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η0 and η mesons at high T when the UAð1Þ and chiral symmetry
breaking are tied
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The approach to the η0-η complex employing chirally well-behaved quark-antiquark bound states and
incorporating the non-Abelian axial anomaly of QCD through the generalization of the Witten-Veneziano
relation is extended to finite temperatures. Employing the chiral condensate has led to a sharp chiral and
UAð1Þ symmetry restoration, but with the condensates of quarks with realistic explicit chiral symmetry
breaking—which exhibit a smooth, crossover chiral symmetry restoration in qualitative agreement with
lattice QCD results—we get a crossover UAð1Þ transition with a smooth and gradual melting of anomalous
mass contributions. In this way, we obtain a substantial decrease in the η0 mass around the chiral transition
temperature, but no decrease in the η mass. This is consistent with current empirical evidence.

DOI: 10.1103/PhysRevD.99.014007

I. INTRODUCTION

The experiments at heavy-ion collider facilities—such as
RHIC, LHC, FAIR, and NICA—aim to produce a new form
of hot and/or dense QCDmatter [1,2]. Clear signatures of its
production are thus verymuch needed. Themost compelling
such signal would be a change in the pertinent symmetries,
i.e., the restoration (in hot and/or dense matter) of the
symmetries of the QCD Lagrangian which are broken in the
vacuum, notably the [SUAðNfÞ flavor] chiral symmetry for
Nf ¼ 3 ¼ 2þ 1 light quark flavors q, and the UAð1Þ
symmetry. This provides much motivation to establish that
experiment indeed shows this, as well as to give theoretical
explanations of such phenomena.
The first signs of a (partial) restoration of the UAð1Þ

symmetry were claimed to be seen in 200 GeV Auþ Au
collisions [3,4] at RHIC by Csörgő et al. [5]. They analyzed
the η0-meson data of the PHENIX [3] and STAR [4]
collaborations through several models for hadron multi-
plicities, and found that the η0 mass (Mη0 ¼ 957.8 MeV in
vacuum) decreases by at least 200 MeV inside the fireball.
The vacuum η0 is, comparatively, so very massive since it is
predominantly the SUVðNfÞ-flavor singlet state η0. Its mass
Mη0 receives a sizable anomalous contribution ΔMη0 due
to the UAð1Þ symmetry violation by the non-Abelian
axial Adler-Bell-Jackiw anomaly [“gluon anomaly,” or

“UAð1Þ anomaly” for short], which makes the divergence
of the singlet axial quark current q̄γμγ5 1

2
λ0q nonvanishing

even in the chiral limit of vanishing current masses of
quarks, mq → 0. This mass decrease is then a sign of a
partial UAð1Þ symmetry restoration in the sense of a
diminishing contribution of the UAð1Þ anomaly to the η0
mass, which would decrease to a value readily understood
in the same way [6] as the masses of the octet of the light
pseudoscalar mesons P ¼ π0;�, K0;�, K̄0, η, which are
exceptionally light almost-Goldstone bosons of dynamical
chiral symmetry breaking (DChSB).
A recent experimental paper studied 200 GeV Auþ Au

collisions [7]. Although a new analysis of the limits on the
η0 and η masses was beyond the scope of Ref. [7], the data
contained therein make it possible, and preliminary con-
siderations [8] confirm the findings of Ref. [5].
The first explanation [9] of these original findings [5]

was offered by conjecturing that the Yang-Mills (YM)
topological susceptibility, which leads to the anomalously
high η0 mass, should be viewed through the Leutwyler-
Smilga (LS) [10] relation (12). This ultimately implies that
the anomalous part of the η0 mass decreases together with
the quark-antiquark (qq̄) chiral-limit condensate hq̄qi0ðTÞ
as the temperature T grows towards the chiral restoration
temperature TCh and beyond. This connection between the
UAð1Þ symmetry restoration and the chiral symmetry
restoration was just a conjecture until our more recent
paper [11] strengthened the support for this scenario.
Nevertheless, there was also a weakness: our approach
predicted the decrease of not only the η0 mass, but also an
even more drastic decrease of the η mass Mη, and signs for
that have not been seen in any currently available data
[7,12]. In the present paper, we show that the predicted

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 014007 (2019)

2470-0010=2019=99(1)=014007(11) 014007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.014007&domain=pdf&date_stamp=2019-01-09
https://doi.org/10.1103/PhysRevD.99.014007
https://doi.org/10.1103/PhysRevD.99.014007
https://doi.org/10.1103/PhysRevD.99.014007
https://doi.org/10.1103/PhysRevD.99.014007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


decrease of Mη [9] was the consequence of employing the
chiral-limit condensate hq̄qi0ðTÞ, since it decreases too fast
with T after approaching T ∼ TCh. We then perform T > 0
calculations in the framework of the more recent work by
Benić et al. [11], where the LS relation (12) is replaced by
the full-QCD topological charge parameter (18) [13–15].
There, one can employ qq̄ condensates for realistically
massive u, d, and s quarks, with a much smoother T
dependence. As a result, the description of the η-η0 complex
of Ref. [9] is significantly improved, since our new T
dependences of the pseudoscalar meson masses do not
exhibit a decrease of the η mass, while a considerable
decrease of the η0 mass still exists, which is consistent with
the empirical findings [5].

II. A SURVEY OF THE η-η0 COMPLEX

The light pseudoscalar mesons are simultaneously qq̄0
bound states (q, q0 ¼ u, d, s) and (almost-)Goldstone
bosons of the DChSB of nonperturbative QCD. We can
implement both simultaneously by using the Dyson-
Schwinger (DS) equations as Green functions of QCD
(see, e.g., Refs. [16–19] for reviews). Particularly pertinent
are the gap equation for dressed quark propagators SqðpÞ
with DChSB-generated self-energies ΣqðpÞ,

S−1q ðpÞ ¼ Sfreeq ðpÞ−1 − ΣqðpÞ; ðq ¼ u; d; sÞ; ð1Þ

(while Sfreeq are free ones), and the Bethe-Salpeter equation
(BSE) for the qq̄0 meson bound-state vertices Γqq̄0 ,

Γqq̄0 ðk; pÞef ¼
Z �

Sq

�
lþ p

2

�
Γqq̄0 ðl; pÞSq0

�
l −

p
2

��
gh

× Kðk − lÞhgef
d4l
ð2πÞ4 ; ð2Þ

where K is the interaction kernel, and e, f, g, h represent
(schematically) the collective spinor, color, and flavor
indices.
This nonperturbative and covariant bound-state DS

approach can be applied for various degrees of truncations,
assumptions, and approximations, ranging from ab initio
QCD calculations and sophisticated truncations (see, e.g.,
Refs. [16–22] and references therein) to very simplified
modeling of hadron phenomenology, such as utilizing
Nambu–Jona-Lasinio point interactions. For applications
in involved contexts such as nonzero temperature or
density, strong simplifications are especially needed for
tractability. This is why the separable approximation [23] is
adopted in this paper [see the discussion between Eqs. (4)
and (5)]. However, when describing pseudoscalar mesons
(including η and η0) reproducing the correct chiral behavior
of QCD is much more important than the dynamics-
dependent details of their internal bound-state structure.

A rarity among bound-state approaches, the DS approach
can also achieve the correct QCD chiral behavior regardless
of the details ofmodel dynamics, but under the condition of a
consistent truncation of DS equations, respecting pertinent
Ward-Takahashi identities [16–19]. A consistent DS trun-
cation, where DChSB is very well understood, is the
rainbow-ladder approximation (RLA). Since it also enables
tractable calculations, it is still the most used approximation
in phenomenological applications, andwe also adopt it here.
In the RLA, the BSE (2) employs the dressed quark
propagator solution SðpÞ from the gap equation (1) and
(4), which in turn employs the same effective interaction
kernel as the BSE. It has a simple gluon-exchange form,
where both quark-gluon vertices are bare,

½KðkÞ�hgef ¼ ig2Dab
μνðkÞeff

�
λa

2
γμ
�
eg

�
λb

2
γν
�
hf
; ð3Þ

so that the quark self-energy in the gap equation is

ΣqðpÞ¼−
Z

d4l
ð2πÞ4 g

2Dab
μνðp−lÞeff

λa

2
γμSqðlÞ

λb

2
γν; ð4Þ

where Dab
μνðkÞeff is an effective gluon propagator.

These simplifications should be compensated by model-
ing the effective gluon propagator Dab

μνðkÞeff in order to
reproduce well the relevant phenomenology; here, pseu-
doscalar (P) meson masses MP, decay constants fP, and
condensates hq̄qi, including T-dependence of all these. In
the present paper, we use the same model as in Ref. [9] and
attempt to improve their approach to the T dependence
of the UAð1Þ anomaly. All of the details on the functional
form and parameters of this model interaction can be
found in the Sec. II A of Ref. [24]. Such models—so-
called rank-2 separable models—are phenomenologically
successful (see, e.g., Refs. [23–27]). However, they have
the well-known drawback of predicting a somewhat too low
transition temperature: the model we use in this paper and
that was used in Refs. [9,24,26,27] has TCh ¼ 128 MeV,
i.e., some 17% below the now widely accepted central
value of 154� 9 MeV [28–30]. But, rather than quantita-
tive predictions at specific absolute temperatures, we are
interested in the relative connection between the chiral
restoration temperature TCh and the temperature scales
characterizing signs of the effective disappearance of the
UAð1Þ anomaly, for which the present model is adequate. In
addition, Ref. [31] showed that coupling to the Polyakov
loop can increase TCh, while the qualitative features of the
T dependence of the model are preserved. Thus, separable
model results at T > 0 are most meaningfully presented
as functions of the relative temperature T=TCh, as in
Refs. [9,24].
Anyway, regardless of the details of the model dynamics

[i.e., the choice of Dab
μνðkÞeff ] and thanks to the consistent

truncation of DS equations, the BSE (2) yields the masses
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Mqq̄0 of pseudoscalar P ∼ qq̄0 mesons which satisfy the
Gell-Mann–Oakes–Renner-type relation with the current
masses mq, mq0 of the corresponding quarks:

M2
qq̄0 ¼ constðmq þmq0 Þ; ðq; q0 ¼ u; d; sÞ: ð5Þ

While this guarantees that allMqq̄0 → 0 in the chiral limit, it
also shows that the RLA cannot lead to any UAð1Þ-
anomalous contribution responsible for ΔMη0. That is, the
RLA gives us only the nonanomalous part M̂2

NA of the
squared-massmatrix M̂2 ¼ M̂2

NA þ M̂2
A of the hidden-flavor

(q ¼ q0) light (q ¼ u,d, s) pseudoscalarmesons. In the basis
fuū; dd̄; ss̄g, M̂2

NA is simply M̂2
NA ¼ diag½M2

uū;M
2
dd̄
;M2

ss̄�.
The anomalous part M̂2

A arises because the pseudoscalar
hidden-flavor states qq̄ are not protected from the flavor-
mixingQCD transitions (through anomaly-dominated pseu-
doscalar gluonic intermediate states), as depicted in Fig. 1.
They are obviously beyond the reach of the RLA and
horrendously hard to calculate. Nevertheless, they cannot be
neglected, as can be seen in the Witten-Veneziano relation
(WVR) [32,33], which remarkably relates the full-QCD
quantities (η0, η, the K-meson masses Mη0;η;K , and the pion
decay constant fπ) to the topological susceptibility χYM of
the (pure-gauge) YM theory:

M2
η0 þM2

η − 2M2
K ¼ 2Nf

χYM
f2π

¼ M2
UAð1Þ: ð6Þ

Its chiral-limit-nonvanishing rhs is large (roughly 0.8 to
0.9 GeV2), while Eq. (5) basically leads to the cancellation
of all chiral-limit-vanishing contributions on the lhs [9]. The
rhs is the WVR result for the total mass contribution of the
UAð1Þ anomaly to the η-η0 complex, MUAð1Þ.
The M̂2

A matrix elements generated by the UAð1Þ-
anomaly-dominated transitions qq̄ → q0q̄0 (see Fig. 1)
can be written [35] in the flavor basis fuū; dd̄; ss̄g as

hqq̄jM̂2
Ajq0q̄0i ¼ bqbq0 ; ðq; q0 ¼ u; d; sÞ: ð7Þ

Here bq ¼
ffiffiffi
β

p
for both q ¼ u, d, since we assume mu ¼

md ≡ml [i.e., isospin SUð2Þ symmetry] which is an
excellent approximation for most purposes in hadronic
physics. For example, Muū ¼ Mdd̄ ≡Mll̄ ¼ Mud̄ ≡Mπ

obtained from the BSE (2) is our RLA model pion mass
for πþðπ−Þ ¼ ud̄ðdūÞ and π0 ¼ ðuū − dd̄Þ= ffiffiffi

2
p

, so that
M̂2

NA ¼ diag½M2
π;M2

π;M2
ss̄�. It still contains Mss̄, the mass

of the unphysical (but theoretically very useful) ss̄ pseu-
doscalar obtained in the RLA. However, thanks to Eq. (5),
it can also be expressed through the masses of physical
mesons, M2

ss̄ ¼ 2M2
us̄ −M2

ud̄
¼ 2M2

K −M2
π, to a very good

approximation [24,27,34–37]. Its decay constant fss̄ is
calculated in the same way as fπ and fK.
Since the s quark is much heavier than the u and d quarks,

in Eq. (7) we have bq ¼ X
ffiffiffi
β

p
for q ¼ s, with X < 1.

Transitions to and from more massive s quarks are sup-
pressed, and the quantity X expresses this influence of the
SUð3Þ flavor symmetry breaking. Themost common choice
for the flavor-breaking parameter has been the estimateX ¼
fπ=fss̄ [9,24,27,34–37], butwe found [11] that it necessarily
arises in the variant of our approach relying on Shore’s
generalization of the WVR (6) [13,14] (see Sec. III).
The anomalous mass matrix M̂2

A [which is of the pairing
form (7) in the hidden-flavor basis fuū; dd̄; ss̄g] in the
octet-singlet basis fπ0; η8; η0g of hidden-flavor pseudosca-
lars becomes

M̂2
A ¼ β

2
664
0 0 0

0 2
3
ð1 − XÞ2

ffiffi
2

p
3
ð2 − X − X2Þ

0
ffiffi
2

p
3
ð2 − X − X2Þ 1

3
ð2þ XÞ2

3
775; ð8Þ

which shows that the SUð3Þ flavor breaking [X ≠ 1] is
necessary for the anomalous contribution to the η8 mass
squared, ΔM2

η8 ¼ βð2=3Þð1 − XÞ2. In the flavor SUð3Þ-
symmetric case (X ¼ 1), only the η0 mass receives a
UAð1Þ-anomaly contribution: M2

UAð1Þ ¼ ΔM2
η0 ¼ 3β in this

limit. Otherwise, M2
UAð1Þ ≡ TrM̂2

A ¼ ð2þ X2Þβ.
The SUð3Þ breaking (X ≠ 1) causes M̂2

A [Eq. (8)] to be
off diagonal, but in this basis the fη8; η0g submatrix of M̂2

NA

also gets strong, negative off-diagonal elements, M2
80 ¼ffiffiffi

2
p ðM2

π −M2
ss̄Þ=3 (see, e.g., Ref. [35]). Equation (8) thus

shows that the interplay of the flavor symmetry breaking
(X < 1) with the anomaly is necessary for the partial
cancellation of the off-diagonal (8,0) elements in the com-
plete mass matrix M̂2 ¼ M̂2

NA þ M̂2
A, i.e., to obtain the

physical isoscalars in a rough approximation as η ≈ η8 and
η0 ≈ η0. How this changes with diminishingUAð1Þ-anomaly
contributions is exhibited in Secs. IV and V.
Since the isospin-limit π0 decouples from the anomaly

and mixing, only the isoscalar-subspace 2 × 2 mass matrix

FIG. 1. Axial-anomaly-induced, flavor-mixing transitions from
hidden-flavor pseudoscalar states P ¼ qq̄ to P0 ¼ q0q̄0 including
both possibilities q ¼ q0 and q ≠ q0. All lines and vertices are
dressed. The gray blob symbolizes all possible intermediate states
enabling this transition. The three bold dots symbolize an even
[34] but otherwise unlimited number of additional gluons. As
pointed out in Ref. [34], the diamond graph is just the simplest
example of such a contribution.
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M̂2 needs to be considered. Even though M̂2 is strongly off
diagonal in the isoscalar basis fηNS; ηSg (the NS-S basis),

�
ηNS

ηS

�
≡
2
4 1ffiffi

2
p ðuūþdd̄Þ

ss̄

3
5≡

2
664

1ffiffi
3

p
ffiffi
2
3

q
−

ffiffi
2
3

q
1ffiffi
3

p

3
775
�
η8

η0

�
; ð9Þ

in this basis it has the simple form

M̂2 ≡
�
M2

NS M2
NS S

M2
SNS M2

S

�
¼

�
M2

π þ 2β
ffiffiffi
2

p
βXffiffiffi

2
p

βX M2
ss̄ þ βX2

�
;

ð10Þ

which also shows that when the UAð1Þ-anomaly contribu-
tions vanish (i.e., β → 0) the NS-S scenario is realized.
This means that not only do the physical isoscalars become
η → ηNS and η0 → ηS, but also that their respective masses
become Mπ and Mss̄.
Our experience with various dynamical models (at

T ¼ 0) shows [27,34–37] that after pions and kaons are
correctly described, a good determination of the anoma-
lous mass shift parameter is sufficient for Eq. (10) to
give good η0 and η masses, since M2

ss̄ ¼ 2M2
K −M2

π

holds well.
Nevertheless, calculating the anomalous contributions

(∝ β) in DS approaches is a very difficult task.
Reference [38] explored this by taking the calculation
beyond the RLA, but they had to adopt extremely
schematic model interactions (proportional to δ functions
in momenta) for both the ladder-truncation part (3) and
the anomaly-producing part. Another approach [39]
obtained qualitative agreement with the lattice on χYM
(and, consequently, acceptable masses for η0 and η) by
assuming that the contributions to Fig. 1 are dominated by
the simplest one—the diamond graph—if it is appropri-
ately dressed (in particular, by an appropriately singular
quark-gluon vertex).
However, we take a different route, since our goal is not

to figure out how the breaking of UAð1Þ comes about on a
microscopic level, but rather to phenomenologically model
and study the high-T behavior of the masses of the realistic
η0 and η, along with other light pseudoscalar mesons. In the
DS context, the most suitable approach is then the one
developed in Refs. [27,34–37] and extended to T > 0 in
Refs. [9,24].
The key is that the UAð1Þ anomaly is suppressed in the

limit of large number of QCD colors Nc [32,33]. So, in the
sense of the 1=Nc expansion, it is a controlled approxi-
mation to view the anomaly contribution as a perturbation
with respect to the (nonsuppressed) results obtained
through the RLA (3)–(4). While considering meson
masses, it is thus not necessary to look for anomaly-
induced corrections to the RLA Bethe-Salpeter wave

functions,1 which are consistent with DChSB and with
the chiral QCD behavior (5) that is essential for describing
pions and kaons. The breaking of nonet symmetry by the
UAð1Þ anomaly can be introduced just at the level of the
masses in the η0-η complex, by adding the anomalous
contribution M̂2

A to the RLA-calculated M̂2
NA. Its anomaly

mass parameter β can be obtained by fitting [34] the
empirical masses of η and η0 or, preferably, from lattice
results on the YM topological susceptibility χYM (because
then no new fitting parameters are introduced). Employing
the WVR (6) yields [9,35] β ¼ βWV, while Shore’s gen-
eralization gives (see Sec. III) β ¼ βSho [11],

βWV ¼ 6χYM
ð2þ X2Þf2π

; βSho ¼
2A
f2π

≈
2χYM
f2π

; ð11Þ

where A is the QCD topological charge parameter, given
below by Eq. (18) in terms of qq̄ condensates of massive
quarks, which turns out to be crucial for a realistic T
dependence of the masses in the η0‐η complex.

III. EXTENSION TO T ≥ 0

Extending our treatment [27,34–37] of the η0 − η com-
plex to T > 0 is clearly more complicated. Since to the best
of our knowledge there is no systematic derivation of the
T > 0 version of either the WVR (6) or its generalization
by Shore [13,14], it is tempting to try to straightforwardly
replace all quantities by their T-dependent versions. In the
WVR, these are the full-QCD quantities Mη0 ðTÞ, MηðTÞ,
MKðTÞ, and fπðTÞ, but also χYMðTÞ, which is a pure-
gauge, YM quantity and thus much more resistant to high
temperatures than QCD quantities that also contain quark
degrees of freedom. Indeed, lattice calculations indicate
that the decrease of χYMðTÞ (from which one would expect
the decrease of the anomalous η0 mass) only starts at a T
some 100 MeV (or even more) above the (pseudo)critical
temperature TCh for the chiral symmetry restoration of full
QCD, near where decay constants already decrease appre-
ciably. It was then shown [24] that the straightforward
extension of the T dependence of the YM susceptibility
would even predict an increase of the η0 mass around and
beyond TCh, contrary to experiment [5].
It could be expected that at high T, the original WVR (6)

will not work since it relates the full-QCD quantities with a
much more temperature-resistant YM quantity, χYMðTÞ.

1It is instructive to recall [36,40] that nonet symmetry (or a
broken version thereof) is in fact assumed (explicitly or implic-
itly) by all approaches using the simple hidden-flavor basis qq̄,
e.g., to construct the SUð3Þ pseudoscalar meson states η0 and η8
without distinguishing between the qq̄ states belonging to the
singlet and those belonging to the octet. An independent
a posteriori support for our approach is also that η and η0 →
γγð�Þ processes are described well [34–37].
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However, this problem can be eliminated [9] by using, at
T ¼ 0, the (inverted) Leutwyler-Smilga (LS) relation [10]

χYM ¼ χ

1þ χð 1
mu

þ 1
md

þ 1
ms
Þ 1
hq̄qi0

≡ χ̃ ð12Þ

to express χYM in the WVR (6) through the full-QCD
topological susceptibility χ and the chiral-limit condensate
hq̄qi0. Thus the zero-temperature WVR is retained, while
the full-QCD quantities in χ̃ do not have the T dependence
mismatch with the rest of Eq. (6). Thus, instead of χYMðTÞ,
Ref. [9] used the combination χ̃ðTÞ [Eq. (12)] at T > 0,
where the QCD topological susceptibility χ in the light-
quark sector can be expressed as [10,15,41]

χ ¼ −1
ð 1
mu

þ 1
md

þ 1
ms
Þ 1
hq̄qi0

þ Cm: ð13Þ

This implies that the (partial) restoration of UAð1Þ sym-
metry is strongly tied to the chiral symmetry restoration,
since it is not χYMðTÞ but rather hq̄qi0ðTÞ [through χ̃ðTÞ]
that determines the T dependence of the anomalous parts of
the masses in the η-η0 complex [9]. The dotted curve in
Fig. 2 illustrates how hq̄qi0ðTÞ decreases steeply to zero as
T → TCh, indicative of the second-order phase transition.

This behavior is followed closely by χ̃ðTÞ, and therefore
also by the anomaly parameter βWVðTÞ [Eq. (11)]. This
makes the mass matrix (10) diagonal immediately after
T ¼ TCh, which marks the abrupt onset of the NS-S
scenario Mη0 ðTÞ → Mss̄ðTÞ, MηðTÞ → MπðTÞ [9].
In Eq. (13), Cm denotes corrections of higher orders in

small mq, but it should not be neglected as Cm ≠ 0 is
needed to have a finite χYM with Eqs. (12) and (13). They in
turn give us the value Cm at T ¼ 0 in terms of the qq̄
condensate and the YM topological susceptibility χYM.
However, to the best of our knowledge, the functional form
of Cm is not known. Reference [9] thus tried various
parametrizations covering reasonably possible T depend-
ences of CmðTÞ, but this did not greatly affect the results for
the T dependence of the masses in the η0-η complex.
An alternative to the WVR (6) is its generalization by

Shore [13,14]. There, relations containing the masses of the
pseudoscalar nonet mesons take into account that η and η0
should have two decay constants each [42]. If one chooses
to use the η8-η0 basis, they are f8η, f8η0 , f

0
η, f0η0 , and can be

equivalently expressed through purely octet and singlet
decay constants (f8, f0) and two mixing angles (θ8, θ0).
This may seem better suited for use with effective meson
Lagrangians than with qq̄0 substructure calculations start-
ing from the (flavor-broken) nonet symmetry, such as ours.
Nevertheless, Shore’s approach was also adapted for the
latter bound-state context, and successfully applied there
(in particular, to our DS approach in the RLA [27]). This
was thanks to the simplifying scheme of Feldmann, Kroll,
and Stech (FKS) [43,44]. They showed that this “two
mixing angles for four decay constants” formulation in the
NS-S basis, although in principle equivalent to the η8-η0
basis formulation, can in practice be simplified further to a
one-mixing-angle scheme using plausible approximations
based on the Okubo-Zweig-Iizuka (OZI) rule. The decay-
constant mixing angles in this basis are mutually close,
ϕS ≈ ϕNS, and both are approximately equal to the state
mixing angle ϕ rotating the NS-S basis states into the
physical η and η0 mesons,

η¼ cosϕηNS− sinϕηS; η0 ¼ sinϕηNSþ cosϕηS; ð14Þ

which diagonalizes the mass (squared) matrix (10).
So, Ref. [27] numerically solved Shore’s equations

(combined with the FKS approximation scheme) for meson
masses for several dynamical DS bound-state models
[24,34,35]. Then, Ref. [11] presented analytic solutions
thereof, for the masses of η and η0 and the state NS-Smixing
angle ϕ. These are rather long but closed-form expressions
in terms of nonanomalous meson massesMπ ,MK and their
decay constants fπ , fK , as well as fNS and fS (the decay
constants of the unphysical ηNS and ηS), and, most notably,
the full-QCD topological charge parameter A. This quantity
(taken [13,14] from Di Vecchia and Veneziano [15]) plays
the role of χYM in the WVR in the mass relations of Shore’s

FIG. 2. The relative-temperature T=TCh dependences of the
pertinent order parameters calculated in our usual [9,24] sepa-
rable interaction model. The odd man out is the (third root of the
absolute value of the) chiral condensate hq̄qi0ðTÞ, which de-
creases steeply at T ¼ TCh and dictates similar behavior [9] to
χ̃ðTÞ. All of the other displayed quantities exhibit smooth,
crossover behaviors, which are smoother for heavier flavors:
the dash-dotted and dashed curves are the (third roots of the
absolute values of the) condensates hs̄siðTÞ and hūuiðTÞ,
respectively, the thin solid curve is the resulting topological
susceptibility χðTÞ1=4, and the thick solid curve is the topological
charge parameter AðTÞ1=4. The decay constants fπðTÞ and fss̄ðTÞ
are, respectively, the lower dashed and dash-dotted curves.
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generalization. A will be considered in detail for the T > 0
extension, but now let us note that although Shore’s
generalization is in principle valid to all orders in 1=Nc
[13,14], Shore himself took advantage of

A ¼ χYM þO
�

1

Nc

�
ðat T ¼ 0Þ ð15Þ

and approximated A (as we shall at T ¼ 0) by the lattice
result χYM ¼ ð0.191 GeVÞ4 [45].
Further, one should note that since the FKS scheme

neglects OZI-violating contributions (that is, gluonium
admixtures in ηNS and ηS) it is consistent to treat them
as pure qq̄ states, accessible by our BSE (2) in the RLA.
Then fNS ¼ fπ, and fS ¼ fss̄ (the decay constant of the
aforementioned “auxiliary” RLA ss̄ pseudoscalar). We
calculate its mass Mss̄ with the BSE, but at T ¼ 0 it can
also be related to the measurable pion and kaon masses,
M2

ss̄ ≈ 2M2
K −M2

π , due to Eq. (5). Similarly, fss̄ can also be
approximately expressed with these measurable quantities
as fss̄ ≈ 2fK − fπ . Thus, after taking A ≈ χYM from lattice
data, Ref. [11] calculated the η-η0 complex using both the
model-calculated and the empirical Mπ , MK , fπ , and fK in
their analytic solutions. This serves as a check (independ-
ently of any model) of the soundness of our approach
at T ¼ 0.
The analytic solutions of Ref. [11] also lead to simple

elements of the mass matrix (10),

M2
NS ¼ M2

π þ
4A
f2π

; M2
NS S ¼ 2

ffiffiffi
2

p
A

fπfss̄
; ð16Þ

M2
S ¼ M2

ss̄ þ
2A
f2ss̄

; ð17Þ

implying X ¼ fπ=fss̄, M2
UAð1Þ ¼ 4A=f2π þ 2A=f2ss̄, and

βSho in Eq. (11). The approximation A ¼ χYM [Eq. (15)]
with χYM ¼ ð0.191 GeVÞ4 from lattice data [45] then
yields Mη0 ¼ 997 MeV and Mη ¼ 554 MeV at T ¼ 0.
Since the adopted DS model also enables the calculation

of nonanomalous qq̄masses and decay constants for T > 0,
the only thing still missing is the T dependence of the full-
QCD topological charge parameter A, as χYMðTÞ is
inadequate. But, A is used to express the QCD suscep-
tibility χ through the “massive” condensates hūui, hd̄di,
and hs̄si, i.e., away from the chiral limit, in contrast to
Eqs. (12) and (13) [see, e.g., Eq. (2.12) in Ref. [13]]. Its
inverse (expressing A) thus also contains the qq̄ conden-
sates out of the chiral limit for all light flavors q ¼ u, d, s,

A ¼ χ

1þ χð 1
muhūui þ 1

mdhd̄di þ
1

mshs̄siÞ
; ð18Þ

and so should χ in Eq. (18). That is, the light-quark
expression for the QCD topological susceptibility in the

context of Shore’s approach should be expressed in terms
of the current masses mq multiplied by their respective
condensates hq̄qi realistically out of the chiral limit:

χ ¼ −1
1

muhūui þ 1
mdhd̄di þ

1
mshs̄si

þ Cm: ð19Þ

As before [9], the small and necessarily negative correction
term Cm is found by assuming A ¼ χYM at T ¼ 0. This
large-Nc approximation also easily recovers the LS relation
(12): by approximating the realistically massive conden-
sates with hq̄qi0 everywhere in Eq. (18), the QCD
topological charge parameter A reduces to χ̃, justifying
the conjecture of Ref. [9] that connects the UAð1Þ sym-
metry restoration with the chiral symmetry restoration.
This connection between the two symmetries is still

present. However, with the massive condensates we also
get a more realistic, crossover T dependence of the masses,
depicted in Figs. 3 and 4, and presented in Sec. IV.
Figures 3 and 4 correspond to two variations of the

unknown T dependence CmðTÞ of the correction term in
Eq. (19). As in Ref. [9], the simplest ansatz is a constant,
CmðTÞ ¼ Cmð0Þ, which is most reasonable for T < TCh,
where the condensates [and thus also the leading term in

FIG. 3. T dependence, relative to TCh, of various η0-η complex
masses described in the text, the π mass (thick, dash-dotted curve)
for reference, the halved (to maintain clarity) total UAð1Þ-
anomaly-induced mass 1

2
MUAð1Þ (short-dashed curve), and the

topological charge parameter A1=4 (solid curve). The straight line
is 2 times the lowest fermion Matsubara frequency 2πT.
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χðTÞ] change little. But above some higher T, the negative
Cmð0Þ—although initially much smaller in magnitude than
the leading term–will make χðTÞ [and therefore also AðTÞ]
change sign. Concretely, this limiting T above which there
is no meaningful description is found a little above 1.6TCh.
For another, nonconstant CmðTÞ that would not have

such a limiting temperature, we now have a lead from
lattice data where the high-T asymptotic behavior of the
QCD topological susceptibility has been found to be a
power law, χðTÞ ∝ T−b [46,47]. The high-T dependence of
our model-calculated condensates is also (without fitting)
such that the leading term of our χðTÞ in Eq. (19) has a
similar power-law behavior, with b ¼ 5.17. Also, the values
of our leading terms are, qualitatively, for allT roughly in the
same ballpark as the lattice results [46,47]. We thus fit the
quickly decreasing power-lawCmðTÞ for highT by requiring
that (i) this more or less rough consistency with lattice χðTÞ
values is preserved, (ii) the whole χðTÞ has the high-T
power-law dependence as the leading term (with b ¼ 5.17),
and (iii) CmðTÞ joins smoothly with the low-T value Cmð0Þ
determined from χYM at T ¼ 0.
Our nonconstant choice of CmðTÞ yields the masses in

Fig. 3 [and χðTÞ and AðTÞ in Fig. 2], but these results are
very similar to the ones with CmðTÞ ¼ Cmð0Þ (of course,
only up to the limiting T a little above 1.6TCh) in Fig. 4.
Thus, Fig. 4 uses a different scale than Fig. 3, i.e., only the

mass interval between 0.55 and 1.05 GeV, so as to zoom in
on the η-η0 complex and better discern its various over-
lapping curves, including MUAð1ÞðTÞ.
The second choice of CmðTÞ enables in principle the

calculation of χðTÞ and AðTÞ without any limiting T.
Nevertheless, Fig. 3 does not reach higher than
T¼1.8TCh, because the model chosen for the RLA part
of our calculations seems to become unreliable at higher
T’s: the mass eigenvalues seem increasingly too high,
since they tend to cross the sum of the lowest qþ q̄
Matsubara frequencies. Fortunately, by T=TCh ¼ 1.8 the
asymptotic scenario for the anomaly has been reached, as
we explain in the next section where we give a detailed
description of all pertinent results at T ≥ 0.

IV. RESULTS AT T ≥ 0 IN DETAIL

Figure 2 shows how various magnitudes of current-quark
masses mq influence the T dependence and size of qq̄
condensates hq̄qi and pseudoscalar decay constants fqq̄
calculated in our adopted model. Defined, e.g., in Sec. II A
of Ref. [24], it employs the parameter values mu ¼ md ≡
ml ¼ 5.49 MeV and ms ¼ 115 MeV.
For both condensates and decay constants, larger cur-

rent-quark masses lead to larger “initial” (i.e., T ¼ 0)
magnitudes and, what is even more important for the
present work, to smoother and slower falloffs with T.
The magnitude of (the third root of) the strange-quark
condensate is the top dash-dotted curve in Fig. 2. Its T ¼ 0

value jhs̄sij1=3 ¼ 238.81 MeV remains almost unchanged
untilT ¼ TCh, and falls below 200MeV (i.e., by some 20%)
only for T ≈ 1.5TCh. On the other hand, the T ¼ 0 value of
the isosymmetric condensates of the lightest flavors,
hūui ¼ hd̄di≡ hl̄li ¼ ð−218.69 MeVÞ3, is quite close to
the chiral one, hq̄qi0 ¼ ð−216.25 MeVÞ3, showing how
well the chiral limit works for u and d flavors in this
respect. Still, the small current masses of u and d quarks are
sufficient to lead to a very different T dependence of the
lightest condensates, depicted by the dashed curve. It
exhibits a typical smooth crossover behavior around
T ¼ TCh, and while the decrease is much more pronounced
than in the case of hs̄si, it differs qualitatively from the sharp
decrease to zero exhibited by the chiral condensate [and thus
also by the anomaly-related quantity χ̃ðTÞ defined by the LS
relation (12)].
The isosymmetric pion decay constant fπðTÞ≡ fll̄ðTÞ is

the lower dashed curve in Fig. 2, starting at T ¼ 0 from our
model-calculated value fπ ¼ 92 MeV. It decreases rather
quickly, in contrast to fss̄ðTÞ [starting at fss̄ðT ¼ 0Þ ¼
119 MeV], the decay constant of the unphysical RLA s̄s
pseudoscalar. It exhibits a much “slower” T dependence, in
accordance with the s-quark condensate hs̄siðTÞ.
The behavior of mlhl̄liðTÞ largely determines that of

the full-QCD topological charge parameter AðTÞ, depicted
in Fig. 2 by the thick solid curve, and in Fig. 3 by the
solid curve: A is dominated by the lightest flavor, just like

FIG. 4. T=TCh dependence of pseudoscalar meson masses
zoomed to the area important for the η0-η complex, for the
simplest Ansatz CmðTÞ ¼ constant ¼ Cmð0Þ, which limits tem-
peratures to T ≲ 1.6TCh.
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χ and χ̃, as shown by their related defining expressions
(18)–(19) and (12)–(13).
The smooth, monotonic decrease of AðTÞ after T ∼

0.7TCh reflects the degree of gradual, crossover restoration
of the UAð1Þ symmetry with T. How this is reflected in the
masses in the η-η0 complex also depends on the ratios of
AðTÞ with f2πðTÞ, fπfss̄ðTÞ, and f2ss̄ðTÞ in Eqs. (16) and
(17). M2

NS S ∝ AðTÞ=½fπðTÞfss̄ðTÞ� decreases comparably
to AðTÞ1=2, and 2AðTÞ=fss̄ðTÞ2 decreases even faster. Thus,
MSðTÞ [Eq. (17)] monotonically becomes the anomaly-free
Mss̄ðTÞ in basically the same way as in Ref. [9], except now
this process is not completed at T ¼ TCh but rather [due to
the AðTÞ crossover] drawn out until T ≈ 1.15TCh.
In contrast, βShoðTÞ ¼ 2AðTÞ=f2πðTÞ even grows for T <

0.95TCh and 1.15TCh≲T≲1.25TCh. BymakingMNSðTÞ >
MSðTÞ it causes the increase of the mixing angle ϕ (look at
Figs. 3–5 together). Note that this makes the η8-η0-state
mixing angle θð≈ϕ − 55°Þ less negative, i.e., closer to zero,
and brings η0 and η8 in an even better agreement with,
respectively, η0 and η, than at T ¼ 0.
These two limited increases of AðTÞ=f2πðTÞ may be

model dependent and are not important, but what is
systematic and thus important is that the “light” decay
constant fπðTÞ makes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðTÞ=f2πðTÞ

p
more resilient to T

than not only AðTÞ1=4 itself, but also other anomalous mass
contributions in Eqs. (16) and (17).
Indeed, βShoðTÞ ¼ 2AðTÞ=f2πðTÞ decreases only after T ≈

0.95TCh (contributing over a half of the η0 mass decrease),
and then again increases somewhat afterT ≈ 1.15TCh, to start
definitively decreasing only afterT ≈ 1.25TCh, but even then
slower than other anomalous contributions. This makes
MNSðTÞ larger enough than MSðTÞ to increase ϕðTÞ to
around 80°, and keep it there up to T ∼ 1.5TCh (see Fig. 5).
This explains how the masses of the physical mesons η0

and η (thick and thin solid curves in Figs. 3 and 4),

M2
η0ðηÞ ¼

M2
NSþM2

S

2
þð−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M2

NS−M2
S

2

�
2

þM4
NSS

s
; ð20Þ

exhibit the decrease of the mass of the heavier partner η0
which is almost as strong as in the case [9] of the abrupt
disappearance of the anomaly contribution, while on the
contrary the lighter partner η now shows no sign of a
decrease in mass around T ¼ TCh, let alone an abrupt
degeneracy with the pion. The latter happens in the case
with the sharp phase transition because the fast disappear-
ance of the wholeMUAð1Þ around TCh can be accommodated
only by a sharp change of the state mixing (ϕ → 0) to fulfill
the asymptotic NS-S scenario immediately after TCh. (See
in particular Fig. 2 in Ref. [9]. Note that in our approach
Mη0 ðTÞ cannot decrease by much more than a third of
MUAð1Þ, since the RLAMss̄ðTÞ is the lower limit of Mη0 ðTÞ
both in Ref. [9] and here.)
In the present crossover case, however, T ¼ TCh does not

mark a drastic change in the mixing of the isoscalar states,
but η0 stays mostly η0 and η stays mostly η8. Then, ΔM2

η8 ¼
4Að1=fπ − 1=fss̄Þ2=3 [from Eq. (8)] can serve as a compact
illustration of how for the lighter partner η [with (−) in
Eq. (20)] anomalous contributions cancel to a large extent.
Thus, the mass of η behaves mostly like the masses of other
qq̄0 (almost-)Goldstone bosons after losing their chiral
protection at TCh: it just suffers the thermal increase
towards 2πT.
Nevertheless, in Mη0 [Eq. (20)], the anomalous contri-

butions from Eqs. (16) and (17) are all added together. The
partial restoration of UAð1Þ symmetry around TCh, where
around a third of the total UAð1Þ-anomalous mass MUAð1Þ
goes away, is consumed almost entirely by the decrease of
the η0 mass over the crossover.
After T ≈ 1.15TCh, Mη0 ðTÞ starts rising again, but this is

expected since after T ≈ TCh light pseudoscalarmesons start
their thermal increase towards 2πT, which is twice the
lowestMatsubara frequency of the free quark and antiquark.
This rather steep joint increase brings all of the mass curves
MPðTÞ quite close after T ∼ 1.5TCh. The kaon massMKðTÞ
is not shown in Figs. 3 and 4 to maintain clarity by avoiding
crowded curves, but at this temperature of the characteristic
η-η0 anticrossing,MKðTÞ is roughly in betweenMπðTÞ and
the η mass, and is soon crossed by MηðTÞ which tends to
become degenerate with MπðTÞ (as detailed below).
The rest of MUAð1ÞðTÞ [melting as 2

ffiffiffiffiffiffiffiffiffiffi
AðTÞp

=fπðTÞ]
under 1.5TCh is sufficiently large to keep MNSðTÞ >
MSðTÞ and ϕ ≈ 80°. So a large ϕ makes θ positive, but
not very far from zero, so that there we still have η0 ≈ η0 and
η ≈ η8. This is also a fairly good approximation for
T > 1.25TCh, but there an even better approximation is
η0 ≈ ηNS, Mη0 ðTÞ ≈MNSðTÞ and η ≈ ηS, MηðTÞ ≈MSðTÞ.
Finally, Eq. (20) enforces anticrossing at T ≈ 1.5TCh when
the anomalous mass contribution becomes so small that
MNSðTÞ ¼ MSðTÞ. MNSðTÞ and MSðTÞ switch, and after
this the η-η0 complex enters the NS-S asymptotic regime of
the vanishing anomaly influence: Mη0 ðTÞ → MSðTÞ →
Mss̄ðTÞ, MηðTÞ → MNSðTÞ → MπðTÞ, and ϕðTÞ → 0.

FIG. 5. Relative T dependence of the NS-S mixing angle ϕðTÞ.
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V. SUMMARY, DISCUSSION, AND CONCLUSIONS

We have studied the temperature dependence of the
masses in the η0 − η complex in the regime of the crossover
restoration of chiral and UAð1Þ symmetry. We relied on the
approach of Ref. [11], which demonstrated the soundness
of the approximate way in which the UAð1Þ-anomaly
effects on pseudoscalar masses were introduced and com-
bined [24,27,34–37] with chirally well-behaved DS RLA
calculations in order to study η0 and η. For T ¼ 0, this was
demonstrated [11] model independently, with the only
inputs being the experimental values of pion and kaon
masses and decay constants, and the lattice value of the YM
topological susceptibility. However, at T > 0 dynamical
models are still needed to generate the temperature depend-
ence of nonanomalous quantities through DS RLA calcu-
lations, and in this paper we used the same chirally correct
and phenomenologically well-tested model as in numerous
earlier T ≥ 0 studies (see, e.g., Refs. [9,24,31] and refer-
ences therein).
Following Ref. [11], we assumed that the anomalous

contribution to the masses is related to the full-QCD
topological charge parameter (18), which contains the
massive quark condensates. They give us the chiral cross-
over behavior for high T. This is crucial, since lattice QCD
calculations have established that for the physical quark
masses, the restoration of the chiral symmetry occurs as a
crossover (see, e.g., Refs. [29,48,49] and references
therein) characterized by the pseudocritical transition
temperature TCh.
Nevertheless, what happens with theUAð1Þ restoration is

still not clear [48,50–52]. Whereas, e.g., Ref. [29] found its
breaking as high as T ∼ 1.5TCh, Ref. [53] found that above
the critical temperatureUAð1Þ is restored in the chiral limit,
and the JLQCD Collaboration [52] discussed the possible
disappearance of the UAð1Þ anomaly and pointed out the
tight connection with the chiral symmetry restoration.
Hence, there is a need to clarify “if, how (much), and when”
[48] UAð1Þ symmetry is restored. In such a situation, we
believe instructive insight can be found in our study of how
an anomaly-generated mass influences the η-η0 complex,
although this study is not done at the microscopic level.
Since the JLQCDCollaboration [52] has recently stressed

that the chiral symmetry breaking and UAð1Þ anomaly are
tied for quark bilinear operators (as, e.g., in our Eqs. (12),
(13), (18) and (19), where the chiral symmetry breaking
drives the UAð1Þ one through qq̄ condensates), we again
recall howRef. [11] provided support for the earlier proposal
of Ref. [9] relating DChSB to the UAð1Þ-anomalous mass
contributions in the η0-η complex. This adds to the motiva-
tion to determine the full-QCD topological charge parameter
(18) on the lattice from simulations in full QCD with
massive, dynamical quarks [besides the original motivation
[13,14] to remove the systematic Oð1=NcÞ uncertainty of
Eq. (15)]. More importantly, this connects the UAð1Þ
symmetry breaking and restoration to those of chiral

symmetry. It connects them in basically the same way in
both Refs. [9,11] (and here), except that the full-QCD
topological charge parameter (18) enables the crossover
UAð1Þ restoration by allowing the use of the massive quark
condensates. But, if the chiral condensate (i.e., of massless
quarks) is used to extend the approach of Ref. [11] to finite
temperatures, the T > 0 results are, in essence, very similar
to those of Ref. [9]: the quick chiral phase transition leads to
quick UAð1Þ symmetry restoration at TCh (consistent with
Ref. [53]), which causes not only the empirically supported
[5] decrease of the η0 mass but also an even larger η mass
decrease; ifM2

UAð1ÞðTÞ∝ βðTÞ→ 0 abruptly when T → TCh,
Eq. (10) mandates that MηðT → TChÞ → MπðTChÞ equally
abruptly (as in Ref. [9]). However, no experimental indica-
tion for this has ever been seen, although this is a more
drastic decrease than for the η0 meson.
The present paper predicts a more realistic behavior of

MηðTÞ thanks to the smooth chiral restoration, which in
turn yields the smooth, partial UAð1Þ symmetry restoration
(as far as the masses are concerned) making various actors
in the η-η0 complex behave quite differently from the abrupt
phase transition (such as that in Ref. [9]). In particular, the η
mass is now not predicted to decrease, but to only increase
after T ≈ TCh, just like the masses of other (almost-)
Goldstone pseudoscalars, which are free of the UAð1Þ
anomaly influence. Similarly to T ¼ 0, η agrees rather well
with the SUð3Þ flavor state η8 until the anticrossing
temperature, which marks the beginning of the asymptotic
NS-S regime, where the anomalous mass contributions
become increasingly negligible and η → ηNS.
In contrast to η, the η0 mass Mη0 ðTÞ does decrease

similarly to the case of the sharp phase transition, where
its lower limit [namely,Mss̄ðTÞ] is reached at TCh [9]. Now,
Mη0 ðTÞ at its minimum (which is only around 1.13TCh

because of the rather extended crossover) is some 20 to
30 MeV above Mss̄ðTÞ, after which they both start to grow
appreciably, and Mη0 ðTÞ is reasonably approximated by
Mη0ðTÞ up to the anticrossing. The effective restoration of
UAð1Þ regarding the η-η0 masses only occurs beyond the
anticrossing at T ≈ 1.5TCh, in the sense of reaching the
asymptotic regime Mη0 ðTÞ → Mss̄ðTÞ. Another, less quali-
tatively illustrative but more quantitative criterion for the
degree of UAð1Þ restoration is that there, at T ≈ 1.5TCh,
MUAð1Þ is still slightly above 40%, and at T ≈ 1.8TCh still
around 14% of its T ¼ 0 value. Thus, the decrease to the
minimum of Mη0 ðTÞ around 1.13TCh in any case signals
only a partial UAð1Þ restoration.
This Mη0 ðTÞ decrease is around 250 MeV, which is

consistent with the current empirical evidence claiming
that it is at least 200 MeV [5]. For comparison with
some other approaches that explore the interplay of the
chiral phase transition and axial anomaly, note that the η0
mass decrease around 150 MeV is found in the func-
tional renormalization group approach [54]. A very
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recent analysis within the framework of the Uð3Þ chiral
perturbation theory found that the (small) increase of the
masses of π, K, and η after around T ∼ 120 MeV, is
accompanied by the decrease of the η0 mass, but only by
some 15 MeV [55].
Admittedly, the crossover transition leaves more space

for model dependence, since some model changes that
would make the crossover even smoother would reduce our
η0 mass decrease. Nevertheless, there are also changes
that would make it steeper, and those may, for example,
help Mη0 ðTÞ saturate the Mss̄ðTÞ limit. Exploring such
model dependences, as well as attempts to further reduce
them at T > 0 by including more lattice QCD results,
must be relegated to future work. However, here we
can already note a motivation for varying the presently
isosymmetric model current u- and d-quark mass of
5.49 MeV. Since it is essentially a phenomenological
model parameter, it cannot be quite unambiguously and
precisely related to the somewhat lower Particle Data

Group values mu¼2.2þ0.5
−0.4 MeV and md ¼ 4.70þ0.5

−0.3 MeV
[56]. Still, their ratiomu=md ¼ 0.48þ0.07

−0.08 is quite instructive
in the present context, since the QCD topological suscep-
tibility χ [Eq. (19)] and charge parameter A [Eq. (18)]
contain the current-quark masses in the form of harmonic
averages ofmqhq̄qi (q ¼ u, d, s). Since a harmonic average
is dominated by its smallest argument, our χ and A are
dominated by the lightest flavor, providing the motivation
to venture beyond the precision of the isospin limit and in
future work explore the maximal isospin violation scenario
[57] within the present treatment of the η-η0 complex.

ACKNOWLEDGMENTS

This work was supported in part by the Croatian Science
Foundation under the Project No. 8799, and by STSM
grants from COSTActions CA15213 THOR and CA16214
PHAROS. D. Kl. thanks T. Csörgő and D. Blaschke for
many helpful discussions.

[1] Y. Akiba et al., arXiv:1502.02730.
[2] A. Dainese et al., Frascati Phys. Ser. 62 (2016).
[3] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett.

93, 152302 (2004).
[4] J. Adams et al. (STAR Collaboration), Phys. Rev. C 71,

044906 (2005).
[5] T. Csörgő, R. Vertesi, and J. Sziklai, Phys. Rev. Lett. 105,

182301 (2010); R. Vertesi, T. Csörgő, and J. Sziklai, Phys.
Rev. C 83, 054903 (2011); M. Vargyas, T. Csörgő, and R.
Vertesi, Central Eur. J. Phys. 11, 553 (2013).

[6] J. I. Kapusta, D. Kharzeev, and L. D. McLerran, Phys. Rev.
D 53, 5028 (1996).

[7] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 97,
064911 (2018).

[8] T. Csörgő, HBT overview—with an emphasis on multi-
particle correlation, in XLVII Internat, Symposium on
Multiparticle Dynamics (ISMD2017), Tlaxcala, Mexico
(unpublished), https://indico.nucleares.unam.mx/event/
1180/session/22/contribution/106/material/slides/5.pdf.

[9] S. Benić, D. Horvatić, D. Kekez, and D. Klabučar, Phys.
Rev. D 84, 016006 (2011).

[10] H. Leutwyler and A. V. Smilga, Phys. Rev. D 46, 5607
(1992).

[11] S. Benić, D. Horvatić, D. Kekez, and D. Klabučar, Phys.
Lett. B 738, 113 (2014).

[12] C. Aidala et al. (PHENIX Collaboration), Phys. Rev. C 98,
054903 (2018).

[13] G. M. Shore, Nucl. Phys. B744, 34 (2006).
[14] G. M. Shore, Lect. Notes Phys. 737, 235 (2008); Nucl.

Phys. B569, 107 (2000).
[15] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253

(1980).
[16] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001).

[17] C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45,
S1 (2000).

[18] A. Höll, C. D. Roberts, and S. V. Wright, arXiv:nucl-th/
0601071.

[19] C. S. Fischer, J. Phys. G 32, R253 (2006).
[20] G. Eichmann, R. Williams, R. Alkofer, and M. Vujinović,

Phys. Rev. D 89, 105014 (2014).
[21] D. Binosi, L. Chang, J. Papavassiliou, S. X. Qin, and C. D.

Roberts, Phys. Rev. D 93, 096010 (2016).
[22] S. x. Qin, Few Body Syst. 57, 1059 (2016).
[23] D. Blaschke, G. Burau, Y. L. Kalinovsky, P. Maris, and P. C.

Tandy, Int. J. Mod. Phys. A 16, 2267 (2001).
[24] D. Horvatić, D. Klabučar, and A. E. Radzhabov, Phys.

Rev. D 76, 096009 (2007).
[25] D. Blaschke, Y. L. Kalinovsky, A. E. Radzhabov, and M. K.

Volkov, Phys. Part. Nucl. Lett. 3, 327 (2006).
[26] D.Horvatić, D. Blaschke, D.Klabučar, andA. E. Radzhabov,

Phys. Part. Nucl. 39, 1033 (2008).
[27] D. Horvatić, D. Blaschke, Y. Kalinovsky, D. Kekez, and D.

Klabučar, Eur. Phys. J. A 38, 257 (2008).
[28] A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).
[29] V. Dick, F. Karsch, E. Laermann, S. Mukherjee, and S.

Sharma, Phys. Rev. D 91, 094504 (2015).
[30] A. Bazavov et al., Phys. Rev. D 95, 054504 (2017).
[31] D. Horvatić, D. Blaschke, D. Klabučar, and O. Kaczmarek,

Phys. Rev. D 84, 016005 (2011).
[32] E. Witten, Nucl. Phys. B156, 269 (1979).
[33] G. Veneziano, Nucl. Phys. B159, 213 (1979).
[34] D. Kekez, D. Klabučar, and M. D. Scadron, J. Phys. G 26,

1335 (2000).
[35] D. Kekez and D. Klabučar, Phys. Rev. D 73, 036002

(2006).
[36] D. Klabučar and D. Kekez, Phys. Rev. D 58, 096003 (1998).

HORVATIĆ, KEKEZ, and KLABUČAR PHYS. REV. D 99, 014007 (2019)

014007-10

http://arXiv.org/abs/1502.02730
https://doi.org/10.1103/PhysRevLett.93.152302
https://doi.org/10.1103/PhysRevLett.93.152302
https://doi.org/10.1103/PhysRevC.71.044906
https://doi.org/10.1103/PhysRevC.71.044906
https://doi.org/10.1103/PhysRevLett.105.182301
https://doi.org/10.1103/PhysRevLett.105.182301
https://doi.org/10.1103/PhysRevC.83.054903
https://doi.org/10.1103/PhysRevC.83.054903
https://doi.org/10.2478/s11534-013-0249-6
https://doi.org/10.1103/PhysRevD.53.5028
https://doi.org/10.1103/PhysRevD.53.5028
https://doi.org/10.1103/PhysRevC.97.064911
https://doi.org/10.1103/PhysRevC.97.064911
https://indico.nucleares.unam.mx/event/1180/session/22/contribution/106/material/slides/5.pdf
https://indico.nucleares.unam.mx/event/1180/session/22/contribution/106/material/slides/5.pdf
https://indico.nucleares.unam.mx/event/1180/session/22/contribution/106/material/slides/5.pdf
https://indico.nucleares.unam.mx/event/1180/session/22/contribution/106/material/slides/5.pdf
https://indico.nucleares.unam.mx/event/1180/session/22/contribution/106/material/slides/5.pdf
https://indico.nucleares.unam.mx/event/1180/session/22/contribution/106/material/slides/5.pdf
https://doi.org/10.1103/PhysRevD.84.016006
https://doi.org/10.1103/PhysRevD.84.016006
https://doi.org/10.1103/PhysRevD.46.5607
https://doi.org/10.1103/PhysRevD.46.5607
https://doi.org/10.1016/j.physletb.2014.09.029
https://doi.org/10.1016/j.physletb.2014.09.029
https://doi.org/10.1103/PhysRevC.98.054903
https://doi.org/10.1103/PhysRevC.98.054903
https://doi.org/10.1016/j.nuclphysb.2006.03.011
https://doi.org/10.1007/978-3-540-74233-3
https://doi.org/10.1016/S0550-3213(99)00623-9
https://doi.org/10.1016/S0550-3213(99)00623-9
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1016/S0370-1573(01)00010-2
https://doi.org/10.1016/S0146-6410(00)90011-5
https://doi.org/10.1016/S0146-6410(00)90011-5
http://arXiv.org/abs/nucl-th/0601071
http://arXiv.org/abs/nucl-th/0601071
https://doi.org/10.1088/0954-3899/32/8/R02
https://doi.org/10.1103/PhysRevD.89.105014
https://doi.org/10.1103/PhysRevD.93.096010
https://doi.org/10.1007/s00601-016-1149-2
https://doi.org/10.1142/S0217751X01003457
https://doi.org/10.1103/PhysRevD.76.096009
https://doi.org/10.1103/PhysRevD.76.096009
https://doi.org/10.1134/S1547477106050086
https://doi.org/10.1134/S1063779608070095
https://doi.org/10.1140/epja/i2008-10670-x
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1103/PhysRevD.91.094504
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.84.016005
https://doi.org/10.1016/0550-3213(79)90031-2
https://doi.org/10.1016/0550-3213(79)90332-8
https://doi.org/10.1088/0954-3899/26/9/305
https://doi.org/10.1088/0954-3899/26/9/305
https://doi.org/10.1103/PhysRevD.73.036002
https://doi.org/10.1103/PhysRevD.73.036002
https://doi.org/10.1103/PhysRevD.58.096003


[37] D. Kekez and D. Klabučar, Phys. Rev. D 65, 057901
(2002).

[38] M. S. Bhagwat, L. Chang, Y. X. Liu, C. D. Roberts, and
P. C. Tandy, Phys. Rev. C 76, 045203 (2007).

[39] R. Alkofer, C. S. Fischer, and R. Williams, Eur. Phys. J. A
38, 53 (2008).

[40] F. J. Gilman and R. Kauffman, Phys. Rev. D 36, 2761
(1987); 37, 3348(E) (1988).

[41] S. Dürr, Nucl. Phys. B611, 281 (2001).
[42] See, e.g., the extensive review [43], or the Appendix in

Ref. [36].
[43] T. Feldmann, Int. J. Mod. Phys. A 15, 159 (2000).
[44] T. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D 58,

114006 (1998); Phys. Lett. B 449, 339 (1999).
[45] L. Del Debbio, L. Giusti, and C. Pica, Phys. Rev. Lett. 94,

032003 (2005).
[46] P. Petreczky, H. P. Schadler, and S. Sharma, Phys. Lett. B

762, 498 (2016).
[47] S. Borsanyi et al., Nature (London) 539, 69 (2016).

[48] S. Aoki, H. Fukaya, and Y. Taniguchi, Phys. Rev. D 86,
114512 (2012).

[49] M. I. Buchoff et al., Phys. Rev. D 89, 054514 (2014).
[50] S. Sharma (HotQCD Collaboration), arXiv:1801.08500.
[51] F. Burger, E. M. Ilgenfritz, M. P. Lombardo, and A. Trunin,

Phys. Rev. D 98, 094501 (2018).
[52] H. Fukaya (JLQCD Collaboration), EPJ Web Conf. 175,

01012 (2018).
[53] A. Tomiya, G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto, T.

Kaneko, and J. Noaki, Phys. Rev. D 96, 034509 (2017); 96,
079902(E) (2017).

[54] M. Mitter and B. J. Schaefer, Phys. Rev. D 89, 054027
(2014).

[55] X.W. Gu, C. G. Duan, and Z. H. Guo, Phys. Rev. D 98,
034007 (2018).

[56] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[57] D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Phys. Rev.
Lett. 81, 512 (1998).

η0 AND η MESONS AT HIGH T WHEN THE … PHYS. REV. D 99, 014007 (2019)

014007-11

https://doi.org/10.1103/PhysRevD.65.057901
https://doi.org/10.1103/PhysRevD.65.057901
https://doi.org/10.1103/PhysRevC.76.045203
https://doi.org/10.1140/epja/i2008-10646-x
https://doi.org/10.1140/epja/i2008-10646-x
https://doi.org/10.1103/PhysRevD.36.2761
https://doi.org/10.1103/PhysRevD.36.2761
https://doi.org/10.1103/PhysRevD.37.3348
https://doi.org/10.1016/S0550-3213(01)00325-X
https://doi.org/10.1142/S0217751X00000082
https://doi.org/10.1103/PhysRevD.58.114006
https://doi.org/10.1103/PhysRevD.58.114006
https://doi.org/10.1016/S0370-2693(99)00085-4
https://doi.org/10.1103/PhysRevLett.94.032003
https://doi.org/10.1103/PhysRevLett.94.032003
https://doi.org/10.1016/j.physletb.2016.09.063
https://doi.org/10.1016/j.physletb.2016.09.063
https://doi.org/10.1038/nature20115
https://doi.org/10.1103/PhysRevD.86.114512
https://doi.org/10.1103/PhysRevD.86.114512
https://doi.org/10.1103/PhysRevD.89.054514
http://arXiv.org/abs/1801.08500
https://doi.org/10.1103/PhysRevD.98.094501
https://doi.org/10.1051/epjconf/201817501012
https://doi.org/10.1051/epjconf/201817501012
https://doi.org/10.1103/PhysRevD.96.034509
https://doi.org/10.1103/PhysRevD.96.079902
https://doi.org/10.1103/PhysRevD.96.079902
https://doi.org/10.1103/PhysRevD.89.054027
https://doi.org/10.1103/PhysRevD.89.054027
https://doi.org/10.1103/PhysRevD.98.034007
https://doi.org/10.1103/PhysRevD.98.034007
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.81.512
https://doi.org/10.1103/PhysRevLett.81.512

