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K ∗(892)0 and φ(1020) meson production at high transverse momentum in pp and
Pb-Pb collisions at

√
sNN = 2.76 TeV

J. Adam et al.∗
(ALICE Collaboration)

(Received 17 February 2017; published 12 June 2017)

The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions
at

√
sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the

ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been measured
for K∗(892)0 and φ(1020) mesons via their hadronic decay channels for pT up to 20 GeV/c. The measurements
in pp collisions have been compared to model calculations and used to determine the nuclear modification factor
and particle ratios. The K∗(892)0/K ratio exhibits significant reduction from pp to central Pb-Pb collisions,
consistent with the suppression of the K∗(892)0 yield at low pT due to rescattering of its decay products in
the hadronic phase. In central Pb-Pb collisions the pT dependent φ(1020)/π and K∗(892)0/π ratios show an
enhancement over pp collisions for pT ≈ 3 GeV/c, consistent with previous observations of strong radial flow.
At high pT, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb
collisions, the production of K∗(892)0 and φ(1020) mesons is suppressed for pT > 8 GeV/c. This suppression is
similar to that of charged pions, kaons, and protons, indicating that the suppression does not depend on particle
mass or flavor in the light quark sector.

DOI: 10.1103/PhysRevC.95.064606

I. INTRODUCTION

It has been established that hot and dense strongly interact-
ing matter, often described as a strongly coupled quark-gluon
plasma (sQGP) [1–3], is produced in heavy-ion collisions at
ultrarelativistic energies. The properties of this matter are
characterized, among other features, by the energy loss of
partons traversing the dense color-charged medium, which
manifests itself via suppression of hadrons with high transverse
momentum in central Pb-Pb collisions. The hadrons that
contain light (up, down, and strange) valence quarks exhibit
a suppression similar to that of particles containing heavy
quarks (charm) both at the Relativistic Heavy Ion Collider
(RHIC) [4,5] and at the Large Hadron Collider (LHC) [6,7].
The apparent particle species independence of high-pT hadron
suppression is a challenge for models [8–10]. Since K∗(892)0

(ds̄), K
∗
(892)0 (d̄s), and φ(1020) (ss̄) contain strange (or

antistrange) quarks, they are used here for a systematic study
of the particle species dependence of the partonic energy
loss in the medium. Moreover, the measurements of high-pT

differential yields can be used to test perturbative QCD
inspired model calculations.

The system produced in heavy-ion collisions evolves
through different stages, with a transition from partonic
to hadronic matter around a temperature Tc ≈ 156 MeV
[11–13]. The K∗(892)0 and φ(1020) life times in vacuum
are 4.16 ± 0.05 fm/c and 46.3 ± 0.4 fm/c, respectively [14].

∗Full author list given at the end of the article.
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Due to their short lifetimes, resonances can be used to probe
the system at different timescales during its evolution and
have been proven to be very useful in exploring various
aspects of heavy-ion collisions [15]. Yields of resonances
measured via hadronic decay channels can be affected by
particle rescattering and regeneration in the hadron gas phase.
The momentum dependence of rescattering and regeneration
may also modify the observed momentum distributions of the
reconstructed resonances.

Resonances like K∗(892)0 and φ(1020) can also contribute
to a systematic study of the enhancement of baryon-to-meson
ratios (e.g., p/π and �/K0

S [16,17]) at intermediate pT.
Recombination models suggest that the number of constituent
quarks of the hadrons determine the enhancement, while
hydrodynamic models explain this on the basis of differences
in the hadron masses leading to different radial flow patterns.
The K∗(892)0 and φ(1020) mesons, which have masses very
close to that of a proton, are well suited for testing the
underlying hadron production mechanisms.

In this paper, K∗(892)0 and φ(1020) meson production
in pp and Pb-Pb collisions at

√
sNN = 2.76 TeV is studied.

We have previously published measurements of K∗(892)0

and φ(1020) meson production for pT < 5 GeV/c in Pb-Pb
collisions at

√
sNN = 2.76 TeV [18] using data recorded in

2010. The high luminosity data taken by ALICE in 2011 allow
statistically improved signal measurements. The spectra have
been measured in the range 0 < pT < 15 GeV/c (0.4 < pT <
21 GeV/c) in minimum bias pp collisions and 0.3 < pT <
20 GeV/c (0.5 < pT < 21 GeV/c) in Pb-Pb collisions in six
[seven] centrality classes for K∗(892)0 [φ(1020)]. This new
data set also allowed the measurement of K∗(892)0 in finer
centrality intervals in central and semicentral Pb-Pb collisions
to study hadron production mechanisms at low, intermediate,
and high pT. The new measurements of K∗(892)0 and φ(1020)
meson production in pp collisions at

√
s = 2.76 TeV are used
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to calculate particle ratios and also to test various perturbative
QCD inspired event generators.

The nuclear modification factor (RAA) is defined as the
yield of particles in heavy-ion collisions relative to that in
elementary pp collisions, scaled with the average nuclear
overlap function.

RAA = 1

〈TAA〉 × (d2N/dy dpT )AA

(d2σ/dy dpT )pp

, (1)

where 〈TAA〉 = 〈Ncoll〉/σinel is the average nuclear overlap
function, 〈Ncoll〉 is the average number of binary nucleon-
nucleon collisions calculated using Monte Carlo (MC) Glauber
[19] simulations, and σinel is the inelastic pp cross section [20].

