Novi pogledi na mehanizme električnoga prijenosa u ionsko-polaronskim staklima

Nikolić, Juraj

Doctoral thesis / Disertacija

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:577555

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-25

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET

Juraj Nikolić

NOVI POGLEDI NA MEHANIZME ELEKTRIČNOGA PRIJENOSA U IONSKO-POLARONSKIM STAKLIMA

DOKTORSKI RAD

Mentor: Prof. dr. sc. Andrea Moguš-Milanković

Zagreb, 2020.

University of Zagreb FACULTY OF SCIENCE

Juraj Nikolić

NEW INSIGHTS INTO ELECTRICAL TRANSPORT MECHANISMS IN ION-POLARON GLASSES

DOCTORAL DISSERTATION

Supervisor: Prof. dr. sc. Andrea Moguš-Milanković

Zagreb, 2020.

Ova je doktorska disertacija izrađena u Laboratoriju za funkcionalne materijale, Zavod za kemiju materijala na Institutu Ruđer Bošković pod vodstvom prof. dr. sc. Andree Moguš-Milanković, znanstvene savjetnice u trajnom zvanju, u okviru poslijediplomskog sveučilišnog (doktorskog) studija Kemije, smjer Anorganska i strukturna kemija, pri Kemijskom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu.

Istraživanje je provedeno u sklopu istraživačkog projekta Hrvatske zaklade za znanost "Električni transport u staklima i staklo-keramici" (HRZZ-IP-2014-09-5863).

Zahvale

Zahvaljujem mentorici, prof. dr. sc. Andrei Moguš-Milanković, na stručnom vodstvu, savjetima tijekom izrade i pisanja ove disertacije te što je uvijek izlazila u susret kada je to bilo potrebno.

Zahvaljujem se dr. sc. Ani Šantić što je uvijek bila na raspolaganju, bila izuzetno strpljiva, spremna odgovoriti na sva moja "glupa" pitanja i što mi je pokazala da puno stvari nije "samo tipkanje".

Hvala Luki jer je, kao i Ana, uvijek bio na raspolaganju, spreman pomoći savjetima vezanim i nevezanim za istraživanje.

Hvala Kristini na svim savjetima i pomoći te na uvijek spemnim i nikad dosadnim komentarima na svaki moj upad u sobu.

Hvala Sanji, Marti i Arijeti što su donijele mladu energiju u labos.

Hvala Mateju što je uvijek bio na raspolaganju, u trenucima sreće, nesreće, dobrih raspoloženja, loših raspoloženja, na svim kavama, pivama, odlascima u kino i na to što sam se uvijek mogao osloniti na njega.

Hvala Mariju, Tomislavu, Zlatanu i Stipi na svim druženjima, na kavama, pivama, večerama, nikad dosadnim razgovorima (osim onima iz kvantne...) i tome što su uvijek bili tu kada je bilo potrebno.

Hvala Vinku što je uvijek pragmatično slušao sva moja žaljenja, stoički podnosio moje zadirkivanje, ali svejedno uvijek bio na raspolaganju sa savjetima vezanim za studij.

Hvala ekipi s ručka, Gloriji, Nini P., Ivani, Nini Č., Tomislavu P. i Jovanu (+ Mateju i Sanji) za visoko intelektualne i manje intelektualne razgovore na ručkovima i kavama na Ruđeru, na savjetima o životu, znanosti, kuhanju, k-popu, animeu, LoL-u, badmintonu, plesu, Charizardima, Stevi, jednačinama i svim ostalim temama o kojima smo razgovarali te što se nakon ručka uvijek bilo "teško" vratiti na posao.

Hvala Pauli, Karlu i Mateji što su činili putovanja u Zagreb i iz Zagreba zabavnima.

"Klincima s orkestra", Matiji, Mihaeli, Marku i Hrvoju, hvala što su uvijek davali pogled na stvari iz mlađe perspektive i što su me držali u tijeku s najnovijim memeovima.

Hvala Marini uz koju vođenje orkestra nikad nije teško padalo.

Hvala Franu na prijateljstvu od djetinjstva i na svim online i offline druženjima.

Special thanks to dr. "Frank" "Jizol", Oliver "Turix", Rebecca "Zwee", Arron "Azzer" and Chris "Ulther" for many online hours of fun and games.

Najveće hvala roditeljima i užoj rodbini bez kojih ne bi mogao biti ovdje.

Sadržaj

SAŽI	ETAK	XI
ABS	ΓRACTΧΙ	Π
§ 1.	UVOD	. 1
§ 2.	LITERATURNI PREGLED	. 3
2.1.	Staklo	3
2.1.1.	Definicija stakla	4
2.1.2.	Nastajanje stakla	6
2.1.3.	Strukturna teorija nastajanja stakla	7
2.2.	Fosfatna stakla	8
2.2.1.	Struktura fosfatnih stakala	8
2.2.2.	Utjecaj modifikatora na strukturu fosfatnih stakala	11
2.2.2.	1. Utjecaj alkalijskih i srebrovog oksida na strukturu fosfatnih stakala	11
2.2.2.2	2. Utjecaj prijelaznih metalnih oksida, MoO3 i WO3, na strukturu i svojstva fosfatnih stakala	14
2.3.	Električna vodljivost stakala	16
2.3.1.	Ionska vodljivost u oksidnim staklima	16
2.3.1.	1. Mehanizmi ionske vodljivosti u oksidnim staklima	17
2.3.1.	1.1. Model jakog elektrolita	18
2.3.1.	1.2. Model slabog elektrolita	19
2.3.1.	1.3. Model relaksacije skoka	19
2.3.1.	1.4. Model dinamičke strukture	21
2.3.2.	Elektronska vodljivost u oksidnim staklima	22
2.3.2.	1. Model skoka malog polarona	22
2.3.2.	1.1. Energija vezanja polarona	23
2.3.2.	1.2. Aktivacijska energija gibanja polarona	24
2.3.2.	1.3. Vjerojatnost skoka polarona	25
2.3.2.	1.4. Mottova jednadžba za aktivacijsku energiju polarona	26
2.3.3.	Ionsko-polaronska vodljivost	27
2.4.	Metode	29
2.4.1.	Metode termičke analize	29
2.4.1.	1. Dilatometrija	29
2.4.1.2	2. Razlikovna pretražna kalorimetrija	30
2.4.2.	Ramanova spektroskopija	31

2.4.2.	1.	Vibracije u staklima	33
2.4.3.	Impe	dancijska spektroskopija	33
2.4.3.	1.	Osnove metode	34
2.4.3.	2.	Pobuda uzorka izmjeničnim električnim poljem	34
2.4.3.	3.	Kompleksne veličine povezane s impedancijom	36
2.4.3.	4.	Analiza impedancijskih spektara	37
2.4.3.	4.1.	Modeliranje impedancije ekvivalentnim krugom	38
2.4.3.	4.2.	Ekvivalentni krug jednofaznih materijala	40
2.4.3.	.4.3. komp	Ekvivalentni krug višefaznih materijala i efekti koji se opažaju u impedancijskoj Ieksnoj ravnini	41
2.4.4.	Anali	za električne provodnosti	42
2.4.4.	1.	Summerfieldovo i Sidebottomovo skaliranje	43
§ 3.	EKS	PERIMENTALNI DIO	45
3.1.	Prip	rava stakla	45
3.2.	Kara	kterizacija stakala	48
3.2.1.	Term	ička analiza	48
3.2.2.	Struk	turna istraživanja	48
3.2.3.	Odre	đivanje oksidacijskih stanja iona prijelaznih metala	48
3.2.4.	Odre	đivanje električnih svojstava	49
3.2.4.	1.	Priprava uzoraka za električna mjerenja	49
3.2.4.	2.	Električna mjerenja	49
§ 4.	REZ	ULTATI I RASPRAVA	51
4.1.	Fizič	ka i termička svojstva istraživanih stakala	51
4.2.	Stru	kturna istraživanja	55
4.2.1.	Struk	turna analiza volframskih stakala	55
4.2.2.	Struk	turna analiza molibdenskih stakala	59
4.3.	Elek	trična i dielektrična svojstva	64
4.3.1.	Anali	za električne provodnosti	64
4.3.1.	1.	Istosmjerna provodnost ionskih stakala	69
4.3.1.	2.	Istosmjerna provodnost miješanih ionsko-polaronskih stakala	70
4.3.1.	3.	Istosmjerna provodnost polaronskih stakala	73
4.3.1.	.4.	Analiza Arrheniusove ovisnosti istosmjerne provodnosti	74
4.3.2.	Anal	za kompleksnih impedancijskih ravnina	79
4.3.3.	Anal	za dielektrične permitivnosti	84
4.3.4.	Anali	za svojstva skaliranja spektara električne provodnosti	89
4.3.4.	1.	Svojstva skaliranja spektara provodnosti čisto ionskih i čisto polaronskih stakala	89

4.3.4.	2. Svojstva skaliranja spektara provodnosti ionsko-polaronskih stakala	95
§ 5.	ZAKLJUČAK	100
§ 6.	POPIS OZNAKÂ, KRATICÂ I SIMBOLÂ	103
§ 7.	LITERATURNI IZVORI	107
§ 8.	DODATAK	XVII
§ 9.	ŽIVOTOPIS	XXIV

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Kemijski odsjek

SAŽETAK

NOVI POGLEDI NA MEHANIZME ELEKTRIČNOGA PRIJENOSA U IONSKO-POLARONSKIM STAKLIMA

Juraj Nikolić

Institut Ruđer Bošković, Bijenička cesta 54, 10 000 Zagreb

U ovoj doktorskoj disertaciji istražen je utjecaj zamjene Li₂O, Na₂O i Ag₂O s WO₃ odnosno MoO₃ na strukturu, električna/dielektrična svojstva i promjenu mehanizama električne vodljivosti, ionske i polaronske, u cink fosfatnim stakalima. Strukturne su promjene istražene Ramanovom spektroskopijom, a (di)električna svojstva impedancijskom spektroskopijom. Strukturna su istraživanja pokazala da dodatkom WO₃ dolazi do ugradnje WO₆ oktaedarskih jedinica u staklo te do pojave klasteriranja, dok ugradnjom MoO₃ nastaje trodimenzijska molibdensko-fosfatna strukturna mreža bez klasteriranja molibdenskih jedinica. Rezultati impedancijske spektroskopije pokazali su da dodatkom WO₃ u stakla dolazi do pojave minimuma vrijednosti električne provodnosti. S druge strane, dodatkom MoO₃ dolazi do blagog rasta (Li₂O i Na₂O serije) ili pada (Ag₂O serija) vrijednosti provodnosti uz porast provodnosti tek za 60Mo polaronsko staklo. Analizom kompleksnih impedancijskih ravnina i postupkom skaliranja spektara električne provodnosti utvrđena je prisutnost ionskog i polaronskog mehanizma vodljivosti u staklima u koje je dodan WO₃.

(112 stranica, 39 slika, 12 tablica, 134 literaturnih navoda, jezik izvornika: hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici, Horvatovac 102a, Zagreb i Nacionalnoj i sveučilišnoj knjižnici, Hrvatske bratske zajednice 4, Zagreb.

Ključne riječi: fosfatna stakla / električna svojstva / struktura / impedancijska spektroskopija

Mentor: Prof. dr. sc. Andrea Moguš-Milanković, znan. savj. u trajnom zvanju, IRB

Rad prihvaćen: 22.01.2019.

Ocjenitelji:

- 1. Prof. dr. sc. Višnja Vrdoljak, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu
- 2. Dr. sc. Ana Šantić, viši znanstveni suradnik., Institut Ruđer Bošković
- 3. Dr. sc. Krešimir Molčanov, viši znanstveni suradnik, Institut Ruđer Bošković

Doktorska disertacija

University of Zagreb Faculty of Science Department of Chemistry

ABSTRACT

NEW INSIGHTS INTO ELECTRICAL TRANSPORT MECHANISMS IN ION-POLARON GLASSES

Juraj Nikolić Ruđer Bošković Institute, Bijenička cestra 54, 10 000 Zagreb

This thesis studies structural and electrical changes which occur due to replacement of Li₂O, Na₂O and Ag₂O by WO₃ and MoO₃ in zinc phosphate glasses. This study focuses on mechanisms of electrical conductivity, ionic and polaronic, as a result of the oxide replacement. Raman spectroscopy was used to determine the glass structure whereas electrical properties were investigated using impedance spectrosopy. Structural studies have revealed that adding WO₃ to phosphate network causes incorporation of WO₆ units and formation of clusters in phosphate network, while addition of MoO₃ forms three-dimensional molybdenum-phosphate glass network without clustering of molybdenum units. Results of impedance spectroscopy have shown that addition of WO₃ into the phosphate network causes a minimum in electrical conductivity while adding MoO₃ causes minor increase (Li₂O and Na₂O series) or a decrease (Ag₂O series) in electrical conductivity, showing increase only for polaronic 60Mo glass. Presence of both ionic and polaronic mechanisms of electrical conductivity in tungstate glasses was confirmed by analysis of complex impedance planes and scaling of conductivity spectra. (112 pages, 39 figures, 12 tables, 134 references, original in croatian)

Thesis deposited in Central Chemical Library, Horvatovac 102A, Zagreb, Croatia and National and University Library, Hrvatske bratske zajednice 4, Zagreb, Croatia.

Keywords: phosphate glasses / electrical properties / structure / impedance spectroscopy

Supervisor: Prof. dr. sc. Andrea Moguš-Milanković, senior scientist with permanent position, RBI

Thesis accepted: 22.01.2019.

Reviewers:

- 1. Dr. Višnja Vrdoljak, Professor, Faculty of Science, University of Zagreb
- 2. Dr. Ana Šantić, Senior Research Associate, Ruđer Bošković Institute
- 3. Dr. Krešimir Molčanov, Senior Research Associate, Ruđer Bošković Institute

Doctoral Thesis

§ 1. UVOD

Iako upotreba stakala seže u daleku prošlost, staklo je i danas primjer višenamjenskog materijala koji je zbog svojih specifičnih strukturnih, magnetskih, optičkih i električnih svojstava izvrstan kandidat za upotrebu u naprednim tehnologijama.

Električna se svojstva oksidnih stakala istražuju već dugi niz godina. Ovisno o sastavu, ovi materijali pokazuju ionsku ili elektronsku (polaronsku) vodljivost. Ukoliko su u staklu prisutni jednovalentni anioni i kationi, staklo pokazuje ionsku vodljivost dok dodatakom prijelaznih metalnih oksida (poput Fe₂O₃, V₂O₅, WO₃, MoO₃) nastaju polaroni, a vodljivost u staklu je u tom slučaju elektronska odnosno polaronska. Pojedinačno, ove su vrste vodljivosti dobro istražene. Međutim, unazad dvadesetak godina pokazano je da, ukoliko su obje vrste nositelja naboja (ioni i polaroni) prisutne u staklima, dolazi do ionsko-polaronskog učinka, koji se očituje kao nelinearna promjena provodnosti zbog zamjene jednog tipa nositelja naboja s drugim. Ova pojava je uočena kod različitih sastava oksidnih stakala te još uvijek nije u potpunosti razjašnjena. S druge strane, stakla koja pokazuju miješanu ionsko-polaronsku vodljivost su od posebnog interesa u području elektronike, a posebno za izradu katoda za litijeve i natrijeve baterije.

Fosfatna stakla su važna skupina oksidnih stakala kojima se fizička i kemijska svojstva mogu lako prilagoditi dodatkom različitih metalnih oksida u širokom području sastava. Priprava novih fosfatnih stakala, istraživanje odnosa strukture i svojstava te razumijevanje mehanizama procesa koji se u njima događaju od ključnog su značaja za njihovu primjenu.

Cilj je ove doktorske disertacije istražiti odnos strukture i električnih svojstava cink fosfatnih serija stakala u kojima su Li₂O, Na₂O i Ag₂O postepeno zamijenjeni s WO₃ i MoO₃. Proučavane su strukturne promjene koje nastaju zamjenom navedenih oksida, promjena električnih i dielektričnih svojstava te mehanizma električne vodljivosti. Nadalje, željelo se pokazati dolazi li u ovim staklima do pojave ionsko-polaronskog učinka te ispitati kakva je dinamika iona i polarona u istraživanom području sastava. U ovoj je disertaciji po prvi puta napravljena detaljna analiza svojstva skaliranja spektara električne provodnosti miješanih ionsko-polaronskih stakala Summerfieldovim i Sidebottomovim postupkom skaliranja.

Disertacija je podijeljena u nekoliko međusobno povezanih cjelina.

U literaturnom su pregledu definirani osnovni pojmovi vezani uz staklo, uključujući najnoviju definiciju stakla, predstavljenu 2018. godine; prikazani su strukturni modeli fosfatnih stakala te objašnjeni mehanizmi ionskog i polaronskog prijenosa u oksidnim staklima. U drugom je dijelu literaturnog pregleda dan pregled metoda korištenih u izradi ove doktorske disertacije s naglaskom na impedancijsku spektroskopiju kao glavnu metodu za provedbu ovog istraživanja.

Eksperimentalni dio sadrži opis metoda priprave stakala i podatke o korištenim eksperimentalnim tehnikama. Strukturna analiza proučavanih stakala sprovedena je Ramanovom spektroskopijom, a (di)električna svojstva istražena su impedancijskom spektroskopijom. Za istraživanja ostalih svojstava koja su potrebna za razumijevanje električnih procesa i mehanizama vodljivosti u proučavanim staklima, korištene su tehnike termičke analize, dilatometrijska mjerenja te mjerenja električne paramagnetske rezonancije (EPR) i SQUID (eng. *superconducting quantum interference device*) magnetometrije.

U poglavlju Rezultati i rasprava dan je detaljan prikaz rezultata dobivenih tijekom izrade ove doktorske disertacije. Prvo poglavlje sadrži fizička svojstva stakala, a u drugom je prikazana analiza Ramanovih spektara koji su dali uvid u strukturne promjene koje nastaju zamjenom Li₂O, Na₂O i Ag₂O s WO₃ i MoO₃. U trećem poglavlju prikazani su rezultati impedancijske spektroskopije s naglaskom na električnu provodnost, parametre Arrheniusove ovisnosti električne provodnosti, kompleksne impedancijske ravnine, električne permitivnosti te svojstva Summerfieldovog i Sidebottomovog skaliranja spektara provodnosti. Uz rezultate dan je kritički osvrt te su dobiveni rezultati povezani s literaturno poznatim podacima.

U zaključku je dan kratak pregled dobivenih novih spoznaja o strukturi, električnim svojstvima i njihovoj povezanosti za istraživane serije ionsko-polaronskih cink fosfatnih stakala u kojima su Li₂O, Na₂O i Ag₂O postepeno zamjenjivani s WO₃ i MoO₃.

Ovim istraživanjima dobivena su nova saznanja o mehanizmima vodljivosti u miješanim ionsko-polaronskim fosfatnim staklima. Od posebnog je značaja utvrđivanje utjecaja strukture stakala na mehanizme ionskog odnosno polaronskog prijenosa koji uzrokuju visoku provodnost stakala koja sadrže WO₃ i Ag₂O. Također, potrebno je spomenuti da je ovo prvo istraživanje kojem je postupcima Summerfieldovog i Sidebottomovog skaliranja dobiven uvid u specifične dinamičke procese miješane ionsko-polaronske vodljivosti i netipičnu dinamiku litijevih iona u cink fosfatnim staklima.

§ 2. LITERATURNI PREGLED

2.1. Staklo

Povijest oksidnih stakala duga je kao i povijest čovječanstva. Prva stakla koja su ljudi počeli koristiti, prirodna su stakla nastala kao posljedica tektonike zemljine kore, vulkanske aktivnosti i udara meteorita. Prirodna stakla po svojem su kemijskom sastavu alumosilikati, tj. građeni od SiO₂ i Al₂O₃. Najpoznatije prirodno staklo je opsidijan koji nastaje naglim hlađenjem lave, slika 1. Opsidijan se u povijesti koristio za izradu oruđa i oružja zbog njegovog lakog oblikovanja. Prva umjetna stakla priređena za vrijeme Starog Egipta, koristila u se i u druge svrhe, kao nakit i ornamenti. Najveći tehnološki zamah u proizvodnji stakala dogodio se u 19. stoljeću kad se staklo počelo proizvoditi u velikim količinama koristeći *float* proces kojim se na jednostavan i brz način priređuje ravno staklo.¹

Slika 1. Opsidijan.

Suvremena stakla, uz tradicijsko silikatno staklo, uključuju čitav niz specifičnih stakala poput halogenidnih, halkogenidnih, organskih i metalnih stakala. Svaka od tih skupina stakala ima prednosti pogodne za raznoliku upotrebu. Halogenidna stakla pokazuju izrazito visok stupanj optičke transparentnosti što ih čini dobrim materijalima za upotrebu u informatičkim tehnologijama dok halkogenidna stakla nalaze svoju primjenu kao *switch* materijali zbog promjene svojstava kada kroz njih prođe određeni napon ili struja što ih čini idealnim materijalima za izradu memorijskih panela. Veliki zamah u istraživanjima dobivaju i metalna

stakla koja nalaze primjenu kao paneli i senzori, a počinju se sve više istraživati i kao potencijalni materijali za skladištenje vodika u baterijama. Oksidna stakla nalaze široku upotrebu u elektrotehnici, baterijama, optičkim instrumentima i medicini.^{1–3}

2.1.1. Definicija stakla

Dosadašnje definicije stakla kao amorfne krutine, uključivale su ove karakteristike:

- Neuređenost dalekog dosega atomi u strukturnoj mreži stakla su nasumično raspoređeni ukoliko se u obzir uzmu udaljenosti dulje od međuatomskih razmaka;
- Uređenost kratkog dosega– uređenost duljine međuatomskih razmaka koja određuje osnovne strukturne jedinice koje grade staklo, npr. u fosfatnom staklu tetraedarske, PO₄, jedinice imaju duljine P–O veza slične onima u kristalnim fosfatima;
- Stakleni prijelaz staklo pokazuje vremenski ovisno ponašanje, tj. promjenu termodinamičkih veličina s porastom temperature, odnosno kinetički prijelaz s termodinamičkim karakterom.^{1–3}

Međutim, najnovija istraživanja različitih amorfnih materijala rezultirala su preciznijom definicijom stakla koja razdvaja pojam stakla od amorfne krutine. Suvremenu su definiciju stakla predložili Zanotto i Mauro 2017. godine⁴ definirajući pojmove sažete u tablici 1.

Pojam	Definicija
Krutina	Termodinamički stabilno stanje tvari u kojem su kemijske veze dovoljno jake da čine strukturu tvari čvrstom.
Tekućina	Termodinamički stabilno stanje tvari u kojem kemijske veze nisu dovoljno jake da čine strukturu čvrstom.
Pothlađena tekućina	Metastabilno stanje tekućine koja je ohlađena na temperaturu ispod temperature tališta (kristalizacije).
Temperatura staklišta	Temperatura pri kojoj dolazi do strukturne relaksacije pothlađene tekućine i nastaje staklo.
Kristal	Kruti materijal s uređenom atomskom strukturom u periodičnoj rešetci.
Nekristalno stanje	Stanje krute tvari u kojem atomi nisu periodički raspoređeni te nema uređenosti dalekog dosega.
Zaleđeno stanje	Privremeno i prolazno stanje vrlo sporog gibanja ili imobilizacije atoma
Amorfni materijal	Nekristalni materijal koji ne pokazuje stakleni prijelaz i nema strukturu polazne zaleđene pothlađene tekućine.
Kristalizacija	Proces nastajanja kristalnih nukleusa i rasta kristala.

Tablica 1. Osnovni pojmovi za opis i razumijevanje definicije stakla.

Uzimajući u obzir pojmove navedene u tablici 1, stakla pokazuju sljedeće karakteristike:

- Struktura stakla slična je strukturi ishodišne pothlađene tekućine;
- Stakla ne zadržavaju svoj kruti oblik, spontano se relaksiraju u pothlađenu tekućinu, tijekom *dugo* vremena (vrijeme relaksacije ovisi o sastavu i vrsti stakla);
- Tijekom zagrijavanja stakla dolazi do relaksacije strukture stakla i kristalizacije.

Ukoliko se staklo istražuje na makroskopskoj vremenskoj stakli, svojstva stakla poput tvrdoće, elastičnosti i čvrstoće ista su svojstvima tipičnih krutina. Kada se staklo proučava s termodinamičkog stajališta može se zaključiti da ono ima više zajedničkog s pothlađenom tekućinom nego s pravom krutinom. Uzevši u obzir sve navedeno, suvremena definicija stakla glasi:

"Staklo je neravnotežno, nekristalno čvrsto stanje tvari koje pokazuje stakleni prijelaz. Struktura stakala slična je njihovoj ishodišnoj pothlađenoj tekućini. Stakla spontano prelaze u pothlađenu tekućinu da bi nakon *dugo* vremena kristalizirala."⁴

Valja napomenuti da se riječ *dugo* u ovoj definiciji odnosi na makroskopsku vremensku skalu stoga se za svakodnevnu upotrebu stakla mogu smatrati stabilnim krutinama.

2.1.2. Nastajanje stakla

Metode priprave stakla raznovrsne su i uključuju sol-gel postupak, kondenzaciju para reaktanata, mljevenje kristala pod pritiskom, ali najčešće korištena metoda je metoda hlađenja taline. Metoda hlađenja taline je metoda u kojoj se početne tvari zagrijavaju iznad temperature taljenja te se zatim naglo hlade izlijevanjem u kalupe hlađene vodom, zrakom ili tekućim plinovima, kako bi se izbjegla kristalizacija. Jedan od načina prikaza nastajanja stakla je entalpijski dijagram, slika 2. Naglim hlađenjem, ispod temperature kristalizacije, T_c , talina prvo prelazi u stanje pothlađene tekućine koja je stukturno vrlo slična staklu. Daljnjim hlađenjem, ispod temperature T_g , pothlađena tekućina prelazi u staklo. S druge strane, ukoliko se talina polako hladi dolazi do pravilnog razvrstavanja atoma te tako nastaju kristalni nukleusi i počinje proces rasta kristala, odnosno dolazi do kristalizacije (prijelaz a). Također, staklo spontano prelazi u pothlađenu tekućinu koja zatim kristalizira (prijelaz b). Osim promjene entalpije s temperaturom, tijekom nastanka stakla mogu se pratiti i promjene drugih fizičkih svojstava poput viskoznosti i volumena.

Slika 2. Ovisnost entalpije o temperaturi za tvari vezane uz nastanak stakla.

2.1.3. Strukturna teorija nastajanja stakla

Struktura oksidnih stakala intenzivno se počela istraživati dvadesetih i tridesetih godina 20. stoljeća.^{5–7} Prvu jednostavnu teoriju strukture stakla postavio je V. M. Goldsmidt.⁵ Prema njegovoj teoriji oksidi formule R_xO_y tvore stakla kada je odnos polumjera kationa i kisika između 0,2 i 0,4. Ova je teorija bila zasnovana na dotadašnjim znanjima da su strukturne jedinice u staklu tetraedri te vrijedi samo u slučajevima tradicijskih oksida koji tvore staklo poput SiO₂, B₂O₃, GeO₂, P₂O₅.⁵

Početkom tridesetih godina 20. stoljeća W. J. Zachariasen i B. E. Warren postavili su jednu od značajnijih strukturnih teorija stakla, *teoriju mreže*.⁸⁻¹⁰ Teorija mreže opisuje prostornu povezanost između atoma u staklima kao nepravilnu strukturnu mrežu u kojoj su osnovne strukturne jedinice tetraedri povezani vrhovima preko premošćujućih kisikovih atoma. Oksidi koji ulaze u strukturu stakla dijele se u tri osnovne skupine prema njihovom koordinacijskom broju:

- Staklotvorci oksidi s kationima nižih koordinacijskih brojeva (tri ili četiri) koji stvaraju trodimenzijsku mrežu stakla;
- Modifikatori alkalijski i zemnoalkalijski oksidi s kationima koordinacijskog broja šest ili više koji stabiliziraju strukturnu mrežu staklotvoraca;
- Intermedijeri oksidi (najčešće d bloka) s kationima koordinacijskog broja četiri do šest koji mijenjaju fizičko-kemijska svojstva stakala.

2.2. Fosfatna stakla

Posebno mjesto u skupini oksidnih stakala zauzimaju fosfatna stakla u kojima je staklotvorac P_2O_5 .^{2,11} Fosfatna stakla u odnosu na druga oksidna stakla pokazuju bolja svojstva kao što su niske temperature taljenja i staklišta, visoki termički koeficijent širenja, a mogu se i vrlo jednostavno pripremiti u širokom području sastava. S druge strane, nedostaci fosfatnih stakala su visoka higroskopnost i nestabilnost u vodenom mediju.^{12–18} Međutim, dodatkom raznih modifikatora, posebno prijelaznih metalnih oksida (Fe₂O₃, V₂O₅, MoO₃ i WO₃), moguće je prirediti kemijski vrlo stabilna, nehigroskopna fosfatna stakla što je od ključne važnosti za njihovu primjenu. Osim boljih kemijskih svojstava, dodatkom modifikatora mijenjaju se i fizička svojstva poput električne vodljivosti, mehaničke otpornosti, optičkih i magnetskih svojstava. Budući da je područje sastava fosfatnih stakala široko, moguće je i lako podešavanje željenih fizičko-kemijskih svojstava zbog kojih fosfatna stakla nalaze široku primjenu u različitim tehnologijama te se koriste kao matrice za enkapsulaciju nuklearnog otpada, biomaterijali u medicini ili kao elektrolitni i elektrodni materijali u (opto)elektronici.^{12,19}

2.2.1. Struktura fosfatnih stakala

Osnovna strukturna jedinica u fosfatnim stakalima je PO₄ tetraedar, slika $3.^{2,11}$ Kako bi se dobio uvid u strukturu fosfatnih stakala prvo treba razmotriti elektronsku strukturu atoma fosfora. Atom fosfora posjeduje pet valentnih elektrona, što je vidljivo iz njegove elektronske konfiguracije [Ne] $3s^23p^3$. U izoliranom fosfatnom tetraedru postoje četiri hibridne sp³ orbitale između atoma fosfora i atoma kisika koje su usmjerene prema vrhovima tetraedra gdje se nalaze kisikovi atomi, dok se atom fosfora nalazi u njegovom središtu. Peti valentni elektron fosfora popunjava 3d orbitalu te biva delokaliziran kroz sve četiri P–O veze. Upravo zbog prisutne delokalizacije elektrona, izolirani fosfatni tetraedar (PO₄)³⁻ ima četiri ekvivalentne P–O veze. U kristalima je poznato da se fosfatne jedinice mogu povezivati preko vrhova, bridova i stranica. S druge strane, susjedne fosfatne jedinice povezuju se isključivo preko vrhova, a nikad preko bridova ili stranica. PO₄ tetraedri se u staklima mogu povezivati u lance, dvo- ili trodimenzijske mreže ili cikličke strukture. Ukoliko neka fosfatna jedinica sudjeluje u povezivanju sa susjednim jedinicama dolazi do smanjenja delokalizacije elektrona unutar fosfatnog tetraedra. Slika 3 shematski prikazuje povezivanje fosfatnih tetraedara u trodimenzijsku mrežu. U ovom slučaju, elektroni više nisu delokalizirani te u fosfatnim tetraedrima dolazi do nastanka jedne dvostruke P=O veze.

Slika 3. Povezani PO₄ tetraedri u kojima nema delokalizacije elektrona.

Ovisno o stupnju povezanosti fosfatne mreže, može se razlikovati nekoliko vrsta kisikovih atoma: kisikov atom povezan dvostrukom vezom s atomom fosfora (P=O), premošćujući kisikov atom (P-O-P) kojeg dijele dvije susjedne fosfatne jedinice i nepremošćujući kisikov atom (P-O⁻). Dvostruku, P=O, vezu moguće je detektirati samo u ultrafosfatnim strukturama gdje ne može doći do delokalizacije elektrona jer su ostali kisikovi atomi premošćujući.

Prema stupnju povezanosti, fosfati se mogu podijeliti u nekoliko skupina:²⁰

- 1) Monofosfati spojevi koji sadrže izolirane (PO₄)^{3–} jedinice;
- Kondenzirani fosfati spojevi u kojima su PO₄ tetraedri međusobno povezani. Kondenzirani fosfati se dalje mogu podijeliti na:
 - a) polifosfate lance opće formule [P_nO_{3n+1}]⁽ⁿ⁺²⁾⁻ gdje nomenklatura ovisi o broju n, npr. za n = 2 : [P₂O₇]⁴⁻ pirofosfat. Ukoliko n → ∞ polifosfati imaju opću formulu (PO₃)ⁿ te se nazivaju metafosfati;
 - b) Ciklički fosfati cikličke fosfatne strukture formule $[P_nO_{3n}]^{n-}$;
 - c) Ultrafosfati spojevi opće formule [P_{2m+n}O_{5m+n}]ⁿ⁻ u kojima su svi fosfatni tetraedri povezani sa susjednim tetraedrima preko sva tri premošćujuća kisikova atoma;
- 3) Adukti spojevi koji uz fosfate sadrže i neke druge anione koji međusobno ne dijele atome;
- Heteropolifosfati spojevi koji uz duge lance fosfata sadrže i druge XOn ili YOn anione s kojima dijele atome, odnosno dolazi do stvaranja X–O–X, Y–O–Y i X–O–Y veza uz postojeće P–O–P veze.

