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Metagenomics allows for a research of microorganisms which cannot be cultivated and 

explores them as entire microbial communities. Among many research directions that are 

opened through metagenomics, these studies also contribute to the investigation of human 

microbiome with the aim of discovering causes for different diseases, as well as inventing the 

methods for their diagnosis and treatment. Prokaryotes do not use all synonymous codons with 

the same frequency and those genes which are coded with preferred codons are optimised for 

translation. This effect is termed translational optimisation. By comparing individual genes to 

highly expressed gene set, such as ribosomal protein genes, we can predict their expressivity – 

their potential to be expressed. It has been demonstrated previously that this is an effect that 

can be observed not only at the level of a single species, but also at the level of entire microbial 

communities. Translational optimisation effect was used in this thesis as a basis for building a 

classification model based on a random forest algorithm. By training the model on the observed 

differences in codon usage bias between microbial communities from healthy and liver 

diseased individuals, we can predict with high accuracy the disease status in unknown samples. 

Also, an exploratory analysis of an entire dataset was performed to examine genes that are most 

important for the classification of samples. Pathway analysis was conducted to examine 

pathways in which the samples vary and to identify potential biomarkers for diagnosis of liver 

disease. Additional physiological information about the patients was observed in search for a 

correlation with the condition of samples. 
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Metagenomska istraživanja omogućuju proučavanje cijelih mikrobioloških zajednica, naročito 

onih koje nije moguće uzgajati u laboratorijskim uvjetima. Značajno su doprinijela 

proučavanju ljudskog mikrobioma sa ciljem otkrivanja uzoraka, dijagnosticiranju te 

potencijalnom liječenju mnogih bolesti. Sinonimni kodoni nisu jednako zastupljeni kod 

prokariota. Geni koji su kodirani najpovoljnijim kodonima su optimizirani za translaciju te se 

ta pojava naziva translacijskom optimizacijom. Uspoređujući pojedine gene s visoko 

eksprimiranim setom gena poput gena za ribosomske proteine, moguće je odrediti njihovu 

ekspresivnost – potencijal gena da bude eksprimiran. Ovaj fenomen je prethodno uočen na 

razini pojedinih vrsta, ali i cijelih mikrobnih zajednica. U ovom diplomskom radu, translacijska 

optimizacija je poslužila kao osnova za izradu klasifikacijskog sustava temeljenog na algoritmu 

nasumičnih šuma (eng. Random Forest). Treniranjem sustava na uočenim razlikama u upotrebi 

kodona između mikrobnih zajednica zdravih pojedinaca i pojedinaca oboljelih od ciroze jetre, 

moguće je predvidjeti zdravstveno stanje novih uzoraka s visokom pouzdanošću. Također sam 

provela računalnu analizu svih metagenomskih uzoraka i usporedila ih s dodatnim fiziološkim 

podacima koji su bili dostupni o pacijentima. Proučavanjem gena sa značajno različitom 

translacijskom optimizacijom od očekivane, odredila sam razlike u metaboličkim procesima 

pojedinih uzoraka, a time i identificirala potencijalne biomarkere za neinvazivnu dijagnozu 

bolesti jetre temeljenu na mikrobnim zajednicama probavnog trakta. 
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1. INTRODUCTION 
 

1.1 Metagenomics 
 

Using high-throughput sequencing, metagenomics enables direct analysis of genomes gathered 

directly from the environmental sample. These studies significantly contribute to research of 

whole microbial communities in their natural environment, especially making it useful to 

investigate organisms whose cultivation is impossible in laboratory conditions (Thomas et al., 

2012).. Various genomic methods are used with the aim of characterising microorganisms and 

their metabolic potential, with particular interest to mutual interactions between the microbial 

species and strains within the community (Tringe and Rubin, 2005).  

 

1.1.1 Metagenomic applications 

 

Analysis of metabolic potential of microbial communities through the investigation of their 

metabolic pathways could lead to discoveries which could be applied in biotechnology or 

biomedicine. It enables access to novel biocatalysts from metagenomes. For example, enzymes 

obtained from the microorganisms which live in extreme conditions could have industrial 

applications, such as in food or detergent industry (Steele et al., 2009), synthesis of vitamin C 

(Eschenfeldt et al., 2001) or biotin (Entcheva et al., 2001) and many other. It also expanded 

the potential of discovering pharmaceutically important molecules. Metagenomic studies 

enabled discovery of microbial products which can be used as antibiotics (Brady and Clardy, 

2004), as well as provided new information about antibiotic resistance mechanisms in 

microorganisms (Diaz-Torres et al., 2003). It is also applied in ecological studies, where it 

could be used to investigate the genomic, temporal and spatial variability between the microbial 

communities and the environment (Delong et al., 2006). 

 

1.1.2 Metagenomics in human health 

 

Metagenomics also has an enormous impact on study of human microbiome – a great number 

of microorganisms living in symbiosis with human organism. The most important role of 

human microbiome is in gastrointestinal and immune system. For this reason, more attention 

is dedicated to research with the aim of studying microbial role in human health (Hooper and 

Macpherson, 2010). The assumed number of microbes inhabiting human body varied 

throughout the years of research. The latest conclusions seem to estimate that number to the 

same order as the number of human cells, or approximately 3,8 x 1013 microbial cells for the 

reference man (a man between 20-30 years of age, weighing 70 kg, and being 170 cm tall) 

(Sender et al., 2016). The number varies depending mostly on the gender, age and obesity.  

Human health depends on human-microorganism mutualism. A primary function of gut 

microbiota is to enhance the human digestive system, mostly by degrading polysaccharides 

which humans cannot process on their own (Martens et al., 2008).  But it also has an important 
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role in protecting the host against pathogenic infections (Benson et al., 2009), epithelial cell 

maturation, angiogenesis (Hooper et al., 2001), lymphocyte development (He et al., 2007; 

Ivanov et al., 2008) and many other. It is also important to note that the disruption of balance 

between this mutualism can lead to pathogenicity. Such example is a Gram-positive bacteria 

Enterococcus faecalis which normally has a beneficial function in intestinal digestion, but can 

exceptionally become pathogenic and cause bacteraemia and endocarditis (Klare et al., 2001). 

With the help of the metagenomics, great developments were made in diagnosing neurological 

disorders. Such example is the metagenomic sequencing of cerebrospinal fluid, a method which 

can identify a broad range of pathogens in a single test. This approach was used to successfully 

diagnose diseases such as meningitis and encephalitis (Wilson et al., 2019). It was also 

observed that the gut microbiota is associated to the development and progression of 

neurological disorders. These interactions can be achieved not only through immune signalling, 

but also via bacterial metabolites and neural pathways, such as neurotransmitters (Slingerland 

and Stein-Thoeringer, 2018).  

 

1.2 Translational optimisation in prokaryotes 
 

Due to the degeneracy of the genetic code, not all amino acids are encoded with the equal 

number of synonymous codons. Prokaryotes do not use all the synonymous codons with the 

same frequency, a phenomenon termed codon usage bias (Grantham et al., 1980). They 

preferentially select for certain codons based on the availability of cognate tRNAs (Ikemura, 

1981; Yamao et al., 1991) and genes enriched with such codons are said to be optimised for 

translation, allowing them to be translated more efficiently and accurately. This has an 

important role in gene expression and protein functional features since it affects processes from 

RNA processing to protein folding (Plotkin and Kudla, 2011).   

It is proposed that all prokaryotes undergo translational selection (Supek et al., 2010), but not 

to the same extent. Ribosomal protein genes are highly expressed and a representative example 

of translationally optimised genes. Organisms living in multiple habitats, because of their need 

for adaption to different environments, seem to exhibit higher degrees of codon usage bias 

(Botzman and Margalit, 2011).  

Although there is a need for analysis of metagenomic samples as an entire community, there 

are not many computational methods for analysing the metabolism of entire metagenomes. One 

of the approaches for this challenge is the functional analysis of microbial communities based 

on the translational optimisation (Roller et al., 2013). Since environmental adaptations in 

prokaryotes are reflected in codon optimisations, their study can be used for the identification 

of genes which are significant in these adaptations. 

