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ARTICLE

Emergence of superconductivity in the cuprates
via a universal percolation process
Damjan Pelc 1,5, Marija Vučković1,6, Mihael S. Grbić 1, Miroslav Požek 1, Guichuan Yu2, Takao Sasagawa3,

Martin Greven2 & Neven Barišić2,4

A pivotal step toward understanding unconventional superconductors would be to decipher

how superconductivity emerges from the unusual normal state. In the cuprates, traces of

superconducting pairing appear above the macroscopic transition temperature Tc, yet

extensive investigation has led to disparate conclusions. The main difficulty has been to

separate superconducting contributions from complex normal-state behaviour. Here we

avoid this problem by measuring nonlinear conductivity, an observable that is zero in the

normal state. We uncover for several representative cuprates that the nonlinear conductivity

vanishes exponentially above Tc, both with temperature and magnetic field, and exhibits

temperature-scaling characterized by a universal scale Ξ0. Attempts to model the response

with standard Ginzburg-Landau theory are systematically unsuccessful. Instead, our findings

are captured by a simple percolation model that also explains other properties of the cup-

rates. We thus resolve a long-standing conundrum by showing that the superconducting

precursor in the cuprates is strongly affected by intrinsic inhomogeneity.
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Despite tremendous experimental and theoretical efforts
over the past three decades, the nature of the super-
conducting fluctuation regime of the cuprates remains

intensely debated1. Experimentally, the problem has been
approached using bulk probes, such as conductivity and other
transport properties in a wide frequency range2–13, magnetic
susceptibility3,14–16, surface sensitive probes17, local probes, such
as muon spin rotation18, and photoemission spectroscopy19,20.
Some studies point to the possible persistence of superconducting
pairing well above Tc, which has been taken as an indication of
preformed Cooper pairs related to the appearance of the pseu-
dogap13,21. Other studies indicate that traces of superconductivity
emerge at somewhat lower temperatures, and are most prominent
at moderate doping9,10,14. High pairing onset temperatures have
been related to exotic normal-state physics22,23 and to uncon-
ventional prepairing24,25, with profound consequences for the
mechanism of cuprate superconductivity. However, terahertz and
microwave conductivity2,5,6,11,12 as well as magnetometry
experiments15,16 consistently detect superconducting contribu-
tions only near Tc, irrespective of doping. The resolution of this
puzzle would be a crucial step toward understanding the high-Tc
cuprates.

However, in previous experiments it has often been difficult to
reliably establish the nonsuperconducting normal-state con-
tribution in order to extract a superconducting signal. Typical
approaches involve the extrapolation of high-temperature beha-
vior or the suppression of superconductivity by a magnetic field.
The situation is further convoluted due to the complexity of the
cuprate phase diagram, which features a doping-dependent
pseudogap, as well as universal and compound-specific ordering
tendencies that manifest themselves differently in different
experimental observables1. The presence of various kinds of
disorder in these complex oxides poses yet another complica-
tion26. Data are often discussed assuming preformed Cooper
pairs in an extended temperature range9,10,14, or analyzed within
the Ginzburg–Landau (GL) framework with possible corrections
to the original mean-field theory3,4,7,8,12; yet this has not resulted
in a unified picture.

The absence of any discernible signal due to non-
superconducting contributions renders the nonlinear con-
ductivity technique uniquely suitable to study and model
superconductivity emergence. We apply this probe to a number
of cuprate families and a variety of experimental conditions. The
measurements unambiguously show that the superconducting
precursor is limited to a narrow temperature range above Tc,
which rules out extended fluctuations and prepairing regimes.
Importantly, we find that the superconductivity emergence range
is not controlled by Tc, a crucial qualitative feature of GL theory,
but rather by a scale Ξ0 that is nearly independent of compound
and doping (in the studied doping range p= 0.08–0.19). This
robust experimental finding is an important step toward under-
standing cuprate superconductivity, as it places strong constraints
on any theory. We then use a simple model to explain the data:
the superconducting gap is known to be spatially inhomogeneous,
which results in a distribution of local transition temperatures
and naturally leads to percolation. Percolation, and the scale-free
fractal structures that emerge from it, is a well-known and ubi-
quitous phenomenon: first investigated in the context of polymer
growth, it has since been formulated as a mathematical concept
and applied to systems as diverse as random resistor networks,
organic molecular gels, dilute magnets, the spread of diseases, and
the large-scale structure of the universe27,28. The basic ingredient
in percolation theory is inhomogeneity, and we find that evoking
Tc inhomogeneity is essential to understand superconductivity
emergence in the cuprates. Remarkably, the minimal percolation
model that we employ is sufficient to capture the observed

unusual exponential temperature- and magnetic-field depen-
dences of the nonlinear conductivity. We also report com-
plementary linear conductivity measurements and take a fresh
look at prior experimental results (torque magnetometry15,
resistivity7, Seebeck coefficient8, specific heat29, and tomographic
density of states19), to demonstrate that the emergence of
superconductivity can be consistently explained with this mini-
mal model. Finally, the universal scale Ξ0 is shown to be a direct
measure of the superconducting gap distribution width. The
underlying inhomogeneity therefore is unrelated to material
details, and must be an intrinsic, generic feature of cuprate
superconductors.

Results
Nonlinear response. Nonlinear planar response, for current flow
along the CuO2 planes, is measured with a sensitive contact-free
method30 (see Methods). The response can be analyzed by
decomposing the signal into harmonics,

J ¼ σ1K þ σ2K
2 þ σ3K

3 þ ¼ ; ð1Þ

where J is the response of the sample to an external field K
(electric or magnetic), σ1 the linear response tensor, and σ2, σ3,
etc., the correction nonlinear tensors. Here, we discuss the third
harmonic σ3, the lowest-order conventional correction to the
linear response (the second-harmonic σ2 can only appear if time
reversal or inversion symmetry is broken31 and is not discussed
here). In any alternating-field experiment, magnetic and electric
fields are related, and therefore it is arbitrary if one designates the
signal at frequency 3ω as proportional to nonlinear conductivity
or (complex) susceptibility. Complementary linear conductivity
measurements are performed with a microwave cavity perturba-
tion technique (see Methods).