Throughout this paper, the results for K∗(892)0 and
K

∗
(892)0 are averaged and denoted by the symbol K∗0, and

φ(1020) is denoted by φ unless specified otherwise. The paper
is organized as follows: Section II describes the data analysis
techniques. Section III presents results including K∗0 and φ
meson pT spectra, ratios to different hadrons, and nuclear
modification factors. A summary is given in Sec. IV.

II. DATA ANALYSIS

New measurements of K∗0 and φ meson production have
been performed on data taken with the ALICE detector in
the year 2011. The resonances are reconstructed via hadronic
decay channels with large branching ratios (BR): K∗0 →
π±K∓ with BR 66.6% and φ → K+K− with BR 48.9% [14].
For both K∗0 and φ, the measurements are performed in six
common centrality classes: 0–5%, 5–10%, 10–20%, 20–30%,
30–40%, 40–50%. The peripheral centrality class 60–80% is
also measured for φ only.

A. Event and track selection

The data in pp collisions were collected in 2011 using
a minimum bias (MB) trigger, requiring at least one hit in
any of the V0-A, V0-C, and Silicon Pixel Detectors (SPDs),
in coincidence with the presence of an LHC bunch crossing
[21,22]. The ALICE V0 are small-angle plastic scintillator
detectors placed on either side of the collision vertex, covering
the pseudorapidity ranges 2.8 < η < 5.1 (V0-A) and −3.7 <
η < −1.7 (V0-C). The two SPD layers, which cover |η| < 2.0,
are the innermost part of the the Inner Tracking System (ITS),
composed of six layers of silicon detector placed radially
between 3.9 and 43 cm around the beam pipe. During the
high luminosity Pb-Pb run in 2011, V0 online triggers were
used to enhance central 0–10%, semicentral 10–50%, and
select MB (0–80%) events. The trigger was 100% efficient
for the 0–8% most central Pb-Pb collisions and 80% efficient
for centrality 8–10% [23]. The inefficiency for the 8–10%
range has a negligible (<1%) effect on the results presented
in this paper. The numbers of events after event selections are
summarized in Table I.

A detailed description of the ALICE detector is given in
Refs. [24–26]. The ALICE Inner Tracking System (ITS) and
the Time Projection Chamber (TPC), are used for tracking
and reconstruction of the primary vertex. Events are required
to have the primary vertex coordinate along the beam axis

TABLE I. Summary of different trigger selected data sets and
number of events analyzed in pp and Pb-Pb collisions at

√
sNN =

2.76 TeV.

Centrality Events Year Data set

0–10% 2.0 × 107 2011 Pb-Pb
10–50% 1.8 × 107 2011 Pb-Pb
0–80% 6.0 × 105 2011 Pb-Pb
MB 3.0 × 107 2011 pp

(vz) within 10 cm from the nominal interaction point. Tracks
in the TPC are selected for both K∗0 and φ reconstruction
with the requirement of at least 70 TPC pad rows measured
along the track out of a maximum possible 159. The TPC
covers the pseudorapidity range |η| < 0.9 with full azimuthal
acceptance. To ensure a uniform acceptance, the tracks are
selected within |η| < 0.8. The data sample for the pp analysis
is chosen to have minimal pileup; Pb-Pb collisions have
negligible pileup. In order to reduce contamination from
beam-background events and secondary particles coming from
weak decays, cuts on the distance of closest approach to the
primary vertex in the xy plane (DCAxy) and z direction (DCAz)
are applied. The value of DCAxy is required to be less than 7
times its resolution, DCAxy(pT) < 0.0105 + 0.035p−1.1

T cm
(pT in GeV/c), and DCAz is required to be less than 2
cm. The pT of each track is restricted to be greater than
0.15 GeV/c for K∗0 in pp and Pb-Pb collisions and for φ
in pp collisions. For φ in Pb-Pb collisions the track pT was
required to be >0.75 GeV/c for the 0–5% centrality class and
>0.5 GeV/c otherwise. The higher pT cut for the φ analysis
without particle identification (PID) was needed to improve
the signal-to-background ratio at low momentum.

The TPC has been used to identify charged particles by
measuring the specific ionization energy loss (dE/dx). For
K∗0 reconstruction, both in pp and Pb-Pb collisions, pion
and kaon candidates are required to have mean values of the
specific energy loss in the TPC (〈dE/dx〉) within two standard
deviations (2σTPC) of the expected dE/dx values for each
particle species over all momenta. In the case of φ meson
reconstruction, two PID selection criteria depending on the pT

of the φ meson are used. In both pp and Pb-Pb collisions the
narrow φ signal is extracted from the unidentified two-particle
invariant-mass distribution for pT > 1 GeV/c. In pp collisions
the production of the φ meson is additionally measured with
a 2σTPC restriction on 〈dE/dx〉 for 0.4 < pT < 5 GeV/c.
The spectra measured without PID in Pb-Pb collisions are
comparable with the published 2010 results [18] obtained with
PID. Measurements with and without PID are found to be
in good agreement for both collision systems in the overlap
region (1 < pT < 5 GeV/c). The pT spectra in this paper are
combinations of results obtained with PID at low momentum
(pT < 3 GeV/c) and results obtained without PID for higher
pT in both pp and Pb-Pb collisions.

