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Production of deuterons, tritons, 3He nuclei, and their antinuclei in pp collisions
at

√
s = 0.9, 2.76, and 7 TeV

S. Acharya et al.∗
(ALICE Collaboration)

(Received 23 October 2017; published 21 February 2018)

Invariant differential yields of deuterons and antideuterons in pp collisions at
√

s = 0.9, 2.76 and 7 TeV and
the yields of tritons, 3He nuclei, and their antinuclei at

√
s = 7 TeV have been measured with the ALICE detector

at the CERN Large Hadron Collider. The measurements cover a wide transverse momentum (pT) range in the
rapidity interval |y| < 0.5, extending both the energy and the pT reach of previous measurements up to 3 GeV/c

for A = 2 and 6 GeV/c for A = 3. The coalescence parameters of (anti)deuterons and
3
He nuclei exhibit an

increasing trend with pT and are found to be compatible with measurements in pA collisions at low pT and lower
energies. The integrated yields decrease by a factor of about 1000 for each increase of the mass number with one
(anti)nucleon. Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle
multiplicity at different center-of-mass energies.

DOI: 10.1103/PhysRevC.97.024615

I. INTRODUCTION

The production of light nuclei and antinuclei has been mea-
sured in many experiments at energies lower than those of the
Large Hadron Collider (LHC). Deuterons and antideuterons
are copiously produced in heavy-ion collisions [1–11], but less
abundantly in lighter particle collisions, such as pp [12,13]
and pp [14] collisions, photoproduction γp [15], and e+e−
annihilation atϒ(nS) [16] andZ0 [17] energies. Measurements

of heavier antinuclei, such as antitritons and
3
He nuclei,

have only been reported in pA [18,19] and AA collisions
[11,20–23].

The high luminosity provided by the LHC allows these
measurements to be extended to higher energies and transverse
momenta (pT) than in previous experiments, and provides in
addition the possibility to detect for the first time antinuclei
heavier than antideuterons in pp collisions. Many of these
measurements have been explained as the result of the coales-
cence of protons and neutrons that are nearby in space and have
similar velocities [24,25], but this has not been experimentally
tested in high pT regimes in small systems. On the other hand,
statistical hadronization models [11,26] have been successful
in describing particle yields over a wide range of energies in
AA collisions, with the chemical freeze-out temperature and
baryochemical potential being constrained by measurements
of particle ratios. In this sense, the deuteron-to-proton ratio
could serve as a test for possible thermal-statistical behavior
in pp collisions at LHC energies.

∗Full author list given at the end of the article.
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On a broader level, this subject may also have an impact on
cosmology. Big-bang nucleosynthesis is the dominant natural
source of deuterons [27] and, in the absence of baryogenesis,
one could assume that the same holds for antideuterons. These
antinuclei and even heavier antinuclei can also be produced
in pp and pA collisions in interstellar space, representing a
background source in the searches for segregated primordial
antimatter and dark matter [28–30]. As it turns out, the
low momentum characteristic yields of antinuclei at central
rapidities (compared to forward) lie in an energy region which
is best suited for identification by most satellite-borne (low
magnetic-field) instruments, such as AMS-02 [28].

While the differential yields of deuterons in pp collisions
at

√
s = 7 TeV have been reported in [11], this paper

complements the previously published results by providing
the corresponding measurements of antideuterons at the same
collision energy. In addition, results for (anti)deuterons at√

s = 0.9 and 2.76 TeV as well as for (anti)tritons and 3He
(anti)nuclei at

√
s = 7 TeV are given. The paper is organized

as follows: Section II gives a description of the experimental
apparatus. Section III describes the analysis procedure of the
experimental data along with the estimation of the systematic
uncertainties. In Sec. IV, the distributions of (anti)deuterons,
(anti)tritons, and 3He (anti)nuclei are presented. The integrated
yields, the deuteron-to-proton ratios, and the coalescence
parameters, which relate the production of nuclei with those
of the nucleons, are obtained in Sec. V and the summary and
conclusions are presented in Sec. VI.

II. EXPERIMENTAL APPARATUS

ALICE [31–33] is a multipurpose detector designed to
study heavy-ion collisions at the LHC and it also has excellent
capabilities to study light nuclei and antinuclei in pp collisions.
The nuclei were identified using the central detectors: the inner
tracking system (ITS), the time projection chamber (TPC), and
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the time of flight (TOF) detector. These detectors are located
inside a solenoidal magnetic field with a strength of 0.5 T and
cover the full azimuthal acceptance and the pseudorapidity
range |η| < 0.9.

