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1 Introduction

The primary goal of ultra-relativistic heavy-ion collisions is to study the properties of QCD
matter at extremely high temperatures and/or densities and to understand the microscopic
dynamics from which these properties arise, especially in the non-perturbative regime.
The study of anisotropies in the azimuthal distribution of produced particles, commonly
called anisotropic 
ow, has contributed signi�cantly to the characterization of the system
created in heavy-ion collisions [1{ 5]. According to the current paradigm of bulk particle
production, anisotropic 
ow is determined by the response of the system to its initial spatial
anisotropies. Initial-state spatial anisotropies come in turn from both the geometry of the
collision and 
uctuations in the wave function of the incident nuclei [ 3{ 8]. The signi�cant
magnitude of anisotropic 
ow is interpreted as evidence of the formation of a strongly-
coupled system, which can e�ectively be described as a 
uid with very low shear viscosity
to entropy-density ratio ( �=s ) [9].

Anisotropic 
ow is quanti�ed by the coe�cients vn of a Fourier series decomposition
of the distribution in azimuthal angle ' of �nal-state particles [ 10]

dN
d'

/ 1 + 2
+ 1X

n=1

vn cos [n(' � 	 n )]; (1.1)

where 	 n corresponds to the symmetry plane angle of ordern. The dominant 
ow coe�-
cient in non-central heavy-ion collisions is the second 
ow harmonic (v2), called elliptic 
ow,
which is mostly a result of the average ellipsoidal shape of the overlapping area between
the colliding nuclei, whereas higher harmonics originate from initial-state 
uctuations. For
transverse momentapT . 3 GeV/ c, anisotropic 
ow is thought to be quantitatively deter-
mined by the whole evolution of the system, including the phase of hadronic rescatterings
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that takes place after chemical freeze-out [11]. Flow coe�cients have been shown to be
sensitive not only to initial-state anisotropies, but also to the transport parameters (such
as shear and bulk viscosity [12, 13]) and the equation of state of the system, and they have
therefore been used to constrain these properties [14, 15]. However, given the di�erent
heterogeneous phases that the system is believed to undergo, it has not been possible so
far to simultaneously constrain the large number of model parameters, although attempts
have been made [16, 17].

In this regard, the energy dependence of anisotropic 
ow has been shown to provide
additional discriminating power over initial-state models and temperature dependence of
transport parameters [18, 19]. In fact, some theoretical uncertainties in the determination
of anisotropic 
ow coe�cients are expected to partially cancel in the ratios of vn coe�-
cients measured at di�erent collision energies, such as those on the choice of initial-state
model or on the absolute value of�=s . These ratios would then e�ectively constrain the
variations with collision energy and, therefore, system temperature of the parameters to
which anisotropic 
ow is most sensitive.

It is known that the magnitude of anisotropic 
ow, being approximately proportional
to the initial-state spatial anisotropy [ 20], 
uctuates from collision to collision even for �xed
centrality [ 6, 21{ 24], and that its probability distribution function (p.d.f.) P(vn ) is to a �rst
approximation Bessel-Gaussian [1, 25], i.e. the product of a modi�ed Bessel function and a
Gaussian function. It has been pointed out that small deviations from a Bessel-Gaussian
shape are to be expected independently from the details of initial-state 
uctuations [26{ 28].
Evidence of such small deviations has been previously reported [29]. These deviations are
due to �rst order to the 
ow p.d.f. having a �nite skewness. Its quantitative determination
would therefore improve the characterization of these deviations. For dimensional reasons,
it is convenient to use a standardised skewness (
 1), de�ned as [30]


 1 =
h(vn f RPg � h vn f RPgi )3i

h(vn f RPg � h vn f RPgi )2i 3=2
; (1.2)

wherevn f RPg refers to the anisotropic 
ow with respect to the reaction plane 	 RP , i.e. the
plane spanned by the impact parameter and the beam axis, and the bracketsh� � � i indicate
an average over all events. It is worthwhile to note that the symmetry planes 	 n do not
generally coincide with 	 RP because of initial-state 
uctuations.

A robust experimental method to quantify 
ow 
uctuations is to measure vn with
multi-particle cumulants, which have di�erent sensitivities to the moments of the underly-
ing 
ow p.d.f. P(vn )

vn f 2g = 2
p

hv2
n i ; (1.3)

vn f 4g = 4
p

2hv2
n i 2 � h v4

n i ; (1.4)

vn f 6g = 6
p

hv6
n i � 9hv2

n ihv4
n i + 12hv2

n i 3; (1.5)

vn f 8g = 8
p

hv8
n i � 16hv2

n ihv6
n i � 18hv4

n i 2 + 144hv2
n i 2hv4

n i � 144hv2
n i 4: (1.6)

The number in curly brackets indicates the order of the cumulant.
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For elliptic 
ow, a large di�erence between v2f 2g and v2f 4g and approximately equal
values of the higher order cumulants (v2f 4g, v2f 6g, v2f 8g) have been previously ob-
served [29, 31], which is indeed consistent with an approximately Bessel-Gaussian 
ow
p.d.f.. However, a �ne-splitting of a few percent among the higher order cumulants (v2f 4g,
v2f 6g, v2f 8g) has also been reported [29], which is thought to be determined by the residual
deviations from Bessel-Gaussian shape, in particular a non-zero skewness. A negative value
of 
 1, which corresponds toP(v2) being left skewed, is expected [27] from the necessary
condition on the initial-state eccentricity "2 < 1, which acts as a right cuto� on P(v2). The
Elliptic Power distribution, proposed in [ 26, 27], was motivated mainly by this observation
and it was shown to provide a good description ofP(v2) in a wide centrality range [32].
Moreover, 
 1 has been predicted to increase in absolute value from central to peripheral
collisions [30], being roughly proportional to hv2f RPgi and being inversely proportional to
the square root of the system size [28]. 
 1 can be estimated from the �ne-splitting among
two- and multi-particle cumulants [ 30]


 exp
1 = � 6

p
2v2f 4g2 v2f 4g � v2f 6g

(v2f 2g2 � v2f 4g2)3=2
: (1.7)