B. Yield extraction

The K∗0 (φ) is reconstructed through its dominant
hadronic decay channel by calculating the invariant-mass
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FIG. 1. Invariant-mass distributions of πK pairs for pp and the 0–5% most central Pb-Pb collisions at
√

sNN = 2.76 TeV for the momentum
ranges 0.6 < pT < 0.9 GeV/c (upper panel) and 10 < pT < 15 GeV/c (lower panel), respectively. Panels (a) and (c) show the unlike charge
πK invariant-mass distribution from the same event and normalized mixed event background. Panels (b) and (d) report the invariant-mass
distribution after subtraction of the combinatorial background for K∗0. The statistical uncertainties are shown by bars. The solid curves represent
fits to the distributions and the red dashed curves are the components of those fits that describe the residual background.

of its daughters at the primary vertex. The invariant-mass
distribution of the daughter pairs is constructed using all
unlike-sign pairs of charged K candidates with oppositely
charged π (K) candidates for K∗0 (φ). The rapidity of
πK and KK pairs is required to lie within the range
|ypair| < 0.5.

The signal extraction follows the procedure of the already
published analysis [18]. The combinatorial background is
estimated using the event mixing technique by pairing decay
daughter candidates from two different events with similar
primary vertex positions (vz) and centrality percentiles in
Pb-Pb collisions. For the K∗0 analysis, the difference in the
event plane angles between two events is required to be less
than 30◦. The Pb-Pb data sample is divided into 10 bins in
centrality percentiles and 20 bins in vz. Each event is mixed
with 5 other similar events for both πK and KK. For event
mixing in pp collisions, the binning takes into account the
multiplicity of charged particles measured using the TPC.
The total multiplicity and vz are divided in 10 bins each for
both πK and KK. These requirements ensure that the mixed
events have similar features, so the invariant-mass distribution
from the event mixing can better reproduce the combinatorial
background.

In Fig. 1 (Fig. 2), panels (a) and (c) show the π∓K±
(K+K−) invariant-mass distributions from the same event
and mixed events for 0.6 < pT < 0.9 GeV/c (0.5 < pT <
0.8 GeV/c) in minimum bias pp collisions and 10 < pT <
15 GeV/c (10 < pT < 13 GeV/c) in 0–5% central Pb-Pb
collisions at

√
sNN = 2.76 TeV. The mixed event distribution is

normalized to the same event distribution in the invariant-mass
region of 1.1 to 1.3 GeV/c2 (1.04 to 1.06 GeV/c2), which is
away from the signal peaks. The π∓K± (K+K−) invariant-
mass distributions after mixed event background subtraction
are shown in panels (b) and (d) of Fig. 1 (Fig. 2), where the sig-
nals are observed on top of a residual background. The residual
background is due to correlated πK or KK pairs emitted within
jets and from mis-reconstructed hadronic decays [18]. The
shape of the residual background is studied by means of Monte
Carlo simulations. It exhibits a smooth dependence on mass
and a second-order polynomial is found to be a suitable func-
tion to describe the residual background for both K∗0 and φ.

For each pT interval and collision centrality class, the
invariant-mass distribution is fitted with the sum of a peak
fit function and a second-order polynomial to account for
the residual background. The πK distribution signal peak is
parametrized with a Breit-Wigner function. The fit function
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FIG. 2. Invariant-mass distributions of KK pairs for pp and the 0–5% most central Pb-Pb collisions at
√

sNN = 2.76 TeV for the momentum
ranges 0.5 < pT < 0.8 GeV/c (upper panel) and 10 < pT < 13 GeV/c (lower panel), respectively. In panels (a) and (c) the unlike charge KK
invariant-mass distribution from the same event and normalized mixed event background are shown. In panels (b) and (d) the invariant-mass
distribution after subtraction of the combinatorial background for φ is shown. The statistical uncertainties are shown by bars. The solid curves
are the fits to the distributions and the red dashed curves are the components of those fits that describe the residual background.

for K∗0 is

dN

dmπK

= Y

2π
× �0

(mπK − M0)2 + �2
0

4

+ (
Am2

πK + BmπK + C
)
, (2)

where M0 is the reconstructed mass of K∗0, �0 is the resonance
width fixed to the value in vacuum [14], and Y is yield of
the K∗0 meson. The mass resolution of the K∗0 is negligible
compared to its width (47.4 ± 0.6 MeV/c2) and is therefore
not included in the K∗0 fitting function. A, B, and C are
the polynomial fit parameters. Similarly, the KK signal peak
is fitted with a Voigtian function (a Breit-Wigner function
convoluted with a Gaussian function), which accounts for
the resonance width and the detector mass resolution. The
fit function for φ is

dN

dmKK

= Y�0

(2π3/2)σ
×

∫ +∞

−∞
exp

(
(mKK − m′)2

2σ 2

)

× 1

(m′ − M0)2 + �2
0

4

dm′

+ (
Am2

KK + BmKK + C
)
, (3)

where the parameter σ is the pT-dependent mass resolution,
which is found to be independent of collision centrality. For
Pb-Pb (pp) collisions, the mass resolution parameter has been
extracted by using HIJING (PYTHIA) [27,28] simulations, where
the decay products of φ are propagated through the ALICE
detector by using GEANT3 [29].