Temperature dependence. Measurements of the in-plane
linear and nonlinear response were performed for three repre-
sentative cuprate families: a nearly optimally doped sample of
HgBa2CuO4+δ (Hg1201), a model cuprate system due to its
simple structure, high Tc, and minimal point disorder effects32–35;
an optimally doped YBa2Cu3O7−δ (YBCO) sample with 3% of Cu
substituted by Zn (YBCO–Zn), where Zn dramatically affects the
superconducting properties36; and La2−xSrxCuO4 (LSCO), span-
ning a wide range of doping across the superconducting dome
(see Table 1). For all samples, σ3 exhibits qualitatively the same
temperature dependence (Fig. 1a and Supplementary Figure 1):
no signal at high temperatures, a peak at a temperature that we
designate as Tc, consistent with previous work (see Methods), and
a step-like feature below Tc. The signal magnitude depends on
sample size and shape, and thus is normalized to the peak value.

Table 1 Normal state and superconducting properties of the
investigated samples

Sample doping level p Tc (K) Ξ0 (K)

Hg1201 0.14 94.0 25.1 ± 1.4
LSCO-0.08 0.08 17.3 29.9 ± 1.4
LSCO-0.125 0.125 31.0 28.2 ± 0.9
LSCO-0.15 0.15 37.2 28.6 ± 0.2
LSCO-0.19 0.19 30.1 29.3 ± 1.5
YBCO-Zn 0.15 60.2 26.1 ± 0.6

For LSCO, p= x, whereas for Hg1201 and YBCO–Zn, the estimate is based on the findings in refs.
32,36, respectively. As described in the text, Tc corresponds to the peak in the nonlinear
conductivity; we estimate the error to be less than 1%. Ξ0 is obtained from nonlinear
conductivity using a 3D site-percolation model. The uncertainties are from fits to the percolation
calculation
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We note that Tc as obtained from σ3 agrees with the temperature
of the peak in the real part of the linear microwave conductivity,
which in turn corresponds to the value determined from mag-
netic susceptibility measurements12.

The measurements clearly show that the nonlinear response
decays quickly above Tc, which demonstrates the absence of
extended fluctuations. Some previous investigations suggested
agreement between experiments and GL theory (with various
modifications to the theory4,7,8,12) for particular cuprate com-
pounds at particular doping levels; in line with these investiga-
tions, we have attempted to analyze our results within the GL
framework. Within this framework, we would expect an
approximately power-law temperature dependence of σ3 (see
ref. 37 and Methods), and a scaling of the data for different
compounds with the characteristic scale Tc. Figure 1b shows our
nonlinear conductivity data in dependence on the GL-reduced

temperature ln(T/Tc) compared to a calculation of σ3 using
anisotropic GL theory beyond mean field (see Methods), similar
to ref. 12. The theory predicts a temperature dependence of σ3 that
is clearly incompatible with experiment; the agreement cannot be
improved by any tuning of the parameters, such as a different
definition of Tc (see Supplementary Figure 2). Even more
importantly, the expected scaling is absent: Tc is not the
characteristic temperature scale for superconductivity emergence.
The scaling argument is valid regardless of the manner in which
GL theory is modified. However, the data are remarkably similar
on an absolute temperature scale: a simple shift by a sample-
dependent temperature Tπ (that is slightly larger than Tc) leads to
the data collapse shown in Fig. 1c. This implies that a mechanism
that gives rise to approximately exponential behavior with a single
temperature scale Ξ0 underlies the emergence of superconductiv-
ity. A similar exponential dependence can also be deduced from
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Fig. 1 Temperature dependence of in-plane linear and nonlinear response in the cuprates. a Nonlinear conductivity σ3n (σ3 normalized to its peak value,
which corresponds to the bulk Tc indicated by arrows) for three representative samples close to optimal hole doping: Hg1201, YBCO–Zn, and LSCO-0.15
(x= 0.15). b Nonlinear conductivity vs. Ginzburg–Landau reduced temperature ln(T/Tc), which demonstrates that Tc is not the common scale for
superconductivity emergence. Dotted line is the GL prediction (see Methods). c σ3n shifted by a sample-dependent temperature Tπ collapses to a single
curve. This demonstrates the existence of a universal emergence temperature/energy scale. Tc is indicated by arrows (LSCO-0.15, LSCO-0.19, and LSCO-
0.08 have indistinguishable Tc values on this scale; Tc for LSCO-0.125 is at T− Tπ=−4.5 K). Orange line is the prediction of the simple site-percolation
model discussed in the text. Inset: linear conductivity of Hg1201 and LSCO-0.15 along with the model prediction. d Phase diagram of LSCO with the
characteristic temperatures below which the superconducting response is first resolved in both linear (microwave—MW) and nonlinear conductivity;
errors are determined from the root-mean square noise level and are within the symbol size. These temperatures are significantly different despite the
similar signal-to-noise ratio of ~103 (at Tc), consistent with the percolation model. The positions of the peaks in σ3n and in the real part of σ1 give consistent
Tc values. Error bars for Tc are given by the error of the peak temperature determination (and are within the symbol size for σ3n). Lines are guides to the
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linear conductivity (inset in Fig. 1c) and torque magnetometry15

experiments, indicating its robustness. Clearly a framework other
than GL is needed to explain the data.