It is denoted as 
 exp
1 to emphasize that it does not exactly match the de�nition of 
 1 given

in eq. (1.2), although the two have been estimated to coincide within a few percents [30].
The derivation of eq. (1.7) relies on a Taylor expansion of the generating function in powers
of the moments, truncated at the order of the skewness. It is experimentally possible to
test the validity of this approximation through the universal equality that it implies [ 30, 33]

v2f 6g � v2f 8g =
1
11

(v2f 4g � v2f 6g): (1.8)

The precision up to which this equality holds depends on the residual contribution of higher
central moments of the 
ow p.d.f., e.g. the kurtosis, to the multi-particle cumulants.

At high pT (pT & 10 GeV/c) the dominant mechanism that determines azimuthal
anisotropies of the produced �nal-state particles is thought to be path-length dependent
energy-loss of highly energetic partons [34{ 36]. Although several experimental observa-
tions, such as jet azimuthal anisotropies [37, 38], are consistent with this hypothesis, the
details of the process are largely unconstrained and measurements of anisotropic 
ow of
high-pT particles can help in this regard. Although the mechanism that determines it is
fundamentally di�erent, the origin of anisotropic 
ow at high pT is common to the one at
low pT : initial-state geometry and its event-by-event 
uctuations. Measurements reported
in [39] seem to con�rm this interpretation.

Recent CMS results on non-Gaussian elliptic 
ow 
uctuations [40] appeared during
the writing of this article. Numerical data are not yet available, but the observations seem
to be essentially compatible with our measurements and their conclusions agree with those
of this article.

2 Data sample and analysis methods

The sample of Pb{Pb collisions used for this measurement was recorded with the ALICE
detector [41, 42] in November and December 2015 (2010), during the Run 2 (Run 1) of the
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LHC, at a centre of mass energy per nucleon of
p

sNN = 5 :02 (2.76) TeV. The detectors
used in the present analysis are the Inner Tracking System (ITS) and Time Projection
Chamber (TPC), for primary vertex determination and charged particle tracking, and the
V0 detector, for symmetry plane determination, centrality estimation [ 43] and trigger. The
trigger conditions are described in [41]. About 78:4� 106 (12:6� 106) minimum-bias events
in the centrality range 0{80%, corresponding to an integrated luminosity of 12.7� b� 1 (2.0
� b� 1), with a reconstructed primary vertex position along the beam direction (zvtx ) within
� 10 cm from the nominal interaction point, passed o�ine selection criteria [41] for the data
sample at

p
sNN = 5 :02 (2.76) TeV. Centrality is determined from the measured amplitude

in the V0, which is proportional to the number of charged tracks in the corresponding
acceptance (2:8 < � < 5:1 for V0A and � 3:6 < � < � 1:7 for V0C).

Charged tracks with transverse momentum 0:2 < p T < 50 GeV/c and pseudorapidity
j� j < 0:8 are used in the present analysis. These tracks are reconstructed using combined
information from the ITS and TPC. A minimum number of TPC space points of 70 (out
of 159) is required for all tracks, together with a � 2 per TPC space point (� 2

TPC ) in the
range 0:1 < � 2

TPC < 4. A minimum number of 2 ITS hits, of which at least one in the two
innermost layers, is required, together with a� 2 per ITS hit per degree of freedom (� 2

ITS )
smaller than 36. Only tracks with a distance of closest approach (DCA) to the primary
vertex position less than 3.2 cm in the beam direction and 2.4 cm transverse to it are used.
These track selection criteria ensure an optimum rejection of secondary particles and apT

resolution better than 5% in the pT range used in the present analysis [41].
Anisotropic 
ow coe�cients are measured with the Q-cumulant method [44], using the

implementation proposed in [45]. Track weights (w) are used in the construction of the
Q-vectors, in order to correct for non-uniform reconstruction e�ciency and acceptance

Qn;m =
MX

j =1

wj (pT ; �; '; z vtx )m ein' j ; (2.1)

whereM is the charged track multiplicity, n the harmonic andm an integer exponent of
the weights. After applying track weights, the e�ects due to non-uniformities in azimuthal
acceptance, which would introduce a bias in the measured 
ow coe�cients, are observed
to be negligible. This is evaluated by measuring the event-averaged values of the real
and imaginary part of Qn , which are consistent with zero. Multi-particle cumulants are
measured on an event-by-event basis and then, in order to minimise statistical 
uctuations,
averaged over all events using the corrected charged track multiplicity as a weight, following
the procedure proposed in [44]. All observables are computed in small centrality bins (1%)
and then integrated, when limited size of the data sample makes it necessary, in wider
centrality intervals using the charged particle yield in each 1% centrality bin as weight. This
avoids that the event weighting procedure, based on multiplicity, would introduce a bias in
the average centrality within a large centrality bin, since multiplicity varies with centrality.