The ITS [34] consists of six cylindrical layers of position-
sensitive detectors, covering the central rapidity region for
vertices located in |z| < 10 cm, where z is the distance along
the particle beam direction. The two innermost layers are
silicon pixel detectors (SPD), followed by two layers of silicon
drift detectors (SDD), while the two outermost layers are
double-sided silicon strip detectors (SSD). The ITS is mainly
used for reconstruction of the primary and secondary vertices.
It also helps to separate primary nuclei from secondary nuclei
via the determination of the distance of closest approach of the
track to the primary vertex. The TPC [35], the main tracking
component of ALICE, is a large drift detector with a low
material budget to reduce multiple scattering and secondary
particle production. In combination with the ITS, it is used to
measure particle momenta. The TPC is also used to identify
particles via their specific ionization energy loss with a reso-
lution of 5% in pp collisions [36]. The TOF [37] detector is a
large-area array of multigap resistive plate chambers covering
the full azimuth 0 � φ < 2π and |η| < 0.9, except the region
260◦ < φ < 320◦ and |η| < 0.12 to avoid covering the photon
spectrometer with more material. In pp collisions, it measures
the time of flight of particles with an overall resolution of
about 120 ps, allowing the identification of light nuclei and
antinuclei with transverse momenta above 3 GeV/c, depending
on the available data. The start time for the time of flight is
provided by the T0 detector, with a time resolution of ∼40 ps.
The T0 consists of two arrays of Cherenkov counters, T0A
and T0C, placed on opposite sides of the interaction point at
z = 375.0 cm and z = −72.7 cm, respectively. If there is no
T0 signal, the TOF detector is used to measure the start time
when at least three particles reach the TOF detector [38].

Between the TPC and TOF detector there is a transition
radiation detector (TRD) [33] to discriminate between elec-
trons and pions above 1 GeV/c. Only 7 modules out of 18
were installed for the pp run of 2010, leaving the major part
of space between TPC and TOF free of additional material.
The V0 detector [39], two hodoscopes of 32 scintillator cells
each which cover the pseudorapidity ranges 2.8 < η < 5.1 and
−3.7 < η < −1.7, provides in combination with the SPD the
trigger for inelastic pp collisions.

III. DATA ANALYSIS

The pp events used in this paper were collected by the
ALICE Collaboration during 2010 and 2011. The recorded
integrated luminosity for each analyzed sample is 0.124 nb−1,
0.692 nb−1, and 4.20 nb−1 for the center-of-mass energies√

s = 0.9, 2.76, and 7 TeV, respectively.

A. Event and track selection

The pp events were triggered by requiring a hit in both
sides of the V0, i.e., two charged particles separated by
approximately 4.5 units of pseudorapidity, which suppresses
single diffractive events. The presence of passing bunches was

detected by two beam-pickup counters. Contamination from
beam-induced background was rejected offline using the tim-
ing information of the V0. Additionally, a cut on the correlation
between the number of SPD clusters and the number of small
track segments (tracklets) in the SPD detector was applied.
Furthermore, in order to maintain a uniform acceptance and to
reduce beam-induced noise, collision vertices were required
to be within 10 cm of the center of the detector in the beam
direction and within 1 cm in the transverse direction. Pile-up
events were reduced by requiring that more than three tracklets
or tracks contribute to the reconstructed vertex. In cases of
multiple vertices which are separated by more than 0.8 cm, the
vertex reconstruction with the SPD allows these events to be
tagged as pile-up and hence not considered in the analysis. The
events analyzed here consist mostly of nonsingle diffractive
events, which represent a fraction of the total inelastic cross
section equal to 0.763+0.022

−0.008, 0.760+0.052
−0.028, and 0.742+0.050

−0.020 for√
s = 0.9, 2.76, and 7 TeV [40], respectively. Those fractions

were used to extrapolate the measurements to inelastic pp
collisions assuming that the production of nuclei in single
diffractive events is not significant with respect to nonsingle
diffractive events based on Monte Carlo estimates (less than
3%).

