and experiment is consistent with the
FONLL calculations. Calculations with the CEM param-
eters from [22] give a better agreement between the
FONLLþ CEM prediction and the B → J=ψ fraction
measured by CMS [5]. The FONLL calculations can
reasonably describe the nonprompt J=ψ cross section
results at LHCb for pT > 0 [6,7].
The B → J=ψ fraction FB→J=ψ is also related to

the inclusive J=ψ cross section per unit rapidity
dσ=dyðpp → J=ψÞ and the bb̄ cross section per unit
rapidity dσ=dyðpp → bb̄Þ,

FB→J=ψ ¼ 2 × dσ=dyðpp → bb̄Þ × BrðB → J=ψ þ XÞ
dσ=dyðpp → J=ψÞ ;

ð10Þ

where BrðB → J=ψ þ XÞ is the branching ratio of B
hadron decays to J=ψ and the b (b̄) quark to B-hadron
fragmentation is assumed to be 1. The factor of 2 in
Eq. (10) accounts for the fact that both B → J=ψ and
B̄ → J=ψ contribute to the B → J=ψ fraction FB→J=ψ .
Equation (10) can be rewritten as

dσ=dyðpp → bb̄Þ ¼
1
2
× dσ=dyðpp → J=ψÞ × FB→J=ψ

BrðB → J=ψ þ XÞ :

ð11Þ
Therefore, dσ=dyðpp → bb̄Þ can be derived from Eq. (11).
To do this, we use dσ=dyðpp → J=ψÞ ¼ 1.00� 0.11 μb
(0.97� 0.11 μb) at mean rapidity y ¼ 1.7 (−1.7) in
510 GeV pþ p collisions, and BrðB → J=ψ þ XÞ ¼
1.094� 0.032% [23]. Here, dσ=dyðpp→J=ψ ;510GeV)
is extrapolated as dσ=dyðpp → J=ψ ; 200 GeVÞ×
Rð510=200Þ, where the scaling factor Rð510=200Þ is
2.08þ0.75

−0.55 according to the CEM [22], and dσ=dyðpp→
J=ψ ;200GeVÞ¼ 0.48�0.05 μbð0.47�0.05 μbÞ at mean
rapidity y ¼ 1.7 (−1.7) [24].
The extracted dσ=dyðpp→bb̄Þ is 3.57þ2.38

−2.22ð3.68þ2.08
−1.88Þ μb

at B hadron mean rapidity ¼ 1.7 (−1.7) in 510 GeV pþ p
collisions. The weighted average of the two measurements is
dσ=dyðpp → bb̄Þ ¼ 3.63þ1.92

−1.70 μb at B-hadron rapidity ¼
�1.7. As shown in Fig. 11, these values are comparable to
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200 GeV pþ p measurements and the energy scaling factor
provided by the CEM [22]. The extrapolated dσ=dyðpp → bb̄Þ
(shown as open red circles) at B hadron mean rapidity y ¼ �1.7
in 510 GeV pþ p collisions is compared with the rapidity-
dependent B cross section (shown as blue solid line) calculated in
FONLL. The PHENIX result is also comparable with the value
of UA1 630 GeV pþ p̄ dσ=dyðpp̄ → bb̄Þ extracted from pT >
8 GeV=c to pT > 0 range [28,29] and unscaled with energy. The
uncertainty of the extrapolated value at PHENIX (UA1) com-
bines the statistical and systematic uncertainty from experiment
with the CEM uncertainty. The uncertainty of the FONLL
calculations contains both b quark mass and scaling uncertainties.
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the FONLL-calculated rapidity-dependent B cross section
within large uncertainties [25–27]. The PHENIX extracted
values are also comparable to the UA1

ffiffiffi
s

p ¼ 630 GeV
pþ p̄ average bb̄ cross section per unit rapidity
[dσ=dyðpp̄ → bb̄; 630 GeVÞ ¼ 4.3þ2.51

−2.10 μb] within jyj <
1.5 [28,29] which is extrapolated from pT > 8 GeV=c to
the pT > 0 range. The FONLL calculation assumes mb ¼
4.75� 0.25 GeV=c2 while the renormalization and factori-
zation scales are varied by a factor of 2 around the central

value, μR;F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

b

q
[12,27].

V. SUMMARY

We have presented a new measurement of the nonprompt
over inclusive J=ψ production ratio FB→J=ψ in pþ p
collisions at

ffiffiffi
s

p ¼510GeV, integrated over the J=ψ kin-
ematical domain, pT<5GeV=c and rapidity 1.2< jyj<2.2.
The result is FB→J=ψ ¼ 8.1%� 2.3%ðstatÞ � 1.9%ðsystÞ.
This measurement extends the previously measured
FB→J=ψ values at CDF and LHC to lower energy, and is
comparable to measurements at higher energies; it is also
within 1.0 standard deviation of the FONLLþ CEM
calculation which has a non-negligible dependence onffiffiffi
s

p
, pT and y. The extrapolated dσ=dyðpp → bb̄Þ is

3.63þ1.92
−1.70 μb at B-hadron mean rapidity, �1.7, in

510 GeV pþ p collisions, which is comparable with the
FONLL calculations in 500 GeV pþ p collisions.
The weak dependence on the center of mass energy in

Fig. 9(a) for the FB→J=ψ fraction could indicate that the
variation of the bottomyieldwith energy is compensated by a
similar variation of the prompt J=ψ yield. It is also note-
worthy that only a factor of 2 decrease of theb over the cyield
is expected going from LHC energies to

ffiffiffi
s

p ¼510GeV, as
calculated with FONLL [25,26]. However, modeling the
hadronization of the bound cc̄ at lowpT is still a challenge to
QCD calculations. The present results provide complemen-
tary information to the surprisingly weak evolution of
FB→J=ψ in 0.51 ≤

ffiffiffi
s

p
≤ 13 TeV domain, for central or near

central rapidity and low pT production.
The analysis procedure developed in this study will be

applied to other data sets recorded by PHENIX at different
center of mass energies. A similar method can also be
applied to the study of B- and D-meson semileptonic

decays to muons, which will help to understand the
production mechanism of charm and bottom, and provide
a complementary measurement to the one presented in
this paper.
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