Since nanoscale electronic inhomogeneity is well documented
in the cuprates, e.g., from nuclear magnetic resonance38–40 and
scanning tunneling microscopy (STM)17,41 measurements, we
now attempt to gain understanding through a simple percolation
model. The basic ingredient of the model is spatial inhomogeneity
of local superconducting gaps, with a distribution width that is
characterized by the scale kBΞ0. This distribution corresponds to
superconducting patches that proliferate upon cooling, and
macroscopic superconductivity then emerges via a percolative
process42,43. We calculate the response assuming nearest-
neighbor site percolation, although the result does not critically
depend on the details of the scenario (see Methods). For
simplicity, we take the material to be made of perfectly connected
square or cubic patches that are either nonsuperconducting, with
a normal resistance Rn, or superconducting, with a nonlinear
resistance Rs(j) that depends on the current through the patch j
(see Methods). Since we normalize the experimental nonlinear
conductivity, we can also normalize the resistances by taking
Rn= 1. The fraction P of superconducting patches depends on
temperature: P → 0 at high temperatures and P → 1 well below Tc.
At the critical concentration Pπ, the system percolates—a
connected, sample-spanning superconducting cluster is formed.
Pπ only depends on the dimensionality of the system27 and on the
details of the percolation scenario (e.g., site vs. bond percolation),
and it corresponds to the temperature Tπ that can be viewed
as the “true” underlying resistive Tc in the limit of small currents.
In principle, the full temperature dependence of P can be
obtained from the underlying gap distribution, but the distribu-
tion must be known (or assumed). However, to lowest order, any
reasonable distribution yields a linear dependence of P on
temperature close to Pπ (see Fig. 2). We, therefore, approximate
Pπ− P= (T− Tπ)/Ξ0. The temperature-dependent linear and
nonlinear responses are then obtained via an effective medium
calculation (see Methods), which yields functions that decay
nearly exponentially, in very good agreement with the experi-
mental σ3 and σ1 (Fig. 1c). Within the nearest-neighbor site-

percolation model, two values of Pπ are possible: ≈0.3 for three-
dimensional (3D) and ≈0.6 for two-dimensional (2D) percolation.
Better agreement is obtained with Pπ ≈ 0.3 (see Supplementary
Figure 3), which suggests essentially 3D superconductivity
emergence27 in the samples studied here. We note that we study
the in-plane response, and thus the only role of inter-plane
coupling in the percolation model is to determine the effective
dimensionality, and hence the percolation threshold.

For Pπ ≈ 0.3, the resultant characteristic scale Ξ0 lies in a
narrow range for all investigated samples (see Table 1), Ξ0= 27 ±
2 K, and hence is de facto universal (the stated uncertainty is 1 s.
d. from the mean of the data in Table 1). If we assume 2D
percolation and Pπ ≈ 0.6, the agreement between σ3 and σ1 is not
as good, and the corresponding Ξ0 is smaller by about a factor of
two. We emphasize that the calculated σ3 is effectively insensitive
to model details such as the parameters of the patch nonlinear
response Rs, rendering Ξ0 the sole parameter (within a given
percolation model). This insensitivity to specifics is a consequence
of percolation physics, where model details are unimportant close
to the threshold and the response of the largest clusters
dominates.

An important feature can be inferred from the comparison of
linear and nonlinear response. Within the effective medium
calculation, the linear conductivity determines the net current
through the sample, given an applied electric field. Yet the
nonlinear resistance of the superconducting patches, Rs, is current
dependent. The third-harmonic signal therefore depends on the
third power of the current (to lowest order), which implies that
σ3 α σ13. This is indeed borne out by experiment, as seen in
Fig. 1d. In contrast, in GL theory both responses are determined
by the electric field, and their ratio has a more complex
temperature dependence (see ref. 37 and Methods). The apparent
characteristic temperature scales for σ3 and σ1, therefore differ
because of the nonlinear nature of σ3, but the underlying scale Ξ0,
which determines the range of superconducting pairing emer-
gence, is the same for both responses. This also implies that the
superconducting contribution to the linear response should be
discernable up to significantly higher temperatures than the
nonlinear part, if the experimental signal-to-noise ratios are
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similar. Measurements throughout the phase diagram of LSCO
consistently confirm this trend (Fig. 1d), which strongly supports
the percolation model.

Magnetic-field effect. As a further test of the model, we inves-
tigate the influence of an external magnetic field on the emer-
gence regime. Although the quantitative effects of a magnetic field
are difficult to determine within our simple effective medium
approach, we can make qualitative predictions. One would expect
the field to greatly influence the superconducting percolation
process. Both the critical current of a superconducting patch and
the number of patches decrease with increasing field. Above a
characteristic field H0, the critical currents of all patches are small,
except for the sample-spanning cluster at temperatures below Tπ.
At fields significantly above H0, the nonlinear response should
therefore only exhibit a step-like feature close to Tπ. Furthermore,
H0 is related to the macroscopic critical field Hc2, as both fields
are determined by the underlying superfluid stiffness: H0

describes the properties of the finite-sized clusters below and
above Tπ, whereas Hc2 pertains to the sample-spanning cluster
below Tπ. In agreement with these expectations, we find that an
external magnetic field strongly suppresses the nonlinear
response, rendering it step-shaped far above H0 (Fig. 3a). Once
the high-field step-like response is subtracted (see Supplementary
Note 4 and Supplementary Figure 5), the data for all samples
exhibit universal scaling (Fig. 3b). We apply the same effective
medium calculation as for the temperature dependence, assuming
a phenomenological power-law dependence of the effective patch
critical current on H/H0 (see Supplementary Note 4 and Sup-
plementary Figure 4), and find good agreement with experiment
(Fig. 3b). For H >>H0, only large superconducting clusters sur-
vive. Since the cluster-size distribution in any percolation model
is generally exponential for the largest clusters27, this leads to an
exponential-like field dependence of the high-field response, as
also observed in prior torque measurements15.