For each track at least two track points were required in the
ITS and 70 out of a maximum of 159 in the TPC. A pseudora-
pidity cut of |η| < 0.8 was also required to avoid edge effects.
Tracks with kinks, typically originating from weak decays
inside the TPC volume, were treated as two separate tracks
and only the track pointing to the primary vertex was kept.

The measurements are reported for the rapidity interval
|y| < 0.5 and have been corrected for detector efficiency based
on the GEANT3 particle propagation code [41]. Track matching
between the TPC and TOF detectors in GEANT3 was further
improved by a data driven method based on a study of tracks
not crossing the TRD material, resulting in a 6% difference.
Since at low pT many nuclei in |y| < 0.5 are outside |η| < 0.8,
their number was extrapolated using a Monte Carlo simulation
where the rapidity distribution was approximated by a flat
distribution.

In order to allow for a consistent comparison of the
antideuteron-to-deuteron ratio across different center-of-mass
energies with an identical GEANT version, a reanalysis of the
deuteron differential yield at

√
s = 7 TeV is presented here.

The results are found to be consistent with the previous mea-
surements shown in [11] within the systematic uncertainties.

B. (Anti)nuclei identification

The identification of nuclei and antinuclei is based on their
specific energy loss in the TPC and the estimation of their mass
with the TOF detector. Figure 1 shows the energy loss signal
recorded by the TPC of different nucleus species versus the
rigidity (pTPC/|Z|), where pTPC is the momentum estimated at
the inner wall of the TPC.

Deuterons and antideuterons can be identified cleanly up
to pTPC � 1.2 GeV/c, which corresponds to a maximum pT

of 1 GeV/c. For pT > 1 GeV/c a coincidence with a TOF
signal was required, in addition to a ±3σ cut around their
expected energy loss in the TPC, extending the identification up

024615-2



PRODUCTION OF DEUTERONS, TRITONS, 3He … PHYSICAL REVIEW C 97, 024615 (2018)

)c| (GeV/Z / |
TPC

p
1 10

 (
ar

bi
tr

ar
y 

un
its

)
x

 / 
d

Ed

210

310

1

10

210

310

410

510

-e

-K

p

d

t

He3 

-1 = 4.20 nbtdL = 7 TeV   sALICE pp ∫
, TPCHe3 
, TPC-TOFHe3 

, TPCt
, TPC-TOFt
Bethe-Bloch
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squares are
3
He nuclei and antitritons identified by the TPC only, and

the orange crosses and the red diamonds are the antitritons and
3
He

nuclei, respectively, that were matched to a TOF detector hit.

to pT = 3 GeV/c. For this, tracks were propagated to the outer
radius of the TOF detector and, if a hit was found close enough
to the trajectory, the corresponding time of flight was assigned
to the track. Then, the squared mass m2 = p2(t2/l2 − 1) was
calculated, where p is the reconstructed momentum, t the
time of flight, and l the track length. Figure 2 shows the
squared mass distribution for several pT bins in the region
of the antideuteron squared mass. The antideuteron signal
is approximately Gaussian, centered at the deuteron squared
mass and with an exponential tail on the high mass side. This
exponential tail is also present in the signal of other particle
species such as π , K , and p and extends to the antideuteron
squared mass, producing an exponential background. The
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signal was extracted by combining a Gaussian with an ex-
ponential tail and an exponential background (Fig. 2).

Tritons and antitritons were identified by selecting tracks
within ±3σ of their expected energy loss in the TPC and by
also requiring a match to a TOF detector hit. The minimum
pT = 1.2 GeV/c was chosen to be the same as for the 3He
nuclei. Due to the small number of tritons, it was not possible
to use the signal extraction procedure used for deuterons. In this
case, the selected tracks were required to have an associated
mass within ±3σ (σ � 0.05 GeV/c2) of the triton mass and
the maximum pT was limited to 1.8 GeV/c. The result is shown
in Figs. 1 and 3, with six antitriton candidates in the interval
1.2 < pT < 1.8 GeV/c.

Unlike deuterons and tritons, 3He and
3
He nuclei can be

identified throughout the pT range with the TPC, since for
nuclei with |Z| = 2 the energy deposition is well separated

from particles with |Z| = 1. In total, 17 candidates for
3
He

nuclei were observed, based on the specific energy loss in
the TPC (Fig. 1), out of which 14 candidates were in the
interval 1.2 < pT < 6 GeV/c, and these were used in the mea-
surements. Their identities were confirmed for those particles
that were matched to a TOF hit (10 out of 14) with a mass
measurement based on their times of flight, as shown in Fig. 3.