Kako bi se opisala fosfatna mreža u staklu, odnosno pokazao stupanj povezanosti fosfatnih jedinica u strukturnoj mreži, koristi se Q^n označavanje gdje Q označava fosfatni tetraedar, a *n* označava broj premošćujućih kisikovih atoma u fosfatnom tetraedru; n = 0-3.^{15,21} Q³ označava tetraedar s tri premoščujuća kisikova atoma što odgovara fosfatnim jedinicama koje tvore strukturnu mrežu u sve tri dimenzije (ultrafosfatima). Q² jedinica odgovara lančastim metafosfatima (PO₃⁻) odnosno fosfatnim jedinicama s dva premoščujuća kisikova atoma te cikličkim fosfatima. Q¹ odnosi se na pirofosfatnu (P₂O₇)⁴⁻ jedinicu ili krajnji metafosfatni tetraedar, dok Q⁰ označava izoliranu PO₄³⁻ fosfatnu jedinicu (ortofosfat).

Istraživanja strukture fosfatnih stakala pokazala su kako stupanj povezanosti ovisi o množinskom omjeru kisikovih i fosforovih atoma, odnosno O/P omjeru.¹⁵ Općenito je pravilo da se manji O/P omjer odnosi na povezaniju strukturu, slika 4. Način na koji se O/P omjer odražava na strukturu fosfatnih stakala je sljedeći:

- O/P = 2,5 -struktura stakla se sastoji od dominantno Q^3 jedinica, ultrafosfatna struktura
- O/P = 3 u strukturi stakla dominiraju metafosfatne i jedinice prstenastih fosfata, Q^2
- O/P = 3,5 -struktura stakla je pirofosfatne prirode, Q^1
- O/P = 4 struktura stakla je izrazito depolimerizirana i sastoji se samo od izoliranih, ortofosfatnih, Q⁰ tetraedara

Slika 4. Odnos vrijednosti O/P omjera i vrsta fosfatnih jedinica prisutnih u staklu.

2.2.2. Utjecaj modifikatora na strukturu fosfatnih stakala

Struktura i svojstva fosfatnih stakala značajno se mijenjaju dodatkom različitih modifikatora, a promjene ovise o njihovoj vrsti i količini. Modifikatori u fosfatnim staklima su alkalijski i njima slični oksidi poput Ag₂O, zemnoalkalijski i prijelazni metalni oksidi. U narednom poglavlju bit će naveden utjecaj različitih metalnih oksida na strukturu i fizičko-kemijska svojstva fosfatnih stakala.

Dodatak alkalijskih oksida i/ili prijelaznih metalnih oksida u fosfatnu mrežu mijenja i fizička svojstva poput električne vodljivosti. Naime, ukoliko su u staklo dodani alkalijski oksidi odnosno Ag₂O pod utjecajem električnog polja dolazi do difuzije pokretnih iona kroz staklenu mrežu te staklo postaje ionski vodič. Jakost ionske vodljivosti ovisi o vrsti i koncentraciji alkalijskog kationa te pokretljivosti koju određuje njihova interakcija sa strukturnom mrežom stakla.² Detaljan opis mehanizma ionske vodljivosti dan je u poglavlju 2.3.1. S druge strane, ukoliko se u stakla doda prijelazni metalni oksid može doći do pojave elektronske vodljivosti. Detaljan opis mehanizma malog polarona kojim se opisuje elektronska vodljivost dana je u poglavlju 2.3.2.

2.2.2.1. Utjecaj alkalijskih i srebrovog oksida na strukturu fosfatnih stakala

Alkalijski oksidi predstavljaju značajnu skupinu modifikatora staklene mreže. U fosfatna stakla se od alkalijskih oksida najčešće dodaju Li₂O, Na₂O i K₂O^{15,22,23}, a osim njih u stakla se mogu dodati i oksidi koji se ponašaju vrlo slično njima, poput Ag₂O.^{24–26} Navedeni oksidi se u fosfatna stakla mogu dodati u širokom području sastava što uzrokuje smanjenje stupnja povezanosti fosfatne mreže.

Na slici 5 shematski je prikazano kako količina dodanog alkalijskog oksida kao modifikatora utječe na povezanost fosfatne mreže binarnog fosfatnog stakla. Naime, s povećanjem udjela alkalijskog kationa smanjuje se stupanj povezanosti fosfatne mreže.

Slika 5. Shematski prikaz utjecaja dodatka alkalijskog oksida na strukturu stakla: (a) mala količina alkalijskog oksida, (b) velika količina alkalijskog oksida. Crveno su označeni atomi fosfora, žuto atomi kisika, a zeleno alkalijski atomi.

Smanjenje povezanosti fosfatne mreže u binarnom $xM_2O-(1-x)P_2O_5$ (M₂O = alkalijski oksid) staklu može se opisati općenitom relacijom²⁷:

$$2\mathbf{Q}^n + \mathbf{M}_2\mathbf{O} \to 2\mathbf{Q}^{n-1}$$

Ovisnost udjela različitih Qⁿ jedinica o množinskom udjelu alkalijskog oksida M₂O u binarnom fosfatnom sustavu prikazan je na slici 6.¹⁵ Slika prikazuje kako u binarnim fosfatnim staklima s porastom udjela alkalijskog oksida raste udio fosfatnih jedinica s većim brojem nepremoščujućih kisikovih atoma. U području x = 0-0,4 (gdje je x množinski udio dodanog alkalijskog oksida) dominiraju primarno ultrafosfati dok s većim dodatkom M₂O dolazi do sve značajnijeg smanjenja stupnja povezanosti fosfarne mreže, odnosno povećava se udio metafosfatnih jedinica. Kada udio M₂O prijeđe 0,5 dolazi do potpunog nestanka ultrafosfatnih jedinica u strukturi stakla. U području x = 0,5-0,67 fosfatnu mrežu tvore metafosfati i pirofosfati sa sve većim porastom udjela pirofosfata. Pri x = 0,67 u strukturi stakla nema prisutnih metafosfatnih jedinica te daljnjim dodavanjem do x = 0,75 dolazi do potpune depolimerizacije fosfatne mreže u ortofosfatne jedinice.

Slika 6. Udjeli Q^n za binarna fosfatna stakla serije $xM_2O-(1-x)P_2O_5$.¹⁵

Stuktura fosfatnih stakala ovisi o valenciji i koordinacijskom broju kationa modifikatora. Hoppe je 1996. godine pokazao da se alkalijski i njima slični kationi vežu na terminalne P–O[–] veze.²⁸ Naime, prema Hoppeovom modelu, u fosfatnoj strukturi modifikator može biti vezan na dva načina ovisno o njegovom koordinacijskom broju i broju terminalnih kisikovih atoma po kationu modifikatora. Ukoliko je broj terminalnih kisikovih atoma po kationu modifikatora. Ukoliko je broj terminalnih kisikovih atoma po kationu modifikatora veći od njegovog koordinacijskog broja, svaki modifikator će biti koordiniran kao izolirani koordinacijski poliedar unutar fosfatne mreže. S druge strane, ukoliko je broj terminalnih kisikovih atoma po kationu modifikatora manji od njegovog koordinacijskog broja dolazi do dijeljenja vrhova ili bridova koordinacijskih poliedara modifikatora te nastanka M–O–M veza. Na taj način modifikator djeluje kao most između više fosfatnih jedinica.

U izradi ovog doktorskog rada kao modifikatori fosfatne mreže korišteni su Li₂O, Na₂O i Ag₂O koji su se pokazali kao izvrsni modifikatori zbog visoke ionske vodljivosti i mogućnosti dodatka u fosfatno staklo u širokom području sastava.

2.2.2.2. Utjecaj prijelaznih metalnih oksida, MoO3 i WO3, na strukturu i svojstva fosfatnih stakala

Prijelazni metalni oksidi predstavljaju važnu skupinu oksida koji se dodaju u fosfatna stakla kako bi se poboljšala njihova svojstva, a najčešći su V₂O₅, Fe₂O₃, MoO₃ i WO₃. Navedeni oksidi se u fosfatno staklo mogu dodati u širokom području sastava, u slučajevima MoO₃ i WO₃ i do 70% množinskog udjela. Neki od navedenih oksida poput WO₃ i MoO₃ u fosfatnim staklima imaju dvojaku ulogu, modifikatora i staklotvorca, iako sami ne mogu tvoriti staklo, što ih čini uvjetnim staklotvorcima. Osim strukturnih promjena, ugradnjom prijelaznih metalnih oksida u fosfatno staklo dolazi do promjena različitih fizičkih i kemijskih svojstava.^{29–32} Istraživanja su pokazala kako je dodatak prijelaznog metalnog oksida od ključne važnosti za povećavanje kemijske stabilnosti fosfatnog stakla, pogotovo za smanjenje higroskopnosti i povećavanje otpornosti u vođenom mediju. Također, dodatak prijelaznih metalnih oksida uvelike utječe na električna svojstva stakla jer uzrokuju pojavu elektronske (polaronske) vodljivosti.

Struktura stakala koja sadrže MoO₃ i WO₃ poznata je u literaturi. Većina strukturnih istraživanja usredotočena je na binarne sustave, formule NaPO₃–WO₃/MoO₃^{33–35}, i ternarna stakla sastava P₂O₅–WO₃–A₂O (A = Li, Na), NaPO₃–BaF₂–WO₃, PbO–MoO₃–P₂O₅, ZnO–MoO₃–P₂O₅.^{30,32,36–39} Istraživanja su pokazala kako dodatkom ovih oksida u stakla dolazi do ugradnje različitih WO_n i MoO_n poliedara u fosfatnu mrežu, najčešće tetraedara i oktaedara.^{30,32,34,35,40–42} Pri niskim množinskim udjelima MoO₃ i WO₃ navedeni poliedri su uglavnom izolirani s terminalnim W–O odnosno Mo–O vezama, a pri višim množinskim udjelima dolazi do njihove ugradnje u fosfatnu mrežu te stvaranja premošćujućih heteroatomnih W–O–P odnosno Mo–O–P veza, a može doći i do njihovog povezivanja, tj. nastanka W–O–W odnosno Mo–O–Mo veza.

Strukturna analiza ZnO–WO₃–P₂O₅ stakala je pokazala kako se pri visokim udjelima WO₃, volfram nalazi u pretežno oktaedarskoj WO₆ koordinaciji.³⁰ U takvom staklu ukoliko je ZnO prisutan u visokom množinskom udjelu (do 50%), a WO₃ u niskim množinskim udjelima (do 20%), volfram se nalazi i u tetraedarskoj WO₄ i u oktaedarskoj WO₆ koordinaciji. S druge strane, kada se u cink fosfatna stakla dodaje MoO₃ množinski udio P₂O₅ se može smanjiti i do 20% bez pojave kristalizacije.³² Primijećeno je kako se u slučaju fosfatnih stakala koja sadrže ZnO i visoke množinske udjele MoO₃, molibden nalazi u oktaedarskoj koordinaciji te dolazi do povezivanja MoO₆ jedinica u klastere. Naime, u ovim staklima MoO₆ skupine se uglavnom

vežu na nepremoščujuće kisikove atome PO₄ skupina te ne dolazi do cijepanja P–O–P veza. Do ovog načina vezanja dolazi zbog manje energije Mo–O veze u odnosu na P–O vezu. Nadalje, u slučaju PbO–MoO₃–P₂O₅ serija stakala, udio P₂O₅ se može smanjiti i do 15% množinskog udjela. Razlog tome je mogućnost ugradnje molibdenskih jedinica u fosfatnu mrežu uz opsežniju depolimerizaciju. Također, u PbO–MoO₃–P₂O₅ staklima s visokim udjelima PbO i malim udjelima P₂O₅, primijećeno je da se molibden uglavnom nalazi u tetraedarskoj koordinaciji te se povezuje s izoliranim ortofosfatnim jedinicama.³⁹

Osim strukturnih promjena nastalih ugradnjom MoO₃ i WO₃ u staklenu mrežu, njihovom ugradnjom dolazi i do značajne promjene optičkih svojstava i električne vodljivosti stakala. Promjene navedenih svojstava rezultat su promjene oksidacijskih stanja iona volframa i molibdena.⁴³ Veći udio W⁵⁺ odnosno Mo⁵⁺ iona odgovoran je za intenzivnu boju zbog vrlo široke i intenzivne apsorpcijske vrpce u vidljivom i bliskom infracrvenom području. Različita oksidacijska stanja iona volframa i molibdena mogu se objasniti redukcijom Mo⁶⁺ odnosno W⁶⁺ u talini tijekom priprave stakala prema oksidacijsko-redukcijskoj jednadžbi:

$4M^{6+} + 20^{2-} \leftrightarrow 4M^{5+} + 0_2$

Redukcija se može pospješiti promjenama uvjeta priprave stakala: mijenjanjem početnih reagensa, vrstom atmosfere, vremenom i temperaturom taljenja. Atmosfera, vrijeme i temperatura taljenja utječu na ravnotežu redoks procesa u talini, a počeni reagensi mogu biti reducensi ili oksidansi. Detaljno istraživanje količine različitih oksidacijskih stanja na staklenim sustavima (100-*x*)NaPO₃–*x*TMO (TMO = MoO₃ i WO₃) sproveli su Poirier i sur.³³ Istraživanje je pokazalo da je NaPO₃–WO₃ stakla promjenom uvjeta prilikom priprave stakala moguće obezbojiti, odnosno spriječiti redukciju većeg broja W⁶⁺ u W⁵⁺. S druge strane, stakla sličnog sastava s MoO₃ se ne mogu jednostavno u potpunosti obezbojiti već je to moguće samo u uskom području sastava. Zbog mogućnosti prilagodbe uvjeta priprave odnosno kontrole udjela W⁵⁺ ili Mo⁵⁺, stakla koja sadrže WO₃ i MoO₃ intenzivno se istražuju za primjenu u optičkim uređajima.

Osim toga, stakla koja sadrže WO₃ i MoO₃ pokazuju zanimljiva električna svojstva. Ta stakla pokazuju elektronsku vodljivost, a ključan parametar za takvu vrstu vodljivosti je udio prijelaznih metalnih iona u različitim oksidacijskim stanjima. Detaljni opis elektronske vodljivosti dan je u poglavlju 2.3.2.

2.3. Električna vodljivost stakala

Električna vodljivost posljedica je gibanja nositelja naboja, a mehanizam vodljivosti ovisi o vrsti nositelja naboja. Oksidna stakla, ovisno o sastavu, pokazuju ionsku i elektronsku vodljivost. Ukoliko staklo sadrži alkalijske ili srebrove ione, ono pokazuje ionsku vodljivost, a elektronska je vodljivost tipična za stakla koja sadrže okside prijelaznih metala. Ukoliko staklo sadrži i alkalijske okside i okside prijelaznih metala, ono može pokazivati miješanu ionsko-elektronsku vodljivost. Stakla posjeduju mnoge prednosti za primjenu u elektrokemijskim uređajima poput relativno lake pripreme sa širokim rasponom udjela oksida, homogenost, nepostojanje granica zrna, transparentnost, obojanost te mogućnost pripreme u raznim oblicima (ploče, granule, prah ili tanki film).

Opća formula za električnu provodnost dana je jednadžbom:

$$\sigma = \sum_{i} n_i \, e_i \mu_i \tag{1}$$

gdje je n_i broj, e_i naboj, a μ_i pokretljivost nositelja naboja *i*.

U narednim poglavljima će biti ukratko predstavljeni mehanizmi električne vodljivosti u oksidnim staklima.

2.3.1. Ionska vodljivost u oksidnim staklima

Istraživanja s kraja prošlog stoljeća pokazala su da stakla koja u sastavu sadrže alkalijske okside pokazuju visoke vrijednosti ionske vodljivosti.^{21,22,44–49} Prvo istraživanje Na₂O i Ag₂O kao modifikatora u fosfatnom staklu napravio je R. F. Bartholomew, a istraživao je električni otpor Na₂O–P₂O₅ i Ag₂O–P₂O₅ serija stakala.²⁶ U tim istraživanjima usporedio je električni otpor navedenih fosfatnih stakala sa silikatnim staklima sličnog sastava. Istraživanje je pokazalo da silikatna stakla imaju nekoliko redova veličine višu vodljivost od fosfatnih stakala te da fosfatna stakla s Ag₂O imaju višu vodljivost od fosfatnih stakala koja sadrže Na₂O. Osim toga, dao je i pregled vodljivosti stakala sastava (1-*x*)Na₂O–*x*Ag₂O–P₂O₅ (*x* = 0-1) te pokazao da dolazi do nelinearne promjene električne provodnosti, tj. minimuma, kada se Na₂O zamjenjuje s Ag₂O. Ova pojava danas je poznata kao učinak miješanih alkalijskih oksida (eng. *mixed alkali effect*).

Aktualna istraživanja ionskih stakala usmjerena su prema pronalasku novih materijala koji bi zamijenili tekuće elektrolite u litijevim baterijama. U ovu svrhu intenzivno se istražuju

tzv. brzi ionski vodiči (eng. *fast ion conductors*) gdje se osim modifikatora u stakla dodaje i alkalijski halogenid. Opća formula ovakvih stakala je:

MX-M₂O-A_xO_y

gdje je M alkalijski (Li⁺, Na⁺) ili sličan ion (Ag⁺, Cu⁺), X halogenid ili sulfid, a A_xO_y staklotvorac. Električna provodnost ovih stakala iznosi >10⁻² (Ω cm)⁻¹, a ovako visoka vrijednost električne provodnosti može se objasniti većom koncentracijom pokretljivih kationa i strukturom koja pogoduje brzom ionskom prijenosu.⁵⁰ Elektroliti na bazi oksidnih stakala pokazuju nekoliko ključnih prednosti u odnosu na tekuće elektrolite: jednostavan dizajn, otpornost na vibraciju i koroziju, nisu eksplozivni te ne mogu iscuriti iz baterije. Osim u čvrstim baterijama, ionski vodljiva stakla nalaze primjenu u elektrokromnim zaslonima, kemijskim senzorima i elektrokemijskim uređajima.

2.3.1.1. Mehanizmi ionske vodljivosti u oksidnim staklima

U ionskim su staklima nositelji naboja jednovalentni kationi ili anioni te ukupna električna provodnost ovisi o njihovoj koncentraciji i pokretljivosti. Kod stakala, zbog strukturne neuređenosti, pokretljivost iona je veća nego u kristalima. Općenito, ionska vodljivost posljedica je difuzije iona kroz strukturu stakla te se opisuje prvim Fickovim zakonom:

$$J = -D\frac{\partial n}{\partial x} \tag{2}$$

gdje je J protok iona, D difuzijski koeficijent, a $\partial n/\partial x$ je gradijent iona u smjeru x. Pokretljivost iona se pak može povezati s difuzijskim koeficijentom preko Einsteinove kinetičke teorije:

$$D = \mu k_{\rm B} T \tag{3}$$

gdje je μ pokretljivost iona, k_B Boltzmannova konstanta, a *T* temperatura. Uz pomoć jednadžbe (2) i (3) može se dobiti izraz koji povezuje difuzijski koeficijent, *D*, s ionskom provodnošću materijala, tzv. Nernst-Einsteinova jednadžba:

$$D = \frac{\sigma_{ion} \mathbf{k}_{\mathrm{B}} T}{n \mathrm{e}} \tag{4}$$

Gdje je σ_{ion} istosmjerna provodnost, *T* temperatura, *n* broj iona koji sudjeluju u prijenosu naboja, a *e* naboj iona.

Mehanizam ionske vodljivosti u oksidnim staklima opisuje se mnogim modelima, a po svojoj važnosti ističu se:

1) Model jakog elektrolita (Anderson-Stuart model);

- 2) Model slabog elektrolita (Ravaine-Sorquet model);
- 3) Model relaksacije skoka (Funke model);
- 4) Model dinamičke strukture (Bunde-Ingram model).

2.3.1.1.1. Model jakog elektrolita

Model jakog elektrolita za stakla, još poznat kao Anderson-Stuart model⁵¹, temelji se na pretpostavci da su gotovo svi kationi u staklu pokretljivi. Prema tom modelu, energija aktivacije za ionsku vodljivost iznosi:

$$\Delta E_A = \Delta E_B + \Delta E_S \tag{5}$$

gdje je ΔE_B elektrostatska energija vezanja (eng. *binding energy*) koja opisuje Coulombske sile koje djeluju na ion kada se on odmakne od svog početnog položaja, a ΔE_S je energija naprezanja (eng. *strain energy*) koja opisuje mehaničke sile koje se javljaju zbog prilagođavanja strukture ionu kada se on nađe na novom položaju. Uz nekoliko aproksimacija energije ΔE_B i ΔE_S jednake su:

$$\Delta E_B = \frac{\beta Z Z_0 e^2}{\gamma (r + r_0)} \tag{6}$$

$$\Delta E_S = 4\pi G r_0 (r - r_D)^2 \tag{7}$$

gdje je β parametar konačnog premještanja (eng. *finite displacement factor*) povezan s polumjerom iona, γ parametar deformacije kisikovog atoma (vrijednost slična permitivnosti na visokim frekvencijama, ε_{∞}), Z i r odnosno Z_0 i r_0 su naboji i polumjeri pokretnih iona odnosno kisika, a r_D je polumjer sužavanja mreže između mjesta kationa (eng. *radius of network constriction between the sites occupied by cations*) dok je G modul smicanja (eng. *shear modulus*) stakla. McElfresh i Howitt⁵² modificirali su izraz za ΔE_s te su dobili relaciju:

$$\Delta E_S = 4\pi G r_0 (r - r_D)^2 \lambda \tag{8}$$

gdje je λ udaljenost između kationskih položaja.²²

Ovaj model posebno je uspješan u opisu ionske vodljivosti boratnih stakala u kojima se ΔE_B značajno smanjuje dodatkom alkalijskih oksida u staklo zbog boljeg preklapanja orbitala koja su rezultat manje udaljenosti između dva mjesta kationa, tj. smanjenja duljine skoka koji kation mora savladati da bi se našao na novom položaju.

2.3.1.1.2. Model slabog elektrolita

Model slabog elektrolita za stakla uveli su Ravaine i Sorquet 1977. i 1978. godine^{53,54} predloživši objašnjenje u kojem je ionska vodljivost u staklima slična ionskoj vodljivosti u otopini. U tom su modelu pretpostavili da je ključan parametar za ionsku vodljivost količina vodljivih kationa, a ne njihova pokretljivost. Ukoliko se pretpostavi da je koncentracija nositelja naboja mala, energija disocijacije alkalijskog kationa mora biti visoka i predstavlja energijsku barijeru za ionsku vodljivost. U staklu se alkalijski ioni nalaze na položajima koji su u blizini kisikovih atoma i da bi postali pokretljivi nužna je disocijacija M–O veze. Nakon disocijacije, kation postaje slobodan odnosno pokretljiv nositelj naboja sve dok se ponovno ne poveže sa svojim protu-ionom. Reakcija koja opisuje ovaj proces glasi:

$$M_2O \leftrightarrow M^+ + MO^-$$

gdje je M₂O alkalijski oksid, M⁺ "slobodni" kation, a MO⁻ je disocirani anion.

Martin i Angell⁵⁵ su 1986. godine modificirali model slabog elektrolita s namjerom da se uzmu u obzir i pretpostavke modela jakog elektrolita. Ustvrdili su da su modeli jakog elektrolita i slabog elektrolita ekstremi općenitog modela ionske vodljivosti te su pokazali da se staklo opisuje modelom slabog elektrolita ukoliko vrijedi $\Delta E_B \gg \Delta E_S$ dok je staklo slabi elektrolit ako je $\Delta E_B \ll \Delta E_S$.

2.3.1.1.3. Model relaksacije skoka

Model relaksacije skoka iona (eng. *jump-relaxation model*), tj. MIGRATION (eng. *Mismatch generated relaxation for accommodation and transport of ions*) koncept, kojeg je razvio K. Funke^{56,57} posebno je važan za opis i razumijevanje frekvencijske ovisnosti ionske provodnosti stakala. Ovaj model temelji se na koreliranim skokovima iona, slika 7, i njihovoj snažnoj interakciji s lokalnim okruženjem. Temelj modela čine četiri osnovne pretpostavke^{57,58}:

- 1) Pokretljivi ioni su iste vrste;
- 2) Više je mogućih mjesta za skok iona nego pokretljivih iona;
- 3) Mjesta za skok iona su iste vrste;
- Postoje odbijajuća međudjelovanja između pokretljivih iona koje stvaraju "efekt kaveza".

Slika 7. Shematski prikaz modela relaksacije skoka, (a) ioni na početnim položajima A u blizini slobodnog mjesta Ē; (b) prvi skok iona na prazan položaj; (c) drugi skok iona; (d) reorganizacija lokalne strukture zbog preskoka iona.

Iz slike 7a može se vidjeti kako ioni imaju određene početne položaje te su u ravnoteži s okolinom. Ukoliko dođe do skoka iona na novo mjesto, slika 7b, moguća su dva događaja: ion se može zadržati na novom položaju ili se vratiti u početni položaj. U prvom slučaju, da bi se ion zadržao na novom položaju njegovo okruženje mora se prilagoditi gibanjima okolnih iona, što se naziva put mnogo čestica (eng. *many particle route*), slika 7c. U drugom je slučaju povratni skok iona jednostavan i naziva se put jedne čestice (eng. *single particle route*). Ako se ion vrati na početni položaj, taj skok je neuspješan i ne pridonosi ukupnoj vodljivosti, a ukoliko dođe do preuređenja okoline, slika 7d, taj je skok uspješan i pridonosi vodljivosti materijala.

Prema ovom modelu jednostavno se može objasniti utjecaj temperature i frekvencije na ionsku vodljivost. S porastom temperature, raste brzina preuređenja okoline, što rezultira manjim vremenom potrebnim za korelirani skok unazad, čime se vjerojatnost za uspješni skok povećava. S druge strane, ukoliko je temperatura sustava niska, korelirani skokovi su sporiji što doprinosi većom vjerojatnošću neuspješnih skokova.

Ukoliko promatramo shematski prikaz ovisnosti električne provodnosti o frekvenciji prema modelu relaksacije skoka, slika 8, možemo vidjeti da model pretpostavlja dva *plateau*-a električne provodnosti; istosmjernu provodnost, σ_{DC} , na niskim frekvencijama i σ_{HF} na visokim frekvencijama, koje su međusobno povezane specifičnom frekvencijski ovisnom provodnosti koja se naziva disperzija. Fizikalni opis ionske dinamike koja rezultira ovakvim spektrom provodnosti je sljedeći: na visokim frekvencijama, vrijeme promatranja ionske dinamike je vrlo kratko, prekratko da bi se dogodio povratni neuspješni skok, te su svi skokovi iona uspješni, a provodnost je visoka i konstantna. Sa smanjenjem frekvencije, vremenski se prozor promatranja dinamike iona povećava, čime dolazi do većeg broja neuspješnih skokova koji ne doprinose električnoj provodnosti, a provodnost se smanjuje. Na niskim frekvencijama vrijeme promatranja dinamike iona vrlo je dugo, dovoljno dugo da velik broj skokova biva poništen skokom na početni položaj te je provodnost niža i konstantna. Vrijednost provodnosti na niskim frekvencijama, σ_{DC} , odgovara provodnosti dobivenoj kada se mjerenje provodi metodama koje koriste istosmjerno (DC) električno polje.

Slika 8. Shematski prikaz ovisnosti električne provodnosti o frekvenciji prema modelu relaksacije skoka.

2.3.1.1.4. Model dinamičke strukture

Model dinamičke strukture predložen je 1994. godine⁵⁹ kao sveobuhvatno objašnjenje ionskog prijenosa naboja u staklu, ali i pojava poput utjecaja miješanih alkalijskih oksida koje do tada poznati modeli ionske vodljivosti nisu mogli objasniti. Kako bi se uspješno objasnila ova pojava model kreće od sljedećih pretpostavki:

- 1) Prijenos iona uključuje proces skoka;
- 2) Struktura stakla nije potpuno statična na temperaturama koje su puno niže od T_g ;
- 3) Pokretljivi ioni aktivno sudjeluju u izgradnji i promjenama strukture stakla.

Kombinacijom pretpostavki 2) i 3) može se zaključiti kako prijenos iona kroz strukturu uključuje relaksacijske efekte kojima se struktura prilagođava ionima na novim položajima, a svaki položaj je specifičan za određenu vrstu iona, odnosno pojavljuju se memorijski efekti. Proizvoljni ioni A ili B nalaze se na određenim položajima, a uspješnim skokom oni napuštaju svoj položaj ostavljajući šupljinu. U novonastalu šupljinu može skočiti novi ion A odnosno B (u šupljine koje nastaju nakon skoka iona A lakše skoči novi ion A i obrnuto) ili može doći do relaksacije šupljine ukoliko u nju ne skoči niti jedan ion. Ukoliko se šupljina relaksira, a novi
ioni A ili B skoče u nju, mora doći do reorganizacije strukture kako bi se smanjila energija sustava. U tom slučaju dolazi do smanjenja brzine skokova odnosno pada vodljivosti sustava.

2.3.2. Elektronska vodljivost u oksidnim staklima

Stakla koja sadrže okside prijelaznih metala poput V₂O₅, Fe₂O₃, MoO₃, WO₃ pokazuju elektronsku vodljivost.^{43,60–64} Vrijednosti provodnosti elektronski vodljivih stakala kreću se u vrlo širokom području, od 10^{-2} do 10^{-11} (Ω cm)⁻¹.^{43,60,65} Ovakva stakla pripadaju skupini amorfnih poluvodiča gdje je nositelj naboja prostorno lokaliziran.

Mehanizam elektronske vodljivosti u oksidnim je staklima vrlo složen, a najčešće se opisuje modelom skoka malog polarona (engl. *small polaron hopping*) te se takva vodljivost naziva polaronskom vodljivošću.

2.3.2.1. Model skoka malog polarona

Polaronska vodljivost posljedica je gibanja elektrona s iona prijelaznog metala nižeg oksidacijskog stanja na ion višeg oksidacijskog stanja preko premošćujućeg kisikovog atoma. Općenita relacija ovog procesa glasi:

$$\mathsf{M}^{(n-1)+} - \mathsf{O} - \mathsf{M}^{n+} \leftrightarrow \mathsf{M}^{n+} - \mathsf{O} - \mathsf{M}^{(n-1)+}$$

Tijekom ovog prijelaza, dolazi do interakcije elektrona sa strukturnom mrežom stakla u njegovoj neposrednoj blizini. Ukoliko se elektron zadrži na novom položaju dulje od perioda vibracije rešetke susjedni ioni imaju dovoljno vremena da zauzmu nove ravnotežne položaje, slika 9(a). Elektron time biva zarobljen u energijskoj potencijalnoj jami sve dok se položaji susjednih atoma/iona ne promijene, slika 9(b). Takav elektron se zajedno s induciranim defektima rešetke naziva polaron te djeluje kao kvazi-čestica velike efektivne mase i određenog polumjera (r_p). Ukoliko elektron na svom novom položaju djeluje na svoju neposrednu okolinu nastali polaron se naziva malim polaronom (eng. *small polaron*). S druge strane, ukoliko distorzija uključuje i veće među-ionske udaljenosti nastaje veliki polaron (eng. *large polaron*).

Količina polarona koja sudjeluje u električnom prijenosu ovisi o koncentraciji prijelaznog metalnog oksida u staklu i udjelu prijelaznog metalnog iona u nižem oksidacijskom stanju.

Slika 9. Nastanak malog polarona, (a) utjecaj elektrona na okolinu uslijed promjene položaja,(b) nastanak potencijalne jame.

2.3.2.1.1. Energija vezanja polarona

Energija vezanja polarona (engl. *polaron binding energy*), E_P , odgovara ukupnoj potencijalnoj energiji elektrona i inducirane distorzije rešetke. Energija vezanja polarona određuje se iz razlike energija kada elektron ne utječe na susjedne ione tj. kada su oni na točno određenim položajima i kada se relaksiraju. Jednadžba za energiju vezanja polarona glasi:

$$E_P = \frac{1}{2} \frac{e^2}{4\pi\varepsilon_0 \varepsilon_{eff} r_p} \tag{9}$$

gdje je e elementarni naboj, ε_0 permitivnost vakuuma, ε_{eff} efektivna permitivnost tvari, a r_p polumjer polarona. Polumjer polarona i efektivna permitivnosti tvari mogu se izračunati prema jednadžbama:

$$r_p = \frac{1}{2} \left(\frac{\pi}{6N}\right)^{\frac{1}{3}}$$
(10)

$$\frac{1}{\varepsilon_{ef}} = \left(\frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_{s}}\right) \tag{11}$$

gdje je *N* broj iona prijelaznog metala po jedinici volumena, ε_{∞} permitivnost tvari pri visokoj frekvenciji, a ε_s statička relativna permitivnost tvari. Valja napomenuti kako je jednadžba (10) vrlo gruba aproksimacija prema Bogomolovim i Mirilinovim istraživanjima na kristalnom TiO₂.⁶⁶

2.3.2.1.2. Aktivacijska energija gibanja polarona

Aktivacijska energija gibanja polarona usko je vezana uz energiju elektrona na određenom mjestu koja je funkcija trenutnog položaja iona. Položaji iona ovise o vibracijama pa se zbog toga i energija elektrona mijenja s vremenom. Elektron može prijeći na novi položaj tzv. "slučajnim događajem" koji predstavlja najveću vjerojatnost prijelaza u trenutku kada su energije mjesta na kojem je vezan elektron i mjesta najbližeg susjeda jednaka. Do prijelaza elektrona na novo mjesto može doći samo ukoliko je cijeli proces potpomognut termičkim vibracijama rešetke, odnosno skok elektrona je potpomognut fononima. Proces preskoka elektrona na novi položaj prikazan je na slici 10.

Slika 10. Proces gibanja malog polarona: a) elektron se nalazi na položaju iona A; b) izjednačene energije na položaju iona A i novog položaja B na koje elektron "slučajnim događajem" može prijeći; c) elektron na novom položaju iona B.