H0 is about two orders of magnitude smaller than Hc2,
consistent with the percolation scenario, since H0 is a property of
the average (small) cluster. As seen from Fig. 3b, the doping
dependencies of the two characteristic fields are remarkably
similar, including a minimum close to the “1/8 anomaly” of

LSCO and YBCO8,44,45. The substitution of 3% Cu with Zn in
YBCO causes a dramatic decrease of H0, in agreement with
established effects of Zn on superconductivity in cuprates36.

Discussion
Previous reports suggest that percolation processes might play a
role in understanding the properties of the cuprates42 (see also
Supplementary Note 3). However, our work demonstrates for the
first time that a universal percolation process can describe the
prepairing regime. The percolation picture is in excellent agree-
ment with the temperature and magnetic field dependencies of σ1
and σ3, and one would expect it to provide an explanation of
other experimental results as well. Qualitatively, several previous
studies indicate that the superconducting precursor appears
within a roughly constant temperature range above Tc, similar to
Fig. 1d; this is visible, e.g., in high-frequency conductivity mea-
surements6,11,12, specific heat results46, and resistivity curvature
plots47. More quantitatively, Fig. 4 demonstrates the similarity of
superconducting precursor in several observables. An exponential
tail is observed in the dc conductivity7 of YBCO at various hole
doping levels, with a universal slope (Fig. 4b). Notably, YBCO in
particular is structurally complex, with alternating CuO2 planes
and CuO chains whose filling depends on oxygen concentration;
the exponential behaviour, however, is robust and does not
depend on the arrangement of the chains. The Nernst effect8

in Eu-LSCO shows an exponential dependence as well (Fig. 4c).
Although this measurement can be described by 2D Gaussian
theory close to Tc, where corrections to the simple percolation
picture are expected, once the data are plotted on an absolute
temperature scale, the exponential tail is apparent and reveals the
same underlying temperature/energy scale Ξ0. Torque magneto-
metry measurements on several cuprate families, including
underdoped LSCO, bismuth cuprates and Hg120115, as well as
YBCO16, exhibit both an exponential signal decrease above Tc
(Fig. 4d) and a universal temperature scale Td. The exponential
dependences at temperatures well above Tc are a consequence of
the tail of the superconducting gap distribution, and for σ1 and σ3
the effective medium calculation smoothly continues this
dependence down to Tc. Finally, roughly exponential tails are
observed above Tc in specific heat studies26,46,48; it is possible to
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calculate this within the percolation model by convoluting the
mean-field specific heat step at Tc with the gap distribution
function (see Methods). This procedure yields agreement with
experiment and reveals a scale Ξ0 similar to that obtained from
conductivity (Fig. 4e). Notably, critical fluctuations are observed
in the specific heat close to the macroscopic Tc, which could be
also important for other observables in a small temperature range
around Tc.

We note that the percolation model discussed here is somewhat
different from the standard textbook case, in that both the normal
and percolating (superconducting) patches have nonzero con-
ductivity. Therefore, instead of a discontinuity at Tπ and power-
law behavior above the percolation temperature (that is predicted
if one of the phases is insulating27), the calculation yields smooth
exponential-like behavior. Yet the underlying distribution of
superconducting cluster sizes should still be scale-free (i.e., follow
a power law) close to the percolation threshold. A signature of this
might be observed with other experimental probes, e.g., recent
optical pump-probe experiments49 uncovered hitherto unex-
plained power-law superconducting correlations above Tc.

We emphasize that the heterogeneity that gives rise to super-
conducting percolation is qualitatively different from the disorder
discussed previously in the context of “dirty” and granular

superconductors50–53, and from inhomogeneity induced by
doping. In alloys50 and films51,52, the electronic mean-free path is
extremely shortened by scatterers, while in granular materials
differing Josephson couplings between granules cause super-
conducting percolation50. Yet here we find that nanoscale gap
inhomogeneity is crucial: the superconducting gap, and hence the
local Tc displays spatial variations and causes the percolation we
observe. Related gap disorder (on scales much larger than the
superconducting coherence length) has been employed previously
in modeling the magnetization of select cuprate and other
superconductors53, but not applied universally or used to calcu-
late transport properties. Inhomogeneity and a residual zero-
temperature component of uncondensed carriers has been shown
to be essential to understand low-temperature superfluid density
and optical response of several cuprates54. Spatial gap inhomo-
geneity also naturally explains the gap filling recently observed in
a tomographic density-of-states photoemission experiment19. As
demonstrated in Fig. 4f, g, a quantitative description of this result
can be obtained simply by positing that the measured density of
states is an average over spatial regions with inhomogeneous
gaps, again with a distribution width of kBΞ0 ~ 3 meV, which
further supports the percolation scenario (see Methods for
details).

100

104
101

100

10–1

10–2

10–3

103

102

Δσ
D

C
 (

10
3  (

Ω
m

)–1
)

Δγ
 (

m
J 

g–1
 a

t. 
K

2 )

101

100

10–1

101

1.4

1.2

1.0

Δ H
χ to

rq
ue

 / 
χ25

0 
k

to
rq

ue

0.8 1.53 Tc

1.04 Tc

0.98 Tc

0.87 Tc

0.76 Tc

0.65 Tc

0.54 Tc

0.6

0.4

0.2

0
–0.03 –0.02 –0.01

Frequency (eV) Frequency (eV)

0 0.01 –0.03 –0.02 –0.01 0 0.01

100

10–1

10–2

10–3

LSCO x = 0.15

Eu-LSCO x = 0.11 Hg1201 Tc = 67 K

Noise floor

GL

YBCI Tc = 57 k

YBCO Tc = 85 k

YBCO Tc = 93 k

10–1

� 3n

10–2

10–3

100

10–1

S
ee

be
ck

 c
oe

ffi
ci

en
t

10–2

10–3

0 2 4 6 8 10 12 14 16 18 20 60 70 80 90 100 110 120 130

–3 –2 –1 0

T - Tπ (K) T - Tπ (K)

1 2 3 –20 0 20 40 60 40 60 80

Temperature (K)

Temperature (K) Temperature (K)