 

1.3 Codon usage analysis 
 

Based on the analysis of codon usage, it is possible to measure gene’s expressivity – its 

potential to be expressed (Supek and Vlahoviček, 2005). This approach can be used in a 

computational DNA-based analysis, demanding only metagenomic sequences of prokaryotic 

open reading frames and avoiding the expensive and laborious methods for gene expression 
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analysis based on the RNA expression and protein translation analysis. The drawback of such 

approach is that it lacks the information regarding the actual levels of gene expression.  

 

1.3.1 Measuring codon usage bias 

 

The measure for the codon usage quantification used in this thesis is called Measure 

Independent of Length and Composition (MILC) (Supek and Vlahoviček, 2005). It calculates 

the distance in codon usage between a gene and some expected distribution of codons while 

taking into consideration the bias introduced by different gene lengths, but with proposed 

minimum sequence length of 80 codons. 

The individual contribution Ma od each amino acid a to the MILC statistic is: 

𝑀𝑎 =  2 ∑ 𝑂𝑐  𝑙𝑛
𝑂𝑐

𝐸𝑐
=  2 ∑ 𝑂𝑐  𝑙𝑛

𝑓𝑐

𝑔𝑐
   𝑐𝑐        (1) 

where Oc stands for the observed count of the codon c in a gene and Ec represents the expected 

count of the same codon. Analogously, fc is the frequency of the codon c in a gene and gc is the 

expected frequency of the same codon. The sum of f or g over all codons for each amino acid 

should equal 1 and stop codons are excluded. 

The complete difference in codon usage is defined as: 

𝑀𝐼𝐿𝐶 =  
∑ 𝑀𝑎𝑎

𝐿
 –  𝐶         (2) 

The sum of contributions of all amino acids is divided by L, the gene length in codons and the 

correction factor C is subtracted. The correction factor is used to make up for the codon usage 

bias which can be overestimated in shorter sequences and is calculated as: 

𝐶 =  
∑ (𝑟𝑎 − 1)𝑎

𝐿
 −  0.5         (3) 

where ra denotes the number of possible codons for the amino acid a. If expected and observed 

codon distributions are similar, MILC can assume negative values. Therefore, a constant of 0.5 

is subtracted. 

 

1.3.2 Prediction of gene expressivity 

 

This approach can be used for predicting gene expressivity by using statistic MELP (MILC-

based Expression Level Predictor) (Supek and Vlahoviček, 2005), where: 

𝑀𝐸𝐿𝑃 =  
𝑀𝐼𝐿𝐶𝑠𝑒𝑡

𝑀𝐼𝐿𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
        (4) 

Statistic MELP represents the ratio of MILC distance of a gene’s CU from an average CU of a 

set of genes and a MILC distance from a reference set of genes, in this case a set of ribosomal 

protein genes.  

 



4 
 
 

These distances for each gene can be plotted in B plots, where each gene is represented by a 

dot and a characteristic crescent moon shape is seen, as shown in Figure 1. Those genes which 

have MELP value greater than 1 are considered to have high expressivity. 

 

 

Figure 1: Plots of the E. coli genome made using MILC statistics. The distance of codon usage 

of a gene from E. coli ribosomal genes was plotted on the x axis, and the distance of codon 

usage of a gene from the average codon usage of E. coli was plotted on the y axis. The red line 

represents where the MELP statistics equals to 1, >1 where it is greater than 1 and <1 where it 

is lower than 1. White squares represent ribosomal protein genes, while all other genes are 

represented by grey squares. Taken and adjusted from Supek and Vlahoviček, 2005. 

 

 

1.4 Random forest classifier 
 

There are many classification algorithms in machine learning, but the one used in this thesis is 

the random forest (RF) classifier (Breiman, 2001). It is based on the decision trees, where the 

general idea is to build multiple decision trees which are ensembled into a forest, and a 

definitive classification is made based upon combined trees. Those decision trees vote on how 

to classify each observation in the given dataset. It examines every feature and in each step 

searches for one which splits the observations so that the resulting classes are as different from 

each other as possible. The modification and the advantage of random forests is the use of 
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bagging. Bagging (Bootstrap Aggregation) is the process in which a random sample with 

replacement from the dataset is taken, of the same size as the entire dataset, and used for the 

build of each tree (Breiman, 1996). Another advantage of the random forest classifier is the 

random sampling of features. In the normal decision tree, every possible feature is considered 

in each node splitting step, while the random forest can select only a feature from a random 

subspace of all features (Figure 2). The number of features taken for each tree is usually a 

square root or a third of the total number of predictors, but the classifier can also be trained in 

search for the optimal number of predictors. 

 

 

Figure 2: A representation of RF algorithm. Depicted is a dataset with 3 samples and 5 features 

(A) upon which a random forest is built. Two decision trees (B and C) are shown for classifying 

the samples, where random sets of only 2 features are used and the classification of the first 

sample is illustrated. Features are used as decision points where the branches fork and samples 

are assigned to branches depending on a feature value. The branches terminate in leaves which 

represent the classes (red or yellow). Multiple decision trees are built for each sample and a 

random forest (D) combines their votes and concludes the final class prediction (E). This 

process is repeated for every sample in the dataset. (from Denisko and Hoffman, 2018) 

 

 

When using classification methods, a given dataset with beforehand known classes is often 

split into a training and a test set. The model is trained on the training data and then tested for 

accuracy on the test set. When used for classification, the accuracy is represented as a 

misclassification error – the percentage of incorrectly classified samples. Given the new 

dataset, the same model can be used to classify new observations. Therefore, a random forest 

classifier can be used as a valuable prediction tool. Due to the bagging and random feature 

sampling, the correlation between the built trees in a random forest is lower which improves 

predictive accuracy and prevents overfitting to the training data. Another significant benefit of 

a random forest is that it estimates the variable importance which can tell which features 

contribute the most to the classification. 
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1.5.  Liver disease 
 

The liver has many vital functions in maintaining the metabolic homeostasis. It processes 

dietary amino acids, lipids, carbohydrates and vitamins and stores glycogen. It also produces 

bile, clotting factors and is important for metabolising toxins and cholesterol (Si-Tayeb et al., 

2010). Cirrhosis is a progressive scarring condition of the liver which disrupts its structure and 

functions. It results from acute or chronic liver injuries, mostly caused by alcohol abuse, 

hepatitis virus infection of obesity (Nishikawa and Osaki, 2015). The scar tissue is formed 

during its recovery and extensive scarring can lead to life-threatening condition and a necessary 

liver transplantation.  

 

1.5.1  Diagnosis 

 

Many patients with cirrhotic livers are asymptomatic. The diagnosis includes physical 

examination, laboratory evaluation and radiologic studies. No serologic test can diagnose 

cirrhosis accurately, but many tests are performed in search for abnormality in liver functions. 

These tests usually include a complete blood count with platelets and a prothrombin time test, 

as well as the analysis of serum enzymes, bilirubin, albumin and creatinine concentrations 

(Dufour et al., 2000; Nishikawa and Osaki, 2015). Patients with liver cirrhosis have 

prolongated prothrombin time, decreased serum albumin and bilirubin and creatinine 

elevations. 

There is no radiographic test considered a diagnostic standard, although various studies can 

indicate the presence of cirrhosis. Ultrasonography is often used as it is the least expensive and 

does not pose a radiation exposure risk (Šimonovský, 1999).  

Lastly, if serologic and radiographic evaluation have failed to confirm a diagnosis of cirrhosis, 

a liver biopsy is performed to learn its cause and to determine its extensiveness. In conclusion, 

the diagnosis often includes extensive, long-term, laborious and invasive methods. 