Aktivacijska energija gibanja polarona ovisi o nekoliko parametara:

- 1) Energiji podizanja razine elektrona na ionu A;
- 2) Polarizacijskoj energiji oslobođene s položaja iona A;

3) Energiji potrebnoj da se stvori potencijalna jama na ionu B.

Uzimajući u obzir gore navedene parametre, izraz za energiju aktivacije skoka polarona (eng. *polaron hopping energy*), W_H , glasi:

$$W_H = \frac{1}{4} \frac{\mathrm{e}^2}{4\pi\varepsilon_0 \varepsilon_{eff} r_p} = \frac{E_p}{2} \tag{12}$$

te iznosi polovicu energije vezanja polarona. Navedena jednadžba vrijedi samo ukoliko je udaljenost između iona velika.⁶⁷ Ukoliko je koncentracija prijelaznih metalnih iona velika, polaronski oblaci se međusobno preklapaju pa se jednadžba treba modificirati kako bi se u obzir uzela i udaljenost između iona, R:

$$W_H = \frac{1}{4} \frac{e^2}{4\pi\varepsilon_0 \varepsilon_{eff}} \left(\frac{1}{r_p} - \frac{1}{R}\right)$$
(13)

Ukoliko se polaroni nalaze u neuređenoj strukturi, poput oksidnog stakla, izračunu ukupne energije treba se dodati i energija neuređenosti (eng. *disorder energy*), W_D , koja poizlazi iz energijske razlike susjednih položaja te iznosi:⁶⁰

$$W_D = \left(\frac{e^2}{4\pi\varepsilon_0\varepsilon_S R}\right) K \tag{14}$$

gdje je K konstanta približno jednaka 0,3.68

Ukupna aktivacijska energija gibanja polarona, W, iznosi:64

$$W = W_{H} + \frac{W_{D}}{2} + \left(\frac{W_{D}^{2}}{16W_{H}}\right)$$
(15)

Budući da je energija neuređenosti, W_D , puno manja od energije skoka polarona W_H , gornja jednadžba može se napisati kao: $W \approx W_H + W_D/2$.

2.3.2.1.3. Vjerojatnost skoka polarona

Ukupna vjerojatnost skoka polarona, P, ovisi o umnošku vjerojatnosti pojave slučajnog događaja, P_1 , i vjerojatnosti da dođe do prijelaza elektrona kada se slučajni događaj dogodi, P_2 .

$$P = P_1 P_2 \tag{16}$$

Vjerojatnost da dođe do prijelaza elektrona kada se slučajni događaj dogodi, P_2 , može se objasniti pomoću dva procesa:

- Adijabatski proces elektron može pratiti vibracije rešetke. Vrijeme trajanja slučajnog događaja je dugačko u usporedbi s vremenom prijelaza elektrona na susjedno mjesto. Vjerojatnost skoka elektrona u trenutku slučajnog događaja je velika, te vrijedi: P₂ = 1.
- 2) Neadijabatski proces vrijeme potrebno za prijelaz elektrona je veliko u usporedbi s vremenom slučajnog događaja. Elektron može propustiti mnogo slučajnih događaja prije nego skoči te je vjerojatnost prijelaza elektrona mala, $P_2 \ll 1$.

Poznato je da se vjerojatnost skoka polarona može povezati s pokretljivošću polarona te je navedena eksponencijalna ovisnost osnova teorije malog polarona.⁶⁴

2.3.2.1.4. Mottova jednadžba za aktivacijsku energiju polarona

Na temelju teorije difuzije, N. F. Mott je predložio jednadžbu kojom se opisuje temperaturna ovisnost istosmjerne provodnosti, σ_{DC} , u staklima koja sadrže okside prijelaznih metala:⁶⁹

$$\sigma_{DC} = \frac{\sigma_0^*}{T} exp\left(-\frac{W}{k_{\rm B}T}\right) \tag{17}$$

$$\sigma_0^* = \left[\frac{C(1-C)\nu_0 e^2 N R^2}{k_B}\right] exp(-2\alpha R)$$
(18)

gdje je: σ_0^* predeksponencijski faktor, *C* udio prijelaznog metala u nižem oksidacijskom stanju (npr. $C = W^{5+}/W_{uk}$), v_0 frekvencija fonona, e naboj elektrona, *N* broj iona prijelaznog metala po jedinici volumena, *R* prosječna udaljenost između iona prijelaznih metala ($R = N^{-(1/3)}$), α brzina raspada valne funkcije, k_B Boltzmannova konstanta, *T* apsolutna temperatura i *W* aktivacijska energija istosmjerne provodnosti. Općenito, analiza predeksponencijskog faktora daje informacije o strukturnim parametrima stakla.

Mottova jednadžba se odnosi na neadijabatski režim mehanizma preskoka malog polarona. Umjesto frekvencije fonona, Mott je uveo frekvenciju elektrona, v_{el} . Frekvencija fonona postoji samo u slučaju ako se proces odvija adijabatski te u tom slučaju član $exp(-2\alpha R) \approx 1$. Član $v_{el}exp(-2\alpha R)$ u neadijabatskom režimu opisuje vjerojatnost tuneliranja elektrona iz potencijalne jame. Izračunom faktora tuneliranja, α , i frekvencije elektrona, v_{el} , može se utvrditi tip mehanizma skoka elektrona odnosno je li skok adijabatski ili neadijabatski.

Osim određivanja vrijednosti člana $(-2\alpha R)$ kao potvrda mehanizma može se iskoristiti i činjenica da je adijabatski mehanizam kontroliran energijom aktivacije. Grafički prikaz

ovisnosti log σ_{DC} o W na određenoj temperaturi za različite sastave stakala pokazuje pravac s nagibom $-1/k_BT$. Ukoliko je eksperimentalna temperatura približno jednaka temperaturi dobivenoj iz nagiba pravca proces je adijabatski, a ako su različite onda je neadijabatski.

2.3.3. Ionsko-polaronska vodljivost

Ionsko-polaronska vodljivost karakteristična je za stakla u kojima su prisutni i ioni alkalijskih metala i ioni prijelaznih metala. Za ovu vrstu vodljivosti karakteristično je da zamjenom alkalijskog oksida s prijelaznim metalnim oksidom (ili obrnuto) dolazi do smanjenja električne provodnosti. Ova je pojava prvi puta istraživana u stalima sastava Na₂O–WO₃–P₂O₅ 1978. godine.⁷⁰ U tom su istraživanju Kraevski i sur. pokazali kako dodatak male količine Na₂O u stakla koja sadrže WO₃ povećava električni otpor materijala, odnosno pad provodnosti do minimuma kod određenog udjela Na₂O. Daljnjim dodatkom Na₂O provodnost se povećava. Autori su ovaj efekt usporedili s utjecajem miješanih alkalijskih oksida te ga opisali kao "anomalija u električnim svojstvima".

Iako su slični stakleni sustavi vrlo detaljno proučavani sa strukturnog stajališta^{71,72} nije bilo detaljnijih istraživanja električnih svojstava do 1996. godine kada su Bazan i sur.⁷³ utvrdili da su u seriji stakala sastava $Li_2O-WO_3-P_2O_5$ prisutne anomalije električne vodljivosti vrlo slične onima koje su pokazali Kraevski i sur. Ovo novo istraživanje je pokazalo da početnom zamjenom WO₃ s Li₂O (5-10% množinskog udjela) dolazi do pada električne provodnosti dok se kod 10-20% množinskog udjela postižu minimalne vrijednosti. Nakon minimuma, kada je množinski udio Li₂O u staklu >20% dolazi do naglog porasta provodnosti. Autori su predložili tri moguća odgovora na ovu pojavu:

- Dodatak Li₂O povećava omjer W⁶⁺/W⁵⁺ iona, tj. smanjuje broj W⁵⁺ iona koji su jedan od ključnih parametara za polaronsku vodljivost;
- Dodatkom Li₂O dolazi do pucanja W–O–W veza, nastaje veći broj W–O[–] terminalnih veza čime dolazi do otežanog polaronskog prijenosa;
- Dolazi do direktne interakcije iona i polarona negativni polaroni i alkalijski kationi međusobno se privlače te tvore neutralne čestice koje ne pridonose električnoj vodljivosti.

Prema do tada poznatim istraživanjima^{71,72,74}, autori su zaključili kako točka 1. i 2. nisu valjano objašnjenje opažene pojave. Međutim, pad provodnosti i pojava minimuma može se

objasniti ukoliko se uzme u obzir mogućnost nastajanja ionsko-polaronskih parova čiji je efektivni naboj jednak nuli. Naime, pretpostavili su da se dodatkom Li⁺ iona u staklo, smanjuje količina polarona koji sudjeluju u prijenosu naboja zbog toga što dolazi do njihovog spajanja s Li⁺ kationima čime nastaju neutralne čestice, što uzrokuje minimum provodnosti. Daljnjim dodatkom Li⁺ iona ionska vodljivost prevladava što ima za posljedicu nagli porast električne provodnosti nakon minimuma. Navedenu su pojavu nazvali ionsko-polaronski učinak.

Bazan i sur.⁷³ prvi su pokušali objasniti mehanizme miješane ionsko-polaronske vodljivosti u staklima. Bitno je napomenuti da su analizirali samo električnu vodljivost te na temelju do tada poznatih istraživanja strukture i nekoliko parametara vezanih za električnu vodljivost postavili svoje zaključke. Međutim, nedostajala je detaljna analiza strukture istraživanih stakala i ostalih parametara poput gustoće nositelja naboja i udjela W⁵⁺/W_{uk} koji su od ključnog značaja za električnu vodljivost.

Nakon istraživanja koje su napravili Bazan i sur.⁷³ niz je autora istraživalo električnu vodljivost stakala koja sadrže i alkalijske i prijelazne metalne ione. Bih i suradnici^{75,76} istraživali su nekoliko serija stakala sastava Li₂O–MoO₃–P₂O₅ i Na₂O–MoO₃–P₂O₅. Primijetili su da i u ovim serijama stakla dolazi do pojave minimuma električne provodnosti te su pokušali razjasniti ovu pojavu na temelju kvantificiranja ionskog i polaronskog doprinosa ukupnoj provodnosti. Međutim, nisu uspjeli dobiti korelaciju između vrijednosti provodnosti, različitih udjela Mo⁵⁺/Mo_{uk} i sastava stakla. Garbarczyk i sur.^{77–80} u nekoliko su istraživanja napravili analizu kompleksnih impedancijskih ravnina u serijama stakala AgI–Ag₂O–V₂O₅–P₂O₅ te su zaključili da su u tim staklima prisutne i ionska i polaronska vodljivost. Nadalje, Barczyński⁸¹ je istražio serije stakala 50WO₃–(50-*x*)P₂O₅–*x*A₂O (A = Na, K, Cs) te utvrdio da i u ovim staklima dolazi do drastičnog pada električne provodnosti te da je pad provodnosti veći što je kation teži.

Usprkos mnogim istraživanjima ovakvih kompleksnih sustava, mehanizam vodljivosti u ionsko-polaronskim staklima još je uvijek nepoznanica te zahtijeva detaljna istraživanja niza strukturnih i električnih veličina.

2.4. Metode

U ovom poglavlju bit će opisane eksperimentalne metode korištene tijekom izrade ove doktorske disertacije. Za analizu termičkih svojstava koristila se dilatometrija i razlikovna pretražna kalorimetrija (eng. *differential scanning calorimetry*, DSC), za strukturnu analizu Ramanova spektroskopija dok su se električna svojstva istraživala impedancijskom spektroskopijom.

2.4.1. Metode termičke analize

2.4.1.1. Dilatometrija

Dilatometrija je termička analiza u kojoj se mjeri promjena volumena materijala u odnosu na referentni uzorak zbog fizikalne ili kemijske promjene uzrokovane promjenom temperature ili vremenom trajanja analize. Kako su promjene volumena vrlo male, referetni uzorak, kao i dijelovi mjerne ćelije, napravljeni su od materijala koji su stabilni u širokom temperaturnom području uz mali toplinski koeficijent širenja. Najčešće je to kvarcno staklo ili Al₂O₃. Brzine zagrijavanja uzoraka su između 1 i 10 K min⁻¹. Na slici 11 prikazana je shema dilatometrijske mjerne ćelije.

Slika 11. Shematski prikaz dilatometrijskog uređaja.⁸²

U dilatometrijskom eksperimentu uzorak i referetni uzorak pričvršćeni su na štapove kojima se uzorci potiskuju konstantnom silom tijekom cijelog mjerenja. Promjene u duljini/volumenu materijala bilježe senzori koji se nalaze na kraju štapa te se na temelju naglih promjena mjerenog svojstva mogu određuju temperature staklišta, T_g , temperature faznih prijelaza te koeficijent toplinskog širenja istraživanog uzorka.

2.4.1.2. Razlikovna pretražna kalorimetrija

Razlikovna pretražna kalorimetrija (eng. *differential scanning calorimetry*, DSC) vrsta je termičke analize u kojoj se mjeri razlika toplinskog toka između mjerenog i referentnog uzorka ili razlika u električnoj energiji koja se do njih dovodi. Najčešći referentni uzorci su Al₂O₃ i SiC zbog visoke stabilnosti u širokom temperaturnom području. Jednostavni shematski prikaz ćelije DSC uređaja nalazi se na slici 12.

Slika 12. Shematski prikaz ćelije DSC uređaja.⁸³

Tijekom DSC analize, uzorak i referetni uzorak se održavaju na istoj temperaturi unutar cijelog temperaturnog područja mjerenja, a promjena energije potrebna da se uzorci održe na istoj temperaturi odražava se maksimumima ili minimumima na baznoj DSC krivulji. Tipične brzine zagrijavanje uzoraka kreću se od 1-10 K min⁻¹.

Analizom DSC krivulja moguće je utvrditi različite termičke pojave u materijalima kao na primjer, kristalizaciju, fazne prijelaze, oksidaciju, redukciju ili druge kemijske reakcije, taljenje, sol-gel prijelaz, itd. U grafičkom prikazu DSC mjerenja endotermni procesi obično se prikazuju minimumima, dok se egzotermni procesi označavaju maksimumima na baznoj liniji. Kod analize amorfnih krutina, poput oksidnih stakala, DSC analiza je ključna za dobivanje podataka o temperaturi staklišta, T_g , temperaturi kristalizacije, T_c i temperaturi tališta, T_m , stakla.

2.4.2. Ramanova spektroskopija

Ramanova je spektroskopija nedestruktivna vibracijska spektroskopija koja se temelji na pojavi Ramanovog raspršenja. Ramanovo raspršenje, koje nosi naziv po znanstveniku C. V. Ramanu koji je otkrio ovu pojavu 1928. godine, je neelastično raspršenje fotona nastalo interakcijom fotona s vibracijskim modovima molekula. Ova vrsta spektroskopije ima široku primjenu u analizi anorganskih i organskih materijala te bioloških tvari.

Prilikom interakcije elektromagnetskog zračenja i molekula tvari dolazi do različitih vrsta raspršenja. Većina fotona na molekulama rasprši se elastično, tvoreći tzv. Rayleighovo raspršenje, dok se vrlo mali broj fotona (1:10⁶) rasprši neelastično. Neelastično raspršeni fotoni mogu imati veću (Stokesovo raspršenje) ili manju energiju (anti-Stokesovo raspršenje) od upadnog fotona. Iako je broj neelastično raspšenih fotona vrlo mali, dovoljan je da služi kao osnova Ramanove spektroskopije. Prikaz različitih načina raspršenja nalazi se na slici 13.

Slika 13. Vrste raspršenja fotona.

Interakcija svijetlosti s molekulama opisuje se jednadžbom (19):

$$E = E_0 \pm h\nu_0 \tag{19}$$

Ukoliko je $E = E_0$ dolazi do Rayleighovog raspršenja, dok u slučajevima $E > E_0$ i $E < E_0$ dolazi do Ramanovog raspršenja odnosno Stokesovog i anti-Stokesovog raspršenja, slika 13. Razlika u energiji između ulaznog zračenja i Ramanovog raspršenja odgovara vibracijskim ili rotacijskim stanjima molekula tvari.

Nadalje, Ramanovo raspršenje direktno je povezano s promjenom polarizabilnosti molekule tijekom vibracija. Naime, kada se električki neutralna molekula bez stalnog dipolnog momenta izloži električnom polju dolazi do njezine polarizacije odnosno do nakupljanja elektrona na pozitivnom kraju električnog polja dok dio molekule s manjkom negativnog naboja postaje električki pozitivan. Na taj način inducira se dipolni moment u molekuli. Iznos induciranog dipolnog momenta, p, proporcionalan je električnom polju i opisan je jednadžbom:

$$p = \alpha E \tag{20}$$

gdje je E jakost električnog polja, a α konstanta proporcionalnosti koja se zove polarizabilnost. Dakle, polarizabilnost je mjera distorzije elektronske gustoće molekule kad se ona nalazi u vanjskom električnom polju. Ukoliko je simetrija molekule takva da je molekula anizotropno polarizabilna, tj. da ima različitu polarizabilnost u različitim smjerovima u odnosu na vanjsko električno polje, zadovoljen je osnovni uvjet za Ramanovo raspršenje. Drugim riječima, u Ramanovom spektru opažamo samo vibracije kod kojih dolazi do promjene polarizabilnosti.

2.4.2.1. Vibracije u staklima

Amorfne krutine poput oksidnih stakala, nemaju potpuno neuređenu strukturu nego pokazuju uređenost kratkog dosega. Vibracijska svojstva amorfnih materijala ovise o vrsti atoma, njihovim položajima i povezanosti, tj. o osnovnim strukturnim jedinicama prisutnim u strukturi. Prisutnost osnovnih strukturnih jedinica u strukturi, npr. PO4 tetraedara u fosfatnom staklu, određuje strukturne veličine poput duljine veza i njihove jakosti. Za razliku od kristalih tvari u kojima vibracije osnovnih jedinica daju diskretnu vrpcu u Ramanovom spektru, u Ramanovim spektrima amorfnih tvari vrpce su difuzne zbog neperiodičnog ponavljanja strukturnih jedinica. Upravo zbog toga, statistička raspodjela vrijednosti strukturnih veličina dovodi do širokih vibracijskih vrpci zbog simetrijski dozvoljenih spektralnih linija stakla i "zabranjenih" vibracija koje se ne mogu opaziti. Iz navedenih razloga, vibracijski se spektar stakla sastoji od vibracija strukturnih jedinica i slabe neprekinute pozadine koja je rezultat strukturne neuređenosti krutine.⁸⁴

2.4.3. Impedancijska spektroskopija

Impedancijska je spektroskopija metoda koja koristi izmjeničnu struju za istraživanje električnih i dielektričnih svojstava materijala. Ovom metodom dobivamo informacije o gibanju nositelja naboja (iona i/ili elektrona) u čvrstim i tekućim materijalima te o procesima koji se dešavaju na međupovršini materijal-elektroda. Prednost impedancijske spektroskopije, prilikom istraživanja električnih svojstava, je taj da se oblik impedancijskog spektra može relativno lako povezati s mehanizmom električne vodljivosti što olakšava analizu materijala.

2.4.3.1. Osnove metode

Temeljni princip mjerenja impedancijskom spektroskopijom je pobuda uzorka, koji se nalazi između dvije identične elektrode, poznatim izmjeničnim naponom ili strujom te mjerenje rezultantne struje ili napona. Mijenjanjem početne frekvencije dobije se impedancija materijala u širokom frekvencijskom području, odnosno impedancijski spektar. Uobičajeno se mjerenja impedancijskom spektroskopijom provode na različitim temperaturama i/ili u različitim uvjetima atmosfere (inertna, oksidirajuća, reducirajuća, vakuum).

2.4.3.2. Pobuda uzorka izmjeničnim električnim poljem

Početni napon, U(t), prikazan jednadžbom 21:

$$U(t) = U_0 \sin(\omega t) \tag{21}$$

gdje je U_0 maksimalna vrijednost napona, $\omega = 2\pi\nu$, uzrokuje struju, I(t), koja je pomaknuta u fazi u odnosu na početni napon i iznosi:

$$I(t) = I_0 \sin(\omega t + \theta)$$
(22)

gdje je I_0 maksimalna vrijednost struje, a θ je razlika u fazi između napona i struje. Električna impedancija, $Z^*(\omega)$, odnosno otpor izmjeničnoj struji, definira se prema Ohmovom zakonu kao omjer napona i struje:

$$Z^*(\omega) = \frac{U(t)}{I(t)}$$
(23)

i određena je iznosom $|Z^*(\omega)| = U_0(t)/I_0(t)$ i faznim kutom $\theta(\omega)$. Zbog razlike u fazi između primijenjenog napona i rezultantne struje, slika 14a, impedancija je kompleksna veličina koja se opisuje polarnim ili pravokutnim koordinatama, slika 14b:

$$Z^*(\omega) = |Z^*|e^{(i\theta)} = Z'(\omega) + iZ''(\omega)$$
(24)

gdje je *i* imaginarna jedinica, odnosno $i = \sqrt{-1}$.

Slika 14. Prikaz: (a) razlike u fazi između jakosti primijenjenog napona i rezultantne struje; (b) impedancije kao planarnog vektora u kompleksnoj ravnini.

Polarne i pravokutne koordinate impedancije međusobno su povezane Eulerovom jednadžbom:

$$e^{(i\theta)} = \cos\theta + i\sin\theta. \tag{25}$$

Iz navedene jednadžbe pretvorba glasi:

$$Re(Z) = Z' = |Z^*| \cos \theta, \qquad (26)$$

$$Im(Z) = Z'' = |Z^*| \sin \theta, \qquad (27)$$

te fazni kut impedancije iznosi:

$$\tan \theta = \frac{Z''}{Z'} \tag{28}$$

dok je iznos impedancije jednak:

$$|Z^*| = \sqrt{|Z'^2 + Z''^2|} \tag{29}$$

Za razliku od primijenjenog napona i rezultantne struje, impedancija je vremenski neovisna veličina. Kako je ovisna o frekvenciji, impedancija se mjeri u širokom području frekvencija, a električna se svojstva materijala određuju iz ovisnosti Z^* o ω .

2.4.3.3. Kompleksne veličine povezane s impedancijom

Impedancijskom se spektroskopijom mjeri kompleksna impedancija materijala, a iz impedancije se mogu izračunati druge kompleksne vrijednosti kojima se opisuju električna i dielektrična svojstva. Sve kompleksne veličine su međusobno povezane jednostavnim matematičkim jednadžbama, a njihovi grafički prikazi naglašavaju različite (di)električne procese koji se događaju u materijalu. Ove se veličine nazivaju imitancije, a to su:

1) Električna admitacija, Y*, je recipročna impedancija

$$Y^* = \frac{1}{Z^*} = Y' + iY'' \tag{30}$$

gdje je Y' realna, a Y'' imaginarna admitacija.

2) Električni modul, M*, koji je povezan s impedancijom relacijom:

$$M^* = i\omega C_0 Z^* = M' + iM''$$
(31)

$$C_0 = \varepsilon_0 \frac{S}{d} \tag{32}$$

gdje je C_0 kapacitet prazne ćelije, S i d površina i razmak između elektroda, a ε_0 je permitivnost vakuuma.

3) Dielektrična permitivnost, ε^* , je definirana kao recipročni električni modul

$$\varepsilon^* = \frac{1}{M^*} = \frac{Y^*}{i\omega C_0} = \varepsilon' + i\varepsilon'' \tag{33}$$

Osim imitancija, iz impedancije se može izračunati i električna provodnost materijala prema relaciji:

$$\sigma^* = \frac{1}{Z^*} \frac{d}{S} = \frac{d}{S} \left(\frac{Z^{'}}{Z^{'2} + Z^{''2}} - i \frac{Z^{''}}{Z^{'2} + Z^{''2}} \right) = \frac{d}{S} (\sigma' + i\sigma'')$$
(34)

Ove četiri veličine, koje se najčešće istražuju u analizi svojstava materijala, mogu se svrstati u dvije skupine. U prvoj su skupini prikazi impedancije i admitacije odnosno električne provodnosti. Oni se koriste za analizu električnih svojstava materijala. S druge strane, u drugoj skupini su električni modul i permitivnost iz čijih se prikaza mogu dobiti podaci o dielektričnom odazivu materijala. Rezultati impedancijske spektroskopije, odnosno prikazi svih imitancija, mogu se grafički prikazati na nekoliko načina:

- 1. Prikaz u kompleksnoj ravnini, odnosno ovisnost imaginarne komponente o realnoj komponenti;
- Spektroskopski prikaz, ovisnost realne ili imaginarne komponente o frekvenciji (odnosno kao funkcija logaritma frekvencije);
- Kombinirani spektroskopski prikaz, odnosno istovremeni prikaz realne ili imaginarne komponente različitih imitancije o frekvenciji;
- 4. Trodimenzijski (3D) prikaz s $\log f$ okomitim na kompleksnu ravninu.

Kombinacijom impedancije i imitancija u prikazima njihovih realnih i imaginarnih komponenti mogu se dobiti detaljni uvidi u različite procese koji daju široku sliku o električnim i dielektričnim svojstvima proučavanih materijala.

2.4.3.4. Analiza impedancijskih spektara

Dva najčešća načina kako se analiziraju rezultati dobiveni impedancijskom spektroskopijom su: primjena matematičkog modela temeljenog na fizikalnoj teoriji koji daje teorijsku impedanciju, $Z_{l}(\omega)$, i modeliranje ekvivalentnim krugom koje pretpostavlja impedanciju, $Z_{EC}(\omega)$, slika 15. Bez obzira na koju se analizu odlučili, dobivene vrijednosti $Z_{l}(\omega)$ i $Z_{EC}(\omega)$, mogu se usporediti s eksperimentalno dobivenim podacima, $Z_{E}(\omega)$. U oba slučaja, ključna metoda za *fitting* eksperimentalnih podataka je kompleksna nelinearna metoda najmanjih kvadrata (eng. *complex non-linear least square fitting procedure, CNLSQ*).

Modeliranje ekvivalentnim krugom česta je metoda interpretacije rezultata impedancijske spektroskopije jer se fizikalni modeli koji opisuju električne procese u materijalima najčešće temelje na vrlo složenim matematičkim algoritmima.

Slika 15. Shematski prikaz analize rezultata impedancijske spektroskopije.

2.4.3.4.1. Modeliranje impedancije ekvivalentnim krugom

Eksperimentalno dobivena impedancija materijala, $Z_E(\omega)$, može se opisati impedancijom modelnog ekvivalentnog kruga, $Z_{EC}(\omega)$, koji se sastoji od serijski ili paralelno spojenih elemenata strujnog kruga: otpornika (R), zavojnice (L), kondenzatora (C) ili raspodijeljenih elemenata (eng. *distributed elements*) poput elementa konstantne faze - CPE (eng. *Constant Phase Element*). U ekvivalentnom krugu svakom se pojedinom elementu može pripisati fizikalno značenje, npr. električna je otpornost materijala povezana s otporom, a električna polarizacija s kapacitetom kondenzatora.

Jednostavni rezultat mjerenja materijala impedancijskom spektroskopijom je impedancijski spektar koji se može opisati ekvivalentnim krugom koji se sastoji od paralelno spojenog otpornika i kondenzatora, odnosno paralelnim RC krugom, slika 16.

Slika 16. Impedancijski spektar i pripadajući model paralelnog RC kruga.

U kompleksnoj impedancijskoj ravnini RC krug daje polukružnicu s nul-točkama u ishodištu i točki koja predstavlja otpor otpornika, *R*. Maksimum takve polukružnice nalazi se u točki u kojoj je frekvencija recipročna vrijednost umnoška otpora i kapaciteta kondenzatora:

$$\omega_{max} = \frac{1}{RC} \tag{35}$$

Ukupni otpor, odnosno impedancija, Z^* , paralelnog RC kruga izražava se zbrojem recipročnih otpora:

$$\frac{1}{Z^*} = \frac{1}{R} + \frac{1}{X_c} = G + \frac{1}{X_c}$$
(36)

gdje je R otpor otpornika, G električna vodljivost (recipročan otpor), a X_c otpor kondenzatora koji iznosi:

$$X_c = \frac{1}{i\omega C} \tag{37}$$

U gornjoj jednadžbi, C je kapacitet kondenzatora koji se računa prema jednadžbi:

$$C = \varepsilon_r \varepsilon_0 \frac{S}{d} \tag{38}$$

gdje je ε_r permitivnost tvari, ε_0 premitivnost vakuuma, a veličine *S* i *d* odnose se na geometriju elektroda.

Uzevši u obzir jednadžbe (36) i (37), može se izvesti izraz za kompleksnu admitaciju opisanog ekvivalentnog kruga:

$$\frac{1}{Z^*} = Y^* = G + i\omega C = Y' + iY''$$
(39)

gdje je realna komponenta admitacije, Y', jednaka električnoj vodljivosti dok je imaginarna komponenta, Y'', jednaka umnošku kutne frekvencije i kapaciteta. Iz navedene jednadžbe može se izvesti izraz za ukupnu impedanciju kruga:

$$Z^* = \frac{1}{Y^*} = \frac{1}{G + i\omega C} = \frac{G}{G^2 + \omega^2 C^2} - \frac{i\omega C}{G^2 + \omega^2 C^2}$$
(40)

gdje su realna, Z', i imaginarna, Z'', komponenta impedancije jednake:

$$Z' = \frac{G}{G^2 + \omega^2 C^2} \tag{41}$$

$$Z'' = -\frac{\omega C}{G^2 + \omega^2 C^2} \tag{42}$$

2.4.3.4.2. Ekvivalentni krug jednofaznih materijala

Električni odaziv "jednostavnih" jednofaznih materijala najčešće se sastoji od jedne impedancijske polukružnice nalik na impedanciju paralelnog RC kruga. Međutim, odaziv ovih materijala se obično razlikuje po tome što je polukružnica u -Z'' vs Z'kompleksnoj ravnini spljoštena, odnosno središte joj se nalazi ispod osi x, slika 17.

Slika 17. Impedancijski spektar i pripadajući model paralelnog R-CPE kruga.

Uzroci spljoštene polukružnice koja se uočava kod amorfnih i kod polikristalnih materijala povezuju se s raspodjelom relaksacijskih vremena unutar volumena materijala do koje dolazi

zbog strukturne nehomogenosti. Spljoštena polukružnica ne može se modelirati paralelnim RC krugom, nego se umjesto kondenzatora koristi raspodijeljeni element zvan element konstantne faze CPE. Element konstantne faze je element koji povezuje svojstva otpornika i kondenzatora te njegova impedancija iznosi:

$$Z_{CPE}^* = \frac{1}{A(i\omega)^{\alpha}} \tag{43}$$

gdje je *A* konstanta, a α empirijska konstanta koja iznosi $0 < \alpha < 1$. Ovisno o vrijednosti α , element konstantne faze mijenja svojstva od idealnog kondenzatora do idealnog otpornika. Za $\alpha = 1$ CPE djeluje kao idealan kondenzator, a za $\alpha = 0$ kao idealan otpornik.

Pokazano je da za slučaj ekvivalentnog kruga paralelno spojenog otpornika i CPE, tj. R-CPE kruga, vrijednost kapaciteta iznosi:

$$C = A \,\omega_{max}^{\alpha - 1} \tag{44}$$

gdje su *A* i α paramentri elementa konstantne faze, a ω_{max} frekvencija maksimuma impedancijske polukružnice.⁸⁵ U gruboj se aproksimaciji parametar *A* izjednačava s vrijednosti "stvarnog" kapaciteta, *C*.

2.4.3.4.3. Ekvivalentni krug višefaznih materijala i efekti koji se opažaju u impedancijskoj kompleksnoj ravnini

Impedancijski se spektri materijala, osim idealnih ili spljoštenih polukružnica, mogu sastojati i od više polukružnica, izduženih polukružnica ili mogu imati "repove" na niskim frekvencijama. Dodatni oblici u kompleksnoj impedancijskoj ravnini ukazuju na razne efekte i procese koji se događaju u sustavu elektroda-uzorak. Neki od procesa koji mogu utjecati na oblik impedancije u kompleksnoj ravnini su: procesi na elektrodi, korozija, poroznost uzorka, mikrostruktura, prisutnost više faza poput granice zrna i zrna (tipično za keramike, staklo-keramike i polikristalne uzorke), elektrodna polarizacija (kada se koriste elektrode koje su nepropusne za nositelje naboja) te prisustvo različitih nositelja naboja (npr. iona i elektrona u ionsko-elektronskim vodičima).

Električna svojstva ovakvih kompleksnih sustava opisuju se složenijim ekvivalentnim krugovima koji sadrže nekoliko paralelnih R-CPE krugova spojenih u seriju (za višefazne sustave) ili dodatnih serijski ili paralelno spojenih CPE elementa na osnovnom paralelnom R-CPE krugu (za modeliranje elektrodne polarizacije kod ionskih vodiča). Svakom

pojedinačnom procesu u električnom odazivu uzorka može se pripisati jedan dodani element ekvivalentnog kruga. Na takav način, modeliranjem ekvivalentnim krugom moguće je identificirati, razdvojiti i kvantificirati svaki od pojedinih procesa koji se javljaju u kompleksnom materijalu. Identifikacija i objašnjavanje kompleksnih električnih odaziva ekvivalentnim krugovima nije jednostavno jer svaki element u krugu mora imati fizikalno značenje, odnosno, potrebno je poznavati ili utemeljeno pretpostaviti fizička svojstva istraživanog materijala. Zbog toga, izbor elemenata u modelu ekvivalentnog kruga je od izrazite važnosti jer različiti modeli mogu dobro opisivati impedanciju dobivenu mjerenjem u cijelom frekvencijskom području, iako neki od njih neće imati fizikalno značenje.