A few
3
He nuclei (six candidates) were also observed at the

center-of-mass energy 2.76 TeV.

C. Secondary (anti)nuclei

Secondary nuclei are copiously produced in spallation
reactions induced in the detector material by the impact of
primary particles. They are also produced in the decays of �
hypernuclei, with the π -mesonic decay of the (anti)hypertriton
being the most important contribution [42].

The distances of closest approach (DCA) of the track to
the primary vertex in the transverse plane (DCAxy) and along
the beam direction (DCAz) were used to distinguish and reduce
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the number of secondary nuclei. Since they are produced
far away from the primary vertex, they have a broader and
flatter DCAxy distribution than primary nuclei, which have a
narrow DCAxy distribution peaked at zero, similar to antinu-
clei. Figure 4 illustrates the different DCAxy distributions for
deuterons and antideuterons at low and high pT. A positive
DCAxy was assigned when the primary vertex was inside the
radius of curvature of the track and a negative value in the
opposite case. The number of secondary nuclei was greatly
reduced by requiring |DCAxy | < 0.2 cm and |DCAz| < 3
cm, corresponding to a cut of ±10σ in the measured DCA
resolution in the lowest pT bin.

The fraction of secondary nuclei with respect to primary
nuclei was estimated with DCAxy templates from Monte Carlo
simulations for each pT bin. The templates were fitted to the
measured distribution with a maximum likelihood procedure
which relies on a Poisson distribution and takes into account
both the measured distribution and Monte Carlo statistical
uncertainties [43]. This fraction was found to fall exponentially
as a function of pT and was subtracted from the measurements.

The production of antinuclei from interactions of primary
particles with the detector material was neglected, since
antinuclei exhibit a narrow DCAxy distribution peaked at

zero (Fig. 4). Due to the small production cross section of
(anti)hypernuclei in pp collisions, the feed-down contribution
of (anti)nuclei was not subtracted, but instead included as a
systematic uncertainty.

D. Systematic uncertainties

Table I summarizes the values of the systematic uncertain-
ties for the lowest and highest pT bins. These uncertainties take
into account the identification procedure, the track selection
criteria, secondary nuclei originating in the detector material
and from feed-down, the (anti)nucleus–nucleus interactions
simulated in GEANT, and the material budget.

The identification procedure was affected by an uncertainty
coming from the background and signal shapes at high pT,
where the signal-to-background ratio was small. It was eval-
uated by changing the squared mass interval and extracting
the signal with two different methods: one by using the
procedure described in Sec. III B and the other by counting
the number of entries in the 1 < pT < 1.4 GeV/c interval
where the identification is unambiguous. For antitritons and
3
He nuclei the identification was clean and the particle identi-

fication uncertainty was assumed to be negligible. Systematic

TABLE I. Summary of the main sources of systematic uncertainties for the lowest and highest pT bins. Symmetric uncertainties are listed
without sign for clarity.

d d t t 3He
3
He

pT (GeV/c) 0.8–3.0 0.8–3.0 1.2–1.8 1.2–1.8 1.2–3.0 1.2–6.0

Particle identification negl.–20% negl.–20% negl. negl. negl. negl.
Track selection 4% 4% 4% 4% 4% 4%
Secondary nuclei 4% negl. 18% negl. 20%–negl. negl.
Feed-down nuclei negl. negl. –6% –6% –10% –10%
Hadronic interactions 6% 6% 12% 12% 6% 6%
Material budget 3%–negl. 3%–negl. 3% 3% 2%–1% 2%–1%
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uncertainties due to the track selection criteria were estimated
to be less than 4% for nuclei and antinuclei by changing the
conditions for selecting tracks.

The approximations made in the DCAxy templates intro-
duced an uncertainty on the removal of secondary nuclei orig-
inating in the detector material. A value of 4% was estimated
for deuterons by replacing the simulated DCAxy templates
of primary deuterons with the measured DCAxy distribution
of antideuterons, which are not affected by contamination
from secondary tracks. An uncertainty of ∼20% was estimated
following a similar procedure for tritons and 3He nuclei.

The dominant feed-down contribution for (anti)nuclei is the
π -mesonic decay of (anti)hypertritons [42]: 3

�H → d + p +
π−, 3

�H → d + n + π0, 3
�H → t + π0 and 3

�H → 3He + π−.
In pp collisions, the 3

�H cross section was estimated to be of the
same order of magnitude as the 3He nucleus cross section [44].
However, the production cross section of deuterons is about 104

times greater than that of 3He nuclei, hence the contamination
for (anti)deuterons can be considered negligible. Additionally,
the fraction of hypertritons which passes the track selection
in the 3He (anti)nucleus channel was estimated with a Monte
Carlo simulation and is at most 35%. Assuming a similar value
for the (anti)triton channel and branching ratios of 27% and
13% [42], then less than ∼10% and ∼6% contamination is
expected for 3He (anti)nuclei and (anti)tritons, respectively.

The (anti)nucleus–nucleus elastic and inelastic scattering
uncertainty was evaluated by comparing the GEANT3 simu-
lations with the data for two different experimental config-
urations: one using the detector portion in which the TRD
modules were installed between the TPC and the TOF detector
and another in which the TRD was not installed. The ratio
between the number of (anti)deuterons counted with the two
different detector configurations is related to the number

of (anti)deuterons lost due to hadronic interactions. These
ratios were compared with a GEANT3 simulation and a 6%
uncertainty was estimated for the amount of nuclei lost in
such processes. This comparison, however, was not feasible for
(anti)tritons due to the limited data, and a 12% uncertainty was
assumed. Unlike deuterons and tritons, the measurements of
3He (anti)nuclei presented here only rely on TPC information,
hence they are not affected by the TRD material in front of the
TOF detector.

Another source of systematic uncertainty is the accuracy
in the knowledge of the material budget. This uncertainty was
estimated to be +3.4% and −6.2% by comparing the material
thickness estimated by analyzing photon conversions in the
inner detectors with the material description implemented
in the Monte Carlo simulations [45]. To propagate these
uncertainties to the results, a Monte Carlo simulation was done
in which the material density was varied by ±10% and linearly
interpolated to match the uncertainties in the material budget.
The result was below 3% at low pT and negligible at high pT

for the different (anti)nuclei.
The extrapolation of the measurements to inelastic pp

collisions adds additional systematic uncertainties of +2.2
−0.8%,

+5.2
−2.8% and +5.0

−2.0% for the center-of-mass energies 0.9, 2.76,
and 7 TeV, respectively [40]. However, these uncertainties are
not included in the figures as in previous related publications
[11,46–48].

IV. RESULTS

A. Deuterons and antideuterons

The invariant differential yields of deuterons and an-
tideuterons were measured in the pT range 0.8 < pT < 3
GeV/c (Fig. 5) and extrapolated to inelastic pp collisions
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FIG. 5. Invariant differential yield of deuterons (left panel) and antideuterons (right panel) in inelastic pp collisions (INEL) at
√
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2.76, and 7 TeV. Systematic uncertainties are represented by boxes and the data are multiplied by constant factors for clarity in the figure. The
lowest pT point for deuterons at

√
s = 7 TeV was taken from [11]. The dashed line represents the result of a fit with a Tsallis function (see

Sec. V B for details).
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with the cross sections of Ref. [40]. At LHC energies, both
nucleus species are produced with similar abundance since the
antideuteron-to-deuteron ratio approaches 1 as the center-of-
mass energy increases (Fig. 6). The ratios are consistent with
the (p/p)2 ratios extracted from Refs. [49,50], and hence are in
agreement with the expectation from simple coalescence and
thermal–statistical models.

B. Heavier nuclei and antinuclei

A recorded luminosity of 4.2 nb−1 allowed antitritons and
3
He nuclei to be detected in pp collisions. Since the total

number of observed candidates is small, the uncertainties were
estimated as a central confidence interval (two-sided), using
a coverage probability of 68.27% for a Poisson distribution.
The resulting invariant yields for both antinucleus species
are compatible in the pT range where measurements were
possible (Fig. 7). Some 3He nuclei were also observed in
the highest pT bin, but, since the production rate is very
small, it was not feasible to evaluate the contamination due
to secondary 3He nuclei, and the bin was then excluded from

this measurement. In contrast,
3
He nuclei are not affected by

this source of contamination, and the three measurements are
sufficient to determine the parameters of the Tsallis distribution
to extrapolate the yields (see Sec. V B).

V. DISCUSSION

A. Coalescence parameter

Many measurements of light nuclei have been successfully
explained as the result of the coalescence of protons and
neutrons that are nearby in phase-space [24,25]. In this model,
the production of a nucleus with mass number A = N + Z is
related to the production of nucleons at equal momentum per
nucleon by

EA

d3NA

dp3
A

= BA

(
Ep

d3Np

dp3
p

)Z(
En

d3Nn

dp3
n

)N

,

(1)

�pp = �pn = �pA

A
,

where BA is called the coalescence parameter. This parameter
has been found to be constant at low transverse momentum in
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FIG. 7. Invariant differential yields of tritons and 3He nuclei (left panel) and their antinuclei (right panel) in inelastic pp collisions at√
s = 7 TeV. Error bars and boxes represent the statistical and systematic uncertainties, respectively, and the dashed line the result of a fit with

a Tsallis function (see Sec. V B for details).
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FIG. 8. Coalescence parameter (B2) of deuterons (solid circles)
and antideuterons (hollow circles) as a function of pT per nucleon in
inelastic pp collisions at

√
s = 0.9, 2.76, and 7 TeV. Statistical un-

certainties are represented by error bars and systematic uncertainties
by boxes.

light-particle collisions [15,51]. In contrast, in AA collisions it
has been reported that BA decreases with increasing centrality
of the collision, and for each centrality it increases with pT

[8–11].
Assuming equal distribution of nucleons in Eq. (1) and tak-

ing the proton and antiproton distributions from Refs. [46–48],
the coalescence parameter (B2) was computed, and it is shown
in Fig. 8. The resulting values for deuterons and antideuterons
are compatible and do not show any significant dependence
on the center-of-mass energy within uncertainties. These
measurements extend the pT reach up to three times beyond
previous measurements in pp collisions extracted from the
CERN Intersecting Storage Rings (ISR) [12,13,52] (Fig. 9).

To extract the B2 from the CERN ISR, the antiproton
distribution was taken from [52] and the total cross section
of 42.3 ± 0.4 mb from [53]. The distribution was also scaled
by a factor of 0.69, estimated with an EPOS (LHC) simulation
[44,54], to take into account the feed-down contribution.
Figure 9 also includes the B2 parameter of antideuterons from
γp collisions and deep inelastic scattering of electrons at the
Hadron-Electron Ring Accelerator (HERA) at DESY [15,51]
and B2 from p-Cu and p-Pb collisions at the LBNL Bevalac
[1]. Our measurement reveals a pT dependence in B2 not seen
in previous experiments, which is significant given that the
systematic uncertainties are correlated bin by bin.

This pT dependence can be reproduced with QCD-inspired
event generators, such as PYTHIA 8.2 (Monash tune) [55] and
EPOS (LHC), when adding a coalescence-based afterburner
[44] that takes into account the momentum correlations be-
tween nucleons (Fig. 10). The afterburner looks for clusters
of nucleons among the final particles produced by the event
generators and boosts them to their center-of-mass frame.
If the momentum of each individual nucleon is less than a
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FIG. 9. Coalescence parameter (B2) of antideuterons in inelastic
pp collisions at

√
s = 7 TeV (circles) compared with the values

measured at lower energies in pp [12,13], γp [15], ep [51] (squares
and hollow circles), and in p-Cu and p-Pb collisions [1] (band at
pT/A = 0 GeV/c).

certain value, a nucleus is generated. With the afterburner,
a constant B2 is recovered when selecting protons from one
event and neutrons from the next event (event mixing), in
agreement with the expectation of an uncorrelated distribution
of nucleons (Fig. 10). The pT dependence in B2 is still
present in the results from an alternate PYTHIA 8.2 (Monash
tune) simulation with color reconnection turned off (Fig. 10).
Furthermore, a radial flow effect in B2 at these low average
charged multiplicities is also discarded by the EPOS (LHC)
simulation with the afterburner, since this contribution only
arises in high multiplicity events, starting from dNch/dη > 15
[54]. Thus, this pT dependence can be explained as a purely
hard scattering effect, in contrast to AA collisions, where it is
usually attributed to collective flow.
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FIG. 10. Coalescence parameter (B2) of antideuterons in inelastic
pp collisions at

√
s = 7 TeV (circles) compared with EPOS (LHC),

PYTHIA 8.2 (Monash tune) with and without color reconnection (CR),
and an event mixing procedure with the afterburner (lines).
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at pT/A = 0 GeV/c for comparison. Error bars and boxes represent the statistical and systematic uncertainties, respectively, and dashed lines
the values obtained with EPOS (LHC) with the afterburner.

As in the case of antideuterons, the coalescence parameter

(B3) of
3
He nuclei also exhibits apT dependence (Fig. 11 right),

and can be reproduced with QCD-inspired event generators
with a coalescence-based afterburner [44]. Moreover, low pT

values of B3 are compatible with those obtained in p-C, p-Cu,
and p-Pb collisions at Bevalac [1].

B. Integrated yields and deuteron-to-proton ratio

Unlike coalescence models, statistical hadronization mod-
els only provide predictions for integrated yields. In this case,
the integrated yields of light nuclei and the deuteron-to-proton
ratio can add additional constraints to these models and could
therefore serve as a test for thermal-statistical behavior in small
systems at LHC energies.

To find the integrated yields, the measurements were
extrapolated to the unmeasured pT region with a statistical
distribution that provides an exponential behavior at low pT

and a power law behavior at high pT (Figs. 5 and 7):

E
d3N

dp3
= gV

mT

(2π )3

(
1 + (q − 1)

mT

T

) q
1−q

, (2)

where mT =
√
p2

T + m2 is the transverse mass, and gV , T , and
q are free parameters. This distribution can be derived from the
Tsallis entropy [56,57] and gives good description of the data in
pp collisions [57]. It was preferred over the Levy-Tsallis used
in previous work [11] as it provides a more stable description
of the measurements with a limited data set, as in the case of
antideuterons for the center-of-mass energy 0.9 TeV or the

3
He

nuclei.
The systematic uncertainties of the integrated yields

(dN/dy) and mean transverse momenta (〈pT〉) were evalu-
ated by shifting the data points up and then down by their
uncertainties (i.e., assuming full correlation between pT bins).
Additionally, the data points were shifted coherently, in a pT-
dependent way, within their uncertainties to create maximally

TABLE II. Integrated yields (dN/dy) and mean transverse momenta (〈pT〉) for deuterons, antideuterons, and
3
He nuclei along with the

extrapolated fraction (Extr.) due to the unmeasured pT regions. The first uncertainty is the statistical uncertainty and the second one the systematic
uncertainty.

√
s (TeV) dN/dy 〈pT〉 (GeV/c) Extr.

d 0.9 (1.12 ± 0.09 ± 0.09) × 10−4 1.01 ± 0.05 ± 0.05 50 ± 3%
2.76 (1.53 ± 0.05 ± 0.13) × 10−4 1.04 ± 0.02 ± 0.04 45 ± 8%
7 (2.02 ± 0.02 ± 0.17) × 10−4 1.11 ± 0.01 ± 0.04 41 ± 5%

d 0.9 (1.11 ± 0.10 ± 0.09) × 10−4 0.99 ± 0.07 ± 0.05 52 ± 7%
2.76 (1.37 ± 0.04 ± 0.12) × 10−4 1.04 ± 0.02 ± 0.03 46 ± 7%
7 (1.92 ± 0.02 ± 0.15) × 10−4 1.08 ± 0.01 ± 0.04 42 ± 5%

3
He 7 (1.1 ± 0.6 ± 0.2) × 10−7 1.6 ± 0.4 ± 0.04 43 ± 14%
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hard and maximally soft pT distributions. The values of dN/dy
and 〈pT〉 were reevaluated and the largest difference was taken
as the systematic uncertainty. Table II summarizes the resulting
values for the different center-of-mass energies along with
the extrapolation fraction due to the unmeasured pT regions.
The uncertainty on the extrapolation was estimated by using
additional distributions including the Levy-Tsallis [58,59] and
Boltzmann distributions. The change of the default fit function
with respect to [11] leads to slightly different values for
the obtained dN/dy and 〈pT〉 which are consistent within
the respective systematic uncertainties. Figure 12 shows an
exponential decrease of the dN/dy as a function of the mass
number. The reduction of the yield for each additional nucleon
is about 1000.