100 120 140

1.2

1.0

S
pe

ct
ra

l w
ei

gh
t

0.8

0.6

0.4

0.2

0

1.4

a

c d f g

b e

Fig. 4 Universal percolation physics in the cuprates. a–d Four different experimental probes show qualitatively similar non-GL behavior (full lines) above Tc:
a nonlinear conductivity of optimally doped LSCO (this work); b superconducting contribution to DC conductivity of YBCO, adapted from ref. 7; c Seebeck
coefficient of europium co-doped LSCO (x= 0.11) adapted from ref. 8—the dotted line is the 2D GL prediction valid within 2 K of Tc; d torque
magnetometry in underdoped Hg1201 (Tc= 67 K)—the dashed line indicates the noise floor. Adapted with permission from Yu et al.15. The decay
constants of different observables are proportional to the universal scale Ξ0, but with different prefactors that can be directly calculated from the suggested
model (see Methods). e Specific heat coefficient. The orange circles are measured values of the superconducting contribution to the specific heat
coefficient, Δγ, for Y0.8Ca0.2Ba2Cu3O6.75 (from ref. 29), and the dashed line is a calculation that convolutes a mean-field step in γ at the local Tc with a
Gaussian distribution of Tc. The line is obtained with a distribution width of 35 K, similar to the value of Ξ0; it is similar to the dashed line in Fig. 2a, since in
a mean-field picture the specific heat essentially measures the superconducting fraction above Tc. The measurements also show a fluctuation peak around
Tc, which is not included in the calculation. f Measured tomographic density of states for optimally doped Bi2Sr2CaCu2O8+x reproduced from ref. 19, with
permission from APS. g Calculated density of states, assuming a Gaussian gap distribution with full width of 3.2 meV (see Methods). In a–d the lines are
not the result of a direct calculation, but rather highlight pure exponential decay
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Perhaps the most unexpected result of our study, which covers
the doping range from the very underdoped (p= 0.08) to the
overdoped (p= 0.19) part of the phase diagram, is the existence
of a (nearly) doping- and sample-independent percolation scale
Ξ0, which implies a common intrinsic origin of the gap inho-
mogeneity in all cuprates, irrespective of material details. Doping
does not significantly alter this scale, but affects the macroscopic
Tc or, equivalently, the critical percolation temperature. Several
distinct types of disorder are generally present in the cuprates: the
lamellar structure is intrinsically frustrated, which causes struc-
tural inhomogeneity; the hole doping process introduces defects
into the crystal structure; and doping a strongly correlated elec-
tronic system may induce electronic frustration and inhomo-
geneity. These different kinds of disorder are typically compound
and doping dependent26,55, and various experimental techniques
have been used to study them. Residual resistivity, a measure of
point disorder, is compound-dependent, and can be very small in
cuprates such as Hg120133,34. Furthermore, quantum oscillation
experiments point to a high degree of doping (hole concentra-
tion) homogeneity in oxygen-doped compounds such as
Hg120135, thallium cuprates56, and YBCO57. However, this does
not preclude nanoscale electronic inhomogeneity unrelated to
point disorder. This reasoning is supported by the fact that we
find consistent results for distinctly different cuprates26: Hg1201,
where doping-related point disorder resides relatively far away
from the CuO2 planes; LSCO, which exhibits considerable (La/Sr)
point disorder in close proximity to the CuO2 planes; and
YBCO–Zn, where Zn directly introduces point disorder within
the CuO2 plane.

The cuprates also appear to exhibit inherent structural inho-
mogeneity, an elegant demonstration of which comes from con-
ductivity and hydrostatic relaxation experiments that show
stretched exponential behavior characteristic of glassy materials55.
Moreover, X-ray experiments find complex fractal interstitial-
oxygen-dopant structures linked to percolative super-
conductivity58. Local electrostatic disorder has been studied via
nuclear quadrupole resonance and revealed that LSCO and Bi-
based compounds exhibit higher levels of such disorder38,59 than
oxygen-doped cuprates such as Hg1201 and YBCO, where the
dopant atoms reside far from the CuO2 planes39,40. Importantly,
however, none of these experiments directly detect super-
conducting gap disorder, making it difficult to establish a rela-
tionship between electrostatic/doping inhomogeneities and
superconducting gap distributions. STM does probe local gap
distributions on the sample surface, but has been applied only to a
select number of cuprates, and it is not trivial to separate the
superconducting gap from the more inhomogeneous higher-
energy (pseudo)gap17. We emphasize that the gap distribution
(with width kBΞ0) relevant for our model likely is not precisely the
same as the gap distribution seen by STM, but rather a coarse-
grained distribution of mean local gaps (averaged over the local
superconducting coherence lengths). Moreover, we expect the
distribution to be effectively narrower below Tc because of
proximity effects, i.e., large-gap superconducting regions may
induce a gap in neighboring regions. Nevertheless, STM clearly
reveals disorder structures in both underdoped and overdoped41

Bi2Sr2CaCu2O8+δ, and extended analysis shows a correlation
between the presence of inhomogeneous high-energy gaps and
superconductivity60. A recent phenomenological model61 based
on inhomogeneous, temperature and doping dependent (de)
localization of one hole per primitive cell can explain the main
features of the cuprate phase diagram and superconductivity. It is
conceivable that a universal scale kBΞ0 emerges via a complex
renormalization of these high-energy localization gaps61 (see also
Supplementary Note 3). In this case, the gap disorder would not
necessarily be related to any local doping inhomogeneity: the

material may be homogeneously doped, yet possess an underlying
gap distribution.

The existence of exponential behavior with a universal scale Ξ0
also shows that expected GL superconducting fluctuations are
considerably weaker than inhomogeneity effects. Conversely, if
GL fluctuations were important, the simple percolation model
with a single Ξ0 would not describe the measurements. This
furthermore points to 3D percolation—except perhaps in the
special case of strong stripe correlations in La-based cuprates8,62

such as La1.875Ba0.125CuO4 and La1.8−xEu0.2SrxCuO4 (see Sup-
plementary Note 2)—since the strong vortex–antivortex fluctua-
tions expected in the 2D case should significantly broaden the
onset of superconductivity.