Osim analize otpora u paralelnim R-CPE krugovima, vrlo važan električni parametar je kapacitet. Ovisno o dobivenoj vrijednosti kapaciteta RC elementi u kompleksnom ekvivalentnom krugu mogu se pripisati određenim fazama u proučavanom sustavu. U homogenim sustavima poput stakala, vrijednosti kapaciteta se kreću u području reda veličina pF (10^{-12} F) te se mogu pripisati volumnom odazivu cijelog uzorka. Više vrijednosti kapaciteta, reda veličine n- i µF mogu se pripisati različitim procesima od kojih su neki: granica faza ($10^{-11} - 10^{-8}$ F), površinski sloj ($10^{-9} - 10^{-7}$ F), međupovršina elektroda-uzorak ($10^{-7} - 10^{-5}$ F), itd.⁸⁶ Visoke vrijednosti kapaciteta često se javljaju u složenim višefaznim sustavima poput keramika, staklo-keramika ili višefaznih polikristalnih uzoraka.

2.4.4. Analiza električne provodnosti

Dobro je poznato^{87–90} da različiti amorfni i kristalni materijali, bez obzira na sastav, strukturu i vrstu prisutnih nositelja naboja, pokazuju sličnu ovisnost električne provodnosti o frekvenciji, tj. sličan oblik spektra provodnosti s karakterističnom disperzijom na višim frekvencijama, slika 8. Ovaj fenomen naziva se univerzalni dinamički odaziv (eng. *universal dynamic response*, UDR)⁸⁷ i tradicionalno se opisuje Jonscherovom jednadžbom (eng. *Jonscher power law*)^{87,91}:

$$\sigma(\omega) = \sigma_{DC} + \sigma_{AC}^{n} \tag{45}$$

gdje je σ_{DC} vrijednost frekvencijski neovisne DC provodnosti (istosmjerne provodnosti), σ_{AC} frekvencijski ovisna provodnost (područje disperzije), a *n* eksponencijski član. Međutim, novija istraživanja su pokazala da Jonscherova jednadžba samo približno opisuje frekvencijsku ovisnost električne provodnosti budući da eksponent *n* u relaciji (45) nije konstantan već se

blago mijenja s porastom frekvencije.^{92,93} Zbog toga su suvremena istraživanja usmjerena na razvoj drugih modela koji opisuju procese ionskog^{94–96} ili elektronskog⁹⁷ transporta u materijalima u širokom frekvencijskom i temperaturnom području.^{98–103}

Osim korištenja teorijskih modela, informacije o načinu i vrsti prijenosa naboja u materijalima mogu se dobiti i postupcima skaliranja spektara električne provodnosti. Skaliranje je postupak u kojem se spektri provodnosti, mjereni na različitim temperaturama, preklapaju primjenom određenih faktora skaliranja za *x* i *y* os. Ukoliko je skaliranje uspješno, ovim postupkom nastaje *master* krivulja (eng. *master curve*) čime materijal zadovoljava kriterij vremensko-temperaturnog preklapanja (eng. *time-temperature superposition*). Uspješnost skaliranja ovisi o faktoru skaliranja koji se primijenjuje u postupku preklapanja spektara, a općeniti matematički izraz za skaliranje glasi:

$$\left(\frac{\sigma'(\nu,T)}{\sigma_{DC}(T)}\right) = F\left(C\frac{\nu}{\sigma_{DC}(T)}\right)$$
(46)

gdje su σ' realna provodnost, ν frekvencija, T temperatura, dok je C konstanta koja definira faktor pomaka. Konstanta C ovisi o različitim faktorima poput temperature, koncentracije nositelja naboja, dielektrične konstante, duljine skoka nositelja naboja, itd. Najčešće korišteni postupci skaliranja su Summerfieldovo skaliranje koje kao faktor koristi temperaturu⁹⁸, Rolingovo skaliranje koje koristi koncentraciju nositelja naboja⁹⁹ i Sidebottomovo koje koristi dielektričnu snagu¹⁰³.

U ovoj doktorskoj disertaciji dinamika iona i polarona u proučavanim serijama stakala sustavno je istražena Summerfieldovim i Sidebottomovim skaliranjem što predstavlja potpuno novi pristup u istraživanju električnih svojstava miješanih ionsko-polaronskih materijala.

2.4.4.1. Summerfieldovo i Sidebottomovo skaliranje

Summerfieldovo je skaliranje⁹⁸ jedno od najjednostavnijih postupaka skaliranja, a matematički izraz za taj postupak glasi:

$$\left(\frac{\sigma'(\nu,T)}{\sigma_{DC}(T)}\right) = F\left(\frac{\nu}{T\sigma_{DC}(T)}\right) \tag{47}$$

Prema jednadžbi (46) konstanta C za Summerfieldovo skaliranje iznosi 1/T. Literaturno je poznato da Summerfieldovo skaliranje vrijedi za stakla s jednom vrstom alkalijskih iona, odnosno polarona uz postojanje rijetkih iznimki za koje Summerfieldovo skaliranje nije

zadovoljeno zbog specifičnosti strukture koja omogućava promjenu gustoće nositelja naboja i/ili broja vodljivih puteva s temperaturom.^{102,104,105} Naime, ukoliko je vremensko-temperaturno preklapanje zadovoljeno, promjenom temperature dolazi do ubrzavanja (porast temperature) odnosno usporavanja (smanjenje temperature) nositelja naboja bez promjene mehanizma vodljivosti, dok odstupanje od Summerfieldovog skaliranja ukazuje na temperaturnu ovisnost broja nositelja naboja ili mogućih vodljivih puteva u materijalu.

Drugi način skaliranja kojim su analizirana proučavana stakla je Sidebottomovo skaliranje¹⁰³ te matematički izraz za taj postupak glasi:

$$\left(\frac{\sigma'(\nu,T)}{\sigma_{DC}(T)}\right) = F\left(\frac{\varepsilon_0 \Delta \varepsilon \nu}{\sigma_{DC}(T)}\right)$$
(48)

gdje je ε_0 permitivnost vakuuma, a $\Delta \varepsilon$ dielektrična snaga određena iz spektra permitivnosti razlikom srednje-frekvencijskog, ε_S , i visoko-frekvencijskog, ε_{∞} , *plateau*-a. Za razliku od Summerfieldovog skaliranja u kojem faktor pomaka uključuje istosmjernu provodnost, σ_{DC} koja se jednostavno može odrediti iz eksperimentalnih spektara provodnosti ili kompleksne impedancijske ravnine, određivanje $\Delta \varepsilon$ iz eksperimentalnih podataka može biti problematično. Naime, u materijalima koji pokazuju visoku ionsku vodljivost, nakupljanje iona na elektrodi uzrokuje efekt elektrodne polarizacije koji može prekriti frekvencijsko područje u kojem se eksperimentalno određuje parametar ε_S . U tim slučajevima može se koristiti jednadžba (49) koju su uveli Sidebottom i Zhang¹⁰⁶ kao empirijski dobivenu jednadžbu koja vrijedi za različite materijale bez obzira na vrstu i broj nositelja naboja:

$$\Delta \varepsilon = \frac{\sigma_{DC}}{\varepsilon_0 f_0} \tag{49}$$

gdje je $\Delta \varepsilon$ dielektrična snaga, ε_0 permitivnost vakuuma, a f_0 vrijednost frekvencije za koju vrijedi $\sigma'(f_0) = 2\sigma_{DC}$.

Sidebottomovo skaliranje smatra se univerzalnim skaliranjem jer se ovim postupkom može dobiti *master* krivulja provodnosti za svaki materijal u kojem ne dolazi do promjene oblika frekvencijske ovisnosti provodnosti s temperaturom.⁹⁰

§ 3. EKSPERIMENTALNI DIO

3.1. Priprava stakla

Pripravljeno je šest serija cink fosfatnih stakala množinskog sastava $(30-x/2)M_2O-(30-x/2)ZnO-40P_2O_5-xTMO$ (M = Li, Na, Ag; TMO = WO₃, MoO₃; x = 0-60 mol%) klasičnom metodom hlađenja taline, tablica 2 i 3.

Stalila	Množinski udio (%)				
Stakio	Li ₂ O	ZnO	P_2O_5	WO_3	
30Li	30	30	40	0	
25Li-10W	25	25	40	10	
20Li-20W	20	20	40	20	
15Li-30W	15	15	40	30	
10Li-40W	10	10	40	40	
5Li-50W	5	5	40	50	
60W	0	0	40	60	
	Na ₂ O	ZnO	P_2O_5	WO ₃	
30Na	30	30	40	0	
25Na-10W	25	25	40	10	
20Na-20W	20	20	40	20	
15Na-30W	15	15	40	30	
10Na-40W	10	10	40	40	
5Na-50W	5	5	40	50	
	Ag ₂ O	ZnO	P_2O_5	WO ₃	
30Ag	30	30	40	0	
25Ag-10W	25	25	40	10	
20Ag-20W	20	20	40	20	
15Ag-30W	15	15	40	30	
10Ag-40W	10	10	40	40	
5Ag-50W	5	5	40	50	

Tablica 2. Sastav pripravljenih stakala iz serija koja sadrže WO₃.

Staklo –	Množinski udio (%)			
	Li ₂ O	ZnO	P_2O_5	MoO ₃
30Li	30	30	40	0
25Li-10Mo	25	25	40	10
20Li-20Mo	20	20	40	20
15Li-30Mo	15	15	40	30
10Li-40Mo	10	10	40	40
5Li-50Mo	5	5	40	50
60Mo	0	0	40	60
	Na ₂ O	ZnO	P_2O_5	MoO ₃
30Na	30	30	40	0
25Na-10Mo	25	25	40	10
20Na-20Mo	20	20	40	20
15Na-30Mo	15	15	40	30
10Na-40Mo	10	10	40	40
5Na-50Mo	5	5	40	50
	Ag ₂ O	ZnO	P_2O_5	MoO ₃
30Ag	30	30	40	0
25Ag-10Mo	25	25	40	10
20Ag-20Mo	20	20	40	20
15Ag-30Mo	15	15	40	30
10Ag-40Mo	10	10	40	40
5Ag-50Mo	5	5	40	50

Tablica 3. Sastav pripravljenih stakala iz serija koje sadrže MoO₃.

Početne tvari analitičke čistoće, M₂CO₃ (M = Li/Na/Ag), H₃PO₄, ZnO i WO₃/MoO₃, dobro su izmiješane u željenom omjeru u homogenu smjesu te zagrijavane na 873 K dva sata da se ukloni voda. Nakon toga, smjesa se zagrijala na temperaturu taljenja između 1273-1623 K, ovisno o sastavu. Talina se zatim prelila u zagrijane grafitne kalupe te je popuštana (eng. *annealing*) na temperaturi od 5 K ispod temperature staklišta, T_g . Uzorci su popuštani dva sata te su se polako hladili na zraku do sobne temperature. Energijskom disperzivnom spektroskopijom (EDS) potvrđeno je da sastav pripremljenih uzoraka stakla odgovara željenom sastavu. Amorfna priroda svih uzoraka potvrđena je difrakcijom rentgenskog zračenja na praškastom uzorku (PXRD, eng. *powder X-ray diffraction*).

Oznake pojedinih stakala odnose se na množinske udjele alkalijskog oksida i prijelaznog metalnog oksida koji su prisutni u staklu. Tako na primjer, staklo sastava $15Ag_2O-15ZnO-40P_2O_5-30WO_3$ ima oznaku $15Ag_3OW$. Za cijelu seriju stakala skraćenica se odnosi samo na alkalijski ion i prijelazni metalni oksid, npr. serija stakala koja sadrži Na₂O i MoO₃, $(30-x/2)Na_2O-(30-x/2)ZnO-40P_2O_5-xMoO_3$ (x = 0.60 mol%), označava se kraticom Na-Mo.

Priređena su stakla, u obliku okruglih pločica debljine oko 1 mm, prozirna, a njihova boja ovisi o vrsti i udjelu prijelaznog metalnog oksida. Stakla bez prijelaznog metalnog oksida bezbojna su, dok su stakla koja sadrže WO₃ plava, a MoO₃ zelena. S povećanjem množinskog udjela prijelaznog metalnog oksida, boja je priređenih stakala sve intenzivnija, slika 18.

Slika 18. Fotografija priređenih uzoraka litijevih serija stakala, gornji red: $(30-x/2)Li_2O-(30-x/2)ZnO-40P_2O_5-xWO_3$, x = 0.60 mol%; donji red: $(30-x/2)Li_2O-(30-x/2)ZnO-40P_2O_5-xMoO_3$, x = 0.60 mol%.

3.2. Karakterizacija stakala

3.2.1. Termička analiza

Dilatometrijska mjerenja stakala koja sadrže do 40% množinskog udjela WO₃/MoO₃ sprovedena su koristeći uređaj DIL 402 PC (Netzsch) na uzorcima veličine 5×5×20 mm. DSC stakala koja sadrže 50 i 60% množinskog udjela WO₃/MoO₃ mjerena su na praškastim uzorcima na instrumentu DTA 404 PC (Netzsch) u DSC modu snimanja. Brzina zagrijavanja u oba je slučaja iznosila 10 K min⁻¹ te su uspješno određene temperature staklišta svih uzoraka.

3.2.2. Strukturna istraživanja

Za strukturna je istraživanja pripravljenih stakala korištena Ramanova spektroskopija. Ramanovi spektri snimani su Horiba-Jobin Yvon LaBRam HR spektrometrom u području valnih brojeva 200-1400 cm⁻¹, s korakom od 1,5 cm⁻¹. Kao izvor zračenja korišten je Nd:YAG laser valne duljine 532 nm snage 12 mW. Integracijsko vrijeme iznosilo je 50 sekundi. Dobiveni su Ramanovi spektri analizirani u programu OriginPro 9.0.0. koristeći *Peak Fit* modul.¹⁰⁷ U ovom je programu napravljena i dekonvolucija spektara koristeći nelinearne metode najmanjih kvadrata uz aproksimaciju vrpci Gaussovom funkcijom.

3.2.3. Određivanje oksidacijskih stanja iona prijelaznih metala

Za određivanje udjela prijelaznih metalnih iona u različitim oksidacijskim stanjima u staklima korištena je EPR (eng. *electron paramagnetic resonance*) analiza i SQUID (eng. *superconducting quantum interference device*) magnetometrija. EPR metodom određeni su udjeli Mo⁵⁺ i Mo⁶⁺ iona dok su SQUID magnetometrijom određeni udjeli W⁵⁺ i W⁶⁺ iona.

EPR spektri praškastih uzoraka stakala koja sadrže MoO_3 snimljeni su na sobnoj temperaturi s ESR 221 (Magnettech) na frekvenciji od 9,5 GHz. Spinska je koncentracija određena uz pomoć Mn^{2+} standarda te je iz dobivenih podataka izračunat omjer Mo^{5+}/Mo_{uk} .

Omjer W^{5+}/W_{uk} određen je koristeći MPMS5 SQUID (Quantum Design) magnetometar. Pločice uzoraka, veličine $5 \times 2 \times 1$ mm, smješteni su u mjernu, plastičnu slamku bez dodatka sredstava za bolje vezanje uzorka kako se bi se izbjeglo unošenje izvora

49

magnetskih nečistoća u mjerenje. Mjerenja su napravljena u temperaturnom području od 2-300 K u konstantnom magnetskom polju jačine 0,1 T. Iz dobivenih je podataka o magnetizaciji uzorka i njegovom sastavu izračunat udio W^{5+}/W_{uk} .

3.2.4. Određivanje električnih svojstava

3.2.4.1. Priprava uzoraka za električna mjerenja

Za određivanje električnih svojstava svakoj je staklenoj pločici izmjerena debljina te su na obje strane nanesene zlatne elektrode promjera 7 mm koristeći uređaj za rasprašivanje zlata (Sputter Coater SC7620). Nakon nanošenja elektroda, pripremljena su stakla pohranjena u eksikatoru do mjerenja.

3.2.4.2. Električna mjerenja

Sustav za mjerenje impedancije, slika 19, sastoji se od analizatora impedancije, ćelije u koju se smješta uzorak između dvije elektrode te kriostata sa sustavom za kontrolu temperature. Cijeli sustav povezan je s računalom, opremljenim s programom za mjerenje i analizu podataka, Novocontrol WinDETA 5.65.¹⁰⁸

Slika 19. Fotografija sustava za impedancijsku spektroskopiju u Laboratoriju za funkcionalne materijale, IRB.

Analizator impedancije (Novocontrol Alpha – AN dielektrični spektrometar) mjeri realnu i imaginarnu komponentu impedancije u širokom temperaturnom i frekvencijskom području. Stakla istraživana u ovoj doktorskoj disertaciji mjerena su u temperaturnom području od 303-513 K s korakom od 30 K i kontrolom temperature ±0,2 K. Na svakoj temperaturi izmjerena je kompleksna impedancija u frekvencijskom području od 10⁻²-10⁶ Hz. Taj se postupak ponovlja za sve temperature. Iz mjerenja realne i imaginarne komponente impedancije i geometrije elektroda izračunate su kompleksna električna provodnost, σ^* , dielektrična permitivnost, ε^* , i električni modul, M^* , prema jednadžbama opisanima u poglavlju 2.4.3. Ekperimentalni spektri kompleksne impedancije analizirani su modeliranjem ekvivalentnim krugom pomoću kompleksne nelinearne metode najmanjih kvadrata (eng. *complex nonlinear least square* – CNLS) korištenjem komercijalnog programa *ZView*.¹⁰⁹

§ 4. REZULTATI I RASPRAVA

4.1. Fizička i termička svojstva istraživanih stakala

Množinski O/P i W/P odnosno Mo/P omjer, gustoća, vrijednost temperature staklišta i udio W^{5+}/W_{uk} odnosno Mo⁵⁺/Mo_{uk} prikazani su u tablicama 4 i 5.

Tablica 4. Množinski O/P i W/P omjer, gustoća, ρ , temperatura staklišta, T_g , i udio W⁵⁺/W_{uk} za stakla iz serija (30-*x*/2)M₂O–(30-*x*/2)ZnO–40P₂O₅–*x*WO₃, *x* = 0-60 mol%, M = Li, Na, Ag.

Staklo	O/P omjer	W/P omjer	ho / g cm ⁻³	$T_{ m g}$ / K	W^{5+}/W_{uk} (%)
30Li	3,25	0	2,91	579	0
25Li-10W	3,50	0,125	3,04	609	0,48
20Li-20W	3,75	0,250	3,20	614	0,66
15Li-30W	4,00	0,375	3,37	642	0,79
10Li-40W	4,25	0,500	3,69	716	1,39
5Li-50W	4,50	0,625	3,94	741	1,26
60W	4,75	0,750	4,41	793	1,45
30Na	3,25	0	2,93	576	0
25Na-10W	3,50	0,125	3,26	615	0,47
20Na-20W	3,75	0,250	3,54	651	0,55
15Na-30W	4,00	0,375	3,79	689	0,54
10Na-40W	4,25	0,500	4,04	749	0,86
5Na-50W	4,50	0,625	4,24	774	1,20
30Ag	3,25	0	4,40	513	0
25Ag-10W	3,50	0,125	4,41	557	-
20Ag-20W	3,75	0,250	4,45	600	0,42
15Ag-30W	4,00	0,375	4,42	651	0,51
10Ag-40W	4,25	0,500	4,45	729	0,80
5Ag-50W	4,50	0,625	4,44	800	1,00

Staklo	O/P omjer	Mo/P omjer	ho / g cm ⁻³	$T_{ m g}$ / K	${ m Mo^{5+}/Mo_{uk}}$ (%)
30Li	3,25	0	2,91	579	0
25Li-10Mo	3,50	0,125	2,99	607	4,79
20Li-20Mo	3,75	0,250	3,10	637	8,13
15Li-30Mo	4,00	0,375	3,13	658	13,6
10Li-40Mo	4,25	0,500	3,16	681	18,3
5Li-50Mo	4,50	0,625	3,20	701	10,93
60Mo	4,75	0,750	3,15	751	37,04
30Na	3,25	0	2,93	576	0
25Na-10Mo	3,50	0,125	3,01	611	2,31
20Na-20Mo	3,75	0,250	3,06	645	4,51
15Na-30Mo	4,00	0,375	3,08	671	5,88
10Na-40Mo	4,25	0,500	3,10	712	7,93
5Na-50Mo	4,50	0,625	3,13	731	9,12
30Ag	3,25	0	4,40	513	0
25Ag-10Mo	3,50	0,125	4,15	543	2,88
20Ag-20Mo	3,75	0,250	3,94	593	4,12
15Ag-30Mo	4,00	0,375	3,72	649	5,71
10Ag-40Mo	4,25	0,500	3,53	686	9,61
5Ag-50Mo	4,50	0,625	3,33	714	15,07

Tablica 5. Množinski O/P i Mo/P omjer, gustoća, ρ , temperatura staklišta, T_g , i udio Mo⁵⁺/Mo_{uk} za stakla iz serija (30-*x*/2)M₂O-(30-*x*/2)ZnO-40P₂O₅-*x*MoO₃, *x* = 0-60 mol%, M = Li, Na, Ag.

Literaturno je poznato da O/P omjer daje uvid u stupanj povezanosti (polimerizacije) fosfatne mreže.¹⁵ U svim istraživanim serijama, O/P omjer raste od 3,25 do 4,75 kako se Li₂O/Na₂O/Ag₂O i ZnO zamjenjuju s WO₃/MO₃ što ukazuje na postepeno smanjenje stupnja povezanosti fosfatne mreže. Početna stakla koja ne sadrže WO₃/MoO₃ imaju omjer O/P=3,25 koji odgovara pretežno metafosfatnim i pirofosfatnim jedinicama u strukturnoj mreži. Dodatkom <30% množinskog udjela WO₃/MoO₃, omjer O/P raste do vrijednosti 4,0 što odgovara pretežno pirofosfatnoj strukturi. Daljnjim porastom udjela WO₃/MoO₃ omjer O/P doseže vrijednost 4,50 što odgovara značajnom porastu ortofosfatnih jedinica u strukturi stakla.

Vrijednosti temperature staklišta, T_g , gustoće, ρ , i omjera W⁵⁺/W_{uk} odnosno Mo⁵⁺/Mo_{uk}, u ovisnosti o udjelu dodanog WO₃ odnosno MoO₃ prikazane na slici 20.

Slika 20. Ovisnost vrijednosti temperature staklišta, T_g , (a i d); gustoće, ρ , (b i e); i omjera W^{5+}/W_{uk} odnosno Mo^{5+}/Mo_{uk} (c i f) o množinskom udjelu WO_3 i MoO_3 za sva istraživana stakla.

Slika 20(a i d) pokazuje gotovo linearni porast vrijednosti $T_{\rm g}$ u cijelom području sastava i za sve serije stakala. Jedina iznimka je Ag-W serija gdje vrijednosti T_{g} rastu za stakla koja sadrže do 50% množinskog udjela WO3, a potom blago padaju za 60W staklo. Budući da se vrijednost $T_{\rm g}$ povezuje s čimbenicima poput jačine kemijskih veza, povezanosti strukturne mreže i gustoće pakiranja atoma kisika ovaj rezultat ukazuje na povećanje stabilnosti i zbitosti strukture kada se Li₂O/Na₂O/Ag₂O zamijenjuje s WO₃ odnosno MoO₃. Nadalje, na slikama 20(b i e) prikazana je ovisnost gustoće stakala o množinskom udjelu WO3 i MoO3. U slučaju Li-W i Na-W serija dodatkom WO₃, gustoća gotovo linearno raste. S druge strane, gustoće stakala za Li-Mo i Na-Mo serije konstantne su bez obzira na količinu dodanog MoO3. Međutim, trend ovisnosti gustoće za Ag-W i Ag-Mo serije pokazuje drugačije ovisnosti. Vrijednosti gustoće za stakla iz Ag-W serije ne mijenjaju se, dok vrijednosti gustoće stakala iz Ag-Mo serije pokazuju linearni pad. Ovi se različiti trendovi ovisnosti gustoće o udjelu dodanog WO₃ odnosno MoO₃ mogu objasniti razlikom molarnih masa oksida koji se zamjenjuju kroz određenu seriju stakla: WO₃ (232 g mol⁻¹), MoO₃ (144 g mol⁻¹), Li₂O (30 g mol⁻¹), Na₂O (62 g mol⁻¹) i Ag₂O (232 g mol⁻¹). Budući da je molarna masa Li₂O odnosno Na₂O mnogo manja od molarne mase WO₃, postepenom zamjenom Li₂O/Na₂O s WO₃ dolazi do značajnijeg porasta u gustoći za Li-W i Na-W seriju. Slično se objašnjenje može primijeniti i na serije Li-Mo i Na-Mo. Ipak, kod Li-Mo i Na-Mo serija dolazi do blagog porasta vrijednosti gustoća zbog manje razlike u molarnim masama između Li₂O/Na₂O i MoO₃. Dugačije se ponašanje vidi kod Ag-W serije. Molarna je masa Ag₂O puno veća od molarnih masa Li₂O i Na₂O tako da zamjena Ag₂O s WO₃ odnosno MoO₃, ima manji utjecaj na vrijednosti gustoće. Naime, molarne mase Ag₂O i WO₃ sličnih su vrijednosti pa ne dolazi do promjene vrijednosti gustoće unutar Ag-W serije. S druge strane molarna je masa MoO₃ skoro upola manja od molarne mase Ag₂O što rezultira padom vrijednosti gustoće kroz Ag-Mo seriju.

Jedna od ključnih veličina za polaronsku vodljivost je udio prijelaznih metalnih iona u različitim oksidacijskim stanjima, poglavlje 2.3.2. Bitno je stoga poznavati udjele W^{5+}/W_{uk} i Mo^{5+}/Mo_{uk} u istraživanim staklima. Na slikama 20(c i f) prikazana je ovisnost udjela W^{5+}/W_{uk} odnosno Mo^{5+}/Mo_{uk} o množinskom udjelu WO₃ i MoO₃ za sve serije stakala. U svim se serijama udio W^{5+}/W_{uk} i Mo^{5+}/Mo_{uk} povećava porastom množinskog udjela WO₃/MoO₃ u staklima. Iznenađujuće je da vrijednost udjela W^{5+}/W_{uk} u svim serijama stakala koja sadrže WO₃ ne prelazi 1,45% dok vrijednost udjela Mo^{5+}/Mo_{uk} za MoO₃ stakla raste do 37,04%. Razlog ovako velike razlike u vrijednostima navedenih omjera proizlazi iz činjenice da je MoO₃ jači oksidans od WO₃.³³ Naime, zbog jakog oksidativnog svojstva MoO₃, ravnoteža redoks reakcije između Mo^{6+} i O^{2-} do koje dolazi u talini pomaknuta je u smjeru nastajanja produkta Mo^{5+} i O₂:

$$4Mo^{6+} + 2O^{2-} \leftrightarrow 4Mo^{5+} + O_2$$

Svojstva opisana u ovom poglavlju, pogotovo T_g i udjeli W⁵⁺/W_{uk} odnosno Mo⁵⁺/Mo_{uk}, značajna su za daljnje razmatranje strukturnih i (di)električnih promjena koje se događaju u istraživanim serijama stakala.

Juraj Nikolić

4.2. Strukturna istraživanja

Struktura stakala istražena je Ramanovom spektroskopijom u frekvencijskom području od 200-1400 cm⁻¹. Ramanovi spektri svih stakala sadrže široke difuzne vrpce specifične za staklo, a njihova analiza temelji se na dekonvoluciji nelinearnom metodom najmanjih kvadrata uz aproksimaciju vrpci Gaussovom funkcijom. Slika 21 prikazuje dva primjera dekonvoluiranih Ramanovih spektara za: (a) početno staklo litijeve cink fosfatne serije koje ne sadrži WO₃/MoO₃ (30Li) i (b) litijevo cink fosfatno staklo koje sadrži 40% množinskog udjela WO₃ (10Li-40W). Eksperimentalno dobiven spektar označen je crnim točkama, a plavom su bojom označene vrpce određene dekonvolucijom eksperimentalnih podataka. Crvena krivulja ukupna je suma svih Gaussovih krivulja, koja se odlično preklapa s eksperimentalno dobivenim spektrom. Na ovaj su način analizirani Ramanovi spektri svih istraživanih stakala, a položaji dobivenih vrpci i njihovi vibracijski modovi prikazani su u tablicama D1-D6 u Dodatku.

Slika 21. Dekonvolucija Ramanovih spektara za stakla (a) 30Li i (b) 10Li-40W.

4.2.1. Strukturna analiza volframskih stakala

Ramanovi spektri svih serija stakala koje sadrže WO₃ prikazani su na slici 22 dok je u tablici 6 prikazano područje valnih brojeva Ramanovih vrpci i odgovarajući vibracijski modovi za sva stakla tih serija.

Slika 22. Ramanovi spektri svih stakala serija $(30-x/2)M_2O-(30-x/2)ZnO-40P_2O_5-xWO_3$, x = 0.60 mol%, M = Li, Na, Ag.

56

Valni broj / cm ⁻¹	Vibracijski mod	Literaturni navod
380-390	v _s (W–O–P)	30,34
400-650	δ (P–O)	15,110
690-710	<i>v</i> _s (P–O–P) Q ²	15,110
730-760	<i>v</i> _s (P–O–P) Q ¹	15,110
755-780	$v_{\rm s}$ (W–O–W)	30,34
840-880	v_{as} (W–O–W)	30,34
875-970	$v_{\rm s}$ (W–O [–]) _{okt}	30,34
935-995	v_{s} (W=O)	30,34
980-1000	$v_{\rm s}$ (PO ₄) Q ⁰	15,110
1030-1135	$v_{\rm s}$ (PO ₃) Q ¹	15,110
1140-1180	$v_{\rm s}$ (PO ₂) Q ²	15,110
1210-1275	$v_{\rm as}$ (PO ₂) Q ²	15,110

Tablica 6. Područja valnih brojeva maksimuma vrpci, njihovi vibracijski modovi te literaturni navodi iz kojih su preuzeti podaci za određivanje vrpci za sva WO₃ stakla.

Na slici 22(a) prikazan je razvoj Ramanovih spektara za stakla iz Li-W serije dok su u tablici D1 navedeni valni brojevi vrpci dobivenih dekonvolucijom i odgovarajući vibracijski modovi određeni na temelju literaturnih podataka prikazanih u tablici 6. U spektru početnog stakla koji ne sadrži WO₃, 30Li, prisutne su intenzivne vrpce na 1165 i 704 cm⁻¹, koje odgovaraju simetričnim istezanjima terminalnih P–O⁻ (v_s (PO₂) Q²) i premoščujućih P–O–P veza (v_s (P–O–P) Q²) u Q² jedinicama što ukazuje na prevladavajućumetafosfatnu strukturu. Također, slaba vrpca prisutna na 1238 cm⁻¹ pripisuje se asimetričnim istezanjima terminalnih P–O⁻ veza u metafosfatnim lancima (v_{as} (PO₂) Q²). Osim ovih vrpci, u spektru se pojavljuju i vrpce na 1045 (v_s (PO₃) Q¹) i 1123 cm⁻¹ (v_s (PO₃) Q¹) koje odgovaraju pirofosfatnim (Q¹) jedinicama te vrpca slabog intenziteta na 1000 cm⁻¹ koja se pripisuje simetričnim istezanjima terminalnih P–O⁻ veza u ortofosfatnim (Q⁰) jedinicama (v_s (PO₄) Q⁰). Prema prisutnim vrpcama može se zaključiti da u fosfatnoj mreži 30Li stakla prevladavaju metafosfatne (Q²) i pirofosfatne (Q¹) jedinice uz tragove izoliranih ortofosfatnih (Q⁰) jedinica.

Dodatkom WO₃ u Ramanovom se spektru 25Li-10W stakla, pojavljuju dvije nove vrpce: intenzivna vrpca na 973 cm⁻¹ koja odgovara vibraciji W=O veze (v_s (W=O)) te manje intenzivna vrpca na 914 cm⁻¹ (v_s (W–O⁻)_{okt}) koja odgovara terminalnim W–O⁻ vezama u WO₆ oktaedrima. Osim toga, pojavljuje se i vrpca na 384 cm⁻¹ koja se pripisuje premošćujućim W–O–P vezama (v_s (W–O–P)) što ukazuje na ugradnju WO₆ oktaedara u fosfatnu mrežu. Daljnjim dodatkom WO₃ dolazi do pomaka vrpci koje pripadaju W=O i krajnjim W–O⁻ vezama u WO₆ oktaedrima prema višim valnim brojevima te smanjenja intenziteta vrpci fosfatnih
jedinica i vrpci koje odgovaraju W–O–P vezi i krajnjoj W–O[–] vezi. Posebno je važno naglasiti da kod stakala s \geq 20% množinskog udjela WO₃ u Ramanovom se spektru pojavljuju dvije nove vrpce na 756 i 865 cm⁻¹ koje odgovaraju simetričnom i asimetričnom istezanju premoščujućih W–O–W veza (v_s/v_{as} (W–O–W)). Daljnjim dodavanjem WO₃, smanjuje se intenzitet svih vrpci povezanih s fosfatnim jedinicama dok vrpce koje se pripisuju W=O i W–O–W vezama u WO₆ oktaedrima prevladavaju, što je posebno vidljivo za 5Li-50W i 60W stakla. Ovakav razvoj Ramanovih spektara s porastom udjela WO₃ u Li-W seriji, ukazuje na nekoliko čimbenika, depolimerizaciju fosfatne mreže uz postupnu ugradnju WO₆ oktaedara u fosfatnu mrežu pri nižim množinskim udjelima te klasteriranje WO₆ oktaedara preko nastajanja W–O–W veza pri višim množinskim udjelima.