For pT -integrated results, the m-particle cumulants are calculated using all tracks
within given pT range, while forpT -di�erential results one particle at a given pT is correlated
with m � 1 particles in the full pT range (0:2 < p T < 50 GeV/c). In terms of reference
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(cn f mg) and di�erential ( dn f mg) cumulants, as de�ned in [44], the 
ow coe�cients are
measured as

vn f 2g = 2
p

cn f 2g; (2.2)

vn f 4g = 4
p

� cn f 4g; (2.3)

vn f 6g = 6

r
1
4

cn f 6g; (2.4)

vn f 8g = 8

r

�
1
33

cn f 8g; (2.5)

vn f 2g(pT ) = dn f 2g(pT )= 2
p

cn f 2g; (2.6)

vn f 4g(pT ) = � dn f 4g(pT )= 4
p

� cn f 4g3: (2.7)

For two-particle correlations, a separation in pseudorapidity between the correlated
particles (� � ) is applied in order to suppress short-range azimuthal correlations which are
not associated to the symmetry planes, usually called `non-
ow'. These correlations arise
from jets, mini-jets and resonance decays. For 
ow coe�cients of higher order (vn f m > 2g),
non-
ow contribution has been previously found to be negligible in Pb{Pb collisions [24, 31].
Results corresponding to j� � j > 1 (denoted with vn f 2; j� � j > 1g) are obtained with
the two-particle cumulant correlating tracks from opposite sides of the TPC acceptance,
� 0:8 < � < � 0:5 and 0:5 < � < 0:8. Results corresponding toj� � j > 2 (and reported as
vn f 2; j� � j > 2g) are obtained with the scalar product method [46], correlating all tracks
at mid-rapidity ( j� j < 0:8) with the n-th harmonic Q-vector QV0A

n calculated from the
azimuthal distribution of the energy deposition measured in the V0A detector [2, 47]

vn f 2; j� � j > 2g =
hun;0QV0A*

n i
r

hQV0A
n Q �

n; 1 ihQV0A
n QV0C*

n i

hQn; 1QV0C*
n i

; (2.8)

where un;0 = ein' is the unit 
ow vector from charged particle tracks at mid-rapidity
and Qn;1 is computed from the same type of tracks according to eq. (2.1). Both methods
have their own limitations and thus are complementary to each other: vn f 2; j� � j > 2g
can be reliably employed only up to the fourth harmonic, because of the �nite azimuthal
segmentation of the V0 detectors (8 sectors in 2� ), while vn f 2; j� � j > 1g su�ers from bigger
statistical uncertainties, due to the limited acceptance from which tracks are selected, and
bigger non-
ow contribution for pT > 10 GeV/c.

The systematic uncertainties are evaluated by varying the track and event selection
criteria and comparing the variation in the 
ow coe�cients relative to the default results.
The absolute value of the variation itself is assigned as a systematic uncertainty if it is con-
sidered signi�cant according to the Barlow criterion [48]. Di�erent track quality variables
are varied: number of TPC space points,� 2

TPC and � 2
ITS , fraction of shared TPC space

points and number of ITS hits. For each of these, the default values are varied in order to
increase the fraction of excluded tracks as much as 5 times. No signi�cant di�erences are
observed in the reported measurements between positively and negatively charged parti-
cles. Concerning the event selection criteria, the following are investigated: polarity of the
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Figure 1 . Anisotropic 
ow coe�cients vn of inclusive charged particles as a function of centrality,
for the two-particle (denoted with j� � j > 1) and four-particle cumulant methods. Measurements
for Pb{Pb collisions at

p
sNN = 5 :02 (2.76) TeV are shown by solid (open) markers.

magnetic �eld, reconstructed primary vertex position along the beam direction (selecting
only events with zvtx within � 8 cm from the nominal interaction point), pile-up rejection
(imposing stronger or weaker constraints on the consistency of di�erent event multiplicity
estimators) and variations in the instantaneous luminosity delivered to the ALICE detector
by the LHC. The uncertainty on centrality determination is evaluated using an alternative
estimator based on the number of hits in the second ITS layer (j� j < 1:4), which is directly
proportional to the number of charged particles in the corresponding acceptance. Among
the aformentioned sources, for all observables in this article, track quality and centrality
determination are the dominant sources. The total systematic uncertainties are evaluated
summing in quadrature the systematic uncertainties coming from each of the sources, i.e.
considering the di�erent sources to be uncorrelated.

3 Collision energy, transverse momentum and centrality dependence

Figure 2 shows the ratio of vn f 2; j� � j > 1g (n = 2 ; 3; 4) and v2f 4g between
p

sNN = 5 :02
and 2:76 TeV, i.e. the relative variation of these 
ow coe�cients between those two energies.
Since the systematic uncertainties of the measurements at di�erent energies are partially
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�=s = 0 :2 �=s (T) param1 1

v2f 2; j� � j > 1g 0.712 0.645 0.477

v2f 4g 0.467 0.357 0.028

v3f 2; j� � j > 1g 0.053 0.003 0.001

v4f 2; j� � j > 1g 0.484 0.468 0.022

Table 1 . p-values for the comparison among ratios ofvn f 2; j� � j > 1g (n = 2 ; 3; 4) and v2f 4g
between

p
sNN = 5 :02 and 2:76 TeV and model calculations using di�erent parametrisations of

�=s (T) [18], shown in �gure 2, and unity, in the centrality range 5-50%.