 

1.5.2 Gut microbiota in liver diseases 
 

The liver and gut are strongly connected. The hepatic portal system receives blood from the 

gut and the liver secrets bile into the intestinal lumen. Cirrhosis is often followed by the 

bacterial translocation, a migration of bacteria or their products from the gut to the blood 

circulation or other organs, which can further the progression of liver damage (Fouts et al., 

2012). Gut flora alternations also include higher concentrations of toxic acetaldehyde in the 

lumen, produced through bacterial metabolism of alcohol, and the enhanced production of pro-

inflammatory cytokines which propagates a systemic inflammatory state. Some studies 

demonstrated that probiotics may modify the intestinal microbiota and benefit the treatment of 

the liver damage (Cesaro et al., 2011). 
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2. GOALS OF THE RESEARCH 

 

The goal of this research is to study whether metagenomic samples from the healthy individuals 

and individuals with liver disease can be distinguished based on the differences in 

translationally optimised sets of genes. Only genes under translational optimisation (i.e. with 

high expressivity measures based on the MELP statistics) will be used. For this purpose, a 

classification model based on the random forest algorithm will be built in a language and 

environment for statistical computing R (R Core Team, 2018). Samples will be split into a 

training set, for building the classification model, and a test set, for testing the model’s 

accuracy. Different combinations of variables will be used to train the model in search for the 

optimal set of predictors for the classification.  

Next, the exploratory analysis will be applied to the whole dataset to investigate which genes 

might potentially be relevant for distinguishing healthy and cirrhotic samples. This will be 

achieved by examining the variable importances in assembled random forest. Also, additional 

biological data is provided about the patients, which will be analysed in a search for a 

correlation with obtained classes. 

Furthermore, by investigating which genes have significantly higher translational optimisation 

than the expected and comparing them between the samples, further analysis will be conducted 

to associate genes with their metabolic pathways. Such approach might identify potential 

biomarkers for diagnosis of liver disease. 
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3. MATERIALS AND METHODS 
 

3.1  Initial data 
 

The original data is obtained from the previous research (Qin et al., 2014), where 161 

metagenomic samples from the intestinal tract are provided, 80 from the healthy individuals 

and 81 from the individuals with liver disease. The samples were obtained from the individuals 

of Han Chinese origin. Additional phenotype information about the patients is presented in 

Table 1.  

 

Table 1: Phenotype information of individuals 

Feature Description Range of values 

Gender  male or female 

Age (years) - 18 – 78 

BMI (kg/m2) body mass index 17,58 – 29,03 

Cirrhotic - yes or no 

HBV related - yes or no 

Alcohol related - yes or no 

Crea (µmol/L) the concentration of serum creatine 30,00 – 117,00 

Alb (g/L) the concentration of serum albumin 15,20 – 57,60 

TB (µmol/L) the concentration of total bilirubin 5,00 – 580,00 

 

These sequences were previously assembled and open reading frames (ORFs) were predicted 

with their corresponding identifiers from the Kyoto Encyclopaedia of Genes and Genomes - 

Orthology (KEGG - KO) Database (Fabijanić and Vlahoviček, 2016). 

 

 

3.2 Data pre-processing 
 

3.2.1  Prediction of gene expressivity 

 

Codon usage (CU) frequencies for each ortholog in each sample were calculated by 

implementing the functions from the coRdon package (Elek et al., 2019) in R. Genes shorter 

than 80 codons were filtered out in further processing and stop codons were excluded. Next, 

by computing MELP values for each gene, their expressivity is predicted, with ribosomal genes 

used as a reference set.  

 

3.2.2  Functional annotation and enrichment analysis 

 

To identify the most significantly enriched or depleted functions in the set of annotated genes, 

first, the counts of genes annotated to each KO category among all the genes in a sample are 

calculated, as well as the counts of those which are predicted to have high expressivity (MELP 
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value greater than 1). The enrichment analysis is performed by scaling and transforming the 

gene counts by MA transformation, performing the binomial test with correction for multiple 

testing. The features of pre-processed data and their descriptions are shown in Table 2. 

 

Table 2: The features of processed initial data 

feature description 

samples sample name 

category KO identifier 

all the count of corresponding gene (KO) in the sample 

gt_1 the count of corresponding gene with MELP value > 1 in the sample 

enrich a measure of gene enrichment in the sample 

M a scaled counts ratio 

A a mean average of scaled counts 

pvals p-value obtained by binomial test 

padj adjusted p-value for multiple testing 

  

Genes with high expressivity values (MELP values greater than 1) are regarded as optimised 

for translation and only those were used in further analysis. Samples were annotated by their 

condition, belonging to either the healthy or the diseased group.  

 

 

 

3.3 Random forest classifier 
 

3.3.1 Model training 
 

The data was split into a training test, which contained 80% of all the data, with the equal parts 

of samples from healthy and diseased individuals, and a test set of the remaining 20% of the 

data. The features explained in the Table 2 were used as predictors. Using the 5-fold cross-

validation from the caret package (Kuhn, 2019), the Random forest classifier from the ranger 

package (Marvin et al., 2017) was trained on the training set, with the condition as a response 

variable. The aim of the model training is to obtain the optimal number of predictors for the 

RF classifier. The model is trained for different number of predictors and the one with the 

highest accuracy is elected as the best one. The number of trees used for the training was 10000, 

the method was set to “ranger” and trees were trained for 50 different numbers of predictors. 

This cross-validation method divides the given set into 5 parts of equal sizes, and successively 

uses one of them as a test set while other 4 make the training set (Figure 3). The test error is 

obtained by averaging errors of all 5 validations. This process is repeated for different number 

of predictors in RF and results with the optimal number of predictors which generated the 

lowest test error.  
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Figure 3: The illustration of 5-fold cross-validation. Training data is split into 5 parts, where 

in each step, 4 of them are used as a training set and one is used as a test set. This is repeated 

for each split and the final training error is averaged over all splits. After finding the optimal 

parameters, trained model can be used to predict the error on a new test data.  (Taken from 

https://scikit-learn.org/stable/modules/cross_validation.html) 

 

3.3.2 Random forest assembly 
 

Based on the optimal number of predictors given by cross-validation, a RF classifier was 

trained on the entire training set, with the ntree parameter set to 10000. The computed RF 

classifier was applied to predict the condition of the samples from the test set and the test error 

was computed. The performance of the RF classifier was also evaluated with the Receiver 

operating characteristic (ROC) analysis – a performance measurement for classification 

problem. ROC curve is a graphical plot showing the true positive rate (TPR) of the model 

against the false positive rate (FPR) at various threshold settings. These measures are calculated 

as: 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
         (5) 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
         (6) 

 

where TP stands for true positive; FN for false negative, FP for false positive and TN for true 

negative. These measures are also called sensitivity and specificity, respectively, where 

sensitivity indicates how well can the model identify the true positives, that is the samples from 

the liver diseased individuals and specificity indicates how well can the model identify the true 

negatives, that is the samples from the healthy individuals. The area under the curve (AUC) is 

a measure of model’s ability to distinguishing between classes. Its value is between 0 and 1 

https://scikit-learn.org/stable/modules/cross_validation.html
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and higher it is, better the model is at predicting the classes. This was performed using the 

pROC package (Xavier et al., 2011). 

 

3.3.3 Graphical representation of classification  

 

The RF classifier also calculates the proximity measures among the samples, which is based 

on the frequency that pairs of the samples are in the same terminal nodes. Those proximity 

measures were used to create a heatmap with the package pheatmap (Kolde, 2019), a graphical 

representation of data where proximity measures between all samples are represented as 

colours. Red colour corresponds to higher proximity values and illustrates samples which are 

more similar, while the blue colour illustrates more distant samples. The intensity of these 

colours corresponds to the similarity of samples. 

 

 

 

 

3.4 Feature selection based on the graphical data analysis 
 

3.4.1 Principal Component Analysis (PCA) 
 

Since not every feature shown in Table 2. contributes equally to the separation of samples based 

on their condition, feature selection was performed through Principal Component Analysis 

(PCA). PCA is a technique used for dimensionality reduction, exploration and visualisation of 

the data (James et al., 2013). It transforms the original dataset and produces the principal 

components - the linear combinations of the original variables which explain most of the 

variability in the original set and are mutually uncorrelated. The first component has the largest 

variance, and each subsequent component has lower variance. Considerable differences 

between the observations in the data can be visualised by plotting the principal components.  

 

3.4.2  Uniform Manifold Approximation and Projection (UMAP) 

 

Uniform Manifold Approximation and Projection (UMAP) is another technique used for 

dimensionality reduction (McInnes et al., 2018). It is based on the distance between 

observations rather than the source features and as a result it does not have an equivalent of the 

linear combinations of the variables. While it lacks the strong interpretability of PCA, it can 

emphasize the differences between the samples. By visualising the observations on UMAP 

plots using different predictors, it is possible to select which are the most beneficial for the 

division of the samples.  

