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The dynamics of induced fission of 226Th is investigated in a theoretical framework based on the finite-
temperature time-dependent generator coordinate method (TDGCM) in the Gaussian overlap approximation
(GOA). The thermodynamical collective potential and inertia tensor at temperatures in the interval T =
0–1.25 MeV are calculated using the self-consistent multidimensionally constrained relativistic mean-field
(MDC-RMF) model, based on the energy density functional DD-PC1. Pairing correlations are treated in the BCS
approximation with a separable pairing force of finite range. Constrained RMF+BCS calculations are carried out
in the collective space of axially symmetric quadrupole and octupole deformations for the asymmetric fissioning
nucleus 226Th. The collective Hamiltonian is determined by the temperature-dependent free energy surface and
perturbative cranking inertia tensor, and the TDGCM+GOA is used to propagate the initial collective state in
time. The resulting charge and mass fragment distributions are analyzed as functions of the internal excitation
energy. The model can qualitatively reproduce the empirical triple-humped structure of the fission charge and
mass distributions already at T = 0, but the precise experimental position of the asymmetric peaks and the
symmetric-fission yield can only be accurately reproduced when the potential and inertia tensor of the collective
Hamiltonian are determined at finite temperature, in this particular case between T = 0.75 MeV and T = 1 MeV.

DOI: 10.1103/PhysRevC.99.014618

I. INTRODUCTION

Fragment distributions present basic fission observables
that can be used to assess and validate theoretical methods
[1]. For instance, the experimental study of 70 short-lived
radioactive isotopes in the region 85 � Z � 92 has shown
that the charge and mass yields are symmetric in the lighter
mass region, whereas the yields tend to be asymmetric for
heavier nuclei and relatively low excitation energies [2]. The
charge and mass distributions remain asymmetric up to Cf [3].
The probability of symmetric fission increases with excitation
energy because of the weakening of shell effects [4–12].

A microscopic theoretical approach capable of predicting
fission fragment distributions starting from the initial state
of the compound nucleus is the time-dependent generator
coordinate method (TDGCM) [1,13]. In the Gaussian over-
lap approximation (GOA) the GCM Hill-Wheeler equation
reduces to a local, time-dependent Schrödinger-like equa-
tion in the space of collective coordinates. For a choice of
collective coordinates, the essential inputs are the potential
and inertia tensor that can be determined microscopically in
a self-consistent mean-field deformation-constrained calcu-
lation. Most applications of the TDGCM+GOA to nuclear
fission dynamics have been based on nonrelativistic Skyrme
and Gogny functionals [13–21]. More recently, relativistic en-

ergy density functionals [22–24] have also been employed in
the description of fission properties of heavy and superheavy
nuclei [25–38]. Triaxial and octupole deformations [39], and
the effect of coupling between shape and pairing degrees of
freedom [40] on dynamic spontaneous fission paths and half-
lives were analyzed using the multidimensionally constrained
relativistic mean-field (MDC-RMF) [35] and the relativistic
Hartree Bogoliubov (MDC-RHB) model [41]. The first study
of fission dynamics that used the TDGCM+GOA based on
a relativistic energy density functional was recently reported
in Ref. [42], where the effect of pairing correlations on the
charge yields and total kinetic energy of fission fragments was
examined.

In all applications of the TDGCM+GOA to studies of
induced fission dynamics [14,15,18,20,42], the collective po-
tential and inertia tensor have been calculated at zero tem-
perature. However, as the internal excitation energy increases,
one expects that both the potential energy surface (PES) and
the mass parameters exhibit significant modifications. Finite-
temperature (FT) nuclear density functional theory (DFT)
[43] provides a convenient framework in which the evolu-
tion of a PES and inertia tensor with excitation energy can
be described. Several studies of the dependence of PESs
and fission barriers on excitation energy have been carried
out using the finite-temperature Hartree-Fock-Bogoliubov
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(FT-HFB) method based on nonrelativistic Skyrme [44–48]
and Gogny functionals [49]. The effect of FT on perturba-
tive cranking inertia tensors has also been investigated in
the FT-HFB framework [44,49]. Exploratory studies of FT
effects on induced fission yield distributions using semiclas-
sical approaches have been reported in Refs. [50–52]. In this
work we present the first microscopic investigation of finite-
temperature effects on induced fission dynamics using the
TDGCM+GOA collective model. The theoretical framework
and method are introduced in Sec. II. The details of the
calculation for the illustrative example of 226Th, the results
for deformation energy landscapes, inertia tensor, as well as
the charge and mass yield distributions are described and
discussed in Sec. III. Sec. IV contains a summary of the
principal results.