Na slici 22(b) prikazani su Ramanovi spektri stakala Na-W serije, a položaji vrpci dobivenih dekonvolucijom navedeni su tablici D2. Ramanovi spektri pojedinačnih stakala Na-W serije vrlo su slični spektrima stakala istog sastava iz Li-W serije, no pojavljuju se i određene razlike. Ramanov spektar 30Na stakla identičan je spektru 30Li stakla pokazujući vrpce pretežno metafosfatnih i pirofosfatnih jedinica. Nadalje, kao i u Li-W seriji, dodatkom WO₃ u staklo pojavljuju se vrpce koje odgovaraju simetričnim istezanjima W=O i W-O⁻ veza. Vrpce koje pripadaju istezanjima W-O-W veza pojavljuju se u spektru 20Na-20W stakla i, u usporedbi s Li-W serijom, njihov je intenzitet nešto izraženiji. Sukladno s time, u spektrima stakala Na-W serije u koje je dodano >30% množinskog udjela WO₃ vrpca koja pripada istezanjima W-O⁻ terminalne veze u WO₆ oktaedrima je manjeg intenziteta u odnosu na Ramanove spektre Li-W stakala s istim sastavom WO₃. Nadalje, vrpce koje pripadaju istezanjima W-O-P veza nešto su intenzivnije od onih u Li-W seriji. Slično Li-W seriji, porastom udjela WO₃ u Na-W seriji stakala dolazi do smanjenja stupnja povezanosti fosfatne mreže, ugradnje WO₆ oktaedara u fosfatnu mrežu, a zatim se te jedinice povezuju u klastere.

Razvoj Ramanovih spektara stakala iz Ag-W serije prikazan je na slici 22(c), a u tablici D3 navedeni su položaji maksimuma vrpci. Spektri stakala Ag-W serije slična su spektrima stakala Li-W i Na-W serija. U ovoj seriji vrpce koje odgovaraju simetričnom i asimetričnom istezanju premoščujućih W–O–W veza pojavljuju se u spektru za 15Ag-30W staklo, dakle kod stakla s nešto višim množinskog udjelom WO₃ u odnosu na Li-W i Na-W serije. Ostala pojavljivanja vrpci u Ramanovim spektrima, uključujući pojavu vrpci koje ukazuju na smanjenje stupnja povezanosti metafosfatnih jedinica u staklu, smanjenje intenziteta vrpci koje pripadaju vibracijama W–O⁻ terminalne veze u WO₆ oktaedrima te smanjenje intenziteta vrpci

W–O–P veza ista su kao i u spektrima za Li-W i Na-W stakla. Iz Ramanovih se spektara početnih stakala (30Li, 30Na i 30Ag) može zaključiti da ona imaju vrlo sličnu strukturu u kojoj prevladavaju metafosfatne i pirofosfatne jedinice. Također, iz razvoja Ramanovih spektara za sve tri volframske serije (Li-W, Na-W, Ag-W) vidljivo je da dodatkom WO₃ dolazi do postepene ugradnje WO₆ oktaedarskih jedinica i smanjenja stupnja povezanosti fosfatne mreže. Nadalje, pri višim množinskim udjelima WO₃ pojavljuju se vrpce koje odgovaraju W–O–W vezama što ukazuje na klasteriranje WO₆ oktaedarskih jedinica.

Rezultati strukturne analize opisani u ovom poglavlju se dobro slažu s do sada poznatim podacima iz literature.^{30,34} Naime, Koudelka i sur.³⁰ pokazali su da u seriji ZnO–WO₃–P₂O₅ stakala pri višim množinskim udjelima WO₃ također dolazi do ugradnje oktaedarskih WO₆ jedinica. Međutim, oni u prikazu svojih rezultata pokazuju da u staklima s niskim množinskim udjelima WO₃ i visokim udjelima ZnO dolazi do ugradnje i WO₆ oktaedara i WO₄ tetraedara. Treba naglasiti da u istraživanjima provedenim za sva volframska stakla u ovoj doktorskoj disertaciji prisutnost WO₄ tetraedara u strukturnoj mreži nije pronađena. Slične rezultate, kao u ovoj doktorskoj disertaciji, pokazali su Araujo i sur.³⁴ proučavajući NaPO₃-WO₃ seriju stakala gdje dodatkom WO₃ dolazi jedino do ugradnje WO₆ jedinica u strukturnu mrežu.

4.2.2. Strukturna analiza molibdenskih stakala

Ramanovi su spektri stakala iz molibdenskih serija prikazani na slici 23 dok su u tablici 7 prikazani vibracijski modovi i područje njihovih valnih brojeva. Treba napomenuti da su početna stakla (30Li, 30Na odnosno 30Ag) ista i u volframskim i molibdenskim serijama te su njihovi Ramanovi spektri opisani u prethodnom poglavlju.

Slika 23. Ramanovi spektri svih stakala iz serija $(30-x/2)M_2O-(30-x/2)ZnO-40P_2O_5-xM_0O_3$, x = 0.60 mol%, M = Li, Na, Ag.

Valni broj / cm ⁻¹	Vibracijski mod	Literaturni navod
395-400	$v_{\rm s}$ (Mo–O–P)	32,35,39
400-650	δ (P–O)	15,110
695-710	v _s (P–O–P) Q ²	15,110
730-765	<i>v</i> _s (P–O–P) Q ¹	15,110
781	v _s (Mo–O–Mo)	32,35,39
839	vas (Mo-O-Mo)	32,35,39
865-880	$v_{\rm s}$ (Mo-O) _{tet}	32,35,39
885-950	$v_{\rm s}$ (Mo-O) _{okt}	32,35,39
935-990	$v_{\rm s}$ (Mo=O)	32,35,39
980-1000	$v_{\rm s}$ (PO ₄) Q ⁰	15,110
1040-1130	$v_{\rm s}$ (PO ₃) Q ¹	15,110
1140-1170	$v_{\rm s}$ (PO ₂) Q ²	15,110
1230-1280	$v_{\rm as}$ (PO ₂) Q ²	15,110

Tablica 7. Područja valnih brojeva maksimuma vrpci, njihovi vibracijski modovi te literaturni navodi iz kojih su preuzeti podaci za određivanje vrpci za sva MoO₃ stakla.

Na slici 23(a) prikazani su Ramanovi spektri stakala Li-Mo serije dok su u tablici D4 prikazani položaji njihovih vrpci i pripadajući vibracijski modovi. Ramanovi spektri stakala koji sadrže do 20% množinskog udjela MoO₃ slični su spektrima Li-W stakala zbog sličnih vibracija Mo-O i W-O, tj. Mo=O i W=O veza, u MoO₆ odnosno WO₆ oktaedrima. Dodatak MoO₃ u Li-Mo stakla uzrokuje smanjenje intenziteta vrpci u području valnih brojeva 700-709 cm⁻¹ i 1160-1165 cm⁻¹ koje pripadaju simetričnim istezanjima metafosfatnih jedinica. Intenzitet vrpce u području valnih brojeva 935-990 cm⁻¹ koja odgovara vibraciji Mo=O veze (v_s (Mo=O)) i vrpce na 885-950 cm⁻¹ koja odgovara terminalnim Mo-O⁻ vezama u MoO₆ oktaedrima (v_s (Mo–O[–])_{okt}) raste s porastom udjela MoO₃. Međutim, u Ramanovom spektru 15Li-30Mo stakla pojavljuje se nova vrpca na 880 cm⁻¹ koja se pripisuje simetričnom istezanju Mo–O⁻ veze u MoO₄ tetraedrima (v_s (Mo–O⁻)_{tet}). Pojava ove vrpce doprinosi ključnoj razlici između Ramanovih spektara molibdenskih i volframskih serija stakala. Osim vrpci koje se odnose na MoO₄ tetraedre, u Ramanovim spektrima Li-Mo stakala intenzitet vrpci koje se pripisuju Mo-O-P vezama (v_s (Mo-O-P)) na ~390 cm⁻¹ raste dodatkom MoO₃ što ukazuje na ravnomjernu ugradnju molibdenskih poliedara u fosfatnu mrežu. Usporedbe radi, intenzitet ove vrpce u području od 395-399 cm⁻¹ za stakla iz volframskih serija, smanjuje se. Dobro je također istaknuti da se vrpce koje odgovaraju simetričnom i asimetričnom istezanju premoščujućih Mo-O-Mo veza u MoO₆ oktaedrima, na 781 i 839 cm⁻¹ (v_s (Mo-O-Mo) i v_{as} (Mo-O-Mo)), javljaju samo kod binarnog 60Mo stakla, dok se vrpce vibracija W–O–W veza u volframskim staklima, javljanju već kod 20-30% množinskog udjela WO₃.

Na slici 23(b) prikazani su Ramanovi spektri stakala iz Na-Mo serije, a u tablici D5 prikazani su položaji njihovih vrpci i pripadajući vibracijski modovi. Razvoj Ramanovih spektara kroz čitavu seriju sličan je razvoju spektara Li-Mo stakala. Dodatkom MoO₃ u spektrima 25Na-10Mo i 20Na-20Mo stakala pojavljuju se vrpce na 912 i 957 cm⁻¹ koje se pripisuju simetričnim istezanjima Mo $-O^-$ (v_s (Mo $-O^-$)_{okt}) i Mo=O veza (v_s (Mo=O)) u MoO₆ oktaedrima. Daljnjim dodatkom MoO₃, u spektru 15Na-30Mo stakla pojavljuje se vrpca na 880 cm⁻¹ koja odgovara simetričnom istezanju Mo $-O^-$ veze u MoO₄ tetraedru. Kako se množinski udio MoO₃ u staklu povećava, ova se vrpca pomiče prema nižim valnim brojevima. I u ovoj, Na-Mo seriji stakala, u Ramanovim spektrima intenzitet vrpci na ~395 cm⁻¹ blago raste što pokazuje čvršće povezivanje molibdenskih i fosfatnih poliedara u strukturnoj mreži.

Slika 23(c) i tablica D6 prikazuje razvoj Ramanovih spektara i položaje vrpci za Ag-Mo stakla. Dobiveni spektri za Ag-Mo seriju gotovo su identični onima za Li-Mo i Na-Mo stakla. Osnovne su karakteristike pojava vrpci koji se odnose na simetrična istezanja $Mo-O^-$ i Mo=O veza u MoO_6 oktaedrima pri nižim množinskim udjelima MoO_3 dok se s većim dodatkom MoO_3 intenzitet vrpce istezanja $Mo-O^-$ veze u MoO_6 oktaedrima smanjuje. S druge strane, intenzitet vrpce koja pripada simetričnom istezanju $Mo-O^-$ veze u MoO_4 tetraedru raste.

Uspoređujući volframske serije stakala s molibdenskim, osnovna je razlika u nastajanju klastera WO₆ oktaedara pri višim množinskim udjelima WO₃ (>20-30%) dok je klasteriranje MoO₆ oktaedara primijećeno tek kod binarnog 60Mo stakla. Zanimljivo je naglasiti da pri nižim množinskim udjelima MoO₃ dolazi do ugradnje MoO₆ oktaedara što uzrokuje smanjenje stupnja povezanosti fosfatne mreže u strukturi stakla. S druge strane, daljnjim dodatkom MoO₃ u fosfatnu mrežu, osim MoO₆ oktaedara, ugrađuju se i MoO₄ tetraedri pa se može zaključiti da prisustvo Mo–O–P veza u čitavom području sastava molibdenskih stakala uzrokuje ravnomjerniju ugradnju molibdenskih jedinica za razliku od volframskih stakala gdje WO₆ oktaedarske jedinice pokazuju sklonost klasteriranju.

Literaturni podaci, dobiveni istraživanjima na sličnim sustavima stakala, mogu pokazala su nešto drugačije razultate strukturne analize. Naime, strukturna istraživanja ZnO-MoO₃-P₂O₅ stakala³² pokazala su da se MoO₃ ugrađuje kao MoO₆ oktaedar te da pri višim množinskim udjelima te jedinice klasteriraju. Suprotno, u strukturi stakala iz serije PbO-MoO₃-P₂O₅³⁹ dolazi do prijelaza oktaedarskih MoO₆ jedinica u tetraedarske MoO₄ jedinice s porastom množinskih udjela PbO i MoO₃. Ovakav rezultat ukazuje da na strukturu fosfatnih stakala u koje se dodaje MoO₃ značajno utječe prisutnost drugih modifikatora u staklenoj mreži.

Sustavno istraživanje stakala Ramanovom spektroskopijom, sprovedeno u okviru ove disertacije, jasno pokazuje da se WO₃ i MoO₃ ugrađuju na drugačiji način u cink fosfatnu staklenu mrežu. Naime, struktura stakla značajnije ovisi o vrsti prijelaznog metalnog oksida prisutnog u staklu nego o prisutnosti Li₂O, Na₂O ili Ag₂O što je vidljivo u sličnosti spektara stakala s različitim alkalijskim odnosno srebrovim oksidom, a istim množinskim udjelima WO₃ odnosno MoO₃.

U sljedećem poglavlju prikazani su rezultati detaljne analize električnih i dielektričnih svojstava proučavanih serija stakala te su navedena svojstva povezana sa strukturnim promjenama opisanim u ovom poglavlju.

4.3. Električna i dielektrična svojstva

U ovom su poglavlju prikazani i diskutirani rezultati električnih i dielektričnih svojstava svih proučavanih serija stakala. Dan je detaljan pregled ovisnosti realne komponente električne provodnosti i kompleksne impedancije o frekvenciji i temperaturi te je prikazana analiza parametara Arrheniusove jednadžbe. Osim toga, prikazana je i detaljna analiza dielektrične premitivnosti čiji su rezultati korišteni za analizu dinamike nositelja naboja postupcima skaliranja spektara provodnosti.

4.3.1. Analiza električne provodnosti

Električna je provodnost, σ^* , kompleksna veličina određena realnom, σ' , i imaginarnom, σ'' , komponentom. Na slici 24 prikazana je ovisnost realne provodnosti o frekvenciji, tj. spektri električne provodnosti, za sva stakla Li-W serije na temperaturama od 303-513 K. Također, prikazani su i spektri provodnosti za staklo 60W, slika 24(g), snimani i na nižim temperaturama, od 183-513 K. U svim se spektrima mogu uočiti dva karakteristična područja:

- 1. Frekvencijski neovisna provodnost na niskim frekvencijama koja odgovara vrijednosti istosmjerne provodnosti, tj. transportu nositelja naboja kroz dugi doseg.
- Područje pri visokim frekvencijama i niskim temperaturama u kojem provodnost raste povećanjem frekvencije, tzv. disperzija provodnosti koja odgovara lokaliziranom transportu nositelja naboja.

Na slici 24 vidljivo je da se točka prijelaza iz frekvencijski neovisne istosmjerne povodnosti u disperziju pomiče prema višim frekvencijama s porastom temperature. Valja napomenuti da kod nekih stakala na niskim temperaturama i niskim frekvencijama, slika 24(a, b, c), provodnost ne pokazuje potpunu frekvencijsku neovisnost već samo naznaku *plateau*-a istosmjerne provodnosti. U tim se slučajevima, istosmjerna provodnost, σ_{DC} , određuje iz veličina dobivenih modeliranjem ekvivalentnog kruga kompleksne impedancijske ravnine odnosno iz vrijednosti otpora i geometrije elektroda.

Također, kod nekih spektara uočava se pad provodnosti na niskim frekvencijama i visokim temperaturama, slika 24(a, b). Navedena se pojava se može primijetiti samo u staklima koja sadrže veće koncentracije Li⁺, Na⁺ ili Ag⁺ iona i posljedica je pojave elektrodne polarizacije. Naime, na niskim frekvencijama dolazi do nakupljanja iona na površini zlatne

elektrode te nastanka električnog dvostrukog sloja. U staklima s malim udjelom ionske vodljivosti, odnosno u staklima s većim udjelom WO₃ i MoO₃, slika 24(d, e, f, g), ovaj se efekt ne pojavljuje jer zlatna elektroda nije blokirajuća za polarone (elektrone). Spektri provodnosti stakala Li-W serije prikazani na slici 24 slični su spektrima stakala iz svih ostalih proučavanih serija.

Na slici 25 prikazana je ovisnost istosmjerne provodnosti, σ_{DC} , na svim temperaturama o množinskom udjelu WO₃ odnosno MoO₃ za sve serije stakala. Iz slike 25 vidi se da dodatak WO₃ odnosno MoO₃ različito utječe na σ_{DC} istaživanih stakala. Također, postoje i razlike između serija s istim prijelaznim metalnim oksidom u koje su dodani Li₂O, Na₂O ili Ag₂O. Naime, u slučaju volframskih serija u području od 20 do 40% množinskog udjela WO₃ ovisno o sastavu i temperaturi, dolazi do minimuma vrijednosti σ_{DC} . S druge strane, električna provodnost molibdenskih serija približno je konstantna za Li-Mo i Na-Mo stakala dok linearno pada kroz čitavu Ag-Mo seriju stakala izuzev zadnjeg, polaronskog binarnog 60Mo stakla, kod kojeg dolazi do blagog porasta provodnosti.

Juraj Nikolić

Slika 24. Ovisnost električne provodnosti o frekvenciji i temperaturi za stakla Li-W serije.

Slika 25. Ovisnost istosmjerne provodnosti, σ_{DC} , na svim temperaturama o množinskom udjelu WO₃ odnosno MoO₃ za sve istraživane serije stakala.

Opažene razlike u trendovima vrijednosti σ_{DC} između serija stakala zahtjevaju detaljnu analizu ovisnosti provodnosti o sastavu stakla. Dodatkom WO₃ u Li-W stakla, slika 25(a), dolazi do pada vrijednosti σ_{DC} na 303 K od 1,94×10⁻¹³ (Ω cm)⁻¹ za čisto ionsko staklo, 30Li, do 9,34×10⁻¹⁵ (Ω cm)⁻¹ za 20Li-20W staklo. Daljnjim dodatkom WO₃, vrijednost σ_{DC} na 303 K, kontinuirano raste za dva reda veličine za svako sljedeće staklo te iznosi: 1,99×10⁻¹³ (Ω cm)⁻¹ za 15Li-30W staklo, 1,30×10⁻¹⁰ (Ω cm)⁻¹ za 10Li-40W staklo, 1,00×10⁻⁸ (Ω cm)⁻¹ za 5Li-50W staklo te 4,26×10⁻⁶ (Ω cm)⁻¹ za čisto polaronsko staklo, 60W. S druge strane, kada se u litij cink fosfatno staklo doda MoO₃ (Li-Mo serija) vrijednost σ_{DC} na 303 K blago poraste početnim dodatkom MoO₃ te se neznatno mijenja (unutar jednog reda veličine) u cijelom području sastava 10-50% množinskog udjela MoO₃, slika 25(b). Nadalje, 60Mo staklo, za razliku od 60W stakla, ima relativno nisku vrijednost σ_{DC} na sobnoj temperaturi te iznosi 2,75×10⁻¹¹ (Ω cm)⁻¹.

Kod Na-W i Na-Mo serija, slika 25(c i d), vrijednost σ_{DC} čistog ionskog stakla, 30Na, na 303 K iznosi 7,88×10⁻¹³ (Ω cm)⁻¹ što je viša vrijednost provodnosti od one za 30Li staklo. No, za razliku od Li-W serije gdje početnim dodatkom WO₃ u staklo provodnost pada, u slučaju Na-W serije dolazi do neznatnog porasta provodnosti (~1,5×10⁻¹² (Ω cm)⁻¹) za 25Na-10W i 20Na-20W staklo. Dodatkom 30% množinskog udjela WO₃ u staklo, σ_{DC} padne na najnižu vrijednost 5,84×10⁻¹³ (Ω cm)⁻¹, te potom naglo poraste za stakla s 40-60% množinskog udjela WO₃, slično kao kod Li-W serije. Nadalje, vrijednosti σ_{DC} stakala za Na-Mo seriju, slika 25(d), pokazuju sličan trend kao i za stakala iz Li-Mo serije te dodatkom MoO₃ u staklo, dolazi do blagog porasta vrijednosti σ_{DC} koja ostaje gotovo konstantna do 50% množinskog udjela MO₃ te za 60Mo staklo električna provodnost neznatno poraste.

Na slikama 25(e i f) prikazan je utjecaj dodatka WO₃ odnosno MoO₃ na srebro cink fosfatna stakla, Ag-W i Ag-Mo serije. Vrijednost σ_{DC} ionskog stakla koje sadrži 30% množinskog udjela Ag₂O, 30Ag, na sobnoj temperaturi iznosi 2,97×10⁻⁹ (Ω cm)⁻¹ što je za četiri reda veličine viša vodljivost od ionskih stakala koja sadrže Li₂O odnosno Na₂O. Nadalje, na slici 25(e) može se vidjeti kako vrijednost σ_{DC} kontinuirano pada dodatkom WO₃, te kod 30-40% množinskog udjela WO₃ postiže minimum. Nakon minimuma, kao i u slučajevima Li-W i Na-W serija, dolazi do naglog porasta vrijednosti σ_{DC} . Dodatkom MoO₃ u srebro cink fosfatnu seriju stakla ovisnost σ_{DC} pokazuje drugačiji trend od Li-Mo i Na-Mo serija. U slučaju Ag-Mo serije, slika 25(f), dolazi do pada vrijednosti σ_{DC} kroz čitavo područje sastava od 0-50% množinskog udjela MoO₃, s jasnim minimumom koji iznosi 5,62×10⁻¹⁴ (Ω cm)⁻¹ za 5Ag-50Mo staklo.

Budući da ionski i polaronski mehanizam vodljivosti ovisi o nizu različitih čimbenika, što miješani ionsko-polaronski transport čini izuzetno kompleksnim fenomenom, u sljedećim je poglavljima dan detaljan osvrt na faktore koji utječu na σ_{DC} u staklima bez MoO₃/WO₃ (ionska stakla), staklima koja sadrže kombinaciju alkalijskog/srebrovog oksida i MoO₃/WO₃ (ionsko-polaronska stakla) i binarnim molibdensko fosfatnim i volframsko fosfatnim staklima (polaronska stakla).

4.3.1.1. Istosmjerna provodnost ionskih stakala

Promatrajući dobivene vrijednosti provodnosti za 30Li, 30Na i 30Ag stakala uočava se da vrijednosti σ_{DC} na 303 K slijede trend 30Ag>>30Na>30Li. Budući da sva tri stakla imaju vrlo sličnu strukturu i gustoću broja iona mogući razlog ovakvog trenda leži u različitoj pokretljivosti iona. Gustoća broja iona, N_I , povezana je sa sastavom stakla relacijom:

$$N_I = \frac{A x \rho N_A}{M} \tag{52}$$

gdje je A stehiometrijski broj iona nositelja naboja u alkalijskom/srebrovom oksidu, xmnožinski udio alkalijskog/srebrovog oksida, ρ gustoća stakla, N_A Avogadrova konstanta, a M molarna masa stakla. Dobivene gustoće iona vrlo su slične te iznose $1,17 \times 10^{22}$ cm⁻³ za 30Li, 1,06×10²² cm⁻³ za 30Na i 30Ag staklo pa je očito da razlike u vrijednostima provodnosti treba tražiti u različitoj pokretljivosti Ag⁺, Na⁺ i Li⁺ iona u cink fosfatnom staklu. Visoka vrijednost provodnosti 30Ag stakla nije iznenađujuća jer je poznato u literaturi^{25,111,112} da fosfatna stakla koja sadrže srebrove halkogenide i halogenide imaju vrlo visoke vrijednosti σ_{DC} zbog slabih Coulombovih interakcija između Ag⁺ iona i terminalnih fosfatnih negativno nabijenih jedinica što ove ione čini vrlo pokretljivima.^{113–115} S druge strane, značajno niža provodnost za 30Na i 30Li stakla ukazuje na manju pokretljivost Li⁺ i Na⁺ iona u ovim staklima. Osim toga, važno je primjetiti da 30Na staklo ima veću provodnost na 303 K od 30Li stakla usprkos većem polumjeru iona natrija: $r(Na^+) = 116 \text{ ppm} > r(Li^+) = 90 \text{ ppm}$. Veća pokretljivost Na⁺ iona može se objasniti manjom elektronegativnošću (0,9) u usporedbi s elektronegativnošću Li⁺ iona (1,0), što uzrokuje slabije vezanje Na⁺ iona za na terminalne fosfatne skupine i u konačnici kompenzira efekt većeg iona. Međutim, zanimljiv je podatak da ovakav trend nije primijećen u binarnim LiPO₃ i NaPO₃ staklima bez ZnO¹¹⁶ što ukazuje na važnu ulogu cinkovog oksida u ionskom prijenosu u ovim staklima. Dodatak ZnO u fosfatno staklo povećava povezanost i zbitost strukturnih jedinica.¹¹⁷ Stoga se može zaključiti da se mali Li⁺ ioni lakše ugrađuju u čvrstu cink fostatnu mrežu od većih Na⁺ iona. Ovaj je zaključak u skladu i s promjenama vrijednosti temperature staklišta, T_q, koja iznosi 579 K za 30Li staklo, 576 K za 30Na staklo i

513 K za 30Ag staklo, tablica 4, što znači da ugradnjom većih iona u staklenu mrežu dolazi do smanjenja jačine kemijskih veza u staklu. Prema tome, može se zaključiti da zbog prisutnosti ZnO u staklu, Li⁺ ioni stvaraju snažnu vezu s terminalnim $P-O^-$ jedinicama ili ostaju u "zamkama" u zbitoj cink fosfatnoj mreži te postaju slabo pokretljivi. Međutim, porastom temperature oni se oslobađaju iz "zamki" čime postaju pokretljiviji od Na⁺ iona što na višim temperaturama rezultira većom provodnošću 30Li stakla od 30Na stakla. Na temelju ovih rezultata, može se zaključiti kako je lokalno okruženje Li⁺ iona ključno za njihovu dinamiku u cink fosfatnoj mreži stakla.

4.3.1.2. Istosmjerna provodnost miješanih ionsko-polaronskih stakala

Zamjenom Li₂O, Na₂O i Ag₂O s WO₃ i MoO₃ u staklu osim ionske provodnosti dolazi i do pojave polaronske provodnosti. Zbog toga, kod ovih stakala osim doprinosa Li⁺, Na⁺ i Ag⁺ iona i udjela MoO₃/WO₃ treba razmotriti udio prijelaznog metalnog iona u nižem oksidacijskom stanju (TM⁵⁺/TM_{uk}, TM = W, Mo). U tablici 4 i 5 te slici 20(c, f) pokazano je da su udjeli W⁵⁺/W_{uk} manji od udjela Mo⁵⁺/Mo_{uk} kroz cijelo područje sastava u svim serijama jer je Mo⁶⁺ jači oksidans.³³ Dobro je poznato da polaronska vodljivost raste s povećanjem udjela TM⁵⁺/TM_{uk} pa je za očekivati da je polaronska vodljivost stakala s većim udjelima MoO₃ veća od vodljivosti odgovarajućih sastava volframskih stakala. No, rezultati prikazani na slici 25, jasno pokazuju da su volframska stakla vodljivija od molibdenskih. To znači da razlog visoke provodnosti volframskih, a niske molibdenskih stakala, leži u strukturnim svojstvima stakala.

Počevši od serije stakala u koje je dodan WO₃, vidi se da u Li-W seriji stakala dolazi do pada vrijednosti σ_{DC} do 20% množinskog udjela WO₃, slika 25(a). Ovaj se rezultat može objasniti smanjenjem množinskog udjela Li₂O u staklu odnosno smanjenjenjem broja Li⁺ iona te njihovim čvršćim vezanjem s fosfatnom strukturom. Naime, Ramanovi su spektri pokazali da dodatkom WO₃ dolazi do smanjenja stupnja povezanosti fosfatne mreže, odnosno Li⁺ ioni postaju nepokretnima vezanjem na terminalne kisikove atome PO₄ tetraedara te na taj način ne doprinose električnoj provodnosti. Nadalje, kod 20Li-20W stakla, koje pokazuje minimum vrijednosti električne provodnosti, u Ramanovom se spektru nalaze vrpce koje odgovaraju W–O–W istezanjima, tj. klasteriranju volframskih jedinica. S daljnjim povećanjem udjela WO₃ jačina ovih vrpci raste, ukazujući na sve veći udio volframskih klastera u staklima. Kako klasteriranje WO₆ jedinica pogoduje polaronskom prijenosu, zbog lakšeg prijenosa polarona duž W–O–W veza u klasteru, porast vrijednosti σ_{DC} kod stakala s >20% množinskog udjela WO₃ direktna je posljedica prevladavanja polaronske vodljivosti. Valja napomenuti da se minimum vrijednosti σ_{DC} na višim temperaturama pomiče prema staklima koja sadrže veći udio WO₃, pa tako što se može objasniti većom pokretljivosti Li⁺ iona na višim temperaturama. No, za razliku od Li-W serije, za stakla iz Na-W serije vrijednost provodnosti slabo se mijenja i tek kod 30% množinskog udjela WO₃ pokazuje blagi minimum, slika 25(c). Ovakav se rezultat, osim većom pokretljivošću Na⁺ iona zbog njihovog slabijeg vezanja za terminalne kisikove atome PO₄ tetraedara, može objasniti i većim doprinosom polaronske provodnosti kao rezultat nastanka WO₆ klastera. Prisutnost WO₆ klastera pogoduje polaronskom prijenosu te kompenzira smanjenje doprinosa ionske provodnosti ukupnoj provodnosti stakla. Nadalje, značajan porast provodnosti >30% množinskog udjela WO₃ pokazuje.

Kod stakala iz Ag-W serije, slika 25(e), pad provodnosti u području sastava 0-30% množinskog udjela WO₃ sličan je padu provodnosti u Li-W seriji, no vrijednosti provodnosti značajno su više zbog visoke pokretljivosti Ag⁺ iona u fosfatnoj mreži.^{25,111–115} Stoga se može zaključiti da je u području do 30% dodanog WO₃ ionski mehanizam transporta dominantan. S druge strane, u području od 40-60% množinskog udjela WO₃, vrijednosti σ_{DC} za Ag-W stakla gotovo su identične vrijednostima za Li-W i Na-W serija što pokazuje da u ovom području sastava Li⁺, Na⁺ odnosno Ag⁺ ioni ne utječu na ukupnu provodnost stakala te da polaronski mehanizam vodljivosti prevladava.

Dobro je ponovno spomenuti da su rezultati istraživanja koje su sproveli Bazan⁷³ i Barczyński⁸¹ pokazala da, kada se alkalijski oksidi postepeno zamjenjuju s WO₃, dolazi do pojave minimuma σ_{DC} u seriji stakala. Ovu su pojavu Bazan i suradnici⁷³ objasnili međudjelovanjem iona i polarona koje ima za posljedicu nastajanje neutranih jedinica koje ne doprinose ukupnoj vodljivosti stakla i nazvali su je ionsko-polaronski učinak.

U ovoj se doktorskoj disertaciji išlo korak dalje i iako se postojanje ionsko-polaronskog učinka kod istraživanih Li-W, Na-W i Ag-W stakala ne može u potpunosti isključiti, dobra korelacija strukturnih promjena i ponašanja σ_{DC} ukazuje da je vjerojatniji uzrok minimuma σ_{DC} u ovisnosti o udjelu WO₃ promjena mehanizma vodljivosti iz pretežito ionskog u pretežito polaronski kao posljedica nastajanja WO₆klastera u cink fosfatnoj mreži pri većim množinskim udjelima WO₃.

S druge strane, dobiveni rezultati provodnosti za stakla s MoO₃ značajno se razlikuju od rezultata provodnosti za volframska stakla, slika 25. Tako, u Li-Mo seriji, slika 25(b), dolazi do blagog početnog porasta provodnosti zbog depolimerizacije fosfatne mrežu i ugradnje MoO₃ što povećava pokretljivost Li⁺ iona. Nadalje, ovo diskretno povećanje pokretljivosti Li⁺ iona i veći udio polarona u staklu s povećanjem udjela MoO₃, razlog je skoro nepromijenjenim vrijednostima σ_{DC} kroz cijelu Li-Mo seriju. Kako u Li-Mo seriji, za razliku od Li-W serije, dodatkom veće količine MoO₃ ne dolazi do pojave minimuma niti do porasta provodnosti može se zaključiti da je doprinos polaronske provodnosti u molibdenskim staklima značajnije manji. Ovakovo je ponašanje rezultat ravnomjerne ugradnje MoO₄ i MoO₆ poliedara u fosfatnu mrežu i nastanka miješane molibdensko-fosfatne strukturne mreže, gdje izostanak stvaranja većeg broja Mo-O-Mo veza smanjuje polaronski prijenos. Nadalje, vrijednosti σ_{DC} za Na-Mo stakla gotovo su iste u cijelom istraživanom području sastava i vrlo su slične vrijednostima dobivenim za Li-Mo stakla. Ovaj rezultat upućuje na zaključak da vrsta alkalijskog iona u Li-Mo i Na-Mo staklima nema značajan utjecaj na električnu provodnost. Ključan razlog takvog ponašanja je povećana pokretljivost Li⁺ i Na⁺ iona zbog manje količine terminalnih P-O⁻ veza zbog nastanka Mo-O-P veza. Za razliku od Li-Mo i Na-Mo serija, Ag-Mo serija pokazuje linearan pad provodnosti u cijelom miješanom području sastava, slika 25(f), što je posljedica, već spomenute, visoke pokretljivosti Ag⁺ iona u fosfatnoj mreži te smanjenju količine ovih iona dodatkom MoO₃. Kako je polaronski doprinos ukupnoj vodljivosti u molibdenskim staklima općenito mali, može se zaključiti da ionski mehanizam vodljivosti prevladava u širokom području sastava Ag-Mo serije.

Dobiveni rezultati provodnosti molibdenskih serija stakala razlikuju se od literaturnih podataka za stakla koja sadrže MoO_3 .^{75,76} U navedenim istraživanjima dolazi do pojave minimuma vrijednosti σ_{DC} kada su udjeli dodanog MoO_3 gotovo jednaki udjelu Li₂O odnosno Na₂O. Kao objašnjenje minimuma nije predložena promjena mehanizma vodljivosti nego se isključivo pripisuje načinu vezanja Li⁺ i Na⁺ na fosfatne jedinice u staklu te udjelima Mo^{5+}/Mo_{uk} .

Iz rezultata miješanih ionsko-polaronskih stakala dobivenih u ovoj doktorskoj disertaciji jasno se može zaključiti da je struktura stakala ključna za doprinose ionske odnosno polaronske vodljivosti. Iako su udjeli W⁵⁺/W_{uk} za red veličine manji od Mo⁵⁺/Mo_{uk}, nastanak WO₆ klastera u staklima iznad 20%-30% množinskog udjela WO₃ (ovisno o seriji) čini polarone u tim staklima iznimno pokretljivima što doprinosi povećanju polaronske provodnosti. S druge

strane, zbog ravnomjernije ugradnje MoO₆ i MoO₄ jedinica u fosfatnu mrežu putevi polarona u molibdenskim staklima nisu kontinuirani što im smanjuje pokretljivost te kao rezultat ima neznatan doprinos polaronske provodnosti ukupnoj provodnosti stakala.

4.3.1.3. Istosmjerna provodnost polaronskih stakala

Razlike u vrijednosti σ_{DC} čistih polaronskih stakala, 60W i 60Mo pružaju dodatan dokaz snažnog utjecaja strukture na električni transport u staklu. Naime, usprkos vrlo malom udjelu W⁵⁺/W_{uk} od svega 1,45% u odnosu na Mo⁵⁺/Mo_{uk} koji iznosi 37,04%, 60W staklo pokazuje čak pet redova veličine višu vrijednost σ_{DC} od 60Mo stakla, tablice 4 i 5, slika 25.

Budući da u slučaju 60W stakla Ramanovim spektrom prevladavanju vrpce koje pripadaju W–O–W vezama u WO₆ klasterima, slika 22, a u spektru 60Mo stakla prevladavaju vrpce koje pripadaju Mo–O–P vezama i MoO₄ jedinicama uz naznake vrpci koje se mogu pripisati MoO₆ klasterima, slika 23, može se zaključiti da nastajanje W–O–W veza, odnosno klasteriranje volframskih jedinica, ključno za visoku provodnost ovog stakla. Naime, iako je u 60W staklu gustoća broja polarona efektivno manja, struktura tog stakla omogućava stvaranje lakših vodljivih puteva za prijenos polarona duž W–O–W veza unutar WO₆ klastera što doprinosi njihovoj većoj pokretljivosti i uzrokuje vrlo visoku vrijednost σ_{DC} . S druge strane, ugradnjom molibdenskih jedinica nastaju Mo–O–P veze koje grade čvrstu molibdenskofosfatnu mrežu. Ipak, u Ramanovom spektru 60Mo stakla pojavljuju se i vrpce koje odgovaraju Mo–O–Mo vezama u MoO₆ klasterima koji su neravnomjerno raspoređeni unutar molibdensko-fosfatne strukture. Ti, nasumice raspoređeni otoci MoO₆ klastera, ne doprinose pokretljivosti polarona što rezultira puno manjom vrijednosti provodnosti.

Sljedeći korak u analizi istosmjerne električne provodnosti istraživanih serija stakala je analiza Arrheniusove ovisnosti, energije aktivacije za istosmjernu provodnost i predeksponencijskog faktora.

4.3.1.4. Analiza Arrheniusove ovisnosti istosmjerne provodnosti

Temperaturna ovisnost σ_{DC} svih stakala proučavanih u ovoj doktorskoj disertaciji pokazuje Arrheniusovo ponašanje, slike 26, D1 i D2. Prema jednadžbi (17) izračunata je energija aktivacije, E_{DC} , iz nagiba pravca u Arrheniusovom grafu dok je iz odsječka na osi y izračunat predeksponencijski faktor, σ_0^* .

Slika 26. Arrheniusova ovisnost istosmjerne provodnosti za stakla iz (a) Li-W i (b) Li-Mo serije.

U tablici 8 navedene su vrijednosti σ_{DC} na 303 K, σ_0^* , i E_{DC} svih proučavanih stakala dok su na slici 27 prikazane ovisnosti E_{DC} i log σ_0^* o množinskim udjelima WO₃ i MoO₃.

	Volframska serija			Molibdenska serija		
Staklo	σ_{DC} /	$\log(\sigma_0^*$ /	E_{DC} /	σ_{DC} /	$\log(\sigma_0^*$ /	E_{DC} /
	$(\Omega \text{ cm})^{-1}$	$\Omega \text{ cm}^{-1} \text{ K}$	kJ mol ⁻¹	$(\Omega \text{ cm})^{-1}$	$\Omega \text{ cm}^{-1} \text{ K}$	kJ mol ⁻¹
		Li-W serija			Li-Mo serija	
30Li	1,94×10 ⁻¹³	7,88	105,7	1,94×10 ⁻¹³	7,88	105,7
25Li-10TMO	6,73×10 ⁻¹⁴	7,06	103,7	6,93×10 ⁻¹³	6,93	96,9
20Li-20TMO	9,34×10 ⁻¹⁵	6,19	104,2	1,58×10 ⁻¹²	6,26	90,7
15Li-30TMO	1,99×10 ⁻¹³	2,07	72,1	1,27×10 ⁻¹²	5,74	88,1
10Li-40TMO	1,30×10 ⁻¹⁰	2,20	56,1	9,70×10 ⁻¹³	5,16	85,4
5Li-50TMO	1,00×10 ⁻⁸	2,52	47,0	1,75×10 ⁻¹³	4,87	87,9
60TMO	4,26×10 ⁻⁶	3,18	35,6	2,75×10 ⁻¹¹	1,21	54,3
		Na-W serija			Na-Mo serija	
30Na	7,88×10 ⁻¹³	5,63	88,8	7,88×10 ⁻¹³	5,63	88,8
25Na-10TMO	1,44×10 ⁻¹²	5,30	85,2	1,42×10 ⁻¹²	5,27	85,1
20Na-20TMO	1,53×10 ⁻¹²	5,08	83,8	1,61×10 ⁻¹²	4,97	82,9
15Na-30TMO	5,84×10 ⁻¹³	4,76	84,3	1,19×10 ⁻¹²	4,76	82,1
10Na-40TMO	1,79×10 ⁻¹¹	2,07	60,5	5,61×10 ⁻¹³	4,56	83,1
5Na-50TMO	1,29×10 ⁻⁸	2,61	46,9	2,37×10 ⁻¹³	3,44	79,6
		Ag-W serija			Ag-Mo serija	
30Ag	2,97×10 ⁻⁹	5,32	66,3	2,97×10-9	5,32	66,3
25Ag-10TMO	6,95×10 ⁻¹⁰	4,85	67,1	3,74×10 ⁻¹⁰	4,91	69,0
20Ag-20TMO	1,16×10 ⁻¹⁰	4,89	71,8	6,19×10 ⁻¹¹	4,83	73,0
15Ag-30TMO	1,35×10 ⁻¹¹	4,62	75,6	8,85×10 ⁻¹²	4,29	74,7
10Ag-40TMO	2,61×10 ⁻¹¹	2,29	60,9	6,12×10 ⁻¹³	4,26	81,2
5Ag-50TMO	5,62×10-9	2,33	47,4	5,62×10 ⁻¹⁴	3,96	85,9

Tablica 8. Vrijednosti istosmjerne provodnosti, σ_{DC} , na 303 K, predeksponencijskog faktora, σ_0^* , i energije aktivacije, E_{DC} , za stakla iz svih serija.

75

Slika 27. Ovisnosti (a, b) energije aktivacije istosmjerne provodnosti, E_{DC} , i (c, d) predeksponencijskog faktora, log σ_0^* , o množinskom udjelu WO₃ odnosno MoO₃ u staklima.

Trendovi ovisnosti E_{DC} o množinskom udjelu WO₃/MoO₃ suprotni su od trendova vrijednosti σ_{DC} , slika 25 i 27(a, b), te vrijednosti E_{DC} padaju u smjeru Li>Na>Ag za stakla koja sadrže <30% množinskog udjela WO₃ odnosno <40% množinskog udjela MoO₃. Nadalje, kod Li-W serije E_{DC} se naglo smanjuje kod stakala s >20% množinskog udjela WO₃, dok kod Na-W i Ag-W serije ovaj se pad opaža pri >30% množinskog udjela WO₃, slika 27(a). Opaženi pad E_{DC} s promjenom sastava stakala odgovara porastu vrijednosti σ_{DC} kod svih volframskih serija, slike 25 i 27. Također, pri višim množinskim udjelima WO₃ (≥40%) vrijednosti E_{DC} za sve tri serije Li-W, Na-W i Ag-W gotovo su identične što potvrđuje da u tom području sastava vrsta pokretljivog Li⁺, Na⁺ i Ag⁺ iona ne utječe na ukupnu električnu provodnost stakla.

Na slici 27(b) nalazi se ovisnost E_{DC} o množinskom udjelu MoO₃ za sve molibdenske serije stakala. Iz prikazanih krivulja vidljivo je da vrijednosti E_{DC} stakala iz Li-Mo i Na-Mo serija blago padaju, dok vrijednosti za Ag-Mo stakla blago rastu. Kao i u slučaju volframskih

76

serija, kod većih množinskih udjela MoO₃ (\geq 40%) vrijednosti E_{DC} svih stakala su između 80-90 kJ mol⁻¹.

Osim E_{DC} , iz Arrheniusove se ovisnosti istosmjerne provodnosti može odrediti i predeksponencijski faktor, σ_0^* , koji sadrži informacije o strukturnim parametarima važnim za električni transport. Slika 27(c i d) prikazuje promjene σ_0^* s porastom udjela WO₃, tj. MoO₃, za sve serije stakla. Kod nižih množinskih udjela WO₃ ($\leq 20\%$) vrijednosti σ_0^* za stakla Li-W serije više su od onih za stakla Na-W i Ag-W serije, tablica 8. Kao i u slučaju vrijednosti E_{DC} , do pada vrijednosti σ_0^* dolazi kod stakala na početku niza rasta vrijednosti σ_{DC} u svakoj pojedinoj seriji (15Li-30W, 10Na-40W i 10Ag-40W). Nadalje, kod svih volframskih serija s $\geq 40\%$ množinskog udjela WO₃ vrijednosti σ_0^* su gotovo identične. U slučaju molibdenskih serija, slika 27(d), trendovi vrijednosti σ_0^* međusobno su slični iako su ove vrijednosti za Li-Mo stakla nešto više od stakala iz Na-Mo i Ag-Mo serija. Nagla promjena vrijednosti σ_0^* u volframskim serijama odgovara pojavi WO₆ klastera u strukturi stakala, dok u slučaju molibdenskih serija do značajnijeg pada σ_0^* dolazi samo u slučaju 60Mo stakla koji također sadrži određenu količinu MoO₆ klastera.

Vijednosti E_{DC} stakala proučavanih u ovoj doktorskoj disertaciji dobro se slažu s literaturno poznatim podacima za fosfatna stakla koja sadrže prijelazne metalne okside i/ili alkalijske okside.^{22,64,118,119} Naime, ionska stakla obično pokazuju više vrijednosti E_{DC} od polaronskih stakala. U ovom istraživanju sva stakla koja sadrže Li⁺, Na⁺ i Ag⁺ ione u kojima je izraženija ionska provodnost imaju vrijednosti E_{DC} iznad 65 kJ mol⁻¹ dok stakla s ≥40% množinskog udjela WO₃, tj. 60% množinskog udjela MoO₃, u kojima je više izražen polaronski mehanizam provodnosti imaju vrijednosti ispod 60 kJ mol⁻¹. Ovi rezultati su još jedna potvrda promjene mehanizma električne provodnosti u ovim serijama stakla.

Sljedeći korak u analizi je određivanje ovisnosti $\log \sigma_0^*$ o E_{DC} prema Meyer-Neldel formalizmu¹²⁰, slika 28:

$$\log \sigma_0^* = aE_{DC} + b \tag{53}$$

gdje su *a* i *b* konstante. Valja napomenuti da je ova relacija empirijska te da parametri *a* i *b* nemaju fizikalno značenje.¹²¹ Međutim, u literaturi je poznato da u slučajevima ionskih i ionsko-polaronskih stakala^{122–128} te amorfnih poluvodiča¹²⁹, predznak parametra *a* ukazuje na promjenu mehanizma prijenosa naboja.^{127,128}

Slika 28. Ovisnost log σ_0^* o E_{DC} za (a) volframske serije i (b) molibdenske serije.

Na slici 28(a i b) vidi se da i kod volframskih i kod molibdenskih serija stakala u Meyer-Neldelovom prikazu dolazi do svrstavanja stakala u dvije domene. Kod volframskih serija, slika 28(a), u domeni I nalaze se početna ionska stakla (30Li, 30Na i 30Ag) i stakla s niskim množinskim udjelom WO₃ (\leq 20% WO₃ iz Li-W serije te \leq 30% WO₃ iz Na-W i Ag-W serija) dok se u domeni II nalaze sva preostala stakla s većim udjelom WO₃. Također, može se uočiti da točke u ove dvije domene leže na pravcima koji imaju različiti predznak nagiba, tj. parametra *a* iz jednadžbe (53). Dok pravac za domenu I ima pozitivan nagib, za domenu II nagib je negativan što ukazuje na promjenu mehanizma provodnosti iz dominatno ionskog (domena I) u dominatno polaronski (domena II). S druge strane, kod molibdenskih se serija, slika 28(b), u domeni I, osim 30Li, 30Na, 30Ag stakala, nalaze sva molibdenska stakla miješanog sastava, osim binarnog 60Mo stakla, koje je jasno odvojeno i pripada domeni II. Isto kao i kod volframskih serija, nagib je pravca za domenu I pozitivan te odgovara dominantnom ionskom mehanizmu provodnosti, dok staklo 60Mo, koje je izolirano u domeni II, inherentno pokazuje polaronsku provodnost.

Na temelju ovih rezultata može se zaključiti da se Meyer-Neldelovim formalizmom mogu jasno razlučiti mehanizmi vodljivosti u ovim staklima. Ovdje valja naglasiti da sva volframska stakla koja pripadaju domeni II u Ramanovim spektrima pokazuju vrpce koje pripadaju istezanjima W–O–W veza što ukazuje na nastanak WO₆ klastera, slika 22. Povezujući stvaranje oktaedarskih WO₆ klastera s drastičnim porastom vrijednosti σ_{DC} očito je da struktura stakla ima ključnu ulogu u polaronskom transportu koji prevladava u ovom području sastava, a to je potvrđeno primjenom Meyer-Neldelovog formalizma. Kako bi se dalje istražili mehanizmi električnog prijenosa u ovim staklima, u idućem koraku napravljena je analiza njihovih kompleksnih impedancijskih ravnina.

4.3.2. Analiza kompleksnih impedancijskih ravnina

Na slici 29 prikazane su kompleksne impedancijske ravnine na različitim temperaturama za staklo 25Na-10W koje pokazuje pretežno ionsku vodljivost, a na slici 30 nalaze se krivulje polaronskog stakla 60Mo. Kompleksne impedancijske ravnine ovih stakala imaju tipičan izgled za stakla s ionskim odnosno polaronskim mehanizmom vodljivosti. Naime, kod 25Na-10W stakla na temperaturama iznad 423 K, slika 29, pojavljuje se linearni "rep" (eng. *spur*) na niskim frekvencijama koji odgovara elektrodnoj polarizaciji, tj. nagomilavanju pokretljivih iona na metalnim elektrodama. S druge strane, 60Mo staklo na svim temperaturama pokazuje jednu polukružnicu bez "repa" što je tipično za polaronska stakla jer su metalne (Au) elektrode propusne za polarone (elektrone). Slični su impedancijski spektri dobiveni za stakla iz svih ostalih serija.

Impedancijske su krivulje stakala modelirane odgovarajućim ekvivaletnim strujnim krugovima koji se temelje na paralelnom spoju otpornika i elementa konstantne faze (R-CPE krug), slike 29 i 30. Budući da su sve impedancijske polukružnice spljoštene, tj. imaju centar ispod osi *x*, u ekvivalentnom krugu korišten je element konstantne faze, a ne kondenzator. Fizikalno značenje elementa konstantne faze detaljno je objašnjeno u poglavlju 2.4.3.4. U slučaju stakala koja pokazuju elektrodnu polarizaciju, kompleksna se impedancijska ravnina modelira paralelnim R-CPE krugom na koji je serijski spojen element konstantne faze (CPE2). U takvom modelu, paralelni R-CPE krug odgovara volumnom odzivu uzorka dok se serijski spojenim elementom konstantne faze modelira elektrodna polarizacija.

Vrijednosti otpora, *R*, dobivene modeliranjem ekvivalentnim krugom korištene su za izračun istosmjerne električne provodnosti, σ_{DC} , prema jednadžbi (34) te su dobivene iste vrijednosti kao i određivanjem iz *plateau*-a istosmjerne provodnosti u spektrima provodnosti. Ovdje treba naglasiti da je kod nekih stakala, posebice onih s visokim udjelom alkalijskog oksida, na niskim temperaturama teško odrediti σ_{DC} iz spektara provodnosti jer provodnost ne postiže *plateau* istosmjerne provodnosti na niskim frekvencijama. Takvim spektrima provodnosti odgovaraju nepotpune impedancijske kružnice koje na niskim frekvencijama modeliranje kompleksne impedancije ekvivalentnim krugom omogućuje precizno određivanje vrijednosti σ_{DC} kod ovih stakala.

Slika 29. Kompleksne impedancijske ravnine za 25Na-10W staklo na različitim temperaturama, pripadajući ekvivalentni krugovi i rezultat modeliranja. Točkama su označeni eksperimentalni rezultati, a linijom *fit* dobiven modeliranjem ekvivalentnim krugom.

Slika 30. Kompleksne impedancijske ravnine za 60Mo staklo na različitim temperaturama, pripadajući ekvivalentni krugovi i rezultat modeliranja. Točkama su označeni eksperimentalni rezultati, a linijom *fit* dobiven modeliranjem ekvivalentnim krugom.

Daljnjom analizom spektara impedancije utvrđeno je da sva stakla s 50% množinskog udjela WO₃ u kompleksnoj impedancijskoj ravnini pokazuju dvije odvojene spljoštene polukružnice, slika 31. Ovakovo je ponašanje rezultat prisustva ionsko-polaronske vodljivosti odnosno doprinosom oba mehanizma vodljivosti.^{79,130–134} Naime, Jamnik i Maier^{131,132} pokazali su da se impedancijska krivulja miješanih ionsko-elektronskih vodiča sastoji od dvije polukružnice ukoliko se u mjerenjima koriste elektrode koje su blokirajuće za jednu vrstu nositelja naboja, a neblokirajuće za drugu. Ako je elektroda metalna, tj blokirajuća za ione, kao što je slučaj u ovom istraživanju, dodatna niskofrekvencijska polukružnica, na slici 31 označena plavom bojom, odgovara dielektričnom odazivu neblokirane difuzije polarona dok prevladavajuća visokofrekvencijska polukružnica odgovara dielektričnom odazivu cijelog volumena materijala.^{131,132} Budući da se u kompleksnoj impedancijskoj ravnini niskofrekvencijske polukružnice mogu pojaviti i zbog nekih drugih pojava, kao npr. kristalizacije uzorka ili lošeg kontakta elektroda-uzorak, tj. zbog nesavršenosti površine uzorka, ova su stakla dodatno

istražena rentgenskom difrakcijom. Rentgenski difraktogrami praha ovih uzoraka potvrdili su amorfnost i time otklonili kristalizaciju kao moguć uzrok pojave druge polukružnice. Također, ponovljena impedancijska mjerenja ispoliranih pločica uzoraka pokazala su isti rezultat kao i prije poliranja. Stoga se sa sigurnošću može zaključiti da u staklima s 50% množinskog udjela WO₃ dvije polukružnice nastaju zbog dva dielektrična procesa, volumnog odaziva uzorka koji sadrži i ionsku i polaronsku vodljivost te difuzije neblokiranih nositelja naboja, tj. polarona.

Slika 31. Prikaz kompleksne impedancijske ravnine na 423 K za stakla s 50% množinskog udjela WO₃: (a) 5Li-50W, (b) 5Na-50W i (c) 5Ag-50W.

4.3.3. Analiza dielektrične permitivnosti

Za postupke skaliranja spektara provodnosti, koji su provedeni kako bi se dobio cjelovit uvid u mehanizme provodnosti u kompleksnim istraživanim sustavima stakala, sprovedena je detaljna analiza spektara realne dielektrične permitivnosti.

Na slici 32 nalaze se spektri realne dielektrične permitivnosti na različitim temperaturama za pretežito ionsko staklo, 25Ag-10Mo, i čisto polaronsko staklo, 60Mo. U spektrima za oba se uzorka uočava frekvencijska ovisnost koju određuju dvije veličine: visoko-frekvencijski *plateau*, ε_{∞} , i nisko-frekvencijski *plateau*, ε_{S} . Temperaturno slabo ovisan parametar ε_{∞} , poznat kao dielektrična konstanta, posljedica je brzih procesa polarizacije u staklima na koje djeluje električno polje dok ε_{S} odgovara polarizacijskim efektima nositelja naboja, iona ili polarona, u odnosu na staklenu mrežu te se naziva statička permitivnost. Mjera polarizacijskog procesa nositelja naboja naziva se dielektrična snaga, $\Delta\varepsilon$, i definira se kao razlika parametara ε_{S} i ε_{∞} :

$$\Delta \varepsilon = \varepsilon_S - \varepsilon_{\infty} \tag{53}$$

Primjer određivanja parametara ε_S , ε_{∞} i $\Delta \varepsilon$ iz spektara dielektrične permitivnosti nalazi se na slici 32.

Slika 32. Ovisnost realne dielektrične permitivnosti o frekvenciji na različitim temperaturama za (a) pretežito ionsko staklo 25Ag-10Mo i (b) čisto polaronsko staklo 60Mo.

Vrijednost ε_s ponekad nije moguće odrediti iz eksperimentalnih spektara permitivnosti, posebno kod ionski vodljivih stakala. Naime, u području niskih frekvencija dominira elektrodna polarizacija koja se očituje kao drastični porast permitivnosti koji maskira niskofrekvencijski *plateau* permitivnosti. Primjeri takvih stakala, 20Li-20Mo i 20Na-20Mo, mogu se pronaći na slici 33.

Slika 33. Ovisnost realne dielektrične permitivnosti o frekvenciji na različitim temperaturama za (a) 20Li-20Mo i (b) 20Na-20Mo stakla.

Na slici 33 prikazani su spektri permitivnosti koji nemaju definiran *plateau* statičke permitivnosti te je iz njih nemoguće odrediti dielektričnu snagu. U ovim slučajevima $\Delta \varepsilon$ se može odrediti iz parametra spektra provodnosti prema jednadžbi (49): $\Delta \varepsilon = \sigma_{DC}/\varepsilon_0 f_0$ gdje je f_0 vrijednost frekvencije na kojoj električna provodnost ima vrijednost $2\sigma_{DC}$ ($\sigma'(f_0) = 2\sigma_{DC}$).¹⁰⁶ Jednadžba (49) je primijenjena i na stakla kod kojih je bilo moguće odrediti dielektričnu snagu iz spektara permitivnosti te su te dvije veličine, teorijska, $\Delta \varepsilon_{calc}$, i eksperimentalna, $\Delta \varepsilon_{exp}$, uspoređene u tablici 9.

Ionsko staklo		Polaronska stakla				
T / V	30Ag		60W		60Mo	
1 / K	$\Delta \varepsilon_{exp}$	$\Delta \varepsilon_{calc}$	$\Delta \varepsilon_{exp}$	$\Delta \varepsilon_{calc}$	$\Delta \varepsilon_{exp}$	$\Delta \varepsilon_{calc}$
183	-	-	36,5	41,9	-	-
213	-	-	33,3	36,4	-	-
243	-	-	30,9	32,3	-	-
273	-	-	28,5	29,7	-	-
303	23,8	31,9	27,0	-	27,2	15,9
333	22,4	28,5	24,8	-	25,8	14,6
363	21,6	26,6	23,9	-	25,0	13,7
393	20,6	25,5	22,7	-	24,6	12,9
423	19,7	-	21,3	-	24,0	12,1
453	19,6	-	19,4	-	22,5	11,5
483	18,5	-	-	-	23,2	10,8
513	20,1	-	-	-	23,0	10,6
			Ionsko-pola	ronska stakla		
T/V	25A	g-10W	5Ag-	-50W	25Ag	-10Mo
1 / K	$\Delta \varepsilon_{exp}$	$\Delta \varepsilon_{calc}$	$\Delta \varepsilon_{exp}$	$\Delta \varepsilon_{calc}$	$\Delta \varepsilon_{exp}$	$\Delta \varepsilon_{calc}$
303	29,7	32,8	13,1	15,8	27,1	31,1
333	27,4	31,8	12,1	14,5	25,2	29,9
363	24,9	29,3	11,1	13,4	23,9	29,1
393	24,7	28,6	10,4	12,6	23,1	27,2
423	24,3	27,9	10,3	12,1	21,9	26,4
453	23,2	-	9,9	-	21,8	26,3
483	22,6	-	9,9	-	22,3	-
513	22,7	-	9,5	-	21.8	-

Tablica 9. Usporedba eksperimentalno dobivenih, $\Delta \varepsilon_{exp}$, i teorijskih, $\Delta \varepsilon_{calc}$, vrijednosti dielektrične snage na različitim temperaturama za stakla kod kojih je iz spektara permitivnosti bilo moguće odrediti $\Delta \varepsilon_{exp}$.

Iz tablice 9 može se primijetiti da su eksperimentalne i teorijske vrijednosti dielektrične snage vrlo slične te u oba slučaja dolazi do pada vrijednosti s temperaturom. U slučaju 60Mo stakla vidi se nešto veća razlika u vrijednosti između $\Delta \varepsilon_{calc}$ i $\Delta \varepsilon_{exp}$ koja se povećava s porastom temperature. Ovaj rezultat nije očekivan, a posebno je iznenađujuća činjenica da izračunate vrijednosti $\Delta \varepsilon_{calc}$ podrazumijevaju da se statička permitivnost postiže na frekvencijama na kojima eksperimentalni spektri permitivnosti pokazuju jasnu frekvencijsku ovisnost. Uzrok ovog odstupanja nije jasan, međutim, dobro slaganje $\Delta \varepsilon_{calc}$ i $\Delta \varepsilon_{exp}$ u svim ostalim slučajevima stakala ukazuje na činjenicu da je 60Mo staklo izuzetak te da općenito vrijedi $\Delta \varepsilon_{calc} \approx \Delta \varepsilon_{exp}$. Prema tome, dielektrična snaga koja je potrebna za postupak skaliranja spektara provodnosti primjenom Sidebottomovog postupka određena je na sljedeći način: kod stakala kod kojih je bilo moguće odrediti $\Delta \varepsilon_{exp}$ korištene su eksperimentalne vrijednosti dok se za stakla koja nisu imala vidljiv niskofrekvencijski *plateau* u spektru permitivnosti koristila vrijednost $\Delta \varepsilon_{calc}$. U tablici 10 nalaze se teorijske vrijednosti dielektrične snage, $\Delta \varepsilon_{calc}$, za sva stakla kod kojih nije bilo moguće eksperimentalno odrediti $\Delta \varepsilon_{exp}$. Iz dobivenih vrijednosti primijećuje se da u slučaju čistog polaronskog stakla 30Li te ionsko-polaronskih stakala 25Li-10W, 20Li-20W, 15Li-30W, 25Li-10Mo, 20Li-20Mo, 10Na-40W i 10Ag-40W dolazi do porasta vrijednosti $\Delta \varepsilon_{calc}$ s porastom temperature. Ovakav trend $\Delta \varepsilon$ u ovisnosti o temperaturi nije očekivan jer umnožak $\Delta \varepsilon T$ treba biti konstantne vrijednosti. Kod stakala s visokim udjelima Li₂O ovakvo se ponašanje se može objasniti promjenom gustoće pokretljivih Li⁺ iona ili duljine njihovog skoka s temperaturom. Jedan od načina da se gustoća nositelja naboja promijeni je da se određen broj Li⁺ iona zarobljenih u staklenoj mreži pri nižim temperaturama, zagrijavanjem oslobodi što utječe na dielektrične parametre. S druge strane, u volframskim miješanim ionskopolaronskim staklima ovaj se rezultat može objasniti značajnim doprinosom obje vrste nositelja naboja, iona i polarona koji se različito temperaturno aktiviraju.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ionska stakla		Ionsko-polaronska stakla				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T / K	30Li	30Na	25Li-10W	20Li-20W	15Li-30W	10Li-40W
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\Delta arepsilon_{ ext{calc}}$	$\Delta arepsilon_{ m calc}$	$\Delta arepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta arepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	303	8,8	18,7	-	10,8	8,2	16,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	333	8,3	18,7	10,9	12,2	8,4	15,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	363	9,8	18,1	12,0	13,5	9,2	14,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	393	10,5	16,8	13,1	14,3	9,9	13,6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	423	12,1	16,4	14,2	14,9	11,7	13,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	453	13,4	15,7	15,7	16,2	16,0	12,3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	483	14,3	15,4	17,6	17,5	20,2	12,3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	513	-	15,6	18,8	10,8	24,4	12,2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Ionsko-p	olaronska stakla		
1/K $\Delta \varepsilon_{calc}$	T/K	25Li-10Mo	20Li-20Mo	15Li-30Mo	10Li-40Mo	25Na-10W	20Na-20W
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 / K	$\Delta arepsilon_{ m calc}$	$\Delta arepsilon_{ m calc}$	$\Delta arepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	303	13,4	17,1	19,4	20,3	27,6	32,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	333	14,7	17,6	19,4	20,7	26,8	32,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	363	15,2	17,8	18,9	19,5	26,0	30,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	393	15,5	19,0	19,4	18,5	24,8	30,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	423	16,6	19,5	19,2	17,8	23,5	27,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	453	16,8	20,8	19,4	17,2	22,8	24,0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	483	18,7	22,0	18,8	16,5	22,9	26,5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	513	-	-	19,1	15,6	22,2	25,6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т/К	15Na-30W	10Na-40W	5Na-50W	25Na-10Mo	20Na-20Mo	15Na-30Mo
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta arepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	303	48,9	13,7	21,4	25,2	33,1	56,6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	333	46,0	15,1	20,2	25,1	31,9	48,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	363	45,5	17,6	19,4	24,1	30,4	46,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	393	43,5	19,3	17,7	22,8	32,2	42,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	423	38,7	21,7	17,3	20,7	29,8	41,6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	453	37,6	22,5	-	21,6	30,2	38,4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	483	38,4	27,6	-	19,8	27,4	36,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	513	38,0	29,1	-	19,8	26,8	27,2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T / K	<u>10Na-40Mo</u>	5Na-50Mo	20Ag-20W	15Ag-30W	10Ag-40W	20Ag-20Mo
303 $50,3$ - $60,1$ $69,2$ $23,6$ $49,9$ 333 $45,9$ - $55,6$ $67,5$ $27,6$ $46,8$ 363 $43,1$ $51,4$ $54,0$ $64,6$ $32,9$ $45,4$ 393 $42,9$ $49,8$ $52,3$ $62,7$ $40,1$ $43,8$ 423 $41,3$ $46,3$ $51,1$ $60,9$ $47,3$ $42,2$ 453 $40,3$ $44,1$ $49,3$ $59,9$ $50,9$ $41,1$ 483 $36,3$ $41,8$ $48,8$ $60,1$ $55,1$ $40,1$ 513 $36,8$ $40,1$ $60,1$ $59,9$ $58,4$ $ T/K$ $5Ag-50Mo$ $\Delta\varepsilon_{calc}$ $ 333$ $41,6$ 363 $36,8$ $ 303$ - $ 333,8$ $44,4$ 453 $30,3$ $ 423$ $34,4$ 453 $30,3$ 513 $30,6$ $-$		$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$	$\Delta \varepsilon_{ m calc}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	303	50,3	-	60,1	69,2	23,6	49,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	333	45,9	-	55,6	67,5	27,6	46,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	363	43,1	51,4	54,0	64,6	32,9	45,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	393	42,9	49,8	52,3	62,7	40,1	43,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	423	41,3	46,3	51,1	60,9	47,3	42,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	453	40,3	44,1	49,3	59,9	50,9	41,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	483	36,3	41,8	48,8	60,1	55,1	40,1
$\begin{array}{c cccc} T / K & \underline{5 Ag \text{-} 50 \text{Mo}} \\ \hline & \underline{\Delta \varepsilon_{\text{calc}}} \\ \hline 303 & - \\ \hline 333 & 41,6 \\ \hline 363 & 36,8 \\ \hline 393 & 35,9 \\ \hline 423 & 34,4 \\ \hline 453 & 33,8 \\ \hline 483 & 30,3 \\ \hline 513 & 30,6 \\ \hline \end{array}$	513	36,8	40,1	60,1	59,9	58,4	-
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	T / K	5Ag-50Mo					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\Delta \varepsilon_{\rm calc}$					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	303	-					
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	333	41,6					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	363	36,8					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	393	35,9					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	423	34,4					
465 50,5 513 30.6	455	33,8					
	400 513	30,5 30.6					

Tablica 10. Izračunate vrijednosti $\Delta \varepsilon_{calc}$ na različitim temperaturama.