By analysing how each feature, and their combinations, contributed to the parting of the data, 

the most favourable features were chosen. A new RF classifier was trained, built and tested as 

previously described using only those features.  
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3.5 Exploratory analysis of entire dataset 
 

Exploratory analysis was conducted to investigate which genes have the most important role 

in distinguishing the samples from the healthy individuals and individuals with the diseased 

liver. A new RF model was built using all samples from the dataset. This approach is suitable 

for examining the given data and its characteristics but cannot be tested as a prediction tool on 

the same dataset since it uses all samples for the training. 

 

3.5.1 Selection of important predictors based on the empirical p-

values 
 

To select only the most important predictors for classification, considering that RF computes 

slightly different variable importance values each time, p-values for each predictor have been 

calculated. For this purpose, 1000 RFs have been built on the original dataset, as well as 1000 

RFs on permuted data, which is the original dataset with predictor values randomly sampled 

among each predictor. Some variables are excluded during the computation of each decision 

tree in RF assembly. The mean decrease in classification accuracy is calculated for each 

excluded variable. The more the accuracy decreases due to the exclusion of certain variable, 

the more important it is for the classification of the data. Such variable importance is computed 

for each RF, for the original and permuted data. P-values were calculated for each predictor by 

calculating how many of the importance values from the original data are smaller than the 

greatest importance value from the permuted data, and were adjusted for multiple testing by 

Bonferroni correction. Only the predictors with the adjusted p-value lower than 0.1 were 

chosen for the final classification model.  

 

3.5.2 Random forest assembly with important predictors 
 

The complete process of RF assembly was repeated on the entire dataset (training and test set 

combined). The model was trained and built as previously described, the data separation was 

analysed through PCA and a heatmap based on the computed proximity measures from the RF 

model was made. 

 

3.5.3 Wilcoxon-Mann-Whitney rank sum test 
 

Another method used to test which predictors have significantly different values between the 

samples from the healthy individuals and individuals with the diseased liver is the Wilcoxon-

Mann-Whitney rank sum test. This test does not assume a certain distribution of the data, but 

presumes that observations within each samples as well as the samples amongst themselves are 

independent of one another. It ranks the measures in groups and tests whether the groups have 

significantly different means of ranks. In the end, it was analysed how many predictors which 

resulted with p-value lower than 0.05 by this test intersected with the predictors deemed 

important by RF.  
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3.5.4 Codon usage analysis 

 

Differences in codon frequencies between the samples were analysed. Only genes longer than 

80 codons which had MELP values greater than 1 were used. Codon usage was examined for 

all codons, with the stop codons excluded. Median of the number of codons for each gene in 

each sample was calculated and PCA was applied to this data.  

 

 

 

3.6 Metabolic pathway analysis 
 

Samples from the healthy and diseased individuals were compared through GAGE (Generally 

Applicable Gene-set Enrichment) analysis using the gage package (Luo et al., 2009). When 

provided with sample names, KO of each gene and the enrichment measure from the initial 

data, this package analyses significantly different metabolic pathways between the reference 

and sample set. As a result, it outputs upregulated and downregulated genes, as well as 

associated metabolic pathways. The analysis was run for all samples and only those genes 

deemed important by the RF classifier. 

 

 

3.7  Analysis of phenotype information 
 

Disease status was compared to provided phenotype information to examine whether the 

samples are grouped together based on any given physiological feature. First, PCA was applied 

only to the additional data to investigate how gender, age, body mass index (BMI), albumin, 

bilirubin and creatinine concentrations affect the separation of the samples based on their 

condition. Then, the samples in PCA plot previously made using the important predictors were 

labelled by these features, including whether cause for the diseased liver was alcohol or HBV 

related. 

Lastly, Kruskal-Wallis rank sum test was applied to test in which features the samples from the 

healthy individuals and individuals with diseased liver differ. Like the Wilcoxon-Mann-

Whitney rank sum test, this test uses the relative position of the data in a rank ordering and 

does not assume a certain distribution of the data. Those features where the Kruskal-Wallis test 

resulted with p-value lower than 0.05 were considered significantly different. 
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4. RESULTS 
 

4.1  Initial processing of the data 
 

The initial data had 3744 different orthologs. Distribution of their lengths in codons is shown 

in Figure 4.  

 

 

Figure 4: A distribution of gene lengths in codons. Red line represents the length of 80 

codons. 

 

After filtering the data and excluding the genes shorter than 80 codons, the new dataset 

contained 3294 orthologs.  

 

 

 

4.2  Building the random forest classifier  
 

4.2.1  Random forest assembly with all predictors 
 

After splitting the data, there were 129 samples in the training and 32 samples in the test set. 

The optimal RF model obtained by 5-fold cross-validation was the one which used 18 variables. 

The RF classifier trained on the training set resulted with a training error of 31,78%. A heatmap 

based on the obtained proximity measures from the training set is shown in Figure 5. When the 

built RF model was used to classify the samples from the test set, the misclassification error 

was 25,00%. From the 8 misclassified samples, 3 were from the healthy individuals and 5 from 

the individuals with diseased liver. The ROC curve for this model is shown in Figure 6 and the 

corresponding AUC value was 0,773.  
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Figure 5: A heatmap based on the proximity measures from the RF classifier for the training 

set, with all predictors. Red colour represents closer samples, blue colour represents more 

distant samples. The black squares in diagonal direction represent the proximity measures 

between the same sample. The label above the heatmap corresponds to the condition of 

samples, where blue colour represents the samples from the healthy individuals and the red 

colour represents the samples from the liver diseased individuals. Two groups of samples can 

be distinguished, one in the upper left area, representing the samples from the liver diseased 

individuals, and the other one in the lower right area, representing the samples from the 

healthy individuals. 
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Figure 6: ROC curve for the RF classifier when all predictors were used. Sensitivity 

demonstrates the model’s ability to detect samples from the liver diseased individuals, while 

the specificity demonstrates the model’s ability to detect samples from the healthy 

individuals. The graph indicates that the model is not able to do both well simultaneously. If 

the threshold values are set to detect the samples from the diseased individuals with high 

accuracy, the samples from the healthy individuals will be misclassified in higher rate. The 

AUC value is 0,773.  

 

 

4.2.2  Feature selection based on the graphical data analysis 
 

After examining the data with UMAP plots, the best separation of samples based on their 

condition is achieved using the predictors enrich and M. The comparison of the data parting 

when only those predictors are used as opposed to all predictors is shown in Figure 7. 
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Figure 7: UMAP plots showing the samples coloured based on their condition when all 

predictors are used (a) and when only predictors enrich and M are used (b). The red samples 

(H) are from the healthy individuals and the blue samples (L) are from the liver diseased 

individuals. The distinction between samples is better when only enrich and M variables are 

used (b). 
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4.2.3  Random Forest assembly with predictors enrich and M 
 

The optimal RF model gained by 5-fold cross-validation was the one which used 4733 

variables. The RF classifier trained on the training set resulted with a training error of 31,78%.  

When the built RF model was used to classify the samples from the test set, the 

misclassification error was 18,75%. The ROC curve evaluating the model’s performance is 

shown in Figure 8 and the heatmap based on the obtained proximity measures from the training 

set is shown in Figure 9. This model performed better than the model which uses all predictors 

and has lower misclassification rate and higher AUC value. From 6 samples which were 

misclassified, only 1 was from the healthy individuals and 5 were from the individuals with 

diseased liver. 

 
Figure 8: ROC curve for the RF classifier when predictors enrich and M were used. 

