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Nonlinear electromagnetic fields and symmetries

Irena Barjašić,* Luka Gulin,† and Ivica Smolić‡

Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
(Received 6 May 2017; published 23 June 2017)

We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields,
described by the Maxwell’s Lagrangian, to a much wider class of models, which include those of the Born-
Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of
electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using
the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry
inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional
electromagnetic fields.

DOI: 10.1103/PhysRevD.95.124037

I. INTRODUCTION

Whenever we build a model of two classical relativistic
interactions, gravitational and electromagnetic, and analyse
its solutions with symmetries, one of the basic initial
questions is whether the gauge field shares the symmetries
with the spacetime metric. The usual assumption in a
typical choice of Ansatz, as well as in the various unique-
ness theorems [1,2], is that the electromagnetic field
inherits the spacetime symmetries. This assumption, how-
ever, deserves a justification as we know that there are
solutions in which the symmetry inheritance is broken [3].
Let us assume that the spacetime ðM; gab; FabÞ is a

smooth connected D-dimensional Lorentzian manifold,
with the spacetime metric gab and the electromagnetic
tensor Fab, which are solutions of the system of field
equations derived from the Lagrangian of the form
L ¼ LG þ LEM. Furthermore, in order to obtain the con-
clusions as general as possible, we shall assume that the
gravitational field equation takes the form

Eab ¼ 8πTab; ð1Þ

where the tensor Eab is a general smooth function of the
spacetime metric, the Riemann tensor, its covariant deriv-
atives and the Levi-Civita tensor. In other words, the
gravitational side of the equation (1), apart from the
ordinary Einstein tensor with the cosmological constant,
might be for example the Lovelock tensor [4], a tensor
which is a member of the fðRÞ theories [5] or the
generalized Cotton tensor, originating from the gravita-
tional Chern-Simons terms [6]. The electromagnetic
energy-momentum tensor for the canonical, Maxwell’s
choice of Lagrangian

LðMaxÞ
EM ¼ −

1

4
FabFab � 1 ð2Þ

is given by

TðMaxÞ
ab ¼ 1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
: ð3Þ

Now, if this spacetime allows at least one (sufficiently
smooth) Killing vector field ξa, such that £ξgab ¼ 0, due to
our assumptions we immediately have £ξEab ¼ 0 and the
field equation (1) implies that

£ξTab ¼ 0: ð4Þ

From here we want to conclude the general form of the Lie
derivative £ξFab, that is, the symmetry inheritance proper-
ties of the electromagnetic field. Due to the series of
papers [7–11] we know that the electromagnetic field in
4-dimensional spacetime can break the symmetry inherit-
ance, but precisely such that

£ξFab ¼ f � Fab; ð5Þ

for some real function f, which is a constant if Fab is non-
null. There are several known examples [8,10,12,13] of the
electrovac spacetimes with nonvanishing function f. Away
from the dimension 4 the relation (5) cannot hold simply
because the Hodge dual of the electromagnetic tensor
Fab is a (D − 2)-form,

�Fa1���aD−2
¼ 1

2
Fcdϵ

cd
a1���aD−2

: ð6Þ

The generalization of the (5) to the higher dimensional,
D > 4 cases is a long-standing open problem.
Almost a century ago, Born and Infeld [14] begun

investigating alternative, nonlinear models of electromag-
netic fields, which could cure the inconsistencies of the
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Maxwell’s electrodynamics associated with the infinite
self-energy of the point charges. Over the time it has been
realized that these kind of models can be also used to
regularize the black hole singularities [15–17] and the
cosmological singularities [18], as well as to simulate the
“dark energy” [19]. Nonlinearities in the electromagnetic
field appear in the quantum corrections to classical electro-
magnetic interaction [20] and in the low energy effective
Lagrangians of the superstring models [21]. There are
numerous experiments which will probe the nonlinearities
in the electromagnetic fields [22–25].
Our objective is to find the constraints on the possible

forms of breaking of the symmetry inheritance by the
nonlinear electromagnetic fields and the conditions under
which the symmetry inheritance is necessary. This is
motivated by a broad range of questions, from the formal
ones (removal of the unnecessary assumptions in general
theorems [16,26,27]) to those aimed toward phenomenol-
ogy (the possibility that the symmetry noninheriting fields
might evade the no-hair theorems [28,29]). The nonlinear
models of the electromagnetic field can be described by the
general Lagrangian of the form

LEM ¼ LðF ;GÞ � 1; ð7Þ

where we have introduced two standard electromagnetic
invariants,

F ≡ FabFab and G≡ Fab � Fab: ð8Þ

Note that while the invariant F is a scalar in any number
of dimensions, the invariant G is a scalar only in
4-dimensional spacetimes. For the derivatives we shall
use abbreviations, such as