4.3.4. Analiza svojstva skaliranja spektara električne provodnosti

Zbog kompleksnosti rezultata dobivenih postupcima Summerfieldovog i Sidebottomovog skaliranja spektara provodnosti, njihova je analiza razdvojena u dva poglavlja. U prvom su poglavlju opisani i razmatrani rezultati skaliranja čisto ionskih i čisto polaronskih stakala dok su u drugom poglavlju obrađeni rezultati za miješana ionsko-polaronska stakla.

4.3.4.1. Svojstva skaliranja spektara provodnosti čisto ionskih i čisto polaronskih stakala

Svojstva skaliranja spektara provodnosti istražena su u dva koraka. U prvom je sprovedeno skaliranje po Summerfieldu, a u drugom po Sidebottomu.

Literaturno je poznato¹³⁵ da je Summerfieldovo skaliranje zadovoljeno ako je nagib pravca log($\sigma_{DC}T$) vs log f_0 , gdje je f_0 frekvencija početka disperzije provodnosti definirana na $2\sigma_{DC}$: $\sigma'(f_0) = 2\sigma_{DC}$ jednak 1.¹¹³ Na slici 34 prikazana je linearizacija umnožaka σ_{DC} i temperature o frekvenciji f_0 u log-log skali za 30Li i 60Mo staklo.

Slika 34. Spektri provodnosti s označenom ovisnosti umnoška σ_{DC} i temperature o frekvenciji f_0 na $2\sigma_{DC}$ u log-log skali za (a) čisto ionsko staklo, 30Li, i (b) čisto polaronsko staklo, 60Mo. Crne točke na grafu predstavljaju vrijednost frekvencije, f_0 , dobivene prema jednadžbi $\sigma'(f_0) = 2\sigma_{DC}$ dok je crna linija pravac dobiven linearizacijom ovisnosti log $(\sigma_{DC}T)$ vs log f_0 .

Ovakva linearizacija napravljena je za sva čisto ionska i polaronska stakla te su u tablici 11 dane vrijednosti nagiba njihovih pravaca.

Staklo	Nagib				
Ionsk	Ionska stakla				
30Li	$1,\!07\pm0,\!01$				
30Na	$1,02 \pm 0,01$				
30Ag	$1,\!01\pm0,\!01$				
Polaronska stakla					
60W	$1,01 \pm 0,01$				
60Mo	$1,01 \pm 0,01$				

Tablica 11. Vrijednosti nagiba pravca $\log(\sigma_{DC}T)$ vs $\log f_0$ za sva čisto ionska i čisto polaronska stakla.

Iz tablice 11 vidi se da sva stakla osim 30Li imaju vrijednost nagiba pravca vrlo blizu 1,00. Staklo 30Li ima veći nagib pravca (1,07) što ukazuje da ono neće zadovoljiti Summerfieldovo skaliranje. U sljedećem koraku provedeno je Summerfieldovo i Sidebottomovo skaliranje spektara provodnosti ovih uzoraka.

Na slici 35 prikazani su rezultati Summerfieldovog i Sidebottomovog skaliranja čisto ionskih stakala, dok su na slici 36 prikazani rezultati za čisto polaronska stakla. Svim staklima kojima je nagib blizu 1,00 u $\log(\sigma T)$ vs $\log v$ grafičkom prikazu, tablica 11, uspješno je konstruirana *master* krivulja provodnosti primjenom Summerfieldovog skaliranja dok 30Li staklo pokazuje odstupanje. S druge strane, za sva stakla, bez obzira na prisutnu vrstu nositelja naboja (iona ili polarona), *master* krivulja provodnosti konstruirana je primjenom Sidebottomovog skaliranja. Ovaj rezultat potvrđuje da se oblik spektara provodnosti svih stakala ne mijenja s temperaturom te da ona zadovoljavaju princip vremensko-temperaturnog preklapanja. Također, kod svih stakala kod kojih su oba postupka skaliranja uspješna može se zaključiti da se prostorni doseg skoka nositelja naboja i njihova koncentracija ne mijenjaju s temperaturom. S druge strane, 30Li staklo je vrlo rijedak primjer oksidnog stakla s jednom vrstom nositelja naboja koje pokazuje odstupanje od Summerfieldovog skaliranja provodnosti.

Slika 35. Spektri provodnosti čisto ionskih stakala: (a, b) 30Li, (c, d) 30Na i (e, f) 30Ag skalirani Summerfieldovim (a, c i e) i Sidebottomovim (b, d i f) postupkom.

Slika 36. Spektri provodnosti čisto polaronskih stakala: (a, b) 60W i (c, d) 60Mo skalirani Summerfieldovim (a i c) i Sidebottomovim postupkom (b i d).

Iz literature je poznato da je za stakla koja sadrže jednu vrstu nositelja naboja Summerfieldovo skaliranje spektara provodnosti općenito valjano. Jedini izuzetak su alkalijska teluritna stakla^{104,105} kod kojih je opaženo odstupanje povezano s vrlo visokom polarizabilnošću teluritne strukturne mreže. Naime, Murugavel i Roling¹⁰⁴ dali su objašnjenje da polarizabilna mreža stakla uzrokuje vakancijski mehanizam vodljivosti s malim, ali temperaturno ovisnim udjelom slobodnih ionskih mjesta u usporedbi s brojem pokretljivih iona što uzrokuje odstupanje od Summerfieldovog skaliranja. Međutim, fosfatna staklena mreža ima nisku polarizabilnost pa se navedeno objašnjenje ne može primijeniti na 30Li staklo. Osim toga, Summerfieldovo skaliranje strukturno identičnih 30Na i 30Ag stakala daju *master* krivulju provodnosti što potvrđuje da fosfatna mreža ne može biti razlog ovog odstupanja. Također, budući da je poznato da LiPO4¹¹⁶ kao i 40Li₂O–60P₂O₅ te 40Li₂O–10Al₂O₃–50P₂O₅ stakla zadovoljavaju Summerfieldovo skaliranje može se zaključiti da ovakvo ponašanje 30Li stakla

uzrokuje prisutstvo ZnO, tj. postojanje specifičnih interakcija Li⁺ iona s cink fosfatnom staklenom mrežom. Kako Summerfieldovo skaliranje nosi informacije o pokretljivosti nositelja naboja s promjenom temperature, nemogućnost konstruiranja *master* krivulje u slučaju 30Li stakla ukazuje da se porastom temperature mijenja lokalno okruženje Li⁺ iona ili da se Li⁺ ioni nalaze na strukturno različitim položajima koji uvjetuju različitu ionsku dinamiku s promjenom temperature.

Ovaj rezultat može se povezati s vrijednostima σ_{DC} za 30Li staklo u odnosu na 30Na i 30Ag stakla opisanim u poglavlju 4.3.1.1. Naime, može se zaključiti da strukturno uvjetovane promjene dinamike Li⁺ iona s temperaturom imaju za posljedicu izmjenu trenda istosmjerne provodnosti od σ_{DC} (Li) $< \sigma_{DC}$ (Na) na niskim temperaturama do σ_{DC} (Li) $> \sigma_{DC}$ (Na) na visokim temperaturama. Ponovo treba napomenuti da metafosfatna stakla s različitim alkalijskim oksidima¹¹⁶, ne pokazuju ovakav obrat trenda σ_{DC} s povećanjem temperature što dodatno potvrđuje činjenicu da je prisutnost ZnO ključna za neobično ponašanje Li⁺ iona u 30Li staklu. Naime, može se zaključiti da do odstupanja od Summerfieldovog skaliranja u ovom staklu ne dolazi zbog dinamike svojstvene Li⁺ ionima u oksidnim staklima nego zbog posebnih interakcija Li⁺ iona s lokalnom strukturom cink fosfatne staklene mreže. Kako bi se dobio bolji uvid u ovu jedinstvenu interakciju potrebno je ovo staklo istražiti metodama koje daju uvid u lokalnu strukturu Li⁺ iona na različitim temperaturama poput nuklearne magnetske rezonancije pod magičnim kutem u čvrstom stanju, no, ta su istraživanja izvan okvira ove doktorske disertacije.

Sljedeći korak analize skaliranja spektara provodnosti uključuje konstrukciju *supermaster* krivulje za ionska i polaronska stakla primjenom oba postupka skaliranja, slika 37.

Slika 37. Preklopljene Summerfieldove (a, c) i Sidebottomove (b, d) *master* krivulje provodnosti za čisto ionska stakla (a, b) i čisto polaronska stakla (c, d)

Na slici 37(a i b) prikazane su preklopljene *master* krivulje ionskih stakala dobivene Summerfieldovim i Sidebottomovim skaliranjem dok su na slici 37(c i d) prikazane preklopljene *master* krivulje čisto polaronskih stakala. Budući da Summerfieldovo skaliranje 30Li stakla nije dalo *master* krivulju ono nije uključeno u konstrukciju *super-master* krivulje na slici 37(a). Iz slike 37 jasno je vidljivo da je *super-master* krivulja uspješno konstruirana samo u slučaju Sidebottomovog skaliranja čisto ionskih stakala.

Kako sva proučavana ionska stakla (30Li, 30Na i 30Ag) imaju vrlo sličnu strukturu (poglavlje 4.2.) i slične gustoće broja iona $(1,17\times10^{22} \text{ cm}^{-3} \text{ za 30Li staklo i } 1,06\times10^{22} \text{ cm}^{-3}$ odnosno $1,07\times10^{22} \text{ cm}^{-3}$ za 30Na i 30Ag stakla) frekvencijski pomak u *master* krivuljama 30Na i 30Ag stakla, može biti povezan s mogućim razlikama u tipičnom prostornom dosegu skoka

Na⁺ i Ag⁺ iona u staklu. Međutim, ovu pretpostavku potrebno je potvrditi dodatnim istraživanjima koja nisu predmet ove doktorske disertacije. Međutim, na temelju uspješne konstrukcije *super-master* krivulje svih ionskih stakala Sidebottomovim skaliranjem može se zaključiti da se oblik disperzije u ovim staklima ne mijenja bez obzira na vrstu pokretljivih iona. Također, ovaj rezultat potvrđuje da je Sidebottomovo skaliranje univerzalno skaliranje i vrijedi za sve slučajeve ionskih stakala kada ne dolazi do promjene oblika krivulje.

Što se tiče polaronskih stakala, slika 37(c i d), u oba postupka skaliranja 60Mo staklo je na osi skalirane frekvencije pomaknuto prema većim vrijednostima u odnosu na 60W staklo. Taj rezultat Sidebottomovog *super-skaliranja* upućuje da je oblik disperzije ovih stakala različit. Za razliku od čisto ionskih stakala koja imaju slične vrijednosti gustoće iona i gotovo identičnu strukturu, u ovim se staklima gustoća polarona razlikuje za jedan red veličine $(1,19\times10^{20} \text{ cm}^{-3} \text{ za } 60\text{ W} \text{ staklo } i 2,94\times10^{21} \text{ cm}^{-3} \text{ za } 60\text{ Mo } \text{ staklo})$. Nadalje, strukture 60W i 60Mo stakala bitno se razlikuju jer u 60W staklu dolazi do klasteriranja WO₆ jedinica dok u 60Mo dolazi do ugradnje MoO₄ tetraedara i MoO₆ oktaedara u fosfatnu mrežu uz neznatno klasteriranje MoO₆ jedinica. Zbog tih razloga, nemogućnost konstruiranja *super-master* krivulje koristeći oba postupka skaliranja nije iznenađujuće pa se može zaključiti da se postupcima Summerfieldovog i Sidebottomovog skaliranje ne mogu dobiti daljnje informacije o dinamici polarona u ovim staklima.

Nakon analize čisto ionskih i polaronskih stakala napravljena je analiza Summerfieldovog i Sidebottomovog skaliranja spektara provodnosti svih stakala miješanog sastava.

4.3.4.2. Svojstva skaliranja spektara provodnosti ionsko-polaronskih stakala

U tablici 12 nalaze se rezultati Summerfieldovog i Sidebottomovog skaliranja spektara provodnosti te izračunati nagibi pravca $\log(\sigma_{DC}T)$ vs $\log f_0$ za sva stakla koja sadrže i Li₂O/Na₂O/Ag₂O i WO₃/MoO₃. Prema podacima iz tablice 12 može se uočiti da se vrijednosti nagiba pravaca kreću između 0,99 i 1,17 te da većina stakala ima vrijednost nagiba oko 1,00 osim 30Li stakla (1,07), 25Li-10W (1,06), 25Li-10Mo (1,05), 20Li-20W (1,10), 20Li-Mo (1,05), 15Li-30W (1,16), 10Na-40W (1,15) i 10Ag-40W (1,17). Nastajanjem *master* krivulja potvrđeno je da Summerfieldovo skaliranje navedenih stakala nije zadovoljeno, dok su u svim drugim slučajevima individualni spektri provodnosti uspješno skalirani Summerfieldovim

Tablica 12. Rezultati Summerfieldovog i Sidebottomovog skaliranja te nagib pravca $\log(\sigma_{DC}T)$
vs $\log f_0$ za sve serije stakala. Znak "+" označava uspješno konstruiranu master krivulju
provodnosti, a znak "-" označava da postupak skaliranja ne daje master krivulju provodnosti.

Ctal-la	Nagib	Summerfield	Sidebottom	Stal-la	Nagib	Summerfield	Sidebottom
Stakio	\pm 0,01	skaliranje	skaliranje	Stakio	$\pm 0,01$	skaliranje	skaliranje
30Li	1,07	-	+	30Li	1,07	-	+
25Li-10W	1,06	-	+	25Li-10Mo	1,05	-	+
20Li-20W	1,10	-	+	20Li-20Mo	1,05	-	+
15Li-30W	1,16	-	+	15Li-30Mo	1,03	+	+
10Li-40W	1,03	+	+	10Li-40Mo	1,02	+	+
5Li-50W	0,99	+	+	5Li-50 Mo	1,00	+	+
60W	1,01	+	+	60 Mo	1,01	+	+
30Na	1,02	+	+	30Na	1,02	+	+
25Na-10W	1,02	+	+	25Na-10 Mo	1,02	+	+
20Na-20W	1,02	+	+	20Na-20 Mo	1,02	+	+
15Na-30W	1,02	+	+	15Na-30 Mo	0,99	+	+
10Na-40W	1,15	-	+	10Na-40 Mo	1,01	+	+
5Na-50W	1,02	+	+	5Na-50 Mo	1,02	+	+
60W	1,01	+	+	60 Mo	1,01	+	+
30Ag	1,01	+	+	30Ag	1,01	+	+
25Ag-10W	1,02	+	+	25Ag-10 Mo	1,02	+	+
20Ag-20W	1,02	+	+	20Ag-20 Mo	1,02	+	+
15Ag-30W	1,03	+	+	15Ag-30 Mo	1,01	+	+
10Ag-40W	1,17	-	+	10Ag-40 Mo	1,01	+	+
5Ag-50W	1,01	+	+	5Ag-50 Mo	1,01	+	+
60W	1,01	+	+	60 Mo	1,01	+	+

Važno je uočiti da kod miješanih ionsko-polaronskih stakala dolazi do odstupanja od Summerfieldovog stakliranja u dvije skupine stakala:

1) stakla s visokim udjelom Li₂O iz obje serije (25Li-10W, 25Li-10Mo, 20Li-20W, 20Li-20Mo);

2) volframska stakla (15Li-30W, 10Na-40W i 10Ag-40W).

U prvoj skupini stakala dominira ionska provodnost, a kako je u tim staklima prisutan ZnO u visokoj koncentraciji, može se zaključiti da u njima dolazi do već spomenutih specifičnih interakcija Li⁺ iona s cink fosfatnom mrežom slično kao i u čistom 30Li staklu. Rezultat koji to dodatno potvrđuje je i vrijednost nagiba pravca u log($\sigma_{DC}T$) vs log f_0 grafičkom prikazu koji

za ta stakla iznose 1,05-1,10 što odgovara vrijednosti nagiba pravca 30Li stakla (1,07). U drugoj skupini stakala nagib pravca u log($\sigma_{DC}T$) vs log f_0 grafičkom prikazu veći je i iznosi oko 1,16 što naznačuje da drugi parametar utječe na odstupanje od Summerfieldovog skaliranja. Kod ovih stakala vrlo je važno primijetiti da su u drugoj skupini stakla koja su odmah nakon minimuma σ_{DC} u grafu ovisnosti σ_{DC} o sastavu stakla, odnosno početna stakla na "polaronskoj strani" trendova provodnosti, slika 25. Na temelju toga, može se zaključiti kako u ovim staklima u procesima provodnosti u značajnim količinama sudjeluju i ioni i polaroni te da im se pokretljivost različito mijenja s temperaturom što uzrokuje odstupanje od Summerfieldovog skaliranja. Daljnjim dodatkom WO₃ u stakla, prevladava polaronska vodljivost pa se Summerfieldovim skaliranjem ponovno može konstruirati *master* krivulja provodnosti. S druge strane, stakla molibdenskih serija ne odstupaju od Summerfieldovog skaliranja, osim u slučaju 25Li-10Mo i 20Li-20Mo kod kojih je ovo odstupanje povezano sa specifičnim interakcijama Li⁺ iona s cink fosfatnom mrežom, a ne s doprinosima različitih mehanizma provodnosti. Naime, doprinos polaronske vodljivosti u molibdenskih staklima znatno je niži od doprinosa u volframskim staklima.

Što se tiče Sidebottomovog skaliranja, za sva se stakla ovim postupkom može uspješno konstruirati *master* krivulja što znači da sva stakla zadovoljavaju općeniti princip vremensko-temperaturnog preklapanja te da se oblik disperzije ne mijenja s temperaturom niti za jedno staklo. Ovakav rezultat je iznenađujući zbog činjenice da su ioni i polaroni fizikalno potpuno različiti nositelji naboja, s potpuno različitim mehanizmima prijenosa. Međutim, ova istraživanja pokazuju, da iako temeljno različitog mehanizma, prijenos iona i polarona u miješanim sustavima stakala rezultira frekvencijskom ovisnosti provodnosti čiji se oblik ne mijenja s temperaturom.

Na temelju činjenice da je Sidebottomovo skaliranje provodnosti zadovoljeno u svim slučajevima stakala miješanog sastava te da je struktura stakala s istim množinskim udjelima Li₂O, Na₂O i Ag₂O odnosno WO₃ i MoO₃ vrlo slična, u sljedećem koraku ispitana je mogućnost konstruiranja Sidebottomove *super-master* krivulje za sva stakla istog množinskog udjela WO₃/MoO₃ i različite vrste pokretljivih iona, slika 38 i 39.

Slika 38. Sidebottomove *super-master* krivulje za sva stakla miješanog sastava koja sadrže: (a) 10%, (b) 20%, (c) 30%, (d) 40% i (e) 50% množinskog udjela WO₃.

sSlika 39. Sidebottomove *super-master* krivulje za sva stakla miješanog sastava koja sadrže: (a) 10%, (b) 20%, (c) 30%, (d) 40% i (e) 50% množinskog udjela MoO₃.

Iz slika 38 i 39 jasno je vidljivo da se za sva stakla istog množinskog udjela WO₃ odnosno MoO₃, ali s različitim vrstama pokretljivih iona može konstruirati Sidebottomova

super-master krivulja. Iako ta stakla sadrže dvije različite vrste nositelja naboja, ovaj rezultat je potvrda univerzalnosti Sidebottomovog skaliranja jer se može koristiti i za stakla s jednim nositeljem naboja i za stakla s više nositelja noboja.

Ovo istraživanje ionsko-polaronskih stakala postupcima Summerfieldovog i Sidebottomovog skaliranja spektara provodnosti prvo je istraživanje u kojem su oba skaliranja primijenjena na stakla s više nostelja naboja. Otkriveno je da sva stakla zadovoljavaju vremensko-temperaturno preklapanje. Nadalje, pokazano je da se Summerfieldovim skaliranjem ne može konstruirati *master* krivulja provodnosti za stakla koja daju značajne doprinose ionske i polaronske vodljivosti ukupnom procesu električnog transporta. S druge strane, ova istraživanja potvrđuju da se Sidebottomovim skalirajem uspješno mogu konstruirati i *master* krivulje, ali i *super-master* krivulje provodnosti za stakla jednakih udjela WO₃/MoO₃.

§ 5. ZAKLJUČAK

Rezultati dobiveni istraživanjem ionsko-polaronskih cink fosfatnih stakala u kojima se Li₂O, Na₂O i Ag₂O postepeno zamijenjuju s WO₃ i MoO₃ mogu se sažeti u nekoliko zaključaka:

1. Fizička svojstva

Istraživanja su pokazala da zamjenom Li₂O, Na₂O i Ag₂O s WO₃ i MoO₃ temperatura staklišta, T_g , raste što ukazuje na povećanu stabilnost stakala u koje su dodani WO₃ i MoO₃.

Nadalje, vrijednosti gustoće stakala u kojima se Li₂O i Na₂O zamjenjuju s WO₃ i MoO₃ također rastu. S druge strane, u slučaju stakala u kojima se Ag₂O zamijenjuje s WO₃ vrijednost gustoće kroz seriju neznatno se mijenja dok zamjenom Ag₂O s MoO₃ vrijednosti gustoće padaju. Posljedica ovakovog ponašanja leži u velikoj razlici molarnih masa Li₂O/Na₂O i WO₃/MoO₃, odnosno manjoj razlici između molarnih masa Ag₂O i WO₃/MoO₃.

Nadalje, određen je udio W^{5+}/W_{uk} i Mo^{5+}/Mo_{uk} u svim staklima te je pokazano da je udio Mo^{5+}/Mo_{uk} za red veličine veći od udjela W^{5+}/W_{uk} u svim serijama stakala.

2. Strukturna analiza

Struktura svih stakala istražena je Ramanovom spektroskopijom. Istraživanje je pokazalo da ugradnja WO₃ i MoO₃ u fosfatnu mrežu uzrokuje različite promjene strukturne mreže koje ne ovise o vrsti alkalijskog oksida, Li₂O, Na₂O i Ag₂O.

U staklima koja ne sadrže WO₃ odnosno MoO₃ prevladavaju Q² i Q¹ jedinice, dok dodatkom WO₃/MoO₃ dolazi do depolimerizacije fosfatne mreže. Pri niskim množinskim udjelima WO₃/MoO₃ (10-30%) dolazi do ugradnje WO₆/MoO₆ oktaedarskih jedinica u staklenu mrežu stvarajući P–O–W odnosno P–O–Mo veze. S druge strane, pri visokim množinskim udjelima (\geq 30%) WO₃ u svim serijama nastaju W–O–W veze tvoreći oktaedarske WO₆ klastere dok pri visokim udjelima MoO₃ dolazi do ugradnje MoO₆ oktaedara i MoO₄ tetraedara u staklenu mrežu bez pojave klasteriranja MoO₆ jedinica, osim u slučaju binarnog 60Mo stakla. Nadalje, pokazano je da MoO₆ i MoO₄ jedinice ugrađene u fosfatnu mrežu u čitavom području sastava stvaraju P–O–Mo veze gradeći čvrstu trodimenzijsku molibdensko-fosfatnu mrežu.

3. Električna i dielektrična svojstva

Početna stakla koja ne sadrže WO₃/MoO₃ čisti su ionski vodiči, dok su stakla koja ne sadrže Li₂O/Na₂O/Ag₂O čisti polaronski vodiči. U volframskim serijama s Li₂O i Ag₂O početni dodatak WO3 dovodi do pada vrijednosti istosmjerne provodnosti za oko dva reda veličine do minimuma istosmjerne provodnosti na 20% množinskog udjela dodanog WO3 u slučaju Li-W serije odnosno 30% dodanog WO3 za Ag-W seriju. Dodatak WO3 u Na-W stakla neznatno mijenja vrijednosti istosmjerne provodnosti do 30% množinskog udjela WO₃. Nakon minimuma, pri višim vrijednostima množinskog udjela WO₃ (≥30-40%) u svim volframskim serijama dolazi do naglog porasta vrijednosti istosmjerne provodnosti za šest redova veličine. Do razlike u pojavi minimuma dolazi zbog različite prirode prijenosa Li⁺, Na⁺ odnosno Ag⁺ iona, a za nagli porast vrijednosti istosmjerne provodnosti odgovorna je dominacija polaronskog mehanizma vodljivosti u području s visokim udjelima WO₃. Opažene promjene provodnosti u ovim ionsko-polaronskim staklima ovise o strukturnim promjenama koje nastaju u staklenoj mreži dodatkom WO3. Pad vrijednosti provodnosti djelomično je posljedica smanjenja koncentracije Li⁺, Na⁺ i Ag⁺ iona, budući da povezanost fosfatnih i volframskih jedinca podržava pretežno ionsku provodnost. Kako gustoća broja polarona raste, a iona pada, prijenos oba nositelja naboja duž vodljivih puteva na neki je način zaustavljen i rezultira pojavom minimuma u području sastava od 20% do 30% množinskih udjela WO₃. Potpis dva mehanizma vodljivosti je pronađen u staklima s 50% množinskog udjela WO₃ koja, iako u njima prevladava polaronski mehanizam vodljivosti, daju impedancijski odaziv miješanog vodiča odnosno dvije odvojene polukružnice u kompleksnoj impedancijskoj ravnini. Polukružnica pri višim frekvencijama odgovara volumnom odzivu uzorka dok polukružnica pri nižim frekvencijama odgovara neblokiranom prijenosu polarona u miješanim ionskopolaronskim staklima. Porast istosmjerne provodnosti za oko šest redova veličine, posljedica je nastanka W-O-W veza koje grade WO₆ klastere i omogućavaju povećanu pokretljivost polarona. Znači, ubrzani transport duž W⁵⁺–O–W⁶⁺–O–W⁵⁺ veza u WO₆ klasteru rezultat je stvaranja vodljivih puteva za elektrone što uzokuje značajan porast provodnosti. Ovakovo ponašanje istosmjerne provodnosti jasno pokazuje promjenu mehanizma provodnosti iz ionskog u polaronski.

S druge strane, različito ponašanje promjena istosmjene provodnosti za molibdenske serije stakala također je posljedica drugačijih promjena strukturne mreže. Vrijednosti istosmjerne provodnosti za Li-Mo i Na-Mo stakla pokazuju male promjene dok za Ag-Mo stakla padaju u čitavom području sastava, osim u slučaju čistog polaronskog 60Mo stakla. Ovo je ponašanje za Li-Mo i Na-Mo stakla odraz kompenzacije smanjenja ionske provodnosti polaronskom dok u Ag-Mo staklima, zbog velike pokretljivosti Ag⁺ iona, u cijelom području sastava dominira ionski mehanizam provodnosti. S obzirom da molibdenske serije stakala ne tvore MoO₆ klastere, već u čitavom području sastava prevladava molibdensko-fosfatna mreža, ova stakla ne pokazuju minimum istosmjerne provodnosti.

Nadalje, Meyer-Neldelovim formalizmom utvrđeno je da se stakla iz svih serija svrstavaju u dvije domene, prva odgovora dominantnom ionskom, a druga odgovara polaronskom mehanizmu vodljivosti. Stakla iz volframskih serija s nižim množinskim udjelima WO₃ i sva stakla iz molibdenskih serija pripadaju domeni u kojoj dominira ionska vodljivost, za razliku od stakala s višim množinskim udjelima WO₃ i 60Mo stakla koja se svrstavaju u domenu u kojoj prevladava polaronska vodljivost.

Analizom postupaka Summerfieldovog i Sidebottomovog skaliranja električne provodnosti pokazano je da sva istraživana stakla zadovoljavaju princip vremenskotemperaturnog preklapanja. Nadalje, Summerfieldovo skaliranje pokazalo je odstupanje kod volframskih stakala 15Li-30W, 10Na-40W i 10Ag-40W zbog različite temperaturne aktivacije iona i polarona te kod svih stakala koja sadrže \geq 20% množinskog udjela Li₂O kod kojih dolazi do promjene dinamike Li⁺ iona s temperaturom zbog specifičnih interakcija Li⁺ s cink fosfatnom mrežom stakla.

Istraživanje sprovedeno u okviru ove doktorske disertacije daje cjelovitu sliku promjena električnih i dielektričnih svojstava koje nastaju zbog zamjene Li₂O, Na₂O odnosno Ag₂O s WO₃ i MoO₃ u cink fosfatnim serijama stakala. Utvrđeno je da u volframskim serijama stakala dolazi do promjene mehanizma vodljivosti iz pretežno ionskog u pretežno polaronski mehanizam dok u molibdenskim serijama dominira ionski mehanizam u cijelom području sastava. Osim toga, postupcima skaliranja spektara provodnosti utvrđeno je da sva stakla, bez obzira na prevladavajući mehanizam provodnosti, zadovoljavaju vremensko-temperaturno preklapanje te da u slučaju stakala s visokim udjelom Li₂O dolazi do specifičnih interakcija Li⁺ s cink fosfatnom mrežom stakla.

§ 6. POPIS OZNAKÂ, KRATICÂ I SIMBOLÂ

Α	konstanta elementa konstantne faze
а	konstanta elementa konstantne faze
а	polarizabilnost
AC	izmjenična struja, eng. alternating current
β	kut otklona impedancijske polukružnice
β	koeficijent
β	parametar konačnog premještanja
BO	premošćujući kisikov atom, eng. bridging oxygen
С	udio iona prijelaznog metala u nižem valentnom stanju
С	kapacitet
С	faktor pomaka
CNLS	kompleksna nelinearna metoda najmanjih kvadrata, eng. complex nonlinear
square fitting	procedure
CPE	element konstantne faze, eng. constant phase element
γ	parametar mogućnosti deformacije kisikovog atoma
D	difuzijski koeficijent
d	razmak između elektroda, debljina uzorka
DC	istosmjerna struja eng. direct current
DSC	razlikovna pretražna kalorimetrija, eng. differential scanning calorimetry
δ	vibracija savijanja, eng. <i>bending</i>
δ	kut gubitka
δn	gradijent iona
ΔE_B	elektrostatska energija vezanja
ΔE_S	energija naprezanja
ΔE_{DC}	energija aktivacije istosmjerne provodnosti
ΔE	energija aktivacije
$\Delta \varepsilon$	dielektrična snaga
$\Delta \varepsilon_{calc}$	teorijska (računata) vrijednost dielektrične snage

Juraj Nikolić

$\Delta \varepsilon_{exp}$	eksperimentalno dobivena vrijednost dielektrične snage
Ε	električno polje
E_P	energija vezanja polarona
е	naboj elektrona, e = $1,6022 \times 10^{-19} \text{ C}$
Е	električna permitivnost
ε_0	permitivnost vakuuma, ε_0 =8,8542 x 10-12 F m ⁻¹
\mathcal{E}_R	relativna permitivnost
\mathcal{E}_S	statička permitivnost
f	frekvencija
G	električna vodljivost
G	modul smicanja
h	Planckova konstanta, h = 6,6262 x 10-34 J s
Ι	jakost električne struje
i	imaginarna jedinica
J	protok iona
k _B	Boltzmannova konstanta, $k_B = 1,3806 \times 10^{-23}$ J K ⁻¹
λ	udaljenost između kationskih položaja
μ	pokretljivost iona (nositelja naboja)
Ν	broj iona prijelaznog metala po jedinici volumena
n	broj atoma fosfora
n	broj premošćujućih kisikovih atoma u jedinici Q^n
n	broj nositelja naboja
n	cijeli broj
NBO	nepremošćujući kisikov atom, eng. non-bridging oxygen
ν	vibracija savijanja, eng. stretching
ν_0	frekvencija fonona
v_{el}	frekvencija elektrona
ω	kružna frekvencija, $\omega = 2\pi f$
PXRD	rendgenska difrakcija na prahu (polikristalu), eng. powder X-ray diffraction
Р	vjerojatnost
p	inducirani dipolni moment
Q	naboj

Q^n	tetraedarska jedinica s <i>n</i> premošćujućih kisikovih atoma
R	otpor
r	udaljenost
r_P	polumjer polarona
r _D	polumjer sužavanja mreže
RC	ekvivalentni krug sastavljen od kondenzatora i otpornika
R-CPE	ekvivalentni krug sastavljen od elementa konstantne faze i otpornika
ρ	gustoća stakla
S	površina elektrode
σ	električna provodnost
σ_{AC}	frekvencijski ovisna provodnost
σ_{DC}	istosmjerna provodnost
σ_{HF}	visokofrekvencijski plateau električne provodnosti
σ_0^*	faktor razmjernosti u Mottovoj jednadžbi
Т	apsolutna temperatura
T_c	temperatura kristalizacije
T_g	temperatura staklišta
t	vrijeme
ТМО	oksid prijelaznog metala, eng. transition metal oxide
ТО	krajnji atom kisika, eng. terminal oxygen
TTT	termokinetički dijagram, eng. time-temperature-transformation curve
τ	vrijeme relaksacije
θ	razlika u fazi
U	napon
V	potencijalna energija
V	volumen uzorka
W	aktivacijska energija gibanja polarona
W_H	aktivacijska energija skoka polarona
W_D	energija neuređenosti
Ζ	planarni vektor
Ζ	impedancija
Ζ	atomski broj

§ 6. Popis oznakâ, kraticâ i simbolâ

<i>X</i> *	kompleksna veličina
Χ'	realna komponenta kompleksne veličine X^*
Χ''	imaginarna komponenta kompleksne veličine X^*
X _C	otpor kondenzatora
x	množinski udio

§ 7. LITERATURNI IZVORI

- 1. K.J. Rao, Structural Chemistry of Glasses, Elsevier, Oxford, UK, 2002.
- 2. J.E. Shelby, Introduction to Glass Science and Technology, 2nd Edition, Royal Society of Chemistry, Cambridge, UK, 2005.
- 3. E. Le Bourhis, Glass: Mechanics and Technology, VCH, Weinheim, Njemačka, 2008.
- 4. E.D. Zanotto, J.C. Mauro, J. Non. Cryst. Solids 471 (2017) 490–495.
- V.M. Goldschmidt, Geochemische Vertaukungsfesetze Der Elemente, Nordske Videnskaps-Akad., Mat-Naturvidensk Kl. 8, Oslo, Norveška, 1926.
- G. Tamman, Der Glaszustand (The Glassy State), Leopold Voss, Leipzig, Njemačka, 1927.
- 7. F. Simon, Z. Phys. 41 (1927) 806–809.
- 8. W. J. Zachariasen, J. Am. Ceram. Soc 54 (1932) 3841–3851.
- 9. B. E. Warren, Z. Krist. Petrogr. 86 (1933) 349–358.
- 10. B. E. Warren, J. Am. Ceram. Soc 86 (1934) 1933.
- H. Abe, H. Hosono, in: T. Kanazava (Ed.), Phosphate Glas. Glas., Elsevier, Amsterdam, Nizozemska, 1989, str. 247–281.
- B.C. Sales, L.A. Boatner, Radioactive Waste Forms for the Future, North-Holland, Amsterdam, Nizozemska, 1988.
- 13. B.C. Sales, L.A. Boatner, Science (80-.). 226 (1984) 45-48.
- 14. D.E. Day, Z. Wu, C.S. Ray, P. Hrma, J. Non. Cryst. Solids 241 (1998) 1–28.
- 15. R.K. Brow, J. Non. Cryst. Solids 263 (2000) 1–28.
- 16. Y.M. Moustafa, A. El-Adawy, *Phys. Status Solidi* (A) **179** (2000) 83–93.
- M. Sayer, A. Mansingh, *Phys. Rev. B Condens. Matter Mater. Phys.* 6 (1972) 4629–4643.
- 18. A. Masingu, G. Piccaluga, G. Pinna, J. Non. Cryst. Solids 122 (1990) 52–58.
- J. Nikolić, A. Šantić, L. Pavić, D. Pajić, P. Mošner, L. Koudelka, A. Moguš-Milanković, *Croat. Chem. Acta* 90 (2017) 657–665.
- M.T. Averbuch-Pouchot, A. Durif, Topics in Phosphate Chemistry, World Scientific Publishing Co. Pte. Ltd., Singapur, Singapur, 1996.
- 21. S.W. Martin, Eur. J. Solid State Inorg. Chem. 28 (1991) 163–205.