The π∓K± (K+K−) invariant-mass distribution is fitted
in the range 0.75 < mπK < 1.05 GeV/c2 (0.99 < mKK <
1.06 GeV/c2). The yield of K∗0 (φ) is extracted in each pT

interval and centrality class by integrating the mixed-event
background subtracted invariant-mass distribution in the range
0.77 < mπK < 1.02 GeV/c2 (1 < mKK < 1.03 GeV/c2),
subtracting the integral of the residual background function
in the same range, and correcting the result to account for the
yields outside this range. This correction to the total yield is
about 9% (13%) for K∗0 (φ) [18].

C. Yield correction

The raw yields of K∗0 and φ mesons are normalized to
the number of events and corrected for the branching ratio
(BR) [14], the detector acceptance (A), and the reconstruction
efficiency (εrec).
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FIG. 3. The acceptance and efficiency (A × εrec) correction as a function of pT for K∗0 (red marker) and φ (blue marker) mesons in pp

(left panel) and 0–5% centrality in Pb-Pb (right panel) collisions at
√

sNN = 2.76 TeV.

1. Acceptance and reconstruction efficiency

A Monte Carlo simulation based on the HIJING (PYTHIA)
event generator is used for the estimation of the acceptance ×
efficiency (A × εrec) in Pb-Pb (pp) collisions. Figure 3 shows
A × εrec for minimum bias pp collisions and 0–5% centrality
Pb-Pb collisions at

√
sNN = 2.76 TeV for both K∗0 and φ. In

these simulations, the decay products of the generated K∗0

and φ are propagated through the ALICE detector material
using GEANT3 [29]. The A × εrec is defined as the fraction of
generated K∗0 and φ that is reconstructed after passing through
the detector simulation, the event reconstruction, and being
subjected to the track quality, PID, and pair rapidity cuts. In this
calculation, only those K∗0 (φ) mesons that decay to K±π∓
(K+K−) are used. The correction for the branching ratio is
therefore not included in A × εrec and is applied separately
[Eq. (4)]. The differences in A × εrec for K∗0 and φ are due to
the different kinematics and track selection criteria. In Pb-Pb
collisions, A × εrec has a very mild centrality dependence.

2. Normalization

The yields are normalized to the number of minimum
bias events and corrected for the trigger (εtrigger) and vertex
reconstruction efficiencies (εvertex) to obtain the absolute res-
onance yields per inelastic pp collision. The εvertex correction
was estimated to be equal to 89% and takes into account
K∗0 and φ meson losses after imposing the vertex cut. The
trigger efficiency correction factor εtrigger is 88.1% with relative
uncertainty of +5.9% and −3.5% for pp collisions [30].
The effects of trigger and vertex reconstruction efficiency
corrections are negligible in Pb-Pb collisions and, hence, not
considered. The invariant yield for pp and Pb-Pb collisions is

1

2πpT

d2N

dy dpT
= 1

2πpT
× 1

Nev
× N raw

dy dpT

× εtrigger

A × εrec × BR × εvertex
, (4)

where Nev is the number of events used in the analysis and
Nraw is the K∗0 or φ raw yield.

D. Systematic uncertainties

The sources of systematic uncertainties in the measurement
of K∗0 and φ production in pp and Pb-Pb collisions are
the global tracking efficiency (performed using ITS and TPC
clusters), track selection cuts, PID, yield extraction method,
and material budget. In Pb-Pb (pp) collisions, the uncertainty
contribution due to the global tracking efficiency has been
estimated to be 5% (4%) for charged particles [31], which
results in a 10% (8%) effect for the track pairs used for
the invariant-mass analysis of K∗0 and φ. The systematic
uncertainty in the global tracking efficiency of the charged
decay daughters is pT and centrality independent and it cancels
out partially in particle yield ratios for both K∗0 and φ.
The uncertainty due to the PID cuts is 3.7% (4%) in pp
and 4% (6.2%) in Pb-Pb collisions for K∗0 (φ). Systematic
uncertainties of 3% to 6% on the raw yield have been assigned
due to variation of the track selection cuts, depending on the
particle species and collision system. The uncertainty due to
the raw yield extraction includes variations of the fit range,
fit function, mass resolution, and mixed event background
normalization range. The πK (KK) invariant-mass fitting
ranges were varied by 10–30 (5–10) MeV/c2 on each side of
the peak. The residual background is fitted with a third-order
polynomial and the resulting variations in the raw yield are
also incorporated into the systematic uncertainties. Due to the
uncertainty in the material budget of the ALICE detectors, a
systematic uncertainty of ≈1% (derived from the study for
π± and K± in Ref. [31]) is added to the yield of K∗0 and φ
at low pT < 2 GeV/c; the contribution is negligible at higher
pT. For φ the change in the yield due to a variation of the mass
resolution is included in the systematic uncertainties of the
raw yield extraction. The systematic uncertainties due to yield
extraction are 2.5–14% (2–13%) for K∗0 (φ) in pp collisions
and 4–15% (3.5–13%) for K∗0 (φ) in Pb-Pb collisions. Raw
yield extraction dominates total uncertainties in the lowest and
highest pT intervals. All other systematic uncertainties have
weak pT and centrality dependence, with the exception of the
yield extraction uncertainty. The total systematic uncertainties
amount to 10–18% (9–16%) for K∗0 (φ) in pp collisions
and 12–19% (13–18%) for K∗0 (φ) in Pb-Pb collisions. The
contributions are summarized in Table II.
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TABLE II. Systematic uncertainties in the measurement of K∗0

and φ yields in pp and Pb-Pb collisions at
√

sNN = 2.76 TeV. The
global tracking uncertainty is pT independent, while the other single
valued systematic uncertainties are averaged over pT. The values
given in ranges are minimum and maximum uncertainties depending
on pT and centrality class. The normalization uncertainty, which is
due to uncertainties in the boundaries of the centrality percentiles, is
taken from [32].