LF ≡ ∂L
∂F ; LG ≡ ∂L

∂G ; LFF ≡ ∂2L
∂F 2

; etc:

Most notable examples of such Lagrangians are
(i) the Born-Infeld [14,30],

LðBIÞðF ;GÞ ¼ b2

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2
−

G2

16b4

s 1
A ð9Þ

for some real constant b > 0;
(ii) the “power Maxwell” [31],

LðpMÞðF Þ ¼ CF s ð10Þ

with some real constants C > 0 and s ≠ 0;

(iii) the Euler-Heisenberg [20,32,33],

LðEHÞðF ;GÞ ¼ −
1

4
F þ γð4F 2 þ 7G2Þ þ � � � ð11Þ

with some real constant γ > 0.
Along with these the literature abounds with various

other nonlinear models, such as the Hoffmann-Infeld
[34,35], the logarithmic [36,37], the exponential [37], those
based on a rational function [38], etc.
The energy-momentum tensor corresponding to (7) is

given by

Tab ¼ −
1

4π
ððLGG − LÞgab þ 4LFFacFb

cÞ: ð12Þ

The generalized Maxwell’s equations are

dF ¼ 0 and d � Z ¼ 0; ð13Þ
where we have introduced an auxiliary two-form

Zab ≡ −4ðLFFab þ LG � FabÞ: ð14Þ
The normalization is chosen so that Zab reduces to Fab in
the Maxwell’s case.

II. SYMMETRY INHERITANCE

Throughout the paper we assume that all the fields are
sufficiently smooth, and focus on the open set of points
O ⊆ M where LF ≠ 0. Let us first assume that D ¼ 4.
Using the trace T ≡ gabTab we may write the energy-tensor
in a convenient way (see e.g. [39]),

Tab ¼ −4LFT
ðMaxÞ
ab þ 1

4
Tgab: ð15Þ

From here, with the master equation (4), we get

£ξðLFT
ðMaxÞ
ab Þ ¼ 0: ð16Þ

On the set O this equation is nontrivial and we may
introduce an auxiliary field

~Fab ≡
ffiffiffiffiffiffiffiffiffi
jLF j

p
Fab; ð17Þ

so that (16) becomes

£ξ

�
~Fac

~Fb
c −

1

4
gab ~Fpq

~Fpq

�
¼ 0: ð18Þ

In this way we have formally reduced the problem to the
symmetry inheritance in the Maxwell’s case [note that in
the set O the tensor Fab is (non-)null if and only if ~Fab
is (non-)null]. Whence, using the classical results [7–11]
(see also section 11.1 in [3]), we can conclude that
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£ξ ~Fab ¼ α � ~Fab ð19Þ

for some real function α and, expressing everything with
the original field Fab, we have the following theorem.
Theorem II.1. Let ðM; gab; FabÞ be a (1þ 3)-

dimensional solution of (1) and (13), allowing a (suffi-
ciently smooth) Killing vector field ξa. Then on the set of
points where LF ≠ 0 we have

£ξFab ¼ α � Fab þ βFab; ð20Þ
where α and β are real functions, such that

β ¼ −
1

2LF
£ξLF : ð21Þ

If α ¼ 0 and FLFF þ LF ≠ 0 then β ¼ 0.
Suppose now that the spacetime admits an r-parameter

group of isometries, generated by the Killing vector fields
ξaðiÞ which satisfy the commutation relations

½ξðiÞ; ξðjÞ�a ¼ Ck
ijξ

a
ðkÞ ð22Þ

with the group structure constants Ck
ij. For each of these

Killing vector fields we have

£ξðiÞFab ¼ αðiÞ � Fab þ βðiÞFab: ð23Þ
Using the elementary property of the Lie derivatives,

£½X;Y� ¼ ½£X; £Y � ð24Þ
for any non-null electromagnetic field we get

Ck
ij£ξðkÞFab ¼ Ck

ijβðkÞFab þ ð£ξðiÞαðjÞ − £ξðjÞαðiÞÞ�Fab; ð25Þ
from where it follows that at each point where Fab ≠ 0 we
have a linear system of relations

Ck
ijαðkÞ ¼ £ξðiÞαðjÞ − £ξðjÞαðiÞ: ð26Þ

The analysis of these constraints on the functions αðkÞ is left
for the future work.
In the rest of the section we shall look more closely at the

special case when L ¼ LðF Þ. In order to put it in the
broader perspective we shall first assume that the number of
spacetime dimensions is some general D ≥ 2. The energy-
momentum tensor now takes the form