- 22. S.W. Martin, J. Am. Ceram. Soc. 74 (1991) 1767–1784.
- 23. C. Jager, P. Hartmann, W. R., M. Braun, J. Non. Cryst. Solids 263 (2000) 61-72.
- 24. R.F. Bartholomew, J. Non. Cryst. Solids 7 (1972) 221–235.
- M. Cutroni, A. Mandanici, A. Piccolo, C. Fanggao, G.A. Saunders, P. Mustarelli, Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop. 73 (1996) 349–365.
- 26. R.F. Bartholomew, J. Non. Cryst. Solids 12 (1973) 321–332.
- J.R. Van Wazer, Phosphorus and Its Compounds, Vol. 1, Interscience, New York, SAD, 1958.
- 28. U. Hoppe, J. Non. Cryst. Solids 195 (1996) 138-147.
- 29. A.M. Nassar, M.M. El Oker, S.N. Radwan, E. Nabhan, Curr. Sci. Int. 2 (2013) 1–7.
- L. Koudelka, J. Šubčík, P. Mošner, I. Gregora, L. Montagne, L. Delevoye, *Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B* 53 (2012) 79–85.
- A. Šantić, R.D. Banhatti, L. Pavić, H. Ertap, M. Yüksek, M. Karabulut, A. Moguš-Milanković, *Phys. Chem. Chem. Phys.* 19 (2017) 3999–4009.
- J. Šubčík, L. Koudelka, P. Mošner, L. Montagne, G. Tricot, L. Delevoye, I. Gregora, J. Non. Cryst. Solids 356 (2010) 2509–2516.
- G. Poirier, F.S. Ottoboni, F.C. Cassanjes, A. Remonte, Y. Messaddeq, S.J.L. Ribeiro, J. Phys. Chem. B 112 (2008) 4481–4487.
- C.C. De Araujo, W. Strojek, L. Zhang, H. Eckert, G. Poirier, S.J.L. Ribeiro, Y. Messaddeq, *J. Mater. Chem.* 16 (2006) 3277–3284.
- S.H. Santagneli, C.C. De Araujo, W. Strojek, H. Eckert, G. Poirier, S.J.L. Ribeiro, Y. Messaddeq, J. Phys. Chem. B 111 (2007) 10109–10117.
- D. Boudlich, L. Bih, M.E.H. Archidi, M. Haddad, A. Yacoubi, A. Nadiri, B. Elouadi, J. Am. Ceram. Soc. 85 (2002) 623–630.
- G. Poirier, Y.Y. Messaddeq, S.J.L. Ribeiro, M. Poulain, *J. Solid State Chem.* 178 (2005) 1533–1538.
- G. Poirier, A. Michalowicz, Y. Messaddeq, S.J.L. Ribeiro, J. Non. Cryst. Solids 351 (2005) 3644–3648.
- L. Koudelka, I. Rösslerová, J. Holubová, P. Mošner, L. Montagne, B. Revel, J. Non. Cryst. Solids 357 (2011) 2816–2821.
- 40. L. Koudelka, I. Rosslerova, J. Holubová, P. Mošner, L. Montagne, B. Revel, J. Non.

Cryst. Solids 357 (2011) 2816–2821.

- 41. P. Mošner, O. Kupetska, L. Koudelka, *Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B* **59** (2018) 213–220.
- 42. L. Koudelka, O. Kupetska, P. Kalenda, P. Mošner, L. Montagne, B. Revel, *J. Non. Cryst. Solids* **500** (2018) 42–48.
- 43. I.G. Austin, N.F. Mott, Adv. Phys. 18 (1969) 41–102.
- 44. H.L. Tuller, D.P. Button, D.R. Uhlmann, J. Non. Cryst. Solids 40 (1980) 93–118.
- 45. C.A. Angell, Solid State Ionics 9–10 (1983) 3–16.
- 46. M.D. Ingram, Phys. Chem. Glas. 28 (1987) 215–234.
- 47. C.A. Angell, *Chem. Rev.* **90** (1990) 523–542.
- 48. J. Kawamura, M. Shimoii, Mater. Chem. Phys. 23 (1989) 99–120.
- 49. S. Pizzini, Fast Ion Transport in Solids, Springer Verlag, Berlin, Njemačka, 1993.
- 50. A. Chandra, A. Bhatt, A. Chandra, J. Mater. Sci. Technol. 29 (2013) 193–208.
- 51. O.L. Anderson, D.A. Stuart, J. Am. Ceram. Soc. 37 (1954) 573–580.
- 52. D.K. McElfresh, D.G. Howitt, J. Am. Ceram. Soc. 69 (1986) 237–238.
- 53. D. Ravaine, J.L. Souquet, Phys. Chem. Glas. 18 (1977) 27-31.
- 54. D. Ravaine, J.L. Souquet, Phys. Chem. Glas. 19 (1978) 115-120.
- 55. S.W. Martin, C.A. Angell, J. Non. Cryst. Solids 83 (1986) 185–207.
- 56. K. Funke, **28–30** (1988) 100–107.
- 57. K. Funke, Prog. Solid State Chem. 22 (1993) 111–195.
- 58. K. Funke, Solid State Ionics 94 (1997) 27–33.
- 59. A. Bunde, M.D. Ingram, P. Maass, J. Non. Cryst. Solids 172–174 (1994) 1222–1236.
- 60. N.F. Mott, J. Non. Cryst. Solids 1 (1968) 1–17.
- 61. I.G. Austin, J. Non. Cryst. Solids 2 (1970) 474–483.
- 62. L. Murawski, O. Gzowski, *Phys. Status Solidi* (A) **19** (1973) K125–K128.
- 63. L. Murawski, O. Gzowski, Acta Phys. Pol. A 50 (1976) 463–471.
- 64. L. Murawski, C.H. Chung, J.D. Mackenzie, J. Non. Cryst. Solids 32 (1979) 91–104.
- 65. I.G. Austin, J. Non. Cryst. Solids 2 (1970) 474–483.
- 66. V.N. Bogomolov, D.N. Mirilin, *Phys. Status Solidi* (A) **27** (1968) 443–453.
- 67. H.R. Killias, *Phys. Lett.* **20** (1966) 5–6.
- 68. A. Miller, E. Abrahams, *Phys. Rev.* **120** (1960) 745–755.
- 69. N.F. Mott, Electronic Processes in Non-Crystalline Materials, Clarendon Press,

Oxford, UK, 1971.

- 70. S.L. Kraevski, T.F. Evdokimov, U.F. Solonov, E. Shishmentseva, *Fiz. Khim. Stekla* **4** (1978) 366.
- 71. F. Studer, A. Lebail, B. Raveau, J. Solid State Chem. 63 (1986) 414–423.
- 72. U. Selvaraj, H.G.K. Sundar, K.J. Rao, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 85 (1989) 251–267.
- J.C. Bazan, J.A. Duffy, M.D. Ingram, M.R. Mallace, *Solid State Ionics* 86–88 (1996) 497–501.
- 74. J.A. Duffy, F.G.K. Baucke, J. Phys. Chem. 22 (1995) 9189–9193.
- L. Bih, M. El Omari, J.M. Réau, M. Haddad, D. Boudlich, A. Yacoubi, A. Nadiri, *Solid State Ionics* 132 (2000) 71–85.
- L. Bih, M. El Omari, J. Reau, A. Nadiri, A. Yacoubi, M. Haddad, *Mater. Lett. (General Ed.)* 50 (2001) 308–317.
- J.E. Garbarczyk, P. MacHowski, M. Wasiucionek, L. Tykarski, R. Bacewicz, A. Aleksiejuk, *Solid State Ionics* 136–137 (2000) 1077–1083.
- P. Machowski, J.E. Garbarczyk, M. Wasiucionek, *Solid State Ionics* 157 (2003) 281– 285.
- J.E. Garbarczyk, M. Wasiucionek, P. MacHowski, W. Jakubowski, *Solid State Ionics* 119 (1999) 9–14.
- J.E. Garbarczyk, P. Machowski, M. Wasiucionek, W. Jakubowski, *Solid State Ionics* 157 (2003) 269–273.
- 81. R.J. Barczyński, J. Non. Cryst. Solids 354 (2008) 4275-4277.
- 82. material.karlov.mff.cuni.cz/en/equipment/dilatometry, preuzeto 20.03.2020.
- 83. netzsch-thermal-analysis.com/fr/landing-pages/methods/differential-scanning-calorimetry, preuzeto 04.03.2020.
- C.J. Simmons, O.H. El-Bayoumi, eds., Experimental Techniques of Glass Science, The American Ceramic Society, Westerwille, Ohio, SAD, 1993.
- 85. C.S. Hsu, F. Mansfeld, *Corrosion* **57** (2001) 747–748.
- 86. A. West, J. Irvine, D. Sinclair, Adv. Mater. 2 (1990) 132–138.
- 87. A.K. Jonscher, *Nature* **267** (1977) 673–679.
- 88. J.O. Isard, J. Non. Cryst. Solids 4 (1970) 357–365.
- 89. A.E. Owen, J. Non. Cryst. Solids 25 (1977) 370–423.

- 90. T.B. Schroder, J.C. Dyre, Phys. Rev. Lett. 84 (2000) 310-313.
- 91. A.K. Jonscher, J. Mater. Sci. 16 (1981) 2037–2060.
- 92. J.C. Dyre, J. Appl. Phys. 64 (1988) 2456–2468.
- K. Funke, C. Cramer, B. Roling, T. Saatkamp, M.D. Ingram, Solid State Ionics 85 (1996) 293–303.
- 94. S.D. Baranovskii, H. Cordes, J. Chem. Phys. 111 (1999) 7546–7557.
- 95. J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72 (2000) 873-892.
- 96. K. Funke, R.D. Banhatti, Solid State Ionics 169 (2004) 1-8.
- 97. S.R. Elliot, Solid State Ionics 70–71 (1994) 27–40.
- 98. S. Summerfield, *Philos. Mag. A* **52** (1985) 9–22.
- 99. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78 (1997) 2160–2163.
- 100. A.R. Kulkarni, P. Lunkemheimer, A. Loidl, Solid State Ionics 112 (1998) 69-74.
- 101. B. Roling, Solid State Ionics 105 (1998) 185–193.
- 102. A. Banday, S. Murugavel, AIP Conf. Proc. 1953 (2018) 090077-1-4.
- 103. D.L. Sidebottom, Phys. Rev. Lett. 82 (1999) 3653-3656.
- 104. S. Murugavel, B. Roling, Phys. Rev. Lett. 89 (2002) 8-11.
- 105. S. Murugavel, B. Roling, J. Phys. Chem. B 108 (2004) 2564–2567.
- 106. D.L. Sidebottom, J. Zhang, *Phys. Rev. B Condens. Matter Mater. Phys.* **62** (2000) 5503–5507.
- 107. OriginPro 9.0.0., OriginLab Corporation, SAD.
- 108. WinDETA 5.65, Novocontrol Technologies, Njemačka.
- 109. ZView 2.70, Scribner Associates, SAD.
- R.K. Brow, D.R. Tallant, S.T. Myers, C.C. Phifer, J. Non. Cryst. Solids 191 (1995) 45– 55.
- M. Cutroni, A. Mandanici, P. Mustarelli, C. Tomasi, Solid State Ionics 154–155 (2002) 713–717.
- 112. L. Badr, Phys. Chem. Chem. Phys. 19 (2017) 21527–21531.
- 113. D.L. Sidebottom, *Phys. Rev. B Condens. Matter Mater. Phys.* 61 (2000) 14507–14516.
- J.D. Wicks, L. Borjesson, G. Bushnell-Wye, W.S. Howells, R.L. Mcgreevy, *Phys. Rev. Lett.* 74 (1995) 726–729.
- 115. A. Sanson, F. Rocca, C. Armellini, G. Dalba, P. Fornasini, R. Grisenti, Phys. Rev. Lett.

(2008) 155901.

- 116. L. Badr, Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B 59 (2018) 106–113.
- N. Kanwal, H. Toms, A.C. Hannon, F.A. Perras, D.L. Bryce, N. Karpukhina, I. Abrahams, J. Mater. Chem. B 3 (2015) 8842–8855.
- 118. C.C. Hunter, M.D. Ingram, Solid State Ionics 14 (1984) 31-40.
- A. Mansingh, J.K. Vaid, R.P. Tandon, J. Phys. C Solid State Phys. 10 (1977) 4061– 4066.
- 120. W. Meyer, H. Neldel, Z. Tech. Phys 18 (1937) 588-593.
- 121. L.F. Mao, H. Ning, C. Hu, Z. Lu, G. Wang, Sci. Rep. 6 (2016) 24777.
- 122. A.S. Nowick, W.K. Lee, H. Jain, Solid State Ionics 28-30 (1988) 89-94.
- 123. D.P. Almond, A.R. West, Solid State Ionics 23 (1987) 27–35.
- 124. C. Liu, C.A. Angell, J. Non. Cryst. Solids 83 (1986) 192-184.
- 125. K.L. Ngai, Solid State Ionics 105 (1998) 231–235.
- 126. C.R. Mariappan, G. Govindaraj, B. Roling, Solid State Ionics 176 (2005) 723–729.
- 127. R.A. Montani, A. Lorente, M.A. Frechero, Solid State Ionics 146 (2002) 323-327.
- 128. R.A. Montani, S.E. Giusia, Phys. Chem. Glas. 42 (2001) 12-16.
- 129. S.K. Ram, S. Kumar, P.R. Cabarrocas, J. Non. Cryst. Solids 354 (2008) 2263–2267.
- B. Sujatha, R. Viswanatha, H. Nagabushana, C.N. Reddy, J. Mater. Res. Technol. 6 (2017) 7–12.
- 131. J. Jamnik, J. Maier, J. Electrochem. Soc. 146 (1999) 4183–4188.
- 132. J. Jamnik, J. Maier, S. Pejovnik, *Electrochim. Acta* 44 (1999) 4139–4145.
- A.E. Javier, S.N. Patel, D.T. Hallinan, V. Srinivasan, N.P. Balsara, Angew. Chemie -Int. Ed. 50 (2011) 9848–9851.
- 134. J.R. MacDonald, J. Chem. Phys. 58 (1973) 4982–5001.
- 135. D.L. Sidebottom, Rev. Mod. Phys. 81 (2009) 999–1014.

§8. DODATAK

Tablica D1. Položaji maksimuma Ramanovih vrpci za sva stakla iz Li-W serije te odgovarajući vibracijski modovi.

Valni broj / cm ⁻¹						Vibracijski	
30Li	25Li-10W	20Li-20W	15Li-30W	10Li-40W	5Li-50W	60W	mod
-	384	388	388	381	379	380	$v_{\rm s}$ (W-O-P)
522	483	489	475	423	504	495	(\mathbf{P},\mathbf{O})
606	617	623	623	617	644	631	0 (P-O)
704	704	701	701	-	-	-	<i>v</i> _s (P-O-P) Q ²
751	748	-	-	-	-	-	$v_{\rm s}$ (P-O-P) Q ¹
-	-	756	761	770	760	776	$v_{\rm s}$ (W-O-W)
-	-	865	855	856	854	841	vas (W-O-W)
	914	926	936	957	965	-	v_{s} (W-O ⁻) _{okt}
-	973	982	989	993	993	993	$v_{\rm s}$ (W=O)
1000	-	-	-	-	-	-	$v_{\rm s}$ (PO ₄) Q ⁰
1045	-	-	-	-	-	-	$v_{\rm s}$ (PO ₃) Q ¹
1123	1094	1109	1095	1106	1067	1085	$v_{\rm s}$ (PO ₃) Q ¹
1165	1177	1178	1174	-	-	-	$v_{\rm s}$ (PO ₂) Q ²
1238	1267	1257	1267	1267	1223	1210	$v_{\rm as}$ (PO ₂) Q ²

Valni broj / cm ⁻¹							Vibracijski
30Na	25Na-10W	20Na-20W	15Na-30W	10Na-40W	5Na-50W	60W	mod
-	387	389	388	387	385	380	$v_{\rm s}$ (W-O-P)
522	517	505	517	526	-	495	(\mathbf{D}, \mathbf{O})
597	618	613	627	623	622	631	0 (P-O)
695	701	708	704			-	$v_{\rm s}$ (P-O-P) Q ²
740	748	-				-	$v_{\rm s}$ (P-O-P) Q ¹
-	-	-	766	778	778	776	$v_{\rm s}$ (W-O-W)
-	-	860	857	861	846	841	v_{as} (W-O-W)
-	910	917	923	933	927	-	v_{s} (W-O ⁻) _{okt}
-	956	965	973	983	987	993	$v_{\rm s}$ (W=O)
995	-	-	-	-	-	-	v_{s} (PO ₄) Q ⁰
1041	-	-	-	-	-	-	$v_{\rm s}$ (PO ₃) Q ¹
1131	1098	1102	1054	1093	1083	1085	$v_{\rm s}$ (PO ₃) Q ¹
1157	1156	1162	1165	-	-	-	$v_{s}(PO_{2}) Q^{2}$
1253	1267	1270	1266	1276	1264	1210	$v_{\rm as}$ (PO ₂) Q ²

Tablica D2. Položaji maksimuma Ramanovih vrpci za sva stakla iz Na-W serije te odgovarajući vibracijski modovi.

Valni broj / cm ⁻¹							Vibracijski
30Ag	25Ag-10W	20Ag-20W	15Ag-30W	10Ag-40W	5Ag-50W	60W	mod
-	381	382	382	381	386	380	$v_{\rm s}$ (W-O-P)
518	512	501	514	513	496	495	(\mathbf{D}, \mathbf{O})
598	605	616	621	623	608	631	0 (P-O)
690	698	703	-	-	-	-	$v_{\rm s}$ (P-O-P) Q ²
731	749	762	-	-	-	-	<i>v</i> _s (P-O-P) Q ¹
-	-	-	764	770	780	776	$v_{\rm s}$ (W-O-W)
-	-	-	866	844	856	841	v_{as} (W-O-W)
-	876	883	905	916	960	-	$v_{\rm s}$ (W-O ⁻) _{okt}
-	937	950	959	974	988	993	$v_{\rm s}$ (W=O)
982	-	-	-	-	-	-	v_{s} (PO ₄) Q ⁰
1030	-	-	-	-	-	-	$v_{\rm s}$ (PO ₃) Q ¹
-	1098	1068	1077	1074	1090	1085	$v_{\rm s}$ (PO ₃) Q ¹
1143	1146	1153	1162	-	-	-	$v_{s}(PO_{2}) Q^{2}$
1219	1238	1237	1247	1253	1250	1210	$v_{\rm as}$ (PO ₂) Q ²

Tablica D3. Položaji maksimuma Ramanovih vrpci za sva stakla iz Ag-W serije te odgovarajući vibracijski modovi

	Valni broj / cm ⁻¹						
30Li	25Li-10Mo	20Li-20Mo	15Li-30Mo	10Li-40Mo	5Li-50Mo	60Mo	mod
-	395	397	398	399	399	395	v _s (Mo-O-P)
522	519	509	514	517	511	-	$S(\mathbf{D},\mathbf{O})$
606	620	625	622	-	-	-	- 0 (P-O)
704	708	709	712	-	-	-	$v_{\rm s}$ (P-O-P) Q ²
751	757	761	764	783	749	-	<i>v</i> _s (P-O-P) Q ¹
-	-	-	-	-	-	781	<i>v</i> _s (Mo-O-Mo)
-	-	-	-	-	-	839	v _{as} (Mo-O-Mo)
	-	-	880	878	874	868	v_{s} (Mo-O ⁻) _{tet}
-	912	913	915	934	940	946	v_{s} (Mo-O ⁻) _{okt}
-	957	963	969	975	978	986	v _s (Mo=O)
1000	-	-	-	-	-	-	$v_{\rm s}({\rm PO_4})~{\rm Q^0}$
1045	-	-	-	-	-	-	v _s (PO ₃) Q ¹
1123	1085	1092	1090	1068	1107	1072	v_{s} (PO ₃) Q ¹
1165	1160	1166	1166	1166	-	-	$v_{\rm s}$ (PO ₂) Q ²
1238	1262	1264	1236	1270	-	-	$v_{\rm as}$ (PO ₂) Q ²

Tablica D4. Položaji maksimuma Ramanovih vrpci za sva stakla iz Li-Mo serije te odgovarajući vibracijski modovi.

Valni broj / cm ⁻¹							X7'1
30Na	25Na-10Mo	20Na-20Mo	15Na-30Mo	10Na-40Mo	5Na-50Mo	60Mo	vibracijski mod
-	396	398	399	401	398	395	v _s (Mo-O-P)
522	524	495	510	529	513	-	S (P Q)
597	614	601	614	628	-	-	0 (P-O)
695	694	710	707	-	-	-	$v_{\rm s}$ (P-O-P) Q^2
740	737	768	764	-	-	-	$v_{\rm s}$ (P-O-P) Q ¹
-	-	-	-	-	-	781	v _s (Mo-O-Mo)
-	-	-	-	-	-	839	v _{as} (Mo-O-Mo)
	-	-	880	876	866	868	vs (Mo-O ⁻)tet
-	908	916	919	924	916	946	v_{s} (Mo-O ⁻) _{okt}
-	950	958	964	971	977	986	v _s (Mo=O)
995	-	-	-	-	-	-	$v_{\rm s}$ (PO ₄) Q ⁰
1041	-	-	-	-	-	-	$v_{\rm s}$ (PO ₃) Q ¹
1131	1086	1089	1070	1081	1109	1072	$v_{\rm s}$ (PO ₃) Q ¹
1157	1153	1157	1156	1158	-	-	$v_{\rm s}$ (PO ₂) Q ²
1253	1264	1274	1274	1281	1267	-	$v_{\rm as}$ (PO ₂) Q ²

Tablica D5. Položaji maksimuma Ramanovih vrpci za sva stakla iz Na-Mo serije te odgovarajući vibracijski modovi.

			Vibre elistic en ed				
30Ag	25Ag-10Mo	20Ag-20Mo	15Ag-30Mo	10Ag-40Mo	5Ag-50Mo	60Mo	vibracijski mod
-	391	393	396	397	398	395	<i>v</i> _s (Mo-O-P)
518	497	497	509	513	511	-	S (B Q)
598	601	612	620	623	615	-	0 (P-O)
690	697	-	-		-	-	$v_{\rm s}$ (P-O-P) Q ²
731	739	716	710	734	-	-	$v_{\rm s}$ (P-O-P) Q ¹
-	-	-	-		-	781	$v_{\rm s}$ (Mo-O-Mo)
-	-	-	-		-	839	v _{as} (Mo-O-Mo)
	-	-	872	873	882	868	v_{s} (Mo-O ⁻) _{tet}
-	886	892	901	901	945	946	v_{s} (Mo-O ⁻) _{okt}
-	935	943	951	964	976	986	v _s (Mo=O)
982	-		-	-	-	-	$v_{\rm s}({\rm PO_4})~{\rm Q^0}$
1030				-	-	-	$v_{\rm s}$ (PO ₃) Q ¹
-	1068	1094	1075	1093	1072	1072	$v_{s}(PO_{3}) Q^{1}$
1143	1141	1151	1156	1168	1166	-	$v_{\rm s}({\rm PO}_2)~{\rm Q}^2$
1219	1242	1253	1255	1263	1257	-	$v_{\rm as}$ (PO ₂) Q ²

Tablica D6. Položaji maksimuma Ramanovih vrpci za sva stakla iz Ag-Mo serije te odgovarajući vibracijski modovi.

XVII

Slika D1. Arrheniusova ovisnost istosmjerne provodnosti za stakla iz (a) Na-W i (b) Na-Mo serije.

Slika D2. Arrheniusov ovisnost istosmjerne provodnosti za stakla iz (a) Ag-W i (b) Ag-Mo serije.

§9. ŽIVOTOPIS

Osobni podatci

Ime i prezime: Juraj Nikolić Datum rođenja: 18.03.1992. Mjesto rođenja: Koprivnica

Obrazovanje

1998–2006	Osnovna škola Ljudevita Modeca, Križevci
2006–2010	Srednja škola I. Z. Dijankovečkoga, Križevci
2010-2013	Preddiplomski studij Kemije, Kemijski odsjek, Prirodoslovno-
	matematički fakultet, Zagreb
2013-2015	Diplomski studij kemije – smjer istraživački, grane anorganska i
	organska kemija, Kemijski odsjek, Prirodoslovno-matematički fakultet,
	Zagreb
2016-	Doktorski studij kemije – smjer anorganska i strukturna kemija,
	Kemijski odsjek, Prirodoslovno-matematički fakultet, Zagreb

Nagrade i priznanja

2013	Posebna Rektorova nagrada Sveučilišta u Zagrebu za sudjelovanje na
	Otvorenom danu Kemijskog odsjeka 2013. godine
2015	Rektorova nagrada Sveučilišta u Zagrebu
2019	Nagrada za najbolji znanstveni rad znanstvenika bez doktorata Zavoda
	za kemiju materijala u 2018. godini

Sudjelovanja u popularizaciji znanosti

2010-2016	Otvoreni dan Kemijskog odsjeka Prirodoslovno-matematičkog fakulteta
u Zagrebu	
2017-2019	Otvoreni dan Instituta Ruđer Bošković

XVIII

Sudjelovanja na znanstvenim skupovima

Istraživanja J. Nikolića prikazana su na 11 na domaćih i međunarodnih znanstvenih skupova. Sudionik skupa označen je *.

- J. Nikolić*, A. Šantić, L. Pavić, P. Mošner, L. Koudelka, A. Moguš-Milanković, *The* effect of replacement of Li₂O and Ag₂O with WO₃ and MoO₃ on the electrical transport mechanism and structure of zinc phosphate glasses, poster, Workshop on Solar Energy Materials, Zagreb, 2019.
- J. Nikolić*, A. Šantić, L. Pavić, P. Mošner, L. Koudelka, A. Moguš-Milanković, Structural and electrical studies of tungsten based glass-ceramics, poster, Solid State Science & Research Meeting, Zagreb, 2019.
- J. Nikolić*, L- Pavić, A. Šantić, A. Moguš-Milanković, Impedance spectroscopy: a powerful method for analysis of electrical processes in lithium tungsten phosphate glass-ceramics, predavanje, 9th ISE Satellite Student Regional Symposium on Electrochemistry, Zagreb, Hrvatska, 2019.
- L. Pavić*, A. Šantić, J. Nikolić, R. D. Banhatti, P. Mošner, L. Koudelka, A. Moguš-Milanković, *Insights on ion and polaron dynamics in phosphate glasses from modelfree conductivity scaling*, predavanje, 25th International Congress on Glass (ICG 2019), Boston, USA, 2019.
- J. Nikolić*, L. Pavić, A. Šantić, P. Mošner, L. Koudelka, A. Moguš-Milanković, Utjecaj zamjene Li₂O i Ag₂O s WO₃ i MoO₃ na mehanizam električnog transporta i strukturu cink fosfatnih stakala, poster, Simpozij studenata doktorskih studija PMF-a, Zagreb, 2018.
- J. Nikolić*, L. Pavić, A. Šantić, P. Mošner, L. Koudelka, A. Moguš-Milanković, *Promjene mehanizma prijenosa naboja u srebro cink fosfatnim staklima uz dodatak WO₃ i MoO₃*, predavanje, XII. susret mladih kemijskih inženjera, Zagreb, 2018.
- A. Moguš-Milanković*, A. Šantić, J. Nikolić, D. Pajić, P. Mošner, L. Koudelka, *Electrical transport in mixed ion-polaron glasses*, predavanje, Borate 9 – Phosphate 2, Oxford, UK, 2017.
- L. Pavić*, J. Nikolić, A. Šantić, D. Pajić, P. Mošner, L. Koudelka, A. Moguš-Milanković, *Nature of mixed electrical transport in Ag₂O-ZnO-P₂O₅ glasses containing WO₃ and MoO₃ studied by impedance spectroscopy*, predavanje, Borate 9 – Phosphate 2, Oxford, UK, 2017.

- J. Nikolić*, L. Pavić, P. Mošner, L. Koudelka, A. Moguš-Milanković, *Mixed Ion-Polaron Charge Transport in Silver Zinc Phosphate Glasses Containing WO₃ and MoO₃*, poster, 2017 ICG Annual Meeting & 32nd Sisecam Glass Symposium, Istanbul, Turska, 2017.
- J. Nikolić*, L. Pavić, A. Šantić, P. Mošner, L. Koudelka, A. Moguš-Milanković, *Insights in the structure-electrical conductivity properties of Li₂O-ZnO-P₂O₅ glasses with addition of WO₃ and MoO₃, predavanje, Solid State Science & Research, Zagreb, 2017.*
- J. Nikolić*, L. Pavić, A. Šantić, P. Mošner, L. Koudelka, D. Pajić, A. Moguš-Milanković, *Ion-polaron charge transport in alkali zinc phosphate glasses containing* WO₃ and MoO₃, poster, 25. HSKIKI, Poreč, 2017.

Znanstveni radovi

J. Nikolić objavio je šest znanstvenih radova, od toga je svih šest radova proizašlo iz istraživanja u okviru ove doktorske disertacije (označeni *). Svi radovi su objavljeni u časopisima koje citiraju baze *Current Contents* i *Web of Science*.

Popis radova:

- L. Pavić, J. Nikolić, M. P. F. Graça, B. F. O. Costa, M. A. Valente, Ž. Skoko, A. Šantić, A. Moguš-Milanković, Effect of controlled crystallization on polaronic transport in phosphate-based glass-ceramics, *Int. J. Appl. Glass Sci.* 11 (2020) 97-111.*
- J. Nikolić, A. Šantić, D. Pajić, P. Mošner, L. Koudelka, A. Moguš-Milanković, Electrical transport in mixed ion–polaron glasses, *Phys. Chem. Glasses* 60 (2019) 97-103.*
- A. Šantić, J. Nikolić, L. Pavić, R. D. Banhatti, P. Mošner, L. Koudelka, A. Moguš-Milanković, Scaling features of conductivity spectra reveal complexities in ionic, polaronic and mixed ionic-polaronic conduction in phosphate glasses, *Acta Mater.* 175 (2019) 46-54.*
- L. Pavić, A. Šantić, J. Nikolić, P. Mošner, L. Koudelka, D. Pajić, A. Moguš-Milanković, Nature of mixed electrical transport in Ag₂O-ZnO-P₂O₅ glasses containing WO₃ and MoO₃, *Electrochim. Acta* 276 (2018) 434-445.*
- J. Nikolić, L. Pavić, A. Šantić, P. Mošner, L. Koudelka, D. Pajić, A. Moguš-Milanković, Novel insights into electrical transport mechanism in ionic-polaronic glasses, *J. Am. Ceram. Soc.* 101 (2018) 1221-1235.*

 J. Nikolić, A. Šantić, L. Pavić, D. Pajić, P. Mošner, L. Koudelka, A. Moguš-Milanković, Mixed Ion-Polaron Glasses as New Cathode Materials, *Croat. Chem. Acta* 90 (2017) 657-665.*