Sensitivity demonstrates the model’s ability to detect samples from the liver diseased 

individuals, while the specificity demonstrates the model’s ability to distinct samples from 

the healthy individuals. The graph indicates that the model is not able to do both well 

simultaneously. If the threshold values are set to detect the samples from the diseased 

individuals with high accuracy, the samples from the healthy individuals will be misclassified 

in higher rate. The AUC value is 0,801. 
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Figure 9: A heatmap based on the proximity measures from the RF classifier for the training 

set, with predictors enrich and M. Red colour represents closer samples, blue colour 

represents more distant samples. The black squares in diagonal direction represent the 

proximity measures between the same samples. The label above the heatmap corresponds to 

the condition of samples, where blue colour represents the samples from the healthy 

individuals and the red colour represents the samples from the liver diseased individuals. Two 

groups of samples can be distinguished, one in the upper left area, representing the samples 

from the healthy individuals, and the other one in the lower right area, representing the 

samples from the liver diseased individuals. 
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4.3 Exploratory analysis of all samples 
 

4.3.1  Feature selection based on the calculated p-values 
 

After calculating adjusted p-values for each predictor based on the variable importances 

computed by RF classifier, there were 524 predictors with adjusted p-value lower than 0.1. Top 

20 predictors which had the highest importance measured in mean decrease in impurity are 

shown in Figure 10.  

 
Figure 10: Variable importances for top 20 predictors obtained from the RF models built on 

the original (red) and the permuted data (blue).  
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A comparison of separation of the samples based on their condition when all predictors are 

used and only predictors enrich and M with adjusted p-value lower than 0.1 is shown in Figure 

11. This PCA plot shows that the samples from the individuals with the diseased liver are more 

diverse than the samples from the healthy individuals.  

 

 

Figure 11: PCA plots showing the separation of the samples based on their condition, when 

a) all predictors are used and b) when only predictors enrich and M with adjusted p-value 

lower than 0.1 are used. The red samples (H) are from the healthy individuals and the blue 

samples (L) are from the liver diseased individuals. Using only a subset of predictors (b) 

improves the separability of samples based on their condition. 

 

The exploratory analysis of all samples showed that it is possible to distinguish the samples 

from the healthy individuals and individuals with the diseased liver based only on a subset of 

predictors. In contrast, using all genes to classify the samples lowers the accuracy of the 

classification model and doesn’t separate the samples well, as shown in Figure 11. 
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4.3.2  Random Forest assembly on all samples 
 

The predicted optimal number of predictors for RF model trained on all samples with predictors 

enrich and M which had adjusted p-value lower than 0.1 was 3. A heatmap based on the 

obtained proximity measures from the trained model is shown in Figure 12. It reveals two 

clearly distinguishable groups of samples, where the samples from the liver diseased 

individuals are in the upper left corner, and the samples from the healthy individuals are in the 

lower right corner. 

 
Figure 12: A heatmap based on the proximity measures from the RF built on all samples 

with predictors enrich and M which had adjusted p-value lower than 0.1. Red colour 

represents closer samples, blue colour represents more distant samples. The black squares in 

diagonal direction represent the proximity measures between the same samples. The label 

above the heatmap corresponds to the condition of samples, where blue colour represents the 

samples from the healthy individuals and the red colour represents the samples from the liver 

diseased individuals. Two groups of samples can be distinguished, one in the upper left area, 

representing the samples from the liver diseased individuals, and the other one in the lower 

right area, representing the samples from the healthy individuals. 
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4.3.3  Wilcoxon-Mann-Whitney rank sum test 
 

Wilcoxon-Mann-Whitney rank sum test applied to all samples with predictors enrich and M 

resulted with 702 predictors with p-value lower than 0.5. Of those, 225 were the same as those 

deemed important based on variable importances, as shown in Figure 13. The separation of the 

samples based on the combination of these predictors is illustrated in Figure 14. When the data 

is separated using only the predictors obtained by the Wilcoxon-Mann-Whitney rank sum test, 

the samples did not separate well (Figure 14a). Using the intersection of these samples and the 

ones deemed important by the RF classifier improved the division (Figure 14b), but it was 

inferior to the separation achieved by the predictors from the RF classifier alone. 

 

 

Figure 13: Venn diagram showing the intersection of predictors with p-value lower than 0.05 

obtained by Wilcoxon test and by variable importances computed by RF. 
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Figure 14: PCA plots showing the separation of the samples based on their condition when 

a) predictors with p-value lower than 0.05 from the Wilcoxon-Mann-Whitney rank sum test 

are used and b) when the intersection of predictors from the a) and the predictors deemed 

important by the RF classifier are used. The red samples (H) are from the healthy individuals 

and the blue samples (L) are from the liver diseased individuals. Samples separate notably 

only when the intersection of the predictors is used (b). 
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4.3.4  Codon usage analysis 
 

The PCA plot showing how the samples separate based only on the codon frequencies is shown 

in Figure 15. It demonstrates that the differences in codon frequencies between the samples 

from the healthy individuals and individuals with the diseased liver alone are not enough to 

distinguish them, proving that the MELP statistics is essential for the data separation. 

 

 

Figure 15: PCA plot showing the separation of the samples based on their codon frequencies. 

The red samples (H) are from the healthy individuals and the blue samples (L) are from the 

liver diseased individuals. 
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4.4 Metabolic pathway analysis 
 

Gene enrichment was compared between the samples from the healthy individuals and 

individuals with diseased liver. GAGE analysis resulted with 5 significantly up-regulated and 

no significantly down-regulated pathways, as shown in Figure 16. 

 
Figure 16: The comparison of enriched metabolic pathways between the samples from the 

healthy individuals and individuals with diseased liver. Shown pathways are enriched in the 

samples from the liver diseased individuals compared to the healthy individuals . 

 

A more detailed inspection of orthologs connected to the pathway biosynthesis of antibiotics 

was carried out. There were 10 genes which KEGGREST database connected to this pathway 

that were significantly enriched in samples from the diseased individuals. Their KO identifiers 

and the corresponding enzymes and pathways are shown in Table 3. 

 

 

Table 3: KO identifiers with the corresponding enzymes and pathways for orthologs which 

are connected to the pathway biosynthesis of antibiotics 

KO Enzyme pathway 

K00036 glucose-6-phosphate 1-dehydrogenase pentose phosphate pathway 

K00163 pyruvate dehydrogenase E1 component pyruvate oxidation 

K00164 2-oxoglutarate dehydrogenase E1 component citrate cycle 

K00825 kynurenine/2-aminoadipate aminotransferase lysine degradation 

K00832 aromatic-amino-acid transaminase phenylalanine and tyrosine biosynthesis 

K00891 shikimate kinase shikimate pathway 

K00927 phosphoglycerate kinase glycolysis / gluconeogenesis 

K01662 1-deoxy-D-xylulose-5-phosphate synthase C5 isoprenoid biosynthesis 

K01736 chorismate synthase shikimate pathway 

K11176 IMP cyclohydrolase inosine monophosphate biosynthesis 
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4.5 The analysis of the phenotype information 
 

4.5.1 Principal Component Analysis 
 

The PCA applied to the additional biological information about samples is shown in Figure 17. 

 

 

Figure 17: A PCA plot showing the parting of samples based on their phenotype information. 

The samples are coloured by their condition, where red colour represents the samples from the 

healthy individuals (H) and blue colour the samples from the individuals with diseased liver 

(L). The red arrows represent how the features affect the data parting. The samples which are 

in the pointing direction of an arrow have higher values of those features. 

 

PCA plots displaying how the separation of the samples based on the important predictors is 

associated to the condition and the cause of the diseased liver are shown in Figure 18. 
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Figure 18: PCA plots showing which samples are associated to the alcohol-related cause (a) 

and HBV-related cause (b). The plot shows no grouping of the samples from the diseased 

individuals based on the cause. 
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4.5.2 Kruskal-Wallis test 
 

A Kruskal-Wallis test resulted with no significant differences for the age, BMI and creatinine 

concentrations between the samples from the healthy individuals and individuals with diseased 

liver. It also resulted with a significant difference between the albumin concentrations with the 

p-value of 0.01567 and the total bilirubin concentrations with the p-value of 0.01957. The 

differences between these measures are shown in Figure 19. 