Systematic variation Pb-Pb pp

K∗0 φ K∗0 φ

Global tracking efficiency 10 10 8 8
Track selection 3–6 3–5 3 3
Particle identification 4.0 6.2 3.7 1–4
Material budget <1 <1 0–3.3 0–3.3
Yield extraction 4–15 3.5–13 2.5–14 2–13
Total 12–19 13–18 10–18 9–16

III. RESULTS

A. pT spectra in pp collisions

The first measurement of K∗0 (φ) meson production in pp
collisions at

√
s = 2.76 TeV up to pT = 15 (21) GeV/c is

reported here. Figure 4 shows the transverse momentum spec-
tra of K∗0 and φ mesons in pp collisions at

√
s = 2.76 TeV,

which are compared with the values given by perturbative
QCD inspired Monte Carlo event generators PYTHIA [28,33]
and PHOJET [34,35]. In both event generators hadronization
is simulated using the Lund string fragmentation model [36].
Different PYTHIA tunes were developed by different groups
through extensive comparison of Monte Carlo distributions
with the minimum bias data from various experiments. The
PYTHIA D6T tune [37] is adjusted to CDF Run 2 data, whereas

the ATLAS-CSC tune [38] is adjusted using UA5, E375,
and CDF data from

√
s = 0.2 to 1.8 TeV. The Perugia tune

[39] uses the minimum bias and underlying event data from
the LHC at 0.9 and 7 TeV. The bottom panels in Fig. 4
show the ratio of the model calculations to the data. For the
K∗0 meson, at low pT (<1 GeV/c) all models overpredict
the data. In the intermediate pT range (≈2–8 GeV/c) the
Perugia, ATLAS-CSC, and PYTHIA 8.14 tunes underestimate
the data, the D6T tune overestimates the data, while PHOJET

has good agreement with the data. For the φ meson, at low pT

(<1 GeV/c) PHOJET and the ATLAS-CSC tune overpredict,
while the Perugia tune and PYTHIA 8.14 underpredict the data.
In the intermediate pT range (≈2–8 GeV/c) the Perugia tune,
PYTHIA 8.14, and PHOJET underestimate the data, while the
D6T and ATLAS-CSC tunes are in good agreement with the
data. In the high pT range (>8 GeV/c) all models agree with
the data within the uncertainties for both K∗0 and φ. For both
K∗0 and φ mesons, the deviations of these models from ALICE
measurements are similar at both

√
s = 2.76 and 7 TeV [40].

B. pT spectra in Pb-Pb collisions

Figure 5 shows the pT spectra for K∗0 and φ mesons
for different centrality classes in Pb-Pb collisions at

√
sNN =

2.76 TeV. The new measurements extend the previous results
[18] from pT = 5 GeV/c to 20 (21) GeV/c for K∗0 (φ).
The production of K∗0 has been measured in finer centrality
bins and compared to previously published results [18]. When
centrality bins are combined, the 2011 results are consistent
with the 2010 data.

C. Particle ratios

The measurements of K∗0 and φ spectra over a wide pT

range are used to probe particle production mechanisms at
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FIG. 5. Invariant yields of (a) K∗0 and (b) φ mesons in various centrality classes in Pb-Pb collisions at
√

sNN = 2.76 TeV. Invariant yield is
calculated by taking the value of pT at the corresponding bin center. The statistical and systematic uncertainties are shown as bars and boxes,
respectively. The normalization uncertainty is not shown here, but is given in Table III.

different pT scales. The pT-integrated particle yield (dN/dy)
and the mean transverse momentum (〈pT〉) have been extracted
using the procedure described in Ref. [18]. The pT distribu-
tions are fitted with a Lévy-Tsallis function [41,42] in pp
and a Boltzmann-Gibbs blast-wave function [43] in Pb-Pb
collisions. The dN/dy and 〈pT〉 have been extracted from the
data in the measured pT region and the fit functions have been
used to extrapolate into the unmeasured (low-pT) region. The
low-pT extrapolation covers pT < 0.3 (0.5) GeV/c for K∗0

(φ) and accounts for 5% (14%) of the total yield. The yield is
negligible at high-pT (>20 GeV/c). These values for K∗0 in
pp and Pb-Pb collisions and the values for φ in pp collisions
are listed in Table III.