To conclude, we have employed a new approach to the cuprate
prepairing problem by studying nonlinear conductivity. The
unexpected scaling of nonlinear and linear conductivity for
widely different cuprates constitutes a benchmark result for any
theory of superconducting prepairing in these materials. Taking
into account the well-established fact that significant gap inho-
mogeneity is present in the cuprates, we have provided a simple
framework in which inhomogeneity plays a pivotal role. Our
results thus show that intrinsic and universal superconducting
gap inhomogeneity is highly relevant to understanding the
superconducting properties of the cuprates.

Methods
Samples. The Hg1201 and LSCO samples are single crystals of well-established
high quality used in previous work63,64 with volumes of about 1 mm3. Hg1201 is
grown using an encapsulation method, while LSCO crystals are grown in a tra-
veling floating zone furnace. YBCO–Zn is an oriented powder sample with 3% Cu
substituted with Zn, which enables us to discern effects of intentionally introduced
CuO2 plane disorder. This sample was prepared using a standard solid-state
reaction, used in prior Zn nuclear quadrupole resonance experiments and char-
acterized in detail36. See Table 1 for additional sample information.

Linear and nonlinear conductivity. Nonlinear response measurements typically
require relatively large applied fields in order to detect the small signals. Hence, the
most serious problem that plagues nonlinear measurements of conductive systems
is Joule heating, i.e., the variation of the conductivity/susceptibility with tem-
perature induced by resistive heating of the sample. If a constant or slowly varying
electric field is used to detect nonlinear response, the large current will heat the
sample during measurement, and spurious nonlinear contributions will appear if
the resistance depends on temperature. Conventionally, millisecond field pulses are
used to alleviate the heating problem, but heating still plays a role for highly
conducting samples and needs to be disentangled from other possible contribu-
tions65,66. A pivotal step in our experiment is the use of a high-frequency excitation
field—if the frequency is high enough, the time-dependent temperature change of
bulk samples cannot follow the rapidly changing field, and no heating-induced
nonlinear signal is observed. An average, time-independent heating is still present,
but this does not influence the measurement of the nonlinear response. In prin-
ciple, time-independent heating may cause a small shift of the sample temperature,
but this was determined to be negligible in our case from a comparison of Tc (peak
positions) in linear and nonlinear conductivity throughout the phase diagram of
LSCO. The nonlinear conductivity experiments are performed with a contactless
radio-frequency two-coil setup, with excitation frequency ω/2π= 17MHz and
phase sensitive detection at 3ω/2π using a Stanford Research Systems SR844 RF
lock-in amplifier. The coil system is kept at the constant temperature of the liquid
helium bath, while the sample temperature is varied independently. We use a non-
resonant circuit (a coil with silver paint serving as a distributed capacitance) for
excitation, and a tuned resonant LC circuit for detection. A thin-walled glass tube
separates the vacuum of the sample space from the liquid helium bath and
introduces no distortions to the signal. The sample is mounted on a sapphire
holder with temperature control sensitivity better than 1 mK. The setup was pre-
viously tested under various conditions30,67. Notably, a similar methodology was
used in the past to study the nonlinear Meissner effect at low temperatures68. The
electric fields with the samples may be estimated using Maxwell’s equations, which
gives an amplitude E ~ BωL, where B is the magnetic field amplitude, ω ~ 2π·20
MHz the oscillation frequency, and L ~ 2mm the typical linear sample dimension.
The amplitude of the magnetic field was deliberately kept small, and estimated to
be about 0.1 G from the characteristics of the excitation circuit and coil. The
electric field amplitude is then E ~ 0.02 V/cm.

We performed complementary microwave (linear) conductivity experiments
with a resonant cavity perturbation technique69 extensively used to study cuprate
superconductors5,12. The sample was mounted in an evacuated elliptical microwave
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cavity made of copper and immersed in a liquid helium bath. The complex
conductivity of the sample was obtained by measuring the temperature dependence
of the Q-factor and resonant frequency of the cavity by recording the cavity
resonance curve using microwave frequency modulation and employing a
demodulator. The signal from the demodulator was fed into a SR830 lock-in
amplifier and the Q-factor determined from measurements of the higher harmonic
components of the modulation frequency. The microwave cavity resonance was
close to 10 GHz, while the modulation frequency was 990 Hz. Similar to the
nonlinear conductivity experiment, the cavity was kept at constant temperature,
while the sample temperature was varied in a wide range. We obtained the
superconducting response above Tc by subtracting the conductivity measured with
an external magnetic field of 16 T (perpendicular to the CuO2 planes) from the
zero-field conductivity. No appreciable difference in conductivity was observed
between 12 and 16 T in the relevant temperature range.

GL theory. Classic GL superconducting fluctuations have been extensively
investigated in the cuprates using linear response in a wide frequency
range3–7,11,12,70–72. Nonlinear response is a better probe of fluctuation contribu-
tions, since in linear response one must always attempt to determine and subtract
a normal-state contribution, a complication that is absent in the third harmonic.
At a quantitative level, the linear and nonlinear GL-fluctuation response has been
calculated beyond mean field37 and with included anisotropy71–73 (only linear
conductivity). For an isotropic type-II superconductor, the nonlinear
conductivity in both the Gaussian and critical fluctuation regimes is shown to be
proportional to the linear conductivity, as follows. In general, one can define a
field-dependent conductivity, σ(E)= σ(E= 0)Σ(E). The scaling function Σ(E) has
different forms in different fluctuation regimes and for small/large electric fields,
but in the small-field approximation the leading term is always 1+ A(E/E0)2, where
A is a numerical constant and E0 a reference electric field37. The field E0 depends
on temperature through the mean-field correlation length (ξ), as E0 ~ ξ−3. There-
fore, σ3= σ1A/E02~ σ1ξ6. Since, in GL theory, the linear and nonlinear responses
are due to the same fluctuation physics, such a scaling relationship between the two
should hold regardless whether ab-plane/c-axis anisotropy and short-wavelength
cutoffs70–73 are included. Thus one can directly compare the temperature depen-
dence of the linear/nonlinear response to the predictions of linear GL-fluctuation
theory. Due to the low frequency of our experiment, the linear response simply
corresponds to the in-plane dc linear conductivity, σDCab . The dc conductivity is
given by71