 

Figure 19: The differences between the variable measures for the samples from the healthy 

individuals (H) coloured red and the samples from the individuals with diseased liver (L) 

coloured blue. BMI = body mass index; Crea = creatinine concentration; Alb = albumin 

concentration; TB = total bilirubin concentration. 
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5. DISCUSSION 
 

The authors of the original paper built a classification model based on the Support Vector 

Machine (SVM) algorithm (Qin et al., 2014). First, they employed the Wilcoxon test to identify 

genes which were differentially abundant between the healthy and liver diseased individuals, 

choosing only those with the p-value lower than 0,01. The top 15 gut microbial gene markers 

were selected as the optimal subset of genes for patient discrimination. Its performance was 

assessed by ROC analysis and the obtained AUC value for the validation set was 0,836. The 

AUC value obtained with the RF classifier in this thesis based on the 418 predictors was 0,801, 

showing that it is inferior to the SVM classifier. Mentioned classifiers used different predictors, 

where the authors used the counts of genes as predictors, while the predictors in this thesis were 

based on the MELP statistics for each gene, resulting with larger number of predictors in RF 

model. It is also important to note that their training set had 181 samples (83 healthy and 98 

liver diseased individuals) and the test set had 56 samples (31 healthy and 25 liver diseased 

individuals). Since not all samples were available, only 161 samples from their training set 

were used in this thesis. It was possible to separate the samples from the entire dataset based 

on their condition, which implies that codon usage bias in metagenomes holds enough 

information to train an effective classification model based on the RF algorithm. There are 

studies demonstrating that even the gut microbial communities composition from healthy 

individuals differ considerably (Huttenhower et al., 2012). Most of the misclassified samples 

in this thesis were of individuals with the diseased liver, suggesting that they are more 

challenging to classify. This indication is supported by Figure 11b which shows that the 

samples from liver diseased individuals are more diverse than those from the healthy 

individuals. Using more samples to train the model would possibly considerably increase its 

accuracy. If the boundary between the samples based on their condition is not linear, the SVM 

algorithm can transform the dataset and project it into a higher dimension in which it could be 

linearly separable (James et al., 2013). This approach might also improve the classification 

accuracy and it would be possible to implement it using the same MELP statistics as for the 

RF classifier. 

 

Previous studies of the gut microbiome in human cirrhosis mostly focused on the comparison 

of species abundancies between healthy and diseased individuals (Acharya and Bajaj, 2019) 

and more detailed functional analyses are needed. GAGE analysis resulted with 5 up-regulated 

pathways, where the most up-regulated pathway is associated with the biosynthesis of 

secondary metabolites. This is probably due to the bacterial overgrowth in the intestinal tract 

and their production of endotoxins which are common in cirrhosis (Fouts et al., 2012; Augustyn 

et al., 2019). Previous research also observed a functional shift in microbiome toward 

endotoxin protein synthesis in cirrhosis (Acharya and Bajaj, 2019) and the top 15 markers 

which the authors identified also included biosynthesis of other secondary metabolites. 

Microbial metabolism in diverse environments is also enriched. The cause of this might be the 

need to adapt to the modified environment resulted by the gut flora alternations. While digested 

amino acids are metabolised by microorganisms in the intestinal tract and nutritionally impact 

their composition, diversity and activity, the amino acids are also synthesised by gut microbiota 

and of great importance for the host nutrition (Ma and Ma, 2019). Contrary to previous studies, 

the GAGE analysis resulted with enriched biosynthesis of amino acids in the samples from the 
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individuals with diseased liver. Some studies showed a higher expression of genes related to 

vitamins, cofactors, and oxidant metabolism in cirrhosis whereas controls had a significantly 

higher expression of carbohydrate and amino acid metabolism (Chen et al., 2014; Bajaj et al., 

2015). After further inspection which orthologs are connected to the biosynthesis of antibiotics, 

there were 10 of them significantly different between the samples from the healthy and diseased 

individuals (Table 3). They are also connected to the pathways which are essential for the 

microbial growth, such as the citrate cycle, pyruvate oxidation, glycolysis, gluconeogenesis 

and amino acid synthesis. It should be considered that the GAGE analysis is performed only 

on genes with high expressivity, which is probably why it resulted with no down-regulated 

pathways. Also, a functional gene diversity of gut microbial communities between the patients 

with the liver cirrhosis caused by the alcohol and HBV was observed (Chen et al., 2014) so 

another approach would be to analyse them separately.  

The PCA of additional biological information (Figure 17) was performed to study which 

physiological features are significantly different between the ill and healthy individuals. It 

would be expected that the values of those features are related to the grouping of the samples 

after their division with the RF classifier. This analysis indicates that men and women are 

equally healthy and ill. It also indicates that the parting of the samples based on their condition 

is mostly influenced by the age and the albumin concentrations. Although some studies 

observed differences in abundancies of species in gut microbiome based on the BMI and gender 

(Gao et al., 2018), there were no grouping of the samples based on these features. Samples 

from the diseased individuals appear to have lower albumin concentrations and be of older age. 

They also seem to have higher BMI and total bilirubin concentrations. The Kruskal-Wallis test 

established that the only significant differences of the mentioned features between the healthy 

and diseased individuals are in albumin and total bilirubin concentrations. This is expected 

since the patients with cirrhotic livers usually have lower levels of serum albumin and elevated 

levels of bilirubin. The liver is responsible for albumin synthesis which is compromised in 

cirrhotic livers and lower levels of albumin are produced (Walayat et al., 2017). Additionally, 

portal blood flow is distorted in liver cirrhosis, which is accompanied by a decrease in hepatic 

elimination of bilirubin (Kim Iet al., 2015).   

The results imply that the samples are not grouped based on some of the features, such as age, 

BMI and gender when employing MELP statistics. Another interesting question is would 

different diets, antibiotics and probiotics affect their separation. In the original paper, authors 

had exclusion criteria for the samples which, amongst others, included diabetes, obesity and 

the use of antibiotics or probiotics within 8 weeks before enrolment. There are studies showing 

how the diet alters the abundances of species and their functions in the human gut microbiome 

(David et al., 2014) and how the obesity lowers the gut microbial gene richness (Cotillard et 

al., 2013). It is known that the probiotics can change the population of microorganisms in the 

gut microbiota and that they have a role in the prevention of degenerative diseases (Cesaro et 

al., 2011; Azad et al., 2018). Antibiotics alter the composition of the gut microbiome, where 

they not only act on bacteria that cause infections but can also affect the resident microbiota 

indefinitely (Willing et al., 2011; Yoon and Yoon, 2018). This can result in the dysregulation 

of host immune homeostasis and an increased susceptibility to disease. Since all the mentioned 

factors can modulate the abundance of different species as well as their gene richness in gut 
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microbiome, they should be considered in further analysis for developing the optimal 

classification model. 

The PCA plot labelled with the condition of the samples and the cause of the cirrhotic liver 

(Figure 18) illustrated that the samples from the diseased individuals with the alcohol-related 

cause, as well as those with the HBV-related cause, are randomly scattered among all diseased 

samples. This implies the lack of grouping of the samples based on the cause when the analysis 

is based on the MELP statistics. It would be expected that there are differences in gut 

microbiome between the individuals with the HBV and alcohol caused liver disease since 

previous studies demonstrated enrichment of different microbial communities between these 

two groups (Engen et al., 2015). The RF classifier was used to classify the samples based on 

their condition and not the cause, but the similar approach could be applied only to the samples 

from the diseased individuals to identify the genes in which they significantly differ based on 

the cause.    

It should also be considered that the individuals from which the sample derive are of Han 

Chinese origin. In their research, the authors compared metagenomic species enriched in the 

healthy individuals from the Chinese population with the individuals from the Danish 

population and concluded that they were similarly correlated (Qin et al., 2014). This indicates 

that the microbial communities of healthy individuals might be largely similar globally but 

needs broader research which would include more populations across the continents. Also, it 

lacks the same information about the individuals with the diseased liver and they are more 

diverse even within the same population.  

As already mentioned, a great advantage of this method is that it only requires metagenomic 

samples. If this classification model would be slightly improved, it could be used as a valuable 

prediction tool in diagnosis of liver diseases. Instead of a long-term procedure which often 

results with liver biopsy to conclude the diagnosis, this method is non-invasive, inexpensive 

and does not require laborious laboratory work. There are still some drawbacks to this 

approach. DNA-based metagenomic analysis provides information on the gene expressivity 

but it lacks the information of the actual metabolic activity of microbial communities. It is 

focussed on the metagenomes and not the patient, which might be both an advantage and a 

disadvantage. It also has the potential to be used for different diseases since none of the steps 

in this method are specific to liver cirrhosis.  