correlated, the resulting systematic uncertainty on the ratio is reduced. All harmonics are
observed to increase with energy, between about 2 and 10%. A hint of a centrality depen-
dence is observed only forv2, with the increase growing slightly from mid-central towards
more peripheral collisions. No signi�cant di�erence is observed in the increase ofv2 mea-
sured with two- or four-particle correlations. Since the di�erence betweenv2f 2; j� � j > 1g
and v2f 4g is directly related to 
ow 
uctuations, this observation suggests that the 
uctua-
tions of elliptic 
ow do not vary signi�cantly between the two energies, within experimental
uncertainties. The ratios are compared to hydrodynamical calculations with EKRT initial
conditions [51] and di�erent parametrisations of the temperature dependence of�=s [18].
The p-values for the comparison between data and models are also shown in Tab.1. Among
the two parametrisations that provide the best description of RHIC and LHC data [52],
both are consistent with the measurements, except forv3f 2; j� � j > 1g, albeit the one with
constant �=s = 0 :2 agrees slightly better. These comparisons take into account the correla-
tion between systematic uncertainties of data points in di�erent centrality intervals. This
observation might indicate little or no temperature dependence of�=s within the temper-
ature range at which anisotropic 
ow develops at the two center of mass energies. As a
reference, thep-values for the comparison between data and unity in the same centrality
range (5{50%) are also reported in table1.

Looking at the pT dependence in more detail, the 
ow harmonics are found to follow
an approximate power-law scaling up to around the maximum, with exponents being pro-
portional to the harmonic number n, vn (pT ) � pn=3

T , as shown by the dashed �tted lines in
�gure 3. In ideal hydrodynamics, the pT dependence of anisotropic 
ow for massive parti-
cles should follow a power-law functionvn (pT ) � pn

T in the region of pT =M up to order one,
where M is the particle's mass, and at higher momenta it has been predicted to be linear
in pT for all n, vn (pT ) � pT [53, 54]. This pT dependence is notably di�erent from the
one observed in the data. At very lowpT this is presumably because the relevant momen-
tum region for inclusive particles, mostly pions, is below the range of our measurements,
and at higher pT ideal hydro is not expected to hold because of momentum dependent
viscous corrections at freeze out [55] and/or non-linear mode mixing for n > 4 [20, 56].
The power-law dependence forn = 2 was noticed before and it was attributed to a novel
energy loss mechanism [57], which however cannot explain the scaling observed forn > 2.
The emergence of this simple power-law dependence remains unexpected and surprising.
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Figure 2 . Ratios of anisotropic 
ow coe�cients vn of inclusive charged particles between Pb{Pb
collisions at

p
sNN = 5 :02 and 2.76 TeV, as a function of centrality. Hydrodynamic calculations

employing di�erent �=s (T) parametrizations [18] are shown for comparison.

Figure 4 shows the pT -di�erential measurements of vn (n = 2 ; 3; 4) calculated with
the scalar product method with respect to V0A. The samepT and centrality range as in
�gure 3 is shown. A signi�cant v2f 2; j� � j > 2g is observed up topT � 40 GeV/c in the
centrality range 10{40%. vn f 2; j� � j > 2g and vn f 2; j� � j > 1g (n = 2 ; 3; 4) are found to be
compatible within 2% in the pT range 0:2 < p T < 10 GeV/c, while a systematic di�erence
(with v2f 2; j� � j > 1g > v 2f 2; j� � j > 2g) is observed for 10< p T < 50 GeV/c, ranging
from about 3% in centrality 0{5% to about 10% in centrality 40{50%. This di�erence
is attributed to small residual non-
ow contributions which are suppressed by the larger
pseudorapidity gap. Two-particle non-
ow contributions roughly scale as the inverse of
the multiplicity [ 2], which is consistent with the observed centrality dependence. Possible
di�erences among vn f 2; j� � j > 1g and vn f 2; j� � j > 2g (n = 2 ; 3; 4) arising from the
decorrelation of event planes at di�erent pseudorapidities have been estimated to be less
than 1% and 3% forv2 and v3� 4, respectively, based on� -dependent factorization ratios [58]
measured at 2.76 TeV [59]. This estimation assumes that such decorrelation only depends
on j� � j and not � in the pseudorapidity range under consideration (j� j < 5:1).

Figure 5 shows the ratios of pT -di�erential vn f 2; j� � j > 1g (n = 2 ; 3; 4) and v2f 4g
between

p
sNN = 5 :02 and 2:76 TeV. Overall, the ratios are consistent with unity, indicating

{ 8 {



JH
E

P
07(2018)103

n
v

3-
10

2-10

1-10

1
n/3

T
p = A nv 0-5%

n
v

3-
10

2-10

1-10

1

20-30%

)c (GeV/
T

p1 10

n
v

3-10

2-10

1-10

1

50-60%

1

1
5-10%

1

1

30-40%

)c (GeV/
T

p1 10

1

1

60-70%

1

1
10-20%

1

1

40-50%

5.02 TeV
|>1}hD{2,|2v

{4}2v
|>1}hD{2,|3v
|>1}hD{2,|4v
|>1}hD{2,|5v
|>1}hD{2,|6v

2.76 TeV

|>1}hD{2,|2v

{4}2v

|>1}hD{2,|3v

|>1}hD{2,|4v

|<0.8hALICE Pb-Pb, |

Figure 3 . Anisotropic 
ow coe�cients vn (pT ) of inclusive charged particles in di�erent centrality
classes, measured with two-particle (denoted withj� � j > 1) and four-particle cumulant methods.
Measurements for Pb{Pb collisions at

p
sNN = 5 :02 (2.76) TeV are shown by solid (open) markers.

Dashed lines are �ts with a power-law function vn (pT ) = A pn= 3
T , with A as free parameter.

that pT -di�erential anisotropic 
ow does not change signi�cantly across collision energies
and that the increase observed in thepT -integrated values can be mostly attributed to an
increase ofhpT i , as previously noted [49]. This observation is also consistent with little or
no variation of �=s between the two collision energies, as already shown in �gure2. The
possible variations inpT -integrated values arising from the di�erences in thepT -di�erential
ones have been estimated to be less than 1%, by integratingvn (pT ) at

p
sNN = 5 :02 (2:76)

TeV with charged particle spectra at 2.76 (5.02) TeV.