Figure 6 shows the ratios K∗0/K− and φ/K− [18] as a
function of 〈dNch/dη〉1/3 (a proxy for the system size [44])
in Pb-Pb collisions at

√
sNN = 2.76 TeV and pp collisions

at
√

s = 2.76 TeV and 7 TeV [40]. The yield extraction
dominates the systematic uncertainties at low pT, and therefore
in the integrated yield; it has been assumed to be fully
uncorrelated between different centrality classes. The values

of the K∗0/K− ratio in Pb-Pb collisions at
√

sNN = 2.76 TeV
and pp collisions at

√
s = 2.76 TeV, along with φ/K− ratio

in pp collisions at
√

s = 2.76 TeV, are listed in Table III.
The K∗0/K− ratio from the present data is consistent with
the trend observed in the previous measurement [18], also
shown in Fig. 6 for completeness. A smooth dependence on
〈dNch/dη〉1/3 is observed and the K∗0/K− ratio is suppressed
in the most central Pb-Pb collisions with respect to pp and
peripheral Pb-Pb collisions. On the other hand, the φ/K−
ratio (previously reported in Ref. [18]) has weak centrality
dependence without any suppression. Energy independence of
the φ/K− ratio in pp collisions is observed. The suppression of
the integrated yield of the short-lived K∗0 resonance suggests
that the rescattering of its decay daughters in the hadronic
medium reduces the measurable yield of K∗0. This aspect
is further illustrated by comparison of the ratios to thermal
model calculations with a chemical freeze-out temperature
of 156 MeV [45]. The measurements of φ/K for the most
central collisions agree with the thermal model expectation,
while the measured K∗0/K ratio lies significantly below

TABLE III. The values of dN/dy, ratio to K− [32] and 〈pT〉 are presented for different centrality classes in Pb-Pb collisions and inelastic
pp collisions. In each entry, the first uncertainty is statistical and the second is systematic, excluding the normalization uncertainty. Where a
third uncertainty is given, it is the normalization uncertainty and the value in the parentheses corresponds to uncorrelated part of the systematic
uncertainty.

K∗0 (Pb-Pb
√

sNN = 2.76 TeV)

Centrality (%) dN/dy K∗0/K− 〈pT〉 (GeV/c)

0–5 19.56 ± 0.93 ± 2.48 ± 0.097 0.180 ± 0.008 ± 0.026 (0.023) 1.310 ± 0.023 ± 0.055
5–10 16.71 ± 0.65 ± 2.08 ± 0.083 0.186 ± 0.007 ± 0.026 (0.024) 1.252 ± 0.023 ± 0.055
10–20 13.65 ± 0.63 ± 1.84 ± 0.009 0.200 ± 0.009 ± 0.026 (0.023) 1.360 ± 0.026 ± 0.053
20–30 10.37 ± 0.50 ± 1.38 ± 0.010 0.225 ± 0.011 ± 0.025 (0.023) 1.322 ± 0.028 ± 0.053
30–40 7.35 ± 0.28 ± 0.97 ± 0.146 0.245 ± 0.009 ± 0.025 (0.021) 1.254 ± 0.023 ± 0.050
40–50 4.66 ± 0.20 ± 0.65 ± 0.111 0.258 ± 0.011 ± 0.025 (0.022) 1.220 ± 0.025 ± 0.050

K∗0 (pp
√

s = 2.76 TeV)
Inelastic (INEL) 0.0705 ± 0.0007 ± 0.009 0.307 ± 0.003 ± 0.043 0.950 ± 0.005 ± 0.026

φ (pp
√

s = 2.76 TeV)
dN/dy φ/K− 〈pT〉 (GeV/c)

Inelastic (INEL) 0.0260 ± 0.0004 ± 0.003 0.113 ± 0.001 ± 0.013 1.04 ± 0.01 ± 0.09
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FIG. 6. K∗0/K− and φ/K− ratios as a function of 〈dNch/dη〉1/3

measured at mid-rapidity [44] in pp collisions at
√

s = 2.76 and
7 TeV [40], and Pb-Pb collisions at

√
sNN = 2.76 TeV. For Pb-

Pb collisions, the φ/K− values are exclusively from [18]; the
previously published K∗0/K− measurements are compared to new
measurements in finer centrality classes. Bars represent the statistical
uncertainties, empty boxes represent the total systematic uncertain-
ties, and shaded boxes represent the systematic uncertainties that
are uncorrelated between centrality classes. The expectations from a
thermal model calculation with a chemical freeze-out temperature of
156 MeV for the most central collisions [45] are shown. The EPOS3

calculation of the K∗0/K and φ/K ratios are also shown as a violet
band for different centrality intervals [46].

the model value, as this thermal model does not include
rescattering effects. The K∗0/K and φ/K ratios in Pb-Pb
collisions are also compared to EPOS3 calculations [46].

EPOS3 is an event generator that describes the full evolution
of heavy-ion collisions. The initial conditions are modeled
using the Gribov-Regge multiple-scattering framework, based
on strings and Pomerons. The collision volume is divided
into two parts: a “core” (modeled as a QGP described by
3+1 dimensional viscous hydrodynamics) and a “corona”
(where decaying strings are hadronized). The core is allowed
to hadronize and the further evolution of the complete
system (including rescattering and regeneration) is modeled
using ultrarelativistic quantum molecular dynamics (UrQMD)
[47,48]. EPOS3 with hadronic cascade modeled by UrQMD
reproduces the observed trends for K∗0/K and φ/K ratios in
Pb-Pb collisions, suggesting that the observed suppression of
K∗0/K ratio is from rescattering of the daughter particles in
the hadronic phase.