This research demonstrated that it is possible to distinguish the metagenomic samples from the 

healthy individuals and individuals with the cirrhotic liver based on the codon usage bias and 

RF classifier. Since only the genes with high expressivity were considered, perhaps including 

the genes with very low expressivity might improve the classification. If there were significant 

differences between those genes, adding them as predictors would probably improve the RF 

classifier’s accuracy and offer additional information about the differences between the healthy 

and liver diseased individuals.  
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6. CONCLUSION 
 

A random forest classifier for predicting whether individuals had a healthy or cirrhotic liver 

was built. Its misclassification error rate is 18,75%, where it mostly misclassifies the samples 

from the diseased individuals. After graphical analysis of the observations and training the 

model, the optimal subset of 4733 predictors was established based on the RF variable 

importances.  

 

When the same approach was used as an exploratory analysis of the entire dataset instead of a 

training set, it was possible to separate the classes well using only 524 predictors. There was 

no grouping of the observations based on their gender, age, BMI, creatinine levels and the 

cause of the cirrhotic liver. The pathways which are enriched in microbial communities from 

the diseased individuals compared to healthy individuals were identified and characterised. 

 

It was proven that using MELP statistics to determine the genes with high expressivity can be 

a useful tool for the mentioned analysis. The codon usage bias in metagenomes holds enough 

information to separate the samples based on their condition. 

 

Lastly, since this approach requires only sequenced metagenomes, it has the potential to be 

applied to other diseases as well. 
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SUPPLEMENT 

 
R scripts 

 

library(data.table) 

library(coRdon) 

library(stringr) 

library(Biobase) 

 

set.seed(17) 

 

my_fasta_file_folder <- "C:\\Users\\Maja\\Desktop\\Eva - 

diplomski\\samples\\svi" 

uzorci <- readSet(my_fasta_file_folder, prepend.filenames = T) 

uzorci <- codonTable(uzorci) 

 

 

A function which calculates MELP values and does enrichment analysis: 

enriching <- function(codon_table, sample_name){ 

  sample <- subset(codon_table, str_extract(coRdon::getID(codon_table), 

"[HL]D\\d+") == sample_name) 

  melp <- MELP(sample, ribosomal = TRUE, filtering = "hard", len.threshold 

= 80, stop.rm = TRUE) 

  ct <- crossTab(getKO(sample), as.numeric(melp), threshold = 1L) 

  enr <- enrichment(ct) 

  enr_data <- pData(enr) 

  enr_data$sample <- sample_name 

  return(list(enr_data)) 

} 

 

 

sample_dt <- data.table(samples = 

unique(str_extract(coRdon::getID(uzorci), "[HL]D\\d+"))) 

sample_dt[, enrichment := list(enriching(uzorci, samples)), by = samples] 

 

samples <- do.call("rbind", sample_dt$enrichment) 

samples$condition <- substr(samples$sample, 1, 1) 

 

#saveRDS(samples, "C:\\Users\\Maja\\Desktop\\Eva - 

diplomski\\samples\\all_samples_filtered.rds") 
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Preparing the data for training the model: 

 

#sampleSet <- samples[samples$gt_1 > 0, -c(7, 8, 10)] 

sampleSet <- samples[samples$gt_1 > 0, c("sample", "category", "enrich", 

"M")] 

sampleSet <- melt(sampleSet, id.var = c("sample", "category")) 

sampleSet$colnames <- paste(sampleSet$category, sampleSet$variable, sep = 

"_") 

sampleSet <- sampleSet[, c(1, 4, 5)] 

 

sample_names <- unique(sampleSet$sample) 

condition <- factor(substr(sample_names, 1, 1)) 

 

sampleSet <- dcast(sampleSet, sample ~ colnames, fill = 0) 

#sampleSet <- sampleSet[, which(colnames(sampleSet) %in% 

selected_predictors)] 

 

sampleSet <- data.frame(scale(sampleSet, center = T, scale = T)) 

 

sampleSet$condition <- condition 

rownames(sampleSet) <- sample_names 

 

 

Training the model: 

train_index <- createDataPartition(y = sampleSet$condition,  

                                   p = 0.5,  

                                   list = FALSE) 

 

train <- sampleSet[train_index, ] 

test <- sampleSet[-train_index, ] 

 

 

train_ctrl <- trainControl(method = "cv", 

                           number = 5,  

                           returnResamp = "all",  

                           verboseIter = TRUE) 

 

RFmodel <- train(condition ~ .,  

                 data = train, 

                 method = 'ranger', 

                 tuneLength = 50,  

                 trControl = train_ctrl, 

                 num.trees = 10000, 

                 importance = "impurity") 
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RFmodel$finalModel 

 

rf <- ranger(condition ~ ., train, num.trees = 10000, mtry = 

RFmodel$finalModel$mtry,  

             probability = FALSE, replace = TRUE, oob.error = TRUE,  

             classification = TRUE, importance = "impurity") 

 

RFpredict <- predict(rf, test) 

 

mc_rate <- mean(RFpredict$predictions != test$condition) 

mc_rate 

 

 

Heatmaps: 

prox <- extract_proximity(rf, sampleSet) 

colnames(prox) <- rownames(sampleSet) 

rownames(prox) <- rownames(sampleSet) 

 

labels <- data.frame(condition = sampleSet$condition) 

rownames(labels) <- rownames(sampleSet) 

 

pheatmap(prox, cellheight = 4, cellwidth = 4, fontsize = 4,  

         annotation_col = labels) 

 

 

ROC analysis: 

roc.curve <- function(m){ 

  train_index <- createDataPartition(y = sampleSet$condition,  

                                     p = 0.8,  

                                     list = FALSE) 

  train <- sampleSet[train_index, ] 

  test <- sampleSet[-train_index, ] 

   

  rf <- ranger(condition ~ ., train, num.trees = 10000, mtry = m,  

               probability = TRUE, replace = TRUE, oob.error = TRUE,  

               classification = TRUE, importance = "impurity") 

   

  RFpredict <- predict(rf, test) 

   

  rf.roc <- roc(test$condition, RFpredict$predictions[, 2]) 

  plot(rf.roc, xlim = c(0,1)) 

  return(auc(rf.roc)) 

} 
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Feature selection based on the graphical data analysis: 

library(umap) 

umap_dt <- umap(sampleSet[, -ncol(sampleSet)]) 

umap_dt <- data.table(umap_dt$layout) 

ggplot(umap_dt, aes(V1, V2, colour = condition)) + geom_point() +  

  xlab("dim 1") + ylab("dim 2")  

 

pca <- prcomp(sampleSet[, -ncol(sampleSet)], center = T, scale. = T) 

ggbiplot(pca, var.axes = F, groups = sampleSet$condition, ellipse = T) 

 

 

 

 

Calculating p-values for each predictor: 

doitall <- function(filename, m){ 

   

  sampleSet <- readRDS(filename) 

   

  #original 

  ranger.imp <- function(){ 

    rf <- ranger(condition ~ ., sampleSet, num.trees = 10000, mtry = m, 

probability = FALSE,  

                 replace = TRUE, classification = TRUE, importance = 

"impurity") 

    return(list(rf$variable.importance)) 

  } 

   

  dt <- data.table(rf = 1:1) 

  dt[, var_imp := list(ranger.imp()), by = rf] 

   

  #permutated: 

  perm <- data.table(copy(sampleSet)) 

  perm <- perm[, lapply(.SD, sample, nrow(perm), replace = TRUE), .SDcols 

= 1:(ncol(perm)-1)] 

  perm[, condition := factor(substr(rownames(sampleSet), 1, 1)), by = .I] 

   

  perm.ranger.imp <- function(){ 

    rf_perm <- ranger(condition ~ ., perm, num.trees = 10000, mtry = m, 

probability = FALSE,  

                      replace = TRUE, classification = TRUE, importance = 

"impurity") 

    return(list(rf_perm$variable.importance)) 

  } 
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  dt_perm <- data.table(rf = 1:1) 

  dt_perm[, var_imp := list(perm.ranger.imp()), by = rf] 