Figure 6 shows the comparison ofpT -di�erential 
ow measurements with di�erent
models, in three centrality intervals: 5{10% (top panel), 20{30% (middle panel) and 40{
50% (bottom panel). At low pT (pT < 2 GeV/ c), 
ow coe�cients are expected to be
mostly determined by the collective expansion of the system, which is commonly described
by hydrodynamic models. The measurements are compared to three calculations, one
employing IP-Glasma initial conditions [60] matched to the MUSIC viscous hydrodynamic
code [61] and two calculations using iEBE-VISHNU viscous hydrodynamic code [62] with
AMPT [ 63] or TRENTo [ 64] initial conditions. The parameters of TRENTo were tuned
to reproduce previous measurements in Pb{Pb collisions at

p
sNN = 2 :76 TeV [16]; with

such tuning TRENTo has been shown [64] to e�ectively mimic IP-Glasma initial conditions
and therefore the two calculations TRENTo+iEBE-VISHNU and IP-Glasma+MUSIC are
expected to be based on similar initial conditions. All models employ a transport cascade
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model (UrQMD [ 65]) to describe the hadronic phase after freeze-out. Compared to data, all
models are found to underestimate the data forpT < 0:5 GeV/ c. For 1 < p T < 2 GeV/ c the
predictions from IP-Glasma+MUSIC and TRENTo+iEBE-VISHNU overestimate the data,
while those from AMPT-IC+iEBE-VISHNU are found to be still in agreement. Overall, all
models qualitatively describe thepT dependence of 
ow coe�cients in this low pT range.

At high pT (pT > 10 GeV/c), azimuthal anisotropies are on the contrary expected to
be determined by path-length dependent parton energy-loss. The measurements are com-
pared to predictions from [66], which combine an event-by-event hydrodynamic description
of the medium (v-USPhydro [67]) with a jet quenching model (BBMG [ 68]). Two sets of
predictions for v2f 2g, v2f 4g and v3f 2g, assuming a linear (dE /d x � L ) and a quadratic
(dE /d x � L 2) dependence of the energy loss on the path lengthL , are compared to data.
Other parameters of the model, such as�=s , are expected to have a minor contribution
within the presented centrality ranges [66]. For v2f 2; j� � j > 2g, the linear case is compati-
ble with the data, while the quadratic one can be excluded within 95% con�dence level. For
v3f 2; j� � j > 2g, neither of the two sets of predictions can be excluded within uncertainties.
Our results are found to be in good agreement with CMS data [39].

The evolution of the shape ofpT -di�erential vn coe�cients with respect to centrality
is investigated by calculating the ratios of vn (pT ) in a given centrality range and vn (pT ) in
centrality 20{30%, normalised by the corresponding ratio ofpT -integrated vn

vn (pT )ratio to 20-30% =
vn (pT )

vn (pT )[20-30%]
vn [20-30%]

vn
: (3.1)

In order to reduce statistical 
uctuations, a parametrisation of vn (pT )[20-30%] �tted to data
is employed. If the shape ofvn (pT ) does not change with centrality, vn (pT )ratio to 20-30%

is identical to 1 in the full pT range. The results are shown in �gure7: deviations from
unity up to about 10% are observed at lowpT (pT < 3 GeV/ c) and up to about 30% at
intermediate pT (3 < p T < 6 GeV/ c), where vn (pT ) reaches its maximum. These variations
are observed to be larger for higher harmonics (v3� 4), in particular for central collisions.
The e�ects due to a change in particle composition of the inclusive charged particle sample
with centrality are estimated to be negligible. These deviations are attributed mostly to
the combined e�ect of radial 
ow and parton density which, in the coalescence model
picture [69], decrease from central to peripheral collision shifting the maximum ofvn (pT )
from higher to lower pT . At high pT (pT > 10 GeV/c), results on v2f 2; j� � j > 2g are
consistent with those at low pT , suggesting a common origin of the centrality evolution
of elliptic 
ow in the two regimes, presumably initial-state geometry and its 
uctuations.
This interpretation is consistent with the �ndings of [ 39]. The attribution of the scaling of
vn (pT ) up to pT = 8 GeV/ c to initial-state geometries agrees with studies [70, 71] using the
Event Shape Engineering technique [72] and pT -dependent elliptic 
ow 
uctuations [ 73].
Finally, the models using hydrodynamic calculations [62] and jet energy loss ones [66] are
observed to be in good agreement with thev2 data at low and high pT , respectively.

At RHIC [ 74, 75] and LHC [7] it had been observed that the ratios of harmonics follow
a power-law scaling, i.e.v1=n

n � v1=m
m , for semi-central and peripheral collisions up to about

6 GeV/ c and independent of the harmonic n and m. In order to test this scaling, we
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Figure 6 . Anisotropic 
ow coe�cients vn (pT ) of inclusive charged particles in di�erent centrality
classes, measured with two- and four-particle cumulant and scalar product methods with respect to
the V0A Q-vector, for Pb{Pb collisions at

p
sNN = 5 :02 TeV. Several hydrodynamic calculations [61,

62, 66] and previous measurements from CMS [39] are shown for comparison.
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Figure 7 . Ratios vn (pT )ratio to 20-30% of inclusive charged particles for Pb{Pb collisions at
p

sNN =
5:02 TeV, in di�erent centrality classes, measured with the scalar product method with respect to
the V0A Q-vector. Hydrodynamic calculations [62, 66] are shown for comparison.