The effects of hadronic rescattering can be investigated
with the pT-differential K∗0/K and φ/K ratios. Figure 7(a)
shows the K∗0/K and φ/K ratios as a function of pT in pp
and 0–5% central Pb-Pb collisions at

√
sNN = 2.76 TeV. For

pT < 2 GeV/c, the K∗0/K ratio is smaller in central Pb-Pb
collisions than in pp collisions, while the φ/K ratio is the
same for both collision systems. This is consistent with the
suppression of the K∗0 yield due to rescattering in the hadronic
phase. In Fig. 7(b), the K∗0/π and φ/π ratios are shown as
a function of pT in pp and 0–5% central Pb-Pb collisions
at

√
sNN = 2.76 TeV. For pp collisions, these ratios saturate

at pT ≈ 4 GeV/c, but in Pb-Pb collisions, they increase up
to 4 GeV/c then show a decreasing trend up to 8 GeV/c,
where finally they saturate. Both ratios in central Pb-Pb
collisions show an enhancement with respect to pp collisions
at pT ≈ 3 GeV/c. Similar meson-to-meson enhancement has
been observed for the K/π ratio [31], and is understood in
terms of radial flow. The ratios K∗0/K , φ/K , K∗0/π , and φ/π
are similar at high pT (>8 GeV/c) in Pb-Pb and pp collisions.
This suggests that fragmentation is the dominant mechanism
of hadron production in this pT regime. This observation is
consistent with our previous measurements of the p/π and
K/π ratios [31].
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In Fig. 8, the pT-differential p/K∗0 and p/φ ratios
measured in pp and Pb-Pb collisions at

√
sNN = 2.76 TeV

are shown in panels (a) and (b), respectively. The particle
ratios evolve from pp to central Pb-Pb collisions, indicating a

change of the spectral shapes. In central Pb-Pb collisions, the
p/K∗0 ratio shows weak transverse momentum dependence
and the p/φ ratio is consistent with previous observations for
pT � 4 GeV/c. The similarity of the shapes of spectra for
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The results are compared with the RAA of charged hadrons measured by ALICE [50]. The statistical and systematic uncertainties are shown
as bars and boxes, respectively. The boxes around unity indicate the uncertainty on the normalization of RAA, including the uncertainty on the
nuclear overlap function 〈TAA〉 and the normalization uncertainty given in Table III.

064606-9



J. ADAM et al. PHYSICAL REVIEW C 95, 064606 (2017)

K∗0, p, φ, which have similar masses but different numbers of
valence quarks, suggests that the shapes are mostly defined by
hadron masses, as expected from hydrodynamic models [49].
At higher pT, the difference between particle ratios measured
in different collision systems becomes smaller. Eventually the
p/K∗0 and p/φ ratios for pT > 8 GeV/c have similar values
in both pp and central Pb-Pb collisions within uncertainties,
as expected if parton fragmentation in vacuum dominates.

D. Nuclear modification factor (RAA)

The pT spectrum of K∗0 (φ) in pp collisions is used for
the calculation of the nuclear modification factor (RAA). The
K∗0 spectra are measured up to pT = 15 GeV/c (Fig. 4)
and pT = 20 GeV/c (Fig. 5), in pp and Pb-Pb collisions,
respectively. In pp collisions, the K∗0 pT distribution for 15 <
pT < 20 GeV/c is extrapolated from the measured data using
a Lévy-Tsallis function [41,42]. For the systematic uncertainty
on this extrapolated data point, a power-law function is used
in the range 2 < pT < 20 GeV/c. In addition, maximally
hard and maximally soft pT spectra are generated by shifting
the measured data points within their uncertainties. The
extrapolation procedure is performed on these hard and soft
spectra and the changes in the high-pT yield are incorporated
into the systematic uncertainty estimate of the extrapolated
data point.

The RAA is used to study the effect of the medium formed in
heavy-ion collisions and is sensitive to the system size and the
density of the medium. The RAA measurement is also sensitive
to the dynamics of particle production, in-medium effects,
and the energy loss mechanism of partons in the medium. If
a nuclear collision were simply a superposition of nucleon-
nucleon collisions, the nuclear modification factor would be
equal to unity at high pT. Deviations of RAA from unity may
indicate the presence of in-medium effects.

Figure 9 shows the RAA of K∗0 and φ in the 0–5% to
40–50% centrality classes for Pb-Pb collisions at

√
sNN =

2.76 TeV. These results are compared to the RAA of charged
hadrons measured by the ALICE Collaboration [50]. The RAA

of K∗0 and φ is lower than unity at high pT (>8 GeV/c) for all
centrality classes. It is also observed that for pT < 2 GeV/c,
the K∗0 RAA is smaller than the φ and the charged hadron RAA.
This additional suppression of K∗0 at low pT with respect to
φ is reduced as one goes from central to peripheral collisions,
consistent with the expectation of more rescattering in central
Pb-Pb collisions [18]. At high pT, the RAA of both K∗0 and
φ mesons are similar to that of charged hadrons and the RAA

values increase from central to peripheral collisions.
Figure 10 shows the comparison of RAA of K∗0 and φ in