   

  saveRDS(dt, file = paste("var_imp", filename, sep = "_")) 

  saveRDS(dt_perm, file = paste("perm_var_imp", filename, sep = "_")) 

   

} 

 

system.time(doitall(sampleSet, RFmodel$finalModel$mtry)) 

 

 

 

 

#original: 

var_imp <- readRDS("var_imp_sampleSet.RDS") 

vimp <- data.table(rf = rep(1:1000, each = 

length(unlist(var_imp$var_imp[1]))),  

                   gene = names(unlist(var_imp$var_imp)), 

                   importance = unlist(var_imp$var_imp)) 

vimp <- data.table(dcast(vimp, rf ~ gene, value.var = "importance")) 

 

#permuted: 

perm_var_imp <- readRDS("perm_var_imp_sampleSet.RDS") 

pvimp <- data.table(rf = rep(1:1000, each = 

length(unlist(perm_var_imp$var_imp[1]))),  

                    gene = names(unlist(perm_var_imp$var_imp)), 

                    importance = unlist(perm_var_imp$var_imp)) 

pvimp <- data.table(dcast(pvimp, rf ~ gene, value.var = "importance")) 

 

 

p.value <- function(predictor){ 

  smallest_real <- min(unlist(vimp[, ..predictor])) 

  p_value <- 1 - mean(unlist(pvimp[, ..predictor]) < smallest_real) 

  return(p_value) 

} 

 

 

#calculating p-values for each predictor: 

pvalues <- data.table(predictor = unique(names(unlist(var_imp$var_imp)))) 

pvalues[, pvalue := p.value(predictor), by = predictor] 

pvalues[, padj := p.adjust(pvalue, method = "bonferroni"), by = predictor] 

 

selected_predictors <- pvalues[padj < 0.1, predictor] 

#saveRDS(selected_predictors, "predictors_pvalues.RDS") 
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Wilcoxon test: 

wilcox.testing <- function(predictor){ 

  t <- wilcox.test(unlist(sampleSet[1:80, ..predictor]), 

unlist(sampleSet[81:161, ..predictor])) 

  return(t$p.value) 

} 

 

wilcox_enrM <- data.table(predictor = colnames(sampleSet)[-c(1, 

length(colnames(sampleSet)))]) 

wilcox_enrM[, p_value := wilcox.testing(predictor), by = predictor] 

wilcox_enrM[, padj := p.adjust(wilcox_enrM$p_value)] 

library(VennDiagram) 

venn.diagram(list(RF = selected_predictors, 

                  Wilcoxon = wilcox_enrM[p_value < 0.05, predictor]), 

             category.names = c("RF", "Wilcoxon test"), 

             filename = "venn_diagram_RF_wilcox.png") 

 

CU analysis: 

my_fasta_file_folder <- "C:\\Users\\Maja\\Desktop\\Eva - 

diplomski\\samples\\svi" 

codon.freq <- function(path){ 

  uzorci <- readSet(my_fasta_file_folder, prepend.filenames = T) 

  codon_table <- codonTable(uzorci) 

  codon_usage <- data.table(sample = str_extract(getID(codon_table), 

"[HL]D\\d+"), 

                            length = getlen(codon_table), 

                            KO = getKO(codon_table), 

                            codonCounts(codon_table)) 

  codon_usage[, 4:ncol(codon_usage)] <- codon_usage[, 4:ncol(codon_usage)] 

/ codon_usage$length 

  return(codon_usage) 

} 

 

codon_usage <- codon.freq(my_fasta_file_folder) 

#saveRDS(codon_usage, "C:\\Users\\Maja\\Desktop\\Eva - 

diplomski\\samples\\codon_usage.rds") 

 

 

 

 

 

 

 

 



44 
 
 

A function which analyses whether HD vs LD samples are distinguished based 

on codon frequencies: 

codon.usage <- function(codon_usage){ 

  codon_usage <- codon_usage[length > 80] 

  codon_usage <- codon_usage[, lapply(.SD, median), .SDcols = 

4:ncol(codon_usage),  

                             by = c("sample", "KO")] 

  codon_usage <- codon_usage[, lapply(.SD, median), .SDcols = 

3:ncol(codon_usage),  

                             by = "sample"] 

  codon_usage$condition <- factor(substr(codon_usage$sample, 1, 1)) 

   

  PCA <- prcomp(codon_usage[, -c("sample", "condition")]) 

   

  return(ggbiplot(PCA, ellipse = TRUE, var.axes = FALSE, labels = 

codon_usage$sample,  

                  groups = factor(codon_usage$condition)) + 

theme_classic()) 

} 

 

codon.usage(codon_usage) 

 

 

 

 

Pathway analysis with GAGE: 

selected_predictors_KOs <- 

unique(na.omit(str_extract(unlist(str_split(selected_predictors, "_")), 

"K\\d++"))) 

 

library(gage) 

path.set <- kegg.gsets("ko") 

ko.gs <- path.set$kg.sets 

gage_dt <- samples[samples$pvals < 0.05, c("category", "enrich", 

"sample")] 

gage_dt <- gage_dt[gage_dt$category %in% selected_predictors_KOs, ] 

gage_dt <- dcast(gage_dt, category ~ sample, value.var = "enrich", fill = 

0) 

gage_dt <- as.data.frame(gage_dt) 

rownames(gage_dt) <- gage_dt$category 

gage_dt <- gage_dt[, -1] 
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#a function which does enrichment analysis for all pathways 

expressivity <- function(gage_run){ 

  kegg.sig <- sigGeneSet(gage_run) 

   

  upregulated <- data.frame(kegg.sig$greater) 

  pathways_up <- rownames(upregulated) 

  pathways_up <- unlist(str_split(pathways_up, "ko[0-9]*")) 

  pathways_up <- pathways_up[rep(c(FALSE, TRUE), length(pathways_up)/2)] 

   

  downregulated <- data.frame(kegg.sig$less) 

  pathways_down <- rownames(downregulated) 

  pathways_down <- unlist(str_split(pathways_down, "ko[0-9]*")) 

  pathways_down <- pathways_down[rep(c(FALSE, TRUE), 

length(pathways_down)/2)] 

   

  enr_pathways <- data.table(pathway = c(pathways_up, pathways_down), 

                             enrichment = c(upregulated$stat.mean, 

downregulated$stat.mean)) 

  setorder(enr_pathways, by = enrichment) 

  return(enr_pathways) 

} 

 

pathwayEnrich <- gage(gage_dt, gsets = ko.gs, ref = 80, compare = 

"as.grpup") 

enr_pathways <- expressivity(pathwayEnrich) 

ggplot(enr_pathways, aes(reorder(pathway, -enrichment), enrichment, fill = 

enrichment)) +  

  geom_bar(stat = "identity") + coord_flip() + xlab("pathway") 

Comparison with other data: 

library(readxl) 

library(stringr) 

 

metadata <- read_excel("C:\\Users\\Maja\\Desktop\\Eva - 

diplomski\\R\\metadata.xlsx",  

                       col_types = c("text", "text", "numeric", "numeric", 

"text", "text", "text", "numeric", "numeric", "numeric", "numeric", 

"numeric", "text", "numeric", "numeric", "text")) 

metadata$`Sample ID` <- paste(str_extract(metadata$`Sample ID`, "[HL]D"),  

                              str_extract(metadata$`Sample ID`, "\\d+"), 

sep = "") 

 

metadata <- metadata[metadata$`Sample ID` %in% sampleSet$samples, ] 

colnames(metadata)[colnames(metadata) == "Sample ID"] <- "samples" 

metadata <- metadata[, -c(7, 8, 12, 13, 14, 15, 16)] 
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data_info <- data.table(samples = rownames(sampleSet)) 

data_info <- merge(data_info, tablica, by = "samples") 

 

 

library(ggbiplot) 

PCA <- prcomp(sampleSet[, -ncol(sampleSet)], center = TRUE, scale. = TRUE) 

ggbiplot(PCA, ellipse = TRUE, var.axes = FALSE, groups = 

factor(data_info$condition)) +  

  theme_classic() 

 

 

Kruskal-Wallis test: 

kruskal.test(data_info$condition ~ data_info$`TB (umol/L)`) 

 