Tab ¼
1

4π
ðLgab − 4LFFacFb

cÞ: ð27Þ

Using £ξT ¼ 0 we have

0 ¼ ð4FLFF − ðD − 4ÞLF Þ£ξF ≡KðF Þ£ξF : ð28Þ

Let us denote by V ⊆ O the set of points in which the
function KðF Þ does not vanish or which are elements of

the open sets on which F is constant and equal to a zero of
the function KðF Þ. We shall refer to the elements of the set
W ¼ V̄ ∩ O as the regular points ofO. At each point ofW
we immediately have £ξF ¼ 0 and, consequently,

£ξL ¼ LF£ξF ¼ 0 and £ξLF ¼ LFF£ξF ¼ 0: ð29Þ

If KðF Þ vanishes for any F then we cannot extract any
useful information from Eq. (28). Equation KðF Þ ¼ 0 is
an ordinary differential equation with the general solution
of the form LðF Þ ¼ AFD=4 þ B for some real constants A
and B. The constant B only contributes to the cosmological
constant, so we can dismiss it in this discussion. Therefore,
the “blind spot” of the analysis are the Lagrangians of the
form LEM ¼ AFD=4 � 1, those for which the electromag-
netic field action becomes conformally invariant and the
corresponding energy-momentum traceless (the choice
which was exploited in [31]). All the remaining nonlinear
Lagrangians mentioned in this paper are devoid of irregular
points of the set O.
One of the consequences of the relations (29) is that on

the set W the equation (4) implies that in fact

£ξðFacFb
cÞ ¼ 0: ð30Þ

To our knowledge this is the first concrete constraint on the
symmetry inheritance properties of the higher dimensional
electromagnetic fields. Unfortunately, we have been unable
to find any other relation which would provide substantial
information on the nature of £ξFab in D > 4.
In the D ¼ 4 case the relations (29) imply that β ¼ 0 in

(20), and 0 ¼ £ξF ¼ 2αG holds at each point of the set W.
Thus, either α ¼ 0 (in which case the symmetry is
inherited) or G ¼ 0. Furthermore, using £ξG ¼ −2αF ,
we see that on the interior of points where α ≠ 0 and
G ¼ 0 we necessarily have F ¼ 0. In other words, either
the electromagnetic field is null or it must inherit the
spacetime symmetries. We can exclude such symmetry
noninheriting null electromagnetic fields at least in a static
spacetime. First, at each point of the set O we have [see the
Eq. (15)],

ξ½aTb�cξc ¼ 0 iff ξ½aT
ðMaxÞ
b�c ξc ¼ 0: ð31Þ

So, using the well-known theorems [11,40], if the tensor
Eab in (1) belongs to the orthogonal-transitive class of order
1 [29], then in every static subset ofO, namely all the points
where ξa is timelike and satisfies the Frobenius condition
ξ½a∇bξc� ¼ 0, the electromagnetic tensor is either trivial,
Fab ¼ 0, or non-null.
We already have examples ([12]; “Example 1” in [10];

[13]) of exact solutions of the Einstein-Maxwell field
equations with the symmetry noninheriting null electro-
magnetic fields. A simple way to “recycle” these solutions
in the nonlinear case is to look at those models for which
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the energy-momentum tensor (12) reduces to theMaxwell’s
energy-momentum tensor (3) and the electromagnetic
tensor Fab reduces to the tensor Zab for the null electro-
magnetic fields. Such models can be found among those
whose Lagrangian density satisfies

lim
F→0

LðF Þ ¼ 0 and lim
F→0

LF ðF Þ ¼ −
1

4
: ð32Þ

These conditions, usually referred to as Maxwell’s asymp-
totics [16], at the same time guarantee the physical
admissibility of the nonlinear models. For example, the
truncated version of the Born-Infeld model [in which the
b−4 term in (9) is suppressed] satisfies the conditions (32),
thus all the Einstein-Maxwell symmetry noninheriting null
electromagnetic fields are automatically solutions of the
Einstein-Born-Infeld field equations.

III. THE LOWER DIMENSIONAL CASES

Lower dimensional spacetimes are often used as a toy
models, whence for the completeness we turn our attention
to them, assuming that L ¼ LðF Þ.
(1þ 1)-dimensional case. As Fab is a form of maximal

rank here, we have Fab ¼ fϵab for some function f and
thus £ξFab ¼ ð£ξfÞϵab. One of the Maxwell’s equations,
dF ¼ 0, is automatically satisfied, while the other implies
that £ξðLFfÞ ¼ 0. In the canonical case (2) we immedi-
ately have £ξf ¼ 0, while in the nonlinear case the same
conclusion holds on the set W, where we have both
£ξLF ¼ 0 and LF ≠ 0. Hence, in both cases we have
the symmetry inheritance.
(1þ 2)-dimensional case. Recently it has been shown