use the ratios vn=vn=m
m which in practice are more sensitive thanv1=n

n � v1=m
m . Figure 8

shows these ratios forn = 3 ; 4 and m = 2 ; 3, as a function ofpT . These ratios are indeed
observed to be independent ofpT , in most of the pT range and for most centrality ranges,
except for centrality 0{5%. Up to about the maximum of vn (pT ), the scaling is numerically
related to, but actually signi�cantly more precise than, the observed approximate power-
law dependencesvn (pT ) � pn=3

T pointed out in �gure 3. Surprisingly however, the scaling
extends much further, in particular v3(pT )=v2(pT )3=2 is constant to better than about 10%,
out to the highest measuredpT in excess of 10 GeV/c. The ratio v4(pT )=v2(pT )4=2 shows
stronger deviations at high pT , starting at around the maximum of v2(pT ). A separation
of v4 into linear and non-linear components would be required to see if thev4=v2 scaling at
low pT , and/or its violations at high pT , is related to the mode mixing, which is particularly
strong for the 4th harmonic and at high pT , or possibly also to quark coalescence [53, 76, 77].

As noted in the context of �gure 3, the observed ratio scaling is not expected in ideal
hydrodynamics. While not all viscous hydrodynamical models shown in �gure6 describe
the data up to the highest pT very well, they all do exhibit the same power-law scaling in
the ratio of harmonics over the pT range 0:5 < p T < 3 GeV/ c, with a precision comparable
to the one seen in the data, while they strongly deviate forpT < 0:5 GeV/ c. The scaling
may be related to viscosity, as also postulated in [78, 79], in particular to the large and
pT -dependent viscous corrections appearing at hadronisation [55]. However, a harmonic
number dependence of these viscous corrections which could reproduce the scaling observed
in the data, has so far, to the best of our knowledge, never been quantitatively investigated.
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Figure 8 . Ratios vn (pT )=vm (pT )n=m ; n = 3 ; 4; m = 2 ; 3 of inclusive charged particles for Pb{Pb
collisions at

p
sNN = 5 :02, in di�erent centrality classes, measured with the scalar product method

with respect to the V0A Q-vector. Dashed lines represent averages in 0:2 < p T < 3 GeV/ c. The
ratios are also shown for one hydrodynamic model [62] in the four most central centrality intervals;
it is qualitatively similar in the other centrality intervals and for the other models.

4 Elliptic 
ow 
uctuations

Figure 9 shows the integrated v2 in the pT range 0:2 < p T < 3 GeV/ c as a function of
centrality, measured with two-, four-, six- and eight-particle cumulants at

p
sNN = 5 :02

and 2.76 TeV. The corresponding cumulants (c2f 2; 4; 6; 8g) are reported in �gure 10. The
centrality dependence is similar for all multi-particle cumulants and similar to what is
shown in �gure 1. The di�erences betweenv2f 2g (shown in �gure 9) and v2f 2; j� � j > 1g
(shown in �gure 1), which range from about 4% in mid-central collisions to about 20% in
peripheral ones, are mostly attributed to non-
ow contributions, which are suppressed in
the case of results with a pseudorapidity gap. The possible di�erences arising from the
decorrelation of event planes at di�erent pseudorapidities are expected to be less than 1%,
as previously argued.

A �ne-splitting of less than 1% is observed amongv2f 4g, v2f 6g and v2f 8g, as it can be
seen from their ratios, shown in �gure 11 for both collision energies. The ratiosv2f 6g=v2f 4g
and v2f 8g=v2f 4g at

p
sNN = 5 :02 TeV show a signi�cant centrality dependence: the devia-

tions of the ratios from unity is about 0.2% in central and increases up to about 1% for mid-
central collisions. A further increase seems to be observed for more peripheral collisions,
up to about 2% for centralities above 50%. The systematic uncertainties on these ratios
are greately reduced with respect to those onv2f mg (m = 2 ; 4; 6; 8), since the dominant
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Figure 9 . Elliptic 
ow coe�cient v2 of inclusive charged particles as a function of centrality,
measured with the two- and multi-particle cumulant methods. Measurements for Pb{Pb collisions
at

p
sNN = 5 :02 (2.76) TeV are shown by solid (open) markers.

sources of systematic uncertainty (track quality variables and centrality determination)
among the two- and multi-particle cumulants are highly correlated. This �ne-splitting is
consistent with non-Bessel-Gaussian behaviour of event-by-event 
ow 
uctuations, as pre-
viously explained. These ratios are found to be independent of the choice ofpT range within
0:2 < p T < 3 GeV/ c, indicating that the characterization of 
ow 
uctuations at low pT

does not depend onpT , even for such �ne-splitting. Results at
p

sNN = 2 :76 TeV are found
to be compatible, indicating that these ratios do not change signi�cantly across collision
energies. Compared to calculations [30] employing MC-Glauber initial conditions [ 80] and
viscous hydrodynamics (v-USPhydro) for Pb{Pb collisions at

p
sNN = 2 :76 TeV, the ratios

v2f 6g=v2f 4g and v2f 8g=v2f 4g are found to be compatible. A good agreement is found
between the results at

p
sNN = 2 :76 TeV and corresponding ATLAS results on elliptic 
ow

p.d.f. obtained via the unfolding technique [29], as shown in �gure 12.