σDCab ¼ e2

16π�hξ0c

ξab Tð Þ
ξ0ab

� �z�1

f Qab;Qcð Þ; ð2Þ

where ξ is the superconducting coherence length, the indices ab and c
correspond to in-plane and c-axis quantities, respectively, z is the dynamical
exponent, and f (Qab, Qc) a function of the temperature-dependent anisotropic
fluctuation cutoffs Qab and Qc in reciprocal space. The cutoffs are
Qab;c ¼

ffiffiffi
3

p
Λab;cξab;cðTÞ=ξ0ab;c, where Λab,c are temperature-independent cutoff

scales. Since the electric fields applied in our measurements are small, they are
significantly below E0 (except perhaps in the closest vicinity of Tc, where E0 rapidly
goes to zero).

The relevant dimensionless temperature variable for ξ(T) in GL theory is ln(T/
Tc), and data for several cuprates are plotted vs. this GL reduced temperature in
Figs. 1b and S2. The theoretical prediction obtained from Eq. (1) using the realistic
parameters12 Λab= 0.1 and Λc= 0.02 is shown in Fig. 1b. The theoretical
prediction clearly decays much faster than the data for all investigated samples. We
note that the choice of a different value for Tc cannot improve the agreement
between data and theory. This is demonstrated in Supplementary Figure 2 for the
case of LSCO with x= 0.15 (measured Tc= 37.2 K). Better agreement can be
obtained if the reduced temperature variable is multiplied by material-dependent
constants for different samples, but in the case of GL fluctuations these would be
additional arbitrary nonuniversal free parameters without obvious physical
meaning. Even more importantly, the shape of the temperature dependence cannot
be satisfactorily reproduced by GL theory, whatever scaling one employs on the
temperature axis.

The minimal percolation model. The main idea of the model is that nanoscale
superconducting patches form and proliferate in the material (Fig. 2b), and
that macroscopic superconductivity then emerges via a percolation process. We
assume perfectly connected square or cubic patches (2D or 3D nearest-neighbor
site percolation) that are either nonsuperconducting, each with a normal resistance
Rn, or superconducting, each with a nonlinear resistance43

Rs jð Þ ¼ R0 þ
Rn � R0

e�4ðj�JcÞ þ 1
; ð3Þ

where j is the current through the superconducting patch, R0 its residual resistivity
(due to the finite size of the patch, and R0 << Rn), and Jc the patch critical current; j
and Jc are dimensionless currents. We assume the patches to be static (which is
probably not a good approximation well above Tc) and neglect Josephson couplings
and proximity effects (not a good approximation very close to Tc). The fraction of

superconducting patches is taken to be P, with P → 0 at high temperatures and P → 1
well below Tc. The critical concentration at which the system percolates, Pπ,
depends on the dimensionality of the system and the chosen percolation model. In
the nearest-neighbor site-percolation scenario used here, we have27 Pπ ≈ 0.3 (3D)
and Pπ ≈ 0.6 (2D). Site percolation is physically realistic in the case of super-
conducting patches with different local Tc values, as seen in STM17, but the par-
ticular choice of the percolation model does not critically affect the modeling, as we
show below. In order to make a quantitative comparison to experiment, a
dependence of P on temperature must be assumed. The simplest possibility is a
linear dependence, Pπ− P= (T− Tπ)/Ξ0, where Ξ0 is the universal temperature/
energy scale that connects P and T. Physically, the linear dependence is equivalent
to taking the distribution of local superconducting gaps to be a simple boxcar
function of width Ξ0. Yet the linear term is the leading term for any realistic
distribution, and thus this approximation is always valid not too far from Tc. Our
goal, in the spirit of the minimal model, is to avoid any assumptions related to the
gap distribution. This approach in the case of linear and nonlinear conductivity
gives good results. We illustrate the difference between our assumption of a linear
dependence of P on T and a more realistic Gaussian distribution of local gaps in
Fig. 2a. At high temperatures, the Gaussian distribution results in better asymptotic
behavior, which eliminates the artificial cutoff present in the linear approximation
and gives rise to exponential tails of conductivity, magnetization, etc. Yet in the
temperature range where linear and nonlinear conductivity is measurable, the
differences are minimal.

The linear and nonlinear responses are calculated via effective medium
theory74, using the form most appropriate for site percolation75. Since the
experimental nonlinear response is normalized, we also normalize the calculated
response by Rn (i.e., take that Rn= 1). In order to calculate the third-order
nonlinear conductivity, the dependence of the voltage on current was determined,
and σ3 was obtained through an expansion in powers of voltage. Due to the
percolative nature of the system, σ3 is insensitive to the values of R0 and Jc in the
region of interest close to Tπ (as long as the current j is much smaller than Jc). Thus
the only parameters entering the calculation of σ3 are Ξ0 and the percolation
threshold concentration Pπ of superconducting patches (which depends on the
number of spatial dimensions, on site vs. bond percolation, etc.). R0 is used in the
linear response calculation, and was determined to be 0.005Rn, which is realistic for
nanoscale patches at a finite excitation frequency43,50.

In order to obtain Ξ0 and to determine if 3D (with Pπ ≈ 0.3) or 2D (with Pπ ≈
0.6) site percolation is more appropriate, we simultaneously calculate the linear and
nonlinear conductivity and compare to the measurements (Fig. 1c). Although the
results do not critically depend on Pπ, a 3D site-percolation model with Pπ= 0.31
yields the best agreement with the data. For example, it enables the linear and
nonlinear response in LSCO to be described with a single Ξ0= 28.0 ± 0.4 K,
whereas in the 2D model the discrepancy between Ξ0 obtained from linear and
nonlinear conductivities differs at least by 25% (Figure S3). With Pπ= 0.31 fixed,
individual fits to only the nonlinear response of all investigated compounds
(Table 1) gives the overall estimate Ξ0= 27 ± 2 K, whereas the simultaneous
calculation of both σ1 and σ3 for LSCO gives the higher precision above. We
emphasize that the parameter R0 does not influence the determination of Ξ0: R0
influences the shape of the linear conductivity curve, whereas Ξ0 sets the range of
the superconducting contribution. Tπ is calculated separately in a model-free way
to obtain the best data scaling, with typical uncertainties smaller than 0.05 K. The
LSCO-0.15 data are taken as a reference since they exhibit the best signal-to-noise
ratio. Notably, the determination of Ξ0 is independent of Tπ, since the exponential
decay rate constant of σ3 is simply inversely proportional to Ξ0 (i.e., the rate is 42.6
K/Ξ0). The calculated curves depart from measurements close to the macroscopic
Tc, which is expected—once a significant volume fraction of the sample is
superconducting, Josephson couplings can no longer be neglected, macroscopic
phase coherence sets in, and the simple percolation picture needs corrections.

One can perform a similar effective medium calculation for 3D nearest-
neighbor bond (Pπ= 0.25) rather than site percolation, or for any other percolation
model with a similar critical concentration, and fit to the nonlinear data. This in
itself poses no problems and will increase Ξ0 (by about 20%). However, the linear
conductivity provides a constraint—similar to the 2D case, it cannot be
simultaneously obtained with the same Ξ0 (the difference being about 10%, larger
than the uncertainties). Also, the corrections due to P vs. T nonlinearity may
become important. In any case, the difference between Pπ= 0.31 and 0.25 is not
very significant in view of the crudeness of the modeling, but the data do support
3D percolation. The cuprate superconductors are known to be strongly anisotropic;
in the site-percolation model, this translates to anisotropy within the patches (i.e.,
they are elongated in the c-direction), but this does not change the percolation
threshold. Since we measure in-plane response, the threshold is the only important
parameter. A possible exception would be systems with effectively decoupled layers
(such as Eu–LSCO and LBCO close to doping 1/8, as discussed).

Modeling of specific heat. Specific heat measurements in several cuprates29,48

show high-temperature tails above Tc. Here, we show that the tails can be modeled
in a quantitative fashion by simply convoluting the standard mean-field step in
specific heat at the (local) Tc with the gap distribution. We model the mean-field
superconducting contribution to the specific heat coefficient by a simple linear
dependence below the local Tc, Δγloc= a(T/Tc− 1/2), and take it to be zero above
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Tc. Such a form is not correct at low temperatures, but is appropriate close to Tc.
The coefficient in a system with a distribution of Tc is then just

ΔγðTÞ ¼
Z

g Tcð ÞΔγloc T;Tcð ÞdTc; ð4Þ

where g is the distribution function. The calculated Δγ is shown in Fig. 4e in
comparison with data on Y0.8Ca0.2Ba2Cu3O6.75 from ref. 29, with a Gaussian dis-
tribution of gaps centered at 75 K (the macroscopic Tc is some 6 K larger, in
accordance with Fig. 3a). The best agreement with the data above Tc is obtained
with a distribution width of 35 K, slightly larger than the values of Ξ0 obtained from
linear and nonlinear conductivity in the main text. Close to the macroscopic Tc, the
measurements also show a fluctuation-induced peak, which is not included in the
simple mean-field summation that we have performed. Despite the simplicity, our
approach is in acceptable quantitative agreement with the tail in the specific heat
coefficient, which is an important confirmation of our model using a bulk ther-
modynamic probe.

Percolation interpretation of the tomographic density of states. Along with
transport properties, the percolation model can be used to explain other seemingly
unconventional results for the cuprates. One example is the tomographic density of
states (TDOS) obtained in recent photoemission measurements19. The effective gap
obtained in these experiments does not close at the macroscopic Tc, but a “filling”
of the density of states is observed to extend to temperatures ~1.2Tc (Fig. 3f). The
gap filling was attributed to an increased superconducting pair-breaking rate, and
the response above Tc to preformed pairs. However, as we now show, both effects
arise naturally if one assumes a spatial gap distribution. In ref. 19, the density of
states was fitted to the standard expression

ρDynes ¼ Re
ω� iΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� iΓð Þ2�Δ2
q ; ð5Þ

where ω is the frequency relative to the Fermi level, Γ the pair-breaking rate, and Δ
the superconducting gap. To describe the data with this formula, the pair-breaking
rate must increase to Γ ~ Δ close to Tc, which signals that the description is no
longer physically valid. We find that the experimental result can be quantitatively
reproduced by employing a temperature-independent Γ and by considering that the
experiment measures the average density of states in a system with a real-space gap
distribution. We then simply convolute the density of states with a gap distribution
function, and employ the standard BCS temperature dependence for the gaps.
Notably, a similar procedure was recently used to model ARPES data76 in
Bi2Sr2CaCu2O8+y. A Gaussian gap distribution with mean Δm= 9.6 meV and full
width at half maximum Δ0= 3.2 meV (in line with ref. 17 and with our nonlinear
conductivity measurements) yields rather good agreement with the TDOS
experiment at all temperatures (Fig. 3g). This constitutes a strong, independent
confirmation of the percolation/gap disorder scenario.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper
and/or Supplementary information. Additional data related to this paper may be
requested from the authors.
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