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Doctoral Thesis

ABSTRACT

WIND SPEED PREDICTIONJUSING THEANALOG METHOD OVER COMPLEX
TOPOGRAPHY

,ULV 2GDN 3OHQNRYLU
Croatian Meteorological and Hydrological Service

The performance dhe analogbased posprocessing method is tested in climatologically and
topographically different regions, for poibdised wind speed predmtis at 10 m above the
ground and compared tthe baseline Kalman filter (KF) modeThis researclshows thathe
deterministic analodpased predictions produced using deterministionerical weather
prediction (NWP) model outputimprove the correlation Kbeeen predictions and
measurements while reducing the forecast error compared to the starting model predictions
regardless of the terrain complexity/hile the KFbased approaahenerally outperforms the
analogbased predictionsn the bias reduction, theombination of the KF and analog
approach can be similarly successful.

In the coastal complex area, characterized by a larger frequentuglofvind speed the
analogbased predictionare more successful in reducing the dispersion error than the KF.
The application of the KF algorithm to the analogs in thecalbed analog space (KFAS) is
the least prone to the standard deviation underestimation amoagatiogbased predictions

All analogbased predictiongmprove prediction of larger than diurnal nmis while the
KFAS is superior among adinalogbased predictions predicting alternating wind regimes

on the time scales shorter than a day. dim@ogbased predictiongetter distinguish different
wind speed categories in the coastal compbgograply by using a higheresolution model
input.

The analog method is also applied to the ensemble NWP. Evaluation of several configurations
using variouspredictor variabless conducted through a set of sensitivity experiments. The
results are compared toetlensemble model output statistic (EMOS) baseline model. Results
show that both analegased and EMOS experiments considerably improve the raw model
forecast. Theanalogbased predictionsre overall comparable to or even outperform the
EMOS. Assessing theostprocessing performance for high wind speeds shown that the
analog experiments can improve the raw forecast, exhibiting significantly higher skill than the
EMOS. The processes at lowaltitude stations seem to be better represented by the raw
model, which leads to better input forecast to the-postessing and better overall restbr

for the mountain stations. Generallgetdifferencebetweerseveralanalogbased experiments

is less pronounced. Furthermore, it is demonstrated that tige osaummarized ensemble
measuress an optimal way to improve the forecast skill, compared to the other araseg
experiments.

Keywords: analogensemble forecast, complewpography ensemble model output
statistics, Kalmasfilter, mesoscale modeltaistical postprocessing, wind ensemble forecast
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'UéDYQLKLGURPHWHRUROR&NL]DYRG

OHWRGD DQDORJRQD NRMD VH NRULVWL ]D QDNQDGQX
testirana je za prognoze vjetra na 10 m iznad tla na lokacijama koje pripadaju topografski i
NOLPDWRORAGNL UD] Wit DWASHRS BHRIGAOK [kdjbl koidsti Kalmanov filtar
(KF). DHWHUPLQLVWLpPNL SUR GRKDN WkHP&EsCorbgDaRd OjerédmaQed
manju SRJUHANX X RGQRVX QD QXPHULpNL PRGHO NRML PH
QHRYLVQR R VORaHQdbdaNaknAtReS gbiade) | LNIGILP QR Niddu XVSMHA
uklanjanju pristranosti prognoz&ombinacija metode analogonaKF gotovo je jednako
XVSMHaEaQD X XNODQMDDNKPUSRWDPDOWYWILGRGDWQH SUHGH
analogona

8 REDOQRP SRODNMNBWMHXILNUDQRP NRPSOHNVQRP WRSRJU
vietron PHWRGD DQDORJRQD XVSMHaAQLMD MH RG .) X XNODC
primjena Kalmanovog filtrai takozvanom prostoru analogofi-AS) je eksperiment koji je
QDMPDQMH &Rj&é&auD®irode varijabilnosti vjetra, mjereno standardnom
GHYLMDFLMRP 6YL HNVSHULPHQWL NRML NRULVWH DQDOR
VNDODPD GXOMLPD RG MHGQRJ GDQD OHYyXWLP QD VNDOI
QDMXVSMHAQIPMHIQWNVBULAWHQMH PRGHOD YHUH todd]ROXF LN
DQRDORJRQD GRSULQRVL GD SURJQR]D ODN&@H UD]JOLNXMH NI