Figure 13 shows the ratio betweenv2f 8g and v2f 6g at
p

sNN = 5 :02 TeV. A hint of
a further �ne-splitting between these two, of the order of 0:05%, is observed. The results
suggest little or no centrality dependence within centrality 10{50%. This di�erence is also
consistent with non-Bessel-Gaussian elliptic 
ow 
uctuations, and can be attributed to
di�erent contributions of the skewness to these higher-order cumulants [30]. Corresponding
results at

p
sNN = 2 :76 TeV, here and in the following, are not shown because of the

large statistical uncertainties. Figure 14 showsv2f 6g � v2f 8g and (v2f 4g � v2f 6g)=11 at
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Figure 10 . Cumulants c2 of elliptic 
ow of inclusive charged particles as a function of centrality,
for the two-particle and multi-particle cumulant methods. Measurements for Pb{Pb collisions at
p

sNN = 5 :02 (2.76) TeV are shown by solid (open) markers.

p
sNN = 5 :02 TeV: these two are observed to be in agreement, which demonstrates the

validity of eq. ( 1.8). This observation sets an upper limit of 4 � 10� 4 at 95% con�dence
level for possible contributions to multi-particle cumulants from higher moments of the

ow p.d.f. (kurtosis and beyond) in the centrality range 10{50%. This estimate is obtained
assuming gaussian systematic uncertainties and summing them in quadrature with the
statistical ones.

Figure 15 shows the measurement of the standardised skewness (
 exp
1 ) at

p
sNN =

5:02 TeV as a function of centrality. To suppress non-
ow contributions, the values of
v2f 2; j� � j > 1g from �gure 1 are used for v2f 2g in eq. (1.7). A negative value of the
skewness, with a strong centrality dependence, is observed:
 exp

1 decreases from zero in
central to about � 0:4 in peripheral collisions. Compared to model calculations [30] for
Pb{Pb collisions at

p
sNN = 2 :76 TeV, the results are found to be compatible for the
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Figure 11 . Ratios of elliptic 
ow coe�cients v2 of inclusive charged particles between measure-
ments with di�erent multi-particle cumulant methods, as a function of centrality. Measurements at
p

sNN = 5 :02 (2.76) TeV are shown by solid (open) markers.

Figure 12 . Ratios of elliptic 
ow coe�cients v2 of inclusive charged particles between measurements
with di�erent multi-particle cumulant methods, as a function of centrality, at

p
sNN = 2 :76 TeV.

Hydrodynamic calculations [30] and ATLAS measurements [29] are shown for comparison.
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Figure 13 . Ratio of elliptic 
ow coe�cients v2f 8g=v2f 6g of inclusive charged particles as a function
of centrality.

Figure 14 . Di�erences of elliptic 
ow coe�cients v2 of inclusive charged particles between mea-
surements with di�erent multi-particle cumulant methods, as a function of centrality.
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Figure 15 . Skewness of elliptic 
ow 
 exp
1 of inclusive charged particles as a function of centrality,

for Pb{Pb collisions at
p

sNN = 5 :02 TeV. Hydrodynamic calculations [30] for Pb{Pb collisions at
p

sNN = 2 :76 TeV are shown for comparison.

entire centrality range. This observation is consistent with the elliptic 
ow p.d.f. being
progressively more left-skewed going from central to peripheral collisions. We attribute
this feature to the combination of an increase inh"2i and the geometrical constrain"2 < 1,
as previously argued.

In order to report the full p.d.f. of elliptic 
ow P(v2), which can be compared to pre-
vious experimental results and theoretical predictions, it is parametrised with the Elliptic
Power distribution [ 26, 27]

P(v2) =
d"2

dv2
P("2) =

1
k2

P
�

v2

k2

�
=

2�v 2

�k 2
2

(1 � "2
0) � +1 =2

Z �

0

(1 � v2
2=k2

2) � � 1

(1 � v2"0 cos'=k 2)2� +1 d';

(4.1)
and its three free parameters (� , "0 and k2) are extracted from �ts to the elliptic 
ow
cumulants c2f 2; j� � j > 1g and c2f mg (m = 4 ; 6; 8) at

p
sNN = 5 :02 TeV. The parameter

� quanti�es the magnitude of elliptic 
ow 
uctuations, "0 the mean eccentricity in the
reaction plane andk2 is the proportionality coe�cient between initial-state eccentricity and
v2 coe�cient: v2 = k2"2. The relation between cumulants and Elliptic Power parameters
is given by [27]

c2f 2g = k2
2 (1 � f 1) ; (4.2)

c2f 4g = � k4
2

�
1 � 2 f 1 + 2 f 2

1 � f 2
�

; (4.3)

c2f 6g = k6
2

�
4 + 18 f 2

1 � 12f 3
1 + 12f 1 (3f 2 � 1) � 6 f 2 � f 3

�
; (4.4)

c2f 8g = � k8
2 (33 � 288f 3

1 + 144 f 4
1 � 66f 2 + 18 f 2

2 � 24f 2
1 (� 11 + 6 f 2)

� 12f 3 + 4 f 1(� 33 + 42 f 2 + 4 f 3) � f 4) (4.5)
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Figure 16 . Elliptic power parameters k2, � and "0 as a function of centrality, for Pb{Pb collisions
at

p
sNN = 5 :02 TeV, extracted from measurements ofv2 of inclusive charged particles with two-

particle and multi-particle cumulant methods.

where

f k � h (1 � "2
n )k i =

�
� + k

(1 � "2
0)k

2F1

�
k +

1
2

; k; � + k + 1 ; "2
0

�
(4.6)

and 2F1 is the hypergeometric function. The results are shown in �gure16. The systematic
uncertainties are assigned varying the �t ranges and initial values of the parameters and
shifting the data points according to the corresponding systematic uncertainties. An addi-
tional source of uncertainty, which is investigated, is a possible cubic response coe�cient
k0