[41], using decomposition of Fab to the electric and the
magnetic parts, that the 3-dimensional Maxwell’s electro-
magnetic field (with possible presence of the gauge
Chern-Simons terms) necessarily inherits the spacetime
symmetries. In order to attack the problem for the nonlinear
Lagrangians which allow a nonempty set W of regular
points we resort to different strategy. Along a neighborhood
of an orbit of the Killing vector field ξa one can introduce a
dreibein basis,

gabeaðμÞe
b
ðνÞ ¼ ημν ¼ diagð−1;þ1;þ1Þ; ð33Þ

Lie-dragged along the field ξa, such that £ξeaðμÞ ¼ 0. Then

we have a decomposition of the electromagnetic tensor,

Fab ¼ γije
ðiÞ
a eðjÞb ; ð34Þ

where γðijÞ ¼ 0, and a decomposition of the relation (30),

FacFb
c ¼ σije

ðiÞ
a eðjÞb ; ð35Þ

where σ½ij� ¼ 0 and £ξσij ¼ 0 for each i and j (γij and σij
should be taken just as a set of auxiliary functions). By
combining (34) and (35), we get a system of equations,

ηklγikγjl ¼ σij; ð36Þ

from which we can express the functions γij with the
functions σij. This implies that £ξγij ¼ 0 for each i and j,
thus £ξFab ¼ 0 at least on the set W.
Yet another proof of the symmetry inheritance in the

3-dimensional case can be obtained via correspondence
with the real scalar field [42], in combination with the
recent general results on symmetry inheritance of the scalar
fields [29,43].

IV. ELECTROMAGNETIC SCALAR POTENTIALS

Given a Killing vector field ξa one can define the electric
1-form E ¼ −iξF and the magnetic 1-form H ¼ iξ � Z.
Furthermore, whenever this is possible, it is convenient to
introduce the electric scalar potential Φ and the magnetic
scalar potential Ψ, such that E ¼ dΦ and H ¼ dΨ. Now,
since dE ¼ −£ξF, the symmetry inheritance is necessary
for the existence ofΦ (and sufficient at least to guarantee its
local existence). Also, as dH ¼ �£ξZ, the symmetry
inheritance is sufficient to guarantee the local existence
of the potential Ψ.
One of the basic building blocks in the first law of black

hole mechanics and in the various black hole uniqueness
theorems [1] is the proof of the constancy ofΦ andΨ on the
black hole horizons. There are various strategies (see [44]
for an overview) to prove this zeroth law of the black hole
electrodynamics, each with different benefits and disad-
vantages: by assuming that Eab is the Einstein’s tensor (this
was exploited in [26]), by assuming that the black hole
horizon is of the bifurcate type (which immediately works
for the nonlinear electrodynamics) and the approach based
on the symmetry [44] (which is independent of the
gravitational field equations or the presence of the bifur-
cation surface). Let us examine more closely the third
approach in the context of the nonlinear electrodynamics.
For example, assume that the spacetime is circular:

stationary, axisymmetric, with the corresponding commut-
ing Killing vector fields ka and ma (the latter is the axial
Killing vector with compact orbits), which satisfy the
Frobenius conditions,

k½amb∇ckd� ¼ k½amb∇cmd� ¼ 0: ð37Þ

If we use the identity

iX£Y − iY£X ¼ iXiYd − diXiY þ i½X;Y� ð38Þ

with the Killing vector fields, Xa ¼ ka and Ya ¼ ma,
and apply it on Fab and �Zab, we get that both Fðk;mÞ
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and �Zðk;mÞ are constant. Thus, on any connected domain
of the spacetime which contains the points where any of
these two Killing vector fields vanish (such is the axis
where ma ¼ 0) we have

Fðk;mÞ ¼ 0 ¼ �Zðk;mÞ: ð39Þ

This allows us to apply the method presented in [44] to
prove that both Φ and Ψ are constant on any connected
component of the Killing horizon H½χ�, generated by the
Killing vector field χa ¼ ka þ ΩHma (where ΩH plays the
role of the “angular velocity of the horizon” [1]).

V. FINAL REMARKS

Our results should be taken as a guiding blueprint for
the symmetry noninheriting nonlinear electromagnetic

fields, examples of which are still few and far between.
For example, it is an open question if the models built upon
the Born-Infeld (9) or the Euler-Heisenberg Lagrangian
(11) allow such fields in the cases when the field equations
do not reduce simply to the Einstein-Maxwell’s. The higher
dimensional fields are just weakly constrained with respect
to the symmetry inheritance and here one could expect new
surprises. Finally, it would be interesting to look for the
further constraints imposed by some specific boundary
conditions, either from the presence of the black hole
horizons or the asymptotic conditions at infinity [11].
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