the 0–5% collision centrality class with that of π , K , and p
[31]. In the intermediate pT range (2–6 GeV/c), K∗0 and φ
RAA are similar to that of the K , whereas p and φ exhibit a
different trend despite similar masses. The difference of φ and
p RAA at RHIC was thought to be an effect of hadronization
through parton recombination [51–53]. But the p/φ ratio in
most central Pb-Pb collisions at LHC is observed to be flat for
pT < 4 GeV/c (see also Fig. 8(b) and [18]) which suggests that
particle masses determine the shapes of the pT spectra with no
need to invoke a recombination model. For pT > 8 GeV/c, all
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FIG. 10. The RAA for K∗0 and φ mesons as a function of pT in
0–5% Pb-Pb collisions. The results are compared with the RAA of π ,
K , and p [31]. The statistical and systematic uncertainties are shown
as bars and boxes, respectively. The boxes around unity indicate the
uncertainty on the normalization of RAA, including the uncertainty on
the nuclear overlap function 〈TAA〉 and the normalization uncertainty
given in Table III.

the light flavored species, π , K , p [31], K∗0, and φ show a simi-
lar suppression within uncertainties. This observation rules out
models where the suppression of different species containing
light quarks are considered to be dependent on their mass and
it can also put a stringent constraint on the models dealing with
fragmentation and energy loss mechanisms [8–10].

IV. CONCLUSIONS

The production of K∗0 and φ mesons in inelastic pp
collisions and Pb-Pb collisions in various centrality classes
at

√
sNN = 2.76 TeV using large data samples accumulated

in 2011 has been measured. The transverse momentum distri-
butions for K∗0 (φ) mesons measured in pp collisions up to
15 (21) GeV/c are compared to predictions of the perturbative
QCD inspired event generators PYTHIA and PHOJET. It is
observed that for pT > 8 GeV/c the models agree with the data
within uncertainties. In Pb-Pb collisions previously published
results for K∗0 and φ [18] are extended from pT = 5 to
20 GeV/c and the production of K∗0 is studied in finer
centrality bins. At high transverse momentum (pT > 8 GeV/c)
nuclear modification factors for different light hadrons (π ,
K , K∗0, p, and φ) are consistent within uncertainties and
particle ratios (K∗0/π , K∗0/K , φ/π , and φ/K) are similar
for pp and Pb-Pb collisions. This indicates a particle species
independence of partonic energy loss in the medium for
light quark flavors (u,d,s) and points to fragmentation in
vacuum as the dominant particle production mechanism in this
kinematic regime. The K∗0/π and φ/π ratios show a centrality
dependent enhancement at pT ≈ 3 GeV/c in Pb-Pb collisions
compared to pp collisions. This is similar to the enhancement
previously observed in the K/π ratio [31] and attributed to
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the development of collective radial flow. At low momentum,
the production of K∗0 is significantly suppressed in Pb-Pb
collisions and the K∗0/K ratio exhibits suppression at low
momentum, which increases with centrality. This observation
is consistent with previous measurements by the STAR [54,55]
and the ALICE [18] Collaborations and EPOS3 calculations
[46], which confirms the importance of rescattering in the
hadronic phase.
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M. Płoskoń,75 M. Planinic,133 J. Pluta,140 S. Pochybova,142 P. L. M. Podesta-Lerma,122 M. G. Poghosyan,88 B. Polichtchouk,114

N. Poljak,133 W. Poonsawat,117 A. Pop,80 H. Poppenborg,61 S. Porteboeuf-Houssais,71 J. Porter,75 J. Pospisil,87

V. Pozdniakov,67 S. K. Prasad,4 R. Preghenella,34,107 F. Prino,113 C. A. Pruneau,141 I. Pshenichnov,52 M. Puccio,25 G. Puddu,23

P. Pujahari,141 V. Punin,102 J. Putschke,141 H. Qvigstad,20 A. Rachevski,112 S. Raha,4 S. Rajput,93 J. Rak,127

A. Rakotozafindrabe,65 L. Ramello,31 F. Rami,135 D. B. Rana,126 R. Raniwala,94 S. Raniwala,94 S. S. Räsänen,45

B. T. Rascanu,60 D. Rathee,91 V. Ratza,44 I. Ravasenga,30 K. F. Read,88,129 K. Redlich,79 A. Rehman,21 P. Reichelt,60 F. Reidt,34

X. Ren,7 R. Renfordt,60 A. R. Reolon,73 A. Reshetin,52 K. Reygers,96 V. Riabov,89 R. A. Ricci,74 T. Richert,53,33 M. Richter,20

P. Riedler,34 W. Riegler,34 F. Riggi,27 C. Ristea,58 M. Rodríguez Cahuantzi,2 K. Røed,20 E. Rogochaya,67 D. Rohr,41

D. Röhrich,21 P. S. Rokita,140 F. Ronchetti,34,73 L. Ronflette,116 P. Rosnet,71 A. Rossi,28 A. Rotondi,136 F. Roukoutakis,78

A. Roy,48 C. Roy,135 P. Roy,103 A. J. Rubio Montero,10 R. Rui,24 R. Russo,25 A. Rustamov,82 E. Ryabinkin,83 Y. Ryabov,89

A. Rybicki,120 S. Saarinen,45 S. Sadhu,139 S. Sadovsky,114 K. Šafařík,34 S. K. Saha,139 B. Sahlmuller,60 B. Sahoo,47 P. Sahoo,48
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