Metoda analogona piitM HQMHQD MH L QD DQVDPEO SURJQR]X QXP
WHVWLUDQR Q H NrRigutadlj@métdal¢kdidz pestve kosjtiRvost Eksperimenti se
SUYHQVWYHQR UD]JOLNXMX SR XOD]QLP SDUDPHSWRpHVDQ MV M
DQVDPEO SURJQR]H PRGHOD b5H]XOWDW neteddhV Raenddrie QD O R J
obrade koja jdazirana na statistici simuliranih podatakkaansambl prognoze (EMO$®)bje
WHVWLUDQH PHWRGH QDNQDGQH REUDGH YLGGQé6n RREROMA
metoda analogona usporediva s metodom EMQSOL pDN L EROMD 'RGDWQR P
ostvaruje signifikantno bolji rezultata prognozu jakog vjetrad SR p HW Q Ride m&dddd O
EMOS. 8 QXPHULpNRP PRGHOX SURFHVL VX EROMH UD]JOXpHC
QDGPRUVNRM YLVLQL QHJR ]D SODQLQVNH ORNMakbhMH 3R\
QDNQDGQH REUDGH SURGXNDWD PRGHOD WH EROML XNXS
YLVLQD 2UVIHQLWB PHYyX HNVSHULPHQWLPD Vnetode]OLpLW
analogonananjeje LJUD&aHQD AWRYL&AH SRND]DQR Nhkhf@rackhH XS UD Y
R SURJQR]L XOD]J]QRJ PRGHOD RSWLPDODQ QDpLQ GD VH SRI

.OM X pQH EMOQM HKhlnanov filtg kompleksnatopografijaz mezoskalni model,
metoda analogonay WDWLVWLPpNH PHWRGH QDNQDGQH REUDGH DQ\

XV
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I UvoD

yDN L QDMVXYUHPHQLML i3uddebiem® B/R pUIHARRIGHPMHSVR QF
zanemariti, posebno pri prognoziranju nad kompiekstopografijom[Horvath et al., 2012]
Zato e X] UD]YRM SURJQ RY araitl LXXD B Q B Y \Wdddatrie hléte \Kdji
NRULAWHQMHP UDYV SRajRja ISRLIKJ Hrdliek) ph@uiMietoda naknadne
obrade Jedna od takvih metoday. metodD DQDORJRQD WHPHOML VH QD GH\
da se u prognozi koristi analogija s prethodnim situacij@npe. Lorenz [1969]) Naime,
pretpostaka e GD UH GYD LQLFLMDOQR VOLpQD VWDQMD DWPRYV
SURA&ORVW hetviXanglbhonaNRULVWLOH UD]QH IRUPXODFLMH WH
SURJQR]JH SURJQR]H SROMD PMHUHQ Ma2vijedaeiodriulddijd GU 8 (
NRMD NRULVWL QXPHU LRGIXH BHIERXN QB RN D F L M povije$nins R U H { X M
prognozama oGDELUH QDMVOLDpQ LidMjd pokdata zavigrie OcRultR{€dHe
Monache et al., 2011, 2013y DNRQ aWR VH RGDEHUX DQDORJRQL YULM
WRP WHUPLQX X SURAORVWL IRUPLUDM Xshp@aDn@keiylHaD QVDPE
str $NR MH PRGHO NRQJLVWHQWDQ X M&RtdVOXLE Q H SARILLDHREL!
LOL SURSXawD SUHGYLGMHWL NRIRFEHNHERMEHBHez@deN D O Q H
SURJQ R ¥uatdgpWHR X N OXpUKEMIEX PRGHO QLM K IXQ PRI INDRPAWL