2, de�ned as v2 = k2"2 + k0
2"3

2. This coe�cient is introduced to quantify the possible
increase of 
ow 
uctuations that the hydrodynamic expansion of the medium introduces
with respect to geometrical 
uctuations in the initial state and was argued to be non-zero
in mid-central and peripheral collisions due to general properties of the hydrodynamic
phase [81]. In particular, k0

2 is expected to be� 0:15 in the centrality range 0{60% [81].
The residual di�erences in � , "0 and k2 when including k0

2 as an additional free parameter
are considered in the systematic uncertainties. The statistical uncertainties are evaluated
using the subsampling method: the analysed dataset is divided into 10 sub-samples and
v2f mg is measured in each of them. The Elliptic Power parameters are then extracted in
each subsample and their dispersion is used to estimate the statistical uncertainties.

The resulting p.d.f., constructed using the Elliptic Power distribution (eq. ( 4.1)) with
the parameters shown in �gure 16 and scaled by its mean (hv2i ), is reported in �gure 17, for
centralities 5{10%, 25{30% and 45{50%. The systematic uncertainties take into account
the correlation of the uncertainties of the Elliptic Power parameters. Other centrality
ranges that are not shown here are reported in the appendixA. Scaling by hv2i allows a
comparison of our data with results by the ATLAS collaboration [70] obtained in di�erent
pT ranges. The observed agreement is also consistent, as previously noted, with elliptic

ow 
uctuations at low pT not depending on pT and not changing signi�cantly between
collision energies, except for the trivial increase inpT -integrated v2 due to the change
in hpT i . Comparison with iEBE-VISHNU model calculations with AMPT and TRENTo
initial conditions [ 62] indicates that TRENTo initial conditions are better at describing
the experimental data. The data are found to be in agreement also with predictions from
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Figure 17 . Elliptic 
ow p.d.f. P(v2) rescaled by the meanv2 (hv2i ) of inclusive charged particles
for Pb{Pb collisions at

p
sNN = 5 :02 TeV, in di�erent centrality classes. Several hydrodynamic

calculations [61, 62] and previous measurements from ATLAS [70] at lower energies are shown for
comparison.

the IP-Glasma+MUSIC model [61] (with initial conditions very similar to the TRENTo
ones), although the uncertainties on the theoretical predictions do not allow to draw �rm
conclusions.

5 Conclusions

Anisotropic 
ow coe�cients are measured up to the sixth harmonic for inclusive charged
particles at mid-rapidity ( j� j < 0:8), in a wide centrality (0{80%) and pT (0:2 < p T <
50 GeV/c) ranges, for Pb{Pb collisions at

p
sNN = 5.02 and 2.76 TeV. Comparing the re-

sults at
p

sNN = 5.02 and 2.76 TeV the energy dependence of anisotropic 
ow at the LHC is
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investigated. Comparison with di�erent model calculations demonstrates that these mea-
surements have the potential to constrain initial-state 
uctuations, transport parameters of
the medium and path-length dependence of energy loss of high-pT partons. The evolution
of vn (pT ) with respect to centrality and harmonic number n is also investigated. Flow
coe�cient of all harmonics are observed to follow an approximate power-law scaling of the
form vn (pT ) � pn=3

T in the pT range 0:2 < p T < 3 GeV/ c. The ratios vn=vn=m
m n = 3 ; 4 and

m = 2 ; 3 are also observed to be independent ofpT within the same pT range and show
deviations of about 10% for 3< p T < 10 GeV/c.

The 
uctuations of elliptic 
ow are investigated through the �ne-splitting of the higher-
order multi-particle cumulants ( v2f 4g, v2f 6g, v2f 8g), from which the standardised skewness
(
 exp

1 ) of the 
ow p.d.f. is extracted. Results are found to be compatible both with predic-
tions from hydrodynamical models and with previous ATLAS results at lower energies. It
is concluded that the characterization of elliptic 
ow 
uctuations at low pT does not de-
pend on the pT range and on the collision energy, except for the increase inpT -integrated
v2 due to the change inhpT i . Direct constraints on the contribution of higher moments
to the multi-particle cumulants are also reported. Finally, the full elliptic 
ow p.d.f.,
parametrised with the Elliptic Power distribution, is reported in the centrality ranges 0{
60%. These results are also found to be in agreement with previous experimental results.
Overall, calculations including initial conditions matching the IP-Glasma description are
observed to better reproduce the elliptic 
ow p.d.f. while failing to describe the pT de-
pendence of anisotropic 
ow coe�cients, whereas the opposite situation is observed for
calculations that employ AMPT initial conditions.
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A Additional �gures

The elliptic 
ow p.d.f. P(v2), constructed as explained in section4, in the centrality ranges
not shown in �gure 17 are reported in �gure 18{ 20.

Figure 18 . Elliptic 
ow p.d.f. P(v2) rescaled byhv2i in centralities 0{5%, 10{15% and 15{20% for
Pb{Pb collisions at

p
sNN = 5 :02 TeV.

{ 24 {



JH
E

P
07(2018)103

Figure 19 . Elliptic 
ow p.d.f. P(v2) rescaled byhv2i in centralities 20{25%, 30{35% and 35{40%
for Pb{Pb collisions at

p
sNN = 5 :02 TeV.
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Figure 20 . Elliptic 
ow p.d.f. P(v2) rescaled byhv2i in centralities 40{45%, 50{55% and 55{60%
for Pb{Pb collisions at

p
sNN = 5 :02 TeV.
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