II. METHOD

Assuming that the compound nucleus is in a state of
thermal equilibrium at temperature T , it can be described by
the finite-temperature (FT) Hartree-Fock-Bogoliubov (HFB)
theory [43,53]. In the grand-canonical ensemble, the expecta-
tion value of any operator Ô is given by an ensemble average

〈Ô〉 = Tr [D̂Ô], (1)

where D̂ is the density operator:

D̂ = 1

Z
e−β(Ĥ−λN̂ ). (2)

Z is the grand partition function, β = 1/kBT with the Boltz-
mann constant kB, Ĥ is the Hamiltonian of the system, λ
denotes the chemical potential, and N̂ is the particle number
operator. In the present study we employ the relativistic mean-
field (RMF) model for the particle-hole channel, while pairing
correlations are treated in the BCS approximation. The Dirac
single-nucleon equation

ĥψk (r ) = εkψk (r ), (3)

is determined by the Hamiltonian

ĥ = α · p + β[M + S(r )] + V0(r ) + �R (r ), (4)

where, for the relativistic energy-density functional DD-PC1
[54], the scalar potential, vector potential, and rearrangement
terms read

S = αS (ρ)ρS + δS�ρS,

V0 = αV (ρ)ρV + αT V (ρ) �ρT V · �τ + e
1 − τ3

2
A0, (5)

�R = 1

2

∂αS

∂ρ
ρ2

S + 1

2

∂αV

∂ρ
ρ2

V + 1

2

∂αT V

∂ρ
ρ2

T V ,

respectively. M is the nucleon mass, αS (ρ), αV (ρ), and
αT V (ρ) are density-dependent couplings for different space-
isospace channels, δS is the coupling constant of the derivative
term, and e is the electric charge. In the finite-temperature
RMF+BCS approximation the single-nucleon densities ρS

(scalar-isoscalar density), ρV (timelike component of the

isoscalar current), and ρT V (timelike component of the isovec-
tor current), are defined by the following relations:

ρS =
∑

k

ψ̄k (r )ψk (r )
[
v2

k (1 − fk ) + u2
kfk

]
, (6)

ρV =
∑

k

ψ̄k (r )γ 0ψk (r )
[
v2

k (1 − fk ) + u2
kfk

]
, (7)

ρT V =
∑

k

ψ̄k (r )�τγ 0ψk (r )
[
v2

k (1 − fk ) + u2
kfk

]
, (8)

where fk is the thermal occupation probability of a quasipar-
ticle state

fk = 1

1 + eβEk
, (9)

and β = 1/kBT . Ek = [(εk − λ)2 + �2
k]1/2 is the quasiparti-

cle energy, and λ is the Fermi level. v2
k are the BCS occupation

probabilities

v2
k = 1

2

(
1 − εk − λ

Ek

)
, (10)

and u2
k = 1 − v2

k . The gap equation at finite temperature reads

�k = 1

2

∑
k′>0

V
pp

kk̄k′ k̄′
�k′

Ek′
(1 − 2f ′

k ). (11)

In the particle-particle channel we use a separable pairing
force of finite range [55]:

V (r1, r2, r′
1, r′

2) = G0 δ(R − R′)P (r)P (r′) 1
2 (1 − P σ ),

(12)

where R = (r1 + r2)/2 and r = r1 − r2 denote the center-of-
mass and the relative coordinates, respectively. P (r) reads

P (r) = 1

(4πa2)3/2
e−r2/4a2

. (13)

The two parameters of the interaction were originally adjusted
to reproduce the density dependence of the pairing gap in
nuclear matter at the Fermi surface calculated with the D1S
parametrization of the Gogny force [13].

The entropy of the compound nuclear system is computed
using the relation:

S = −kB

∑
k

[fk ln fk + (1 − fk ) ln(1 − fk )]. (14)

The thermodynamical potential relevant for an analysis of
finite-temperature deformation effects is the Helmholtz free
energy F = E(T ) − T S, evaluated at constant temperature T
[45]. E(T ) is the binding energy of the deformed nucleus, and
the deformation-dependent energy landscape is obtained in a
self-consistent finite-temperature mean-field calculation with
constraints on the mass multipole moments Qλμ = rλYλμ.
The nuclear shape is parameterized by the deformation pa-
rameters

βλμ = 4π

3ARλ
〈Qλμ〉. (15)

The shape is assumed to be invariant under the exchange of
the x and y axes, and all deformation parameters βλμ with
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even μ can be included simultaneously. The self-consistent
RMF+BCS equations are solved by an expansion in the axi-
ally deformed harmonic oscillator (ADHO) basis [56]. In the
present study calculations have been performed in an ADHO
basis truncated to Nf = 20 oscillator shells. For details of the
MDC-RMF model we refer the reader to Ref. [35].

In the TDGCM+GOA nuclear fission is modeled as a slow
adiabatic process driven by only a few collective degrees of
freedom [18]. The dynamics is described by a local, time-
dependent Schrödinger-like equation in the space of collective
coordinates q,

ih̄
∂g(q, t )

∂t
= Ĥcoll(q )g(q, t ). (16)

The Hamiltonian Ĥcoll(q ) reads

Ĥcoll(q ) = − h̄2

2

∑
ij

∂

∂qi

Bij (q )
∂

∂qj

+ V (q ), (17)

where V (q ) is the collective potential, and the inertia tensor
Bij (q ) = M−1(q ) is the inverse of the mass tensor M. Both
the potential and mass tensor are determined by microscopic
self-consistent mean-field calculations based on universal en-
ergy density functionals. g(q, t ) is the complex wave function
of the collective variables q. In the present case the variables q
correspond to the quadrupole 〈Q20〉 and octupole 〈Q30〉 mass
multipole moments.

The collective space is divided into an inner region with
a single nuclear density distribution, and an external region

that contains the two fission fragments. The set of scission
configurations defines the hypersurface that separates the two
regions. The flux of the probability current through this hyper-
surface provides a measure of the probability of observing a
given pair of fragments at time t . Each infinitesimal surface el-
ement is associated with a given pair of fragments (AL,AH ),
where AL and AH denote the lighter and heavier fragments,
respectively. The integrated flux F (ξ, t ) for a given surface
element ξ is defined as [16]

F (ξ, t ) =
∫ t

t0

∫
ξ

J (q, t ) · dS, (18)

where J (q, t ) is the current

J (q, t ) = h̄

2i
B(q )[g∗(q, t )∇g(q, t ) − g(q, t )∇g∗(q, t )].

(19)

The yield for the fission fragment with mass A is defined by

Y (A) ∝
∑
ξ∈A

lim
t→∞ F (ξ, t ). (20)

The set A(ξ ) contains all elements belonging to the scis-
sion hypersurface such that one of the fragments has mass
number A.

The mass tensor is calculated in the finite-temperature
perturbative cranking approximation [44,49]:

MCp = h̄2M−1
(1) M(3)M

−1
(1) , (21)

with

[M(k)]ij,T = 1

2

∑
μ �=ν

〈0|Q̂i |μν〉〈μν|Q̂j |0〉
{

(uμuν − vμvν )2

(Eμ − Eν )k

[
tanh

(
Eμ

2kBT

)
− tanh

(
Eν

2kBT

)]}

+ 1

2

∑
μν

〈0|Q̂i |μν〉〈μν|Q̂j |0〉
{

(uμvν + uνvμ)2

(Eμ + Eν )k

[
tanh

(
Eμ

2kBT

)
+ tanh

(
Eν

2kBT

)]}
. (22)

The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasibound
states gk ,

g(q, t = 0) =
∑

k

exp

(
(Ek − Ē)2

2σ 2

)
gk (q ), (23)

where the value of the parameter σ is set to 0.5 MeV. The
collective states {gk (q )} are solutions of the stationary eigen-
value equation in which the original collective potential V (q )
is replaced by a new potential V ′(q ) that is obtained by extrap-
olating the inner potential barrier with a quadratic form (see
Ref. [16] for details). In the following we denote the average
energy of the collective initial state by E∗

coll., and its value
will usually be chosen about 1 MeV above the highest fission
barrier. The mean energy Ē in Eq. (23) is then adjusted iter-
atively in such a way that 〈g(t = 0)|Ĥcoll|g(t = 0)〉 = E∗

coll..
Just as in the study of thermal fission rates with temperature-
dependent fission barriers of Ref. [44], the beyond-mean-field

corrections to the thermodynamical collective potential have
not been included in this work.

III. INDUCED FISSION DYNAMICS OF 226Th:
RESULTS AND DISCUSSION

As in our first illustrative application of the
TDGCM+GOA framework to a description of induced fission
dynamics [42], we consider the case of 226Th and analyze
the temperature dependence of fission barriers, perturbative
cranking inertia tensors, and distribution of charge and mass
yields. In the present study the collective coordinates are
the axially symmetric quadrupole deformation parameter β20

and octupole deformation parameter β30. The starting point
is a large-scale deformation-constrained finite-temperature
self-consistent RMF+BCS calculation of the potential
energy surface and single-nucleon wave functions. In the
particle-hole channel we employ the relativistic energy
functional DD-PC1 [54]. As noted in Sec. II, the parameters
of the finite-range separable pairing force were originally
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adjusted to reproduce the pairing gap at the Fermi surface
in symmetric nuclear matter as calculated with the Gogny
D1S force. However, a number of RMF-based studies have
shown that in finite nuclei the strength parameters of this
force need to be fine tuned, especially for heavy nuclei
[57,58]. Here the strengths have been adjusted to reproduce
the empirical pairing gaps of 226Th. The assumption is that
the fissioning nucleus is in thermal equilibrium at temperature
T . The self-consistent RMF+BCS calculation provides a
deformation energy surface F (q ), and variations of the
free energy between two points q1 and q2 are given by
δF |T = F (q1, T ) − F (q2, T ) [45]. The internal excitation
energy E∗

int. of a nucleus at temperature T is defined as the
difference between the total binding energy of the equilibrium
RMF+BCS minimum at temperature T and at T = 0.

In a second step the computer code FELIX (version 2.0)
[16] is used for the TDGCM+GOA time evolution. The time
step is δt = 5 × 10−4 zs. The charge and mass distributions
are calculated after 2 × 105 time steps, corresponding to
100 zs. The scission configurations are defined by using the
Gaussian neck operator Q̂N = exp[−(z − zN )2/a2

N ], where
aN = 1 fm and zN is the position of the neck [59]. We define
the prescission domain by 〈Q̂N 〉 > 2 and consider the frontier
of this domain as the scission contour. Just as in our pervious
study of Ref. [42], the parameters of the additional imaginary
absorption potential that takes into account the escape of the
collective wave packet in the domain outside the region of
calculation [16] are: the absorption rate r = 20 × 1022 s−1,
and the width of the absorption band w = 1.5. Following
Ref. [18], the fission yields are obtained by convoluting the
raw flux with a Gaussian function of the number of particles.
The width is set to 4 units for the mass yields, and 1.6 for the
charge yields.

A. Temperature-dependent fission barriers and inertia tensors

Figure 1 displays the free energy of 226Th along the least-
energy fission pathway for temperatures ranging between zero
and 1.25 MeV. The heights of the fission barriers as functions
of temperature T are plotted in Fig. 2. At T = 0 the mean-
field equilibrium state is located at (β20, β30) ∼ (0.20, 0.15).
Similar to the results obtained with the functional PC-PK1
[60] in Ref. [42], a triple-humped barrier is predicted along
the static fission path with the barrier heights 5.22, 6.32,
and 5.16 MeV from the inner to the outer barriers, respec-
tively. One notices that the free energy curves do not change
significantly for temperatures T < 0.75 MeV, except for a
modest increase of the height of the first and second barriers.
The barriers start decreasing as temperature increases beyond
T = 0.75 MeV, and at these higher temperatures the nucleus
exhibits a spherical equilibrium shape. We note that although
the second (BII) and third (BIII) barriers increase slightly when
T � 1 MeV, the depths of the second and third potential wells
decrease with temperature for all T . At T = 0.5, 0.75, 1.0,
and 1.25 MeV the corresponding internal excitation energies
E∗

int. are: 2.58, 8.71, 16.56, and 27.12 MeV, respectively.
The evolution of the barrier heights as function of temper-

ature, shown in Fig. 2, can be attributed to different rates of
damping of pairing correlations and shell effects, as discussed

FIG. 1. Free energy (in MeV) along the least-energy fis-
sion pathway in 226Th for finite temperatures T = 0.0, 0.5, 0.75,

1.0, and 1.25 MeV. All curves are normalized to their values at
equilibrium minimum.

in Ref. [45]. In Fig. 3 we plot the pairing energy for the
equilibrium ground state, the fission isomer, the top of the
first and second barrier of 226Th. The pairing energies display
a rapid decrease with temperature, and completely vanish be-
yond T = 0.75 MeV. This is, of course, also the temperature
at which the barrier heights start decreasing.

The two-dimensional deformation free energy surfaces in
the collective space (β20, β30) at T = 0.0, 0.5, 0.75, 1.0, and
1.25 MeV are shown in Fig. 4. Only configurations with
Q̂N � 2 are plotted, and the frontier of this domain deter-
mines the scission contour. The deformation surfaces at T =
0.0 and 0.5 are almost indistinguishable. The ridge separat-
ing the asymmetric and symmetric fission valleys gradually
decreases with temperature for T � 0.75 MeV. The scission

FIG. 2. Evolution of the first (BI), second (BII), and third
(BIII) barrier heights in the free energy of 226Th, as functions of
temperature.
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FIG. 3. Temperature dependence of the pairing energy in the
RMF+BCS equilibrium minimum, in the fission isomer, and at the
top of the first and second barriers in 226Th.

contour at various temperatures displays similar patterns, that
is, it starts from an elongated symmetric point at β20 ∼ 5.5,
and evolves to a minimal elongation β20 ∼ 3.0 as asymmetry
increases.

For the two-dimensional space of collective deformation
coordinates three independent components M11, M12, and

FIG. 4. Free energy F of 226Th in the (β20, β30 ) plane for finite
temperatures T = 0.0, 0.5, 0.75, 1.0, and 1.25 MeV. In each panel
energies are normalized with respect to the corresponding value at
the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces are calculated
with the relativistic density functionals DD-PC1 [54], and the pairing
interaction Eq. (12). The contour interval is 1.0 MeV.

FIG. 5. The M11 component of the mass tensor of 226Th as
function of the quadrupole deformation β20 (top panel), and the
M22 component as function of the octupole deformation β30 (bottom
panel) for finite temperatures T = 0.0, 0.75, 1.0, and 1.25 MeV.

M22 determine the mass tensor. In the present case the indices
1 and 2 refer to the β20 and β30 degrees of freedom, respec-
tively. In Fig. 5 the evolution of the M11 component of the
collective mass with the quadrupole deformation parameter
β20, and the M22 component as function of the octupole
deformation β30, are shown for different temperatures. One
first notices that M11 exhibits more oscillations that reflect
the complex underlying structure of level crossings, while
M22 displays a smooth behavior as a function of octupole
deformation at T = 0. In the interval T = 0 ∼ 0.75 MeV both
components generally increase with temperature, due to the
weakening of pairing correlations and reduction of pairing
gaps for T > 0 MeV. Note that in the first approximation the
effective collective mass M ∝ �−2, where � is the pairing
gap [61]. After the pairing phase transition has occurred M11

and M22 decrease as a consequence of the weakening of shell
effects, except for rather large values at the spherical shape.
A similar behavior was also observed in studies based on
nonrelativistic Skyrme [44] and Gogny functionals [49].
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FIG. 6. Charge yields for induced fission of 226Th. The collective
potentials and perturbative cranking inertia tensors for the finite
temperatures T = 0.0, 0.5, 0.75, 1.00, and 1.25 MeV are used in
the calculations. The corresponding internal excitation energies are
E∗

int. = 0.0, 2.58, 8.71, 16.56, and 27.12 MeV, respectively. The
average excitation energy of the initial state (E∗

coll.) is chosen 1 MeV
above the corresponding second fission barrier BII. The experimental
charge yields for 226Th(γ, f ) are from Ref. [2].

B. Evolution of charge and mass fragment
distributions with temperature

The dynamics of induced fission of 226Th at different
temperatures is explored using the time-dependent genera-
tor coordinate method (TDGCM) in the Gaussian overlap
approximation (GOA). The potential entering the collective
Hamiltonian Eq. (17) is given by the Helmholtz free energy
F = E(T ) − T S, with E(T ) the RMF+BCS deformation en-
ergy in the (β20, β30) plane, and the mass tensor is calculated
using Eq. (22). The average energy of the initial state E∗

coll.
is chosen 1 MeV above the corresponding second (higher)
fission barrier BII.

The preneutron emission charge and mass yields obtained
with the TDGCM+GOA, and normalized to

∑
A Y (A) =

200, are shown in Figs. 6 and 7, respectively. The experimen-
tal fragment charge distribution of 226Th [2] is also included
in the plot of Fig. 6. For T = 0 MeV the calculation repro-
duces the trend of the data except, of course, the odd-even
staggering. In more detail, however, the predicted asymmetric
peaks are located at Z = 34 and Z = 56, two mass units away
from the experimental asymmetric peaks at Z = 36 and Z =
54. The empirical yield for symmetric fission is somewhat
underestimated in the zero-temperature calculation. This pic-
ture does not change quantitatively for T = 0.5 MeV, as this
temperature corresponds to an internal excitation energy of
only E∗

int. = 2.58 MeV and, therefore, the collective potential
and mass tensor are not modified significantly (cf. Sec. III A).

At temperature T = 0.75 MeV the asymmetric peaks of
the charge yields are predicted at Z = 36 and Z = 54, in
excellent agreement with the empirical values. However, the
symmetric fission peak is still lower than the experimental
one. The corresponding internal excitation energy of the

FIG. 7. Same as Fig. 6, but for preneutron emission mass yields.

nucleus is E∗
int. = 8.71 MeV. With a further increases of

the temperature to T = 1.0 MeV, corresponding to E∗
int. =

16.56 MeV, the yields of the asymmetric peaks at Z = 36
and Z = 54 decrease, whereas the symmetric peak increases
above the experimental value. This can in part be attributed
to the decreases of the ridge separating the asymmetric and
symmetric fission valleys, as shown in Fig. 4. It is interesting
to note that the experimental charge yield distribution lies
between our theoretical results obtained for E∗

int. = 8.71 and
16.56 MeV. Indeed, the experimental results were obtained
in photoinduced fission with photon energies in the interval
8–14 MeV, with a peak value of Eγ = 11 MeV [2]. Finally,
the calculated charge distribution becomes almost completely
symmetric at the highest temperature considered in the present
study: T = 1.25 MeV, corresponding to an internal excitation
energy of E∗

int. = 27.12 MeV.
The calculated preneutron emission mass yields for dif-

ferent temperatures are shown in Fig. 7. Analogous to the
charge distributions shown in Fig. 6, a three-peak structure
is obtained with the asymmetric peaks located at A = 83 and
A = 143, for T = 0.0 and 0.5 MeV. At T = 0.75 MeV the
asymmetric peaks shift by 6 mass units to A = 89 and A =
137. With a further increases of temperature the yields of the
asymmetric peaks decrease, while the symmetric-fission peak
is enhanced. The calculated distribution becomes symmetric
at T = 1.25 MeV.

IV. SUMMARY

We have explored the dynamics of induced fission of 226Th
in a theoretical framework based on the finite-temperature
time-dependent generator coordinate method (TDGCM) in
the Gaussian overlap approximation (GOA). The collective
Hamiltonian is determined by the temperature-dependent
free energy and perturbative cranking mass tensor in the
two-dimensional space of quadrupole and octupole deforma-
tions (β20, β30), calculated using the finite-temperature mul-
tidimensionally constrained relativistic mean-field plus BCS
model. The relativistic energy density functional DD-PC1 has
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been employed in the particle-hole channel, and pairing cor-
relations treated in the BCS approximation using a separable
pairing force of finite range. The TDGCM+GOA is used
to propagate the initial collective state in time and describe
fission dynamics.

The critical temperature for the pairing phase transition of
226Th is at T ≈ 0.75 MeV. At lower temperatures one notices
only small changes in the potential (free) energy surface,
while the collective mass increases because of the weakening
of pairing correlations. The fission barriers start to decrease at
T > 0.75 MeV, as well as the ridge separating the symmetric
and asymmetric fission valleys. The components of the mass
tensor decrease after the pairing phase transition.

The preneutron emission charge and mass distributions
are calculated using the FELIX code (version 2.0), which
is the most recent implementation of the TDGCM+GOA
model. Although the empirical triple-humped structure of
the fission charge and mass distributions can qualitatively
be described without taking into account temperature effects,
the experimental positions of the asymmetric peaks and the
symmetric-fission yield can only be accurately reproduced in
the TDGCM+GOA by using the finite-temperature collective
potential and inertia tensor. The model predicts a transition
from asymmetric to symmetric fission of 226Th as the internal
excitation energy increases. The charge and mass distributions
are determined by the collective potential and mass tensor,
thus sensitive to the internal excitation energies of the com-
pound nucleus, while the total flux as a function of time is
more sensitive to the energy of the collective initial state.

The time-dependent and fully quantum mechanical anal-
ysis of induced fission dynamics, reported in this work,
has been performed in the two-dimensional (2D) space of
quadrupole and octupole deformations. The choice of collec-
tive degrees of freedom is empirical but is also determined
by available computing resources. In the present case the
coupling between the quadrupole (elongation) and octupole
(mass asymmetry) degrees of freedom determines the ob-
served charge fragment distribution through the spreading of
the collective wave packet. Studies based on semiphenomeno-

logical and microscopic methods have indicated that addi-
tional collective degrees of freedom could have a pronounced
effect on fission dynamics. For instance, hexadecapole defor-
mation, or the coupling between shape and pairing degrees of
freedom [40]. However, at present the computational cost of
calculations with more than two degrees of freedom is still
excessively high. In a recent analysis of Ref. [17] it has been
pointed out that, for a regular discretization of the collective
space, each additional dimension multiplies both the calcula-
tion time of the deformation energy surface and the evolution
time of the TDGCM equations by approximately a factor
hundred. Even using the spectral finite element discretization
of the collective space, in the example of 240Pu the authors
estimate that a 3D calculation in the space (q20, q30, q40)
would require ≈5 × 106 points in the collective space. Thus,
even though the inclusion of additional collective degrees of
freedom is certainly important, currently the computational
aspect of such an extension is still very challenging. Future
studies will certainly consider the effect of additional shape
and possibly pairing dynamical variables.
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