i, 1$.1$'1% 2%5%'$ '(7(50,1,67,y.( 352*12=(
U prvom dijelu ispitana je metodanalogona NRMD NRULVWL GHWHUPLQLV
RSHUDWLYQRJ QXPHULpNRJ PRGHOD $LUH /LPLWpH $GDS
InterNational (ALADIN) [ALADIN International Team, 1997] NRML VH NRULVWL QD
KLGURPHWHRURORéNRRSI]Hﬁl‘K,Rt.}?ritﬂ)mljléIDWS/l[\NRID’IQD GHWHUPLC(
prognoza srednjakaA() i medijana ANM) ansamblaanabgona PRaWR UH]XOWDWL Sl
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ANM QLVX XVS MM @Q.LSlika®bRa Str WH QLVX SRNRpEOostuSHFLILP
odnosu na ostale progngzesu detaljnije prikazaniRezultatiprognozeAN XVSRUHYHQL VX
linearnim, ekurzivnim i prilagodljivim pristupom koji se temelpa primjeni Kalmanovog
filtra (KF) [Kalman, 1960; Delle Monache et al., 2012)YDM SULVWXS NRULVWL LGt}
SRPHWQXPHULPpNRJ PRGHOD L G RiétadxehgdgenaP BIBHR G QMDJ DIND R
prognozuKF. Dodatno, testirana su dva eksperimenta koji sjedimqgtode analogonakF.
Prvi se temelji na primjeni KF na vremenskom nmognozaAN U H ] X O Wdghio2dvhX U L
KFAN. Drugi eksperiment primjenjuje KF, no umjesto da koristi vremenskiprignoza
SRPHWQRJ RRGHWOWWL SURJQR]JH VRUWLUDQH SR VOLpPQRVWL
KRMD VH SRNXAaDYD SferhiraQdWdcziaw phrostar riiiBgon&ite se metoda zove
Kalmanov filtar u prostoru analogon&FAS). ShemaprognozaKFAN i KFAS prikazana je
naSIici5(str. D RJU DphrimEAVINMMRG LJUD]JLWH YDULMDELOQRVWL
na Slici9 (str.. .RQDPQR GHWHUP L Qrietddurh ahaldgSaK RIOQRMNBIX M X
KFAN i KFAS.

U radu se ispituje primjena metodeanalogona QD SRGUXpMX NDUDNWH
NRPSOHNVQRP WRSRJUDILMRP 8HhRisKEV XGMH R HD@W@®P DAVREGQ
mezoskalne energije prenosi strujanjima niz padine prema moru td feitluciranom
obalnom cirkulacijom[Grisogono and Belé L B009. Ispitana je primjena metodenad
planinskekompleksiom topografipm te ravniom kontinentalne HrvatskéSlika 2, str.EI

Slika 3, str.

Evaluacija prognoze brzine vjetra kao kontinuiranog prediktanda
$QDOL]LUMMXXUY INHRGJQ MH N Y RMSH, aEfQijdntd koddlhatija Mrh&RCO
WH SULVWUDQRVWL VUHGQMDND SRND]J]DQR MH GD VYH WH
rezutat operativhognodelaALADIN (Slika 6, str. Pritom su najbolji rezultati postignuti
SUL NRULaAWHQMX b OD QR YD1%H[F D QFRRRM @ WHH BIRIBOWIRE HS R J L
MH YMHURMDWQR SRVOMHGLFEBY X OLP|GW E O R DN NRIIPMMHN N R
metode u odnosu na razdoblje koje se koristilo za verifikaciju.