The integrated d/p and d/p ratios were calculated from
the integrated yields in Table II and Refs. [47,48], and are
shown in Fig. 13 as a function of the average charged particle
multiplicity at mid-rapidity [60,61]. The dN/dy values for
pp collisions at the CERN ISR were computed following the
same procedure described above and using the inclusive p
distribution from [52] and the d distribution from Refs. [12,13].
The resulting d/p ratio was divided by 0.69 to account for
the contributions of feed-down antiprotons, based on an EPOS

(LHC) simulation [44]. Figure 13 suggests an increasing trend
in this ratio with the average charged particle multiplicity
in pp collisions, which is also supported by an EPOS (LHC)
simulation with the afterburner, although at ISR energies the
d/p ratio is strongly influenced by the baryon number transport
at mid-rapidity, leading to a higher value than at LHC energies
according to the model expectations.

When describing particle ratios such as the d/p ratio, the
only free parameter of grand-canonical statistical hadroniza-
tion models at LHC energies is the chemical freeze-out temper-
ature. In the past, several attempts were made to extend their
successful description of AA collisions to smaller collision
systems such as pp. In particular, the canonical formulation
describes the production of light flavor hadrons, including
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FIG. 13. Integrated deuteron-to-proton (d/p) and antideuteron-
to-antiproton (d/p) ratios in inelastic pp collisions as a function of
the average charged particle multiplicity for different center-of-mass
energies. The average d/p ratio in AA collisions lies two times above
the highest value in pp collisions (not shown). Dashed and solid lines
represent the expected values from EPOS (LHC) with afterburner and
the bands their uncertainties. The CERN ISR value is corrected by the
contribution of feed-down antiprotons estimated with an EPOS (LHC)
simulation.

those with strangeness content [26]. While the p/π ratio
is found to be comparable in pp, p-Pb, and Pb-Pb colli-
sions [48,62], indicating a comparable chemical freeze-out
temperature among different systems, the d/p ratio in pp
collisions at LHC energies is found to be two times lower
than the average value in AA collisions. Since the strangeness-
canonical formulation only influences the abundance of strange
particles with respect to nonstrange particles, it cannot explain
the observed results presented here.

VI. SUMMARY AND CONCLUSIONS

The invariant differential yields of deuterons and an-
tideuterons in pp collisions at

√
s = 0.9, 2.76, and 7 TeV

and the yields of tritons, 3He nuclei, and their antinuclei
at

√
s = 7 TeV have been measured in the rapidity range

|y| < 0.5. The measurements cover the pT ranges 0.8 <
pT < 3 GeV/c for (anti)deuterons, 1.2 < pT < 1.8 GeV/c
for (anti)tritons, 1.2 < pT < 3 GeV/c for 3He nuclei and
1.2 < pT < 6 GeV/c for 3He antinuclei. This extends pre-
vious measurements by one order of magnitude in incident
energies and by a factor of 3 in pT reach, and it includes the

first ever measurements of antitritons and
3
He nuclei in pp

collisions.
The present measurements show no significant dependence

of the coalescence parameter B2 on the center-of-mass energy
from CERN ISR energies (53 GeV) to the highest LHC energy
reported in this paper (7 TeV). Moreover, the values of both
B2 and B3 are found to be compatible at low pT with those
obtained in pA collisions at Bevalac energies.

A previously unobserved pT dependence in pp collisions of
the coalescence parameters B2 and B3 is also reported. The data
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are well described by QCD-inspired event generators when a
coalescence-based afterburner is added to take into account
the momentum correlations between nucleons. According to
PYTHIA 8.2 (Monash tune) and EPOS (LHC) with the after-
burner, this dependence can be explained purely as a hard
scattering effect.

In combination with CERN ISR measurements, our results
suggest an increasing trend in the d/p ratio with charged
particle multiplicity. While the values reported in central AA
collisions are in agreement with a thermal model description
of particle yields, the highest d/p ratio reported in this paper
is about half the thermal model value; therefore, a thermal-
statistical description is disfavored in pp collisions at these low
average charged particle multiplicities. Our measurements are
expected to contribute to the understanding of the background

from pp collisions for the observation of antideuterons and
3
He

nuclei in cosmic ray experiments and to the estimation of the
production rates of the next stable antinuclei in pp collisions.
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