U radu je pokazano da su eksperiméffi i KFAN QDMXVSMHaAQLML WHVWLU
uklanjanje pristranosti srednjakgslika 7, str. 2PpHNLYDQ MHjew& KBH]XOWD
konstruiran u svrhu uklanjanjaistavneSRJUHA&NH DNR V HijeRj®@ GoMgi®dR QH P
YHOLNLK GQHYQLK YDULMDFLMDUz.}o Qrodvidza KiFH &R DHIRD YKD/ S M
koeficijent korelacije iZHyX SURJQR]JH L PMHUHQMD XnaB@GIgiREX QD SF

XVii
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ravnomtopografijomu kontinentalnoj Hrvatskoj, gdje postoje indikacije da u prognozama
QXPHULpPNRJ PR Gstawie SRRVUW&WHH VRMH XWMHpX QD JLEDQMLEL
periode dulie R G GDQD OHYyXWKEFP Q ISWUHR IMIRGIM DNR XVSMHAaQD
nesistavne GLVSHU]JLMVNH SRJUH&GNH QD REDOQRHKF, 8fa&U Xp M X
PHWRGH QDNQDGQH REUDGH SRND]JDOH VX VH XVSMH&aQLF
obalnog podrpMD ,DNR VYL SULVWXSL NRML NRUL§W®WbNBSQDORJL
SULODJRGE Hs@&a@ernjutpMaxneSR JUHADNMXVSMHaAQLAMD MH SURJQR

ORGHO $/%$',1 V KRUL]JRQWDOQRP (ABD padxjerijufeRpiiodnuR G N |
varijabilnost yetra na kompleksnom topografijon{Slika 8, str.. Standardna devijacija
(2 prognozekF EOLADLIWMHUHQLK YULMHG QR VA8 Po@jdnjirandH WR VO
LIPMHUHQLK YULMHGQRVWL Pa&auémanMRIEID]O Q R R QIRRIGER & p RIEKW F
je prognozaAN najsklonija podcjenjiviaju 1 Razlog je najvjerojatnijeazlika u varijabilnosti
LIPHY X UD DGRE@EDDe analogona ali i usrednjavanje koje se koristi pri
prognoziranju srednjaka ansambla G M H O R$rapj@eR priroda varijabilnost vjetra.
Eksperimenti koji kombinirajunetodu analogonakF uVSMHEQLML V XustavkeNOD QML
SRIJUHANH Sd&fdndfavdineDdevigaipl bd prognozeAN SUL pHPX MH QDMXVSE
prognozaKFAS 5D]OLpLWL HmNgn&HE hetBdd® Whalogpna MHO XM X QD UD]C
DVSHNWH SRpHWQRJ QXPHULpPpNRJ PRGHOD QR X NRQDpC
SRIJUHANH RMSEPiedpbst Wrimjenenetode analogonr@ad SULPMHQRP LVNOM X
.) SRVHEQR VH LVWLpH X REDOQRP SRGUXpMX

8WMHFDM SRpHWQRJ QXPHULPpNRJ PRGHOD QD UH]XOWI
SURGXNDWD LVSLWDQ MH NRULVWHGOL WUL UD]QTupdertWH NRQ
etal., 2013] GYLMH YHU]JLMH V SXQLP SDNHWRP IL]&RHAS), KRUL]R(
odnosno 2 kmA2 WH PRGHO GLQDPAp NHKRGDLERVDFDMERP UD]OX|
km. 8 VYLP LVSLWDQLP VOXpDMHYLPD GROD]L GR SREROMaAI
primjene metoda naknadne obrg@&dika 10, str. 7THVWLUDQD MH KLSRWH]D GI
PRGHODUDHuX¥pkoy R¥aM6IX PRIXUQRVWL VLPXOLUDWhogdLaH IL]L
LIDEUDWL L NYDOLWHWQLML DQDORJRQL OH@XMWHPPR DX WHI].
GRQLMHWL VHNGAGMARYDRRDXQNMHFDMD VDPRJ SRPpHWQRJ PRGHC(
ELWL SRVOMHGL Fibstupkd WiD Yotiéniiv@niRiV Waultata prognozeTakve
QHVDYUAHQRVWL SUL HYDOXDFLML WR p\weifikadijske®&tirkd QR]H S
namale SURVWRUQH L ID]J]QH SRJUH&ANH SHR HNEH) R D Xdv MY LROAKWN
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oko 1 km).$QDOL]D |DWR VDGUAL L HYDOXDFLMX SURJQR]H ]D

spektralnu analizu.RULAWHQMH SURVWRUQLK SR GoMidenficRRRMHQL SU
dodatnhSUHG QRV WL N R klikeW B QO NCh RREsHFOIDGHNYDWQHIUD]O XpL
W R p k@jimMa\bLse takve prednosti kvantificiral@su dostupne

(YDOXDFLMD SURJQR]H EUJLQH YMHWUD NDR ND
KategoripND YHULILNDFLMD SURJQR]D EUJLQH YMHMWBD: SURYHG
og percentila za identifikaciju tri kategaiyjetra: slab, umjeren i akBROLKRULpPNL NRHIL
korelacije PCC, Slika 11, str.st PMHUL DVRFLMDFLMX NRULNMddUL WD E
3, str [Juras 3DV D U L UMjeraP@C pokazuje da modely HUH UD] QAR pRAYRV W L
ELOMHAH L YHUX DVRFLIREDONR K rb R slMRa/3BE tipove
topografije (Slikal2, str.. Osim prognoz&KF nad obalnekompleksmmm topografijom
svemetode naknadne oborad@RYHUDYDMX DVRFLMDFLMX SURJQR]JH L PM
analogonastvaruje bolji realtat od prognoz&F, SUL pHPX QDMEROMAN.UH]XOWDYV

Nad obalnekompleksnom topografijonprognozaA2 je nepristran za sve kategorije
vjetra(Slika 13, str 2VWDOD GYD PRGHOD SRGFMH/jathariddél X pHVWE
DA jakogi slabogvietr GRN SUHFMHQMXMX XpHVWDORVW XPMHUHQ
WRSRJUDILMH VYL PRGHOL SRGFMHQMXMX XpHVWDORVW V
jakog vjetra.Nakon primjene bilo kojemetode naknadne dadmfe u prosjeku se smanjuje
SULVWUDQRVW SUL SURJQR]JLUDQMX NOLPDWROR&GNL XpH
OHYyXWLP SRGFMHQMLY D QM HogX¥jetiav pebstarjy e IN DLWIH| RRYU LM H
metodu analogona Prognoza KFAS pLQL VH SWMPDODRMHQIBULVWUDQRP
eksperimentimanetode analogonakategoriji jakog vjetradok je za ostale kategorije gotovo
jednako nepristrana kadN. . RQDp QR U H] X O WKF\pdkat@u Sahii pGsRIMOst u
ovoj kategoriji vjetra. @i rezultati samasu indikacijia RGUHYHQLK NDUSDAbWgH ULV WL
Y H O lupdrk@ Hhtervali pouzdanosti veliki

,DNR SULVWUDQRVW GDMH LQIRUPDFLMX R QH DGHNYDMW
SURJQR]H =DWR MH NRUL aWOS$R mieta raMivpQRp QRS M/NLV] X \GSNRH K
NDWHJRUL pilks) 2011 Sdliffe and Stephenson, 2011Rezultati pokazuju da
prognozakF LPD YLQQRHYBWLY ®RG WRpARWQYWK PRGHOD X JRWRYR
VOXpDMHYLPD Q D& kahtthéenbalbm iYpmndkddRormpleksmmm topografijom no
WR QLMH VOXpDM L (QSDkaRLEBt P. B RGWHMXH DQDORJRQD
YLALP YULMH&SRNRNWMXDL YHUOX UBO@Ddyrioxe®X IAMRKaQGR VW L
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prognoza jakog vietra NRQWLQHQWDOQRM +UYDWVNRM 8 WRP VOX|
KF, aWR VXuUdbMiulbMRIWHaANX PRGHOD SUL SURJQR]L MDNRJ Y
metodom analogon@N pokazuje najbolji rezultat u kategorgiabog vjetradok suKFAN i
KFASusSMHAQLML X RVWDRKRRAGYYMHS MDRLMWMIHRWILWH GD NRULA&AW
SRPHWQRJ PRGHOD GRYRGL GR SRYHUDQM DakagH@BIRAW LY QH W
REDOQRP SRGUXpMX OHYyXWLP HIHNW QDG RVWaREOsLUP YUVW
UDJOLNH PHYyX HNVSHULPHQWLPD NRML NRULQWREWD]YH@HW
prognoze modela LSDN VH PHYyXVREQH UD]JOLNH PHYX PRGHOLPD
metoda naknadne obradm njihovim produktimaRezultat, posebno u kagoriji jakog
vjetra,temeljen suna relativno malom uzorku, a i mjetdH O D W L Y Q& jeVadiepji@ad W L
NOLPDWRORANX XpHVWDORVp itstreibsbaYrhbtRES UR y RQ M LNUD RVGIU R
nepouzdanosti

-HGDQ RG QDpPpLQD NDIKE®DQRRAER AMGBRDOW DSRRIX MH SRYHUD
OHyXWLP WR MH X VXSURWQRVWL V RVQRYQRP L&HMRP SU
MH PHWRGD EU]D L HILNDVQD DOL L MHGQRVWDYQD ]D L
]DKWMHYD YL&H YuwhHDBodahD piiDsvdkblJ prggmjeni modela potrebno je
UHSURGXFLUDWL SRYLMHVQH SURJQR] HKoji &&\uRpralsHrijetkdp X Q D O ¢
radi zadulje razdoblje.Postupak treba ponoviti kod OMHGHUHJ DAXULUDQMD PRG
QDMpHaaE dgs &wWSDU JRGLQD QRAleHstMhBE RBAHHVH NRULVYV
YHULILNDFLMVND PMHUD NRMD MH SRVHEQR UD]YLMHQD ]D
indeks koji ovisi o ekstremim&EDI). Ovaj indeks nije, poppuPMUH UHODWCY,QH WRD
RVMHWOMLY QD NOLPDWROR&ANX XpHVWDORVWR&RIDYH RGH
indeksaeDI X VNODGX VX V SUHWKRGQLP UH]XOWDWLPD SUL p
(Slika 15, str.. Metodaanalogona X SURVMHNX SRVW Lpidgndzek® L UH]XO
prognozeQ XPHULPpNRJ PRGHOD SUL prdgnozekFANQReMIEBRODdL UH] X O
ako se koristi model® VYLP SRWUHEQLP SDUDPHWUL]BFLMMD L YH

skladu s prethodnim zeltatima

Spektralna anal& prognoze brzine vjetra
6SHNWUDOQRP DQDOL]RP MDYV Q Re ptdjeGR MWMANG Mi@ipieBR HW S R V \
RJUDQLPpHQD QD JL EdpQpéridde dueLad HO daxbx® pdstoji pristranost u
spektru snagerognozH SRbHWQRSIikBIB,GsH.@'UXJLP ULMHpLKB SURJQ
SRYHUDYD HQHUJLMX JLEDQMD YHOLNH VNDOH X REDOQRP
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QR VDPR ]D SHULRGHZxtdljé ldpeRt& snagg@y@R KF JRWRYR LGHQWL|
VSHNWUX SRpHWQR JKPARIGIHRO\DR YIR L. SHHINQWARL /DR XjesHsle W U X
parametriziratKF QR L X WRP VOXpDMX ]D RpHNLYDWL MH GD QF
skale (npr.na period od 1 dan ili manje)SH O HN W L Yiv@rije XjErénM Xifjednosti u
metodi analogonavodi do boljeg prognoziranja na skalama duljim od 1 dan (LoD
SO0RQEBHGBLXUQDO" >+RUYDWKRBWRINX QD @ikual—lwspr RGHO
Skala LTD je bitnjadc YHOLNH WM YHUH RG GDQD ]D SURJQR]H
skali LTD metodaanalogpnaVPDQMXMH SRGFMHQMLYDQMH HQHUJLMH >
obalnom i precjenjivanjenergijie X NRQW L QH Q W DAB®QIR BzreRuGhizK p Wjeca)
metodenaknadne obrad D VNDOH NUDUH RG 3VBRQNHHUQDO ™ >+RUYDYV
al., 2012), prognozaKFAS superiorna je ostalineksperimentima 5D ] O R J KKMAS raaW R
skali LTD VPDQMXMH SULVWUDQRVW VSHNWUD VQDJH SRpHW!
prognozaAN LOL pDN E RFASIZ4 skB[ESWDRIDGUA&aDYD HQHUJLMX VLPXOL
S R p g WhQdela Zbog toga je manje sklona podcjenjivanjenergije male skale od,
primjerice, prognozaAN i KFAN. Sve metode naknadne obrade adekvatno prognoziraju
aPSOLWXGX KDUPRQLND GQHYQRJ KRGD K K K SHULR
.RULAWHQMH YHUH KRUL]JRQWDOQH UH]JROXFLMH X SRptF
energije u spektrSlika 18, str. SRVOMHGLNM@RY IPDX)IMHMD X NRMLPD S
podcjenjuje gibanja na skalamdD. Kad je takvo podcjenjivanjgak prisutno, metoch
analogopnaSRQD&aD VH X VN O pdRaganimr8ultatihEK(RIR@ NRULAWHQMD P
manje rezolucije Kad model precjenjuje eneligi skale LTD, spektarprognozemetodom
analogonge YUOR VOLpPDQ V XHABVIWga addpade@mujpAN). Na skali
STD postoji podcjenjivanje energimetodom analogonaSUL pHPX QDMEROML UH]X:
prognozaKFAS.

Ii. NAKNADNA OBRADA ANSA MBL PROGNOZE
'RVWXSQRVW NYDOLWHWQLK LIPMHUHQLK SRGDWDND X SOD
SUYRP GLMHOX RYRJ LVWUDALYDQMD VDPR WULjuUORNDFLI
potrebnim zahtievimaQSU GRYROMQD NROLpLQXDWMUDAFRRRZ D] & RERC
XVSMHEQR WHVWLUDQMH analagesaO HP HEQ VWIHF LENRXO NP H W. R @/HU D & L
metode nad kompleksnom topografijom planinskog, tiddJ XJL GLR RYRJ LVWUDALYD
29 mjernih postaja u AustrifiSlika 19, str. WLMHNRP JLPVNRJ VLMHpPDQM L
(srpanj) u 2018godini. 1DNRQ avpmonMdielu SRWYUYHQD XVSMH&EAQRVW ¢
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PHWRGH X VYUKX SREROMAaADQMD U HIXPAMLWdRGispasd UPLQLV
je njera sposobnost da se primjeni na ansgonbynozu modela. U prvom dijelu je, pritom, u
IRNXVX GHWHUPLQLVWL p NEalo®beRkh@ RoDnoRaHRAMRrGiIRRog ili
NDWHJRULpNRJ SUHGLNWDQGD GRN MH X GUXJRP GLMH(
proJQR]JL 'UXJLP ULMHpLPD RFLMHQMHQ MH QMHQUSRWHQFL
svrhu temeljito je analizirana primjenanetode analogonana prognozu austrijskog
Q XP HUL p N RALADRGLUABHLimited-Area Ensemble Forecastinglika 20, str
Wang et al. [2019])Cilj drugog GLMHOD LVWSRERQOD DML MHURIQR]X EL
(LAEFws WH SULWRP ]DGUADWL UDpXQDOQX HILNDVQRVW L]JY
HNVSHULPHQDWD NRML Nj& i pwogneze LADADINIPAER kbo Lu@ifeU P D F
podatke (tzv. prediktor varijable ili prediktogy. 3UHWKRGQR SURYRYHQMX HI
provedemn su testovi osjetljivosti Testovi RSWLPL]LUDMX XWMHFDM RGUHYVYH
parametrakao prediktorana postupak izdyanja najkvalitetnijin analogonaneovisno za
svaku lokaciju[Junk et al., 2015Alessandrini et al.20154. Osim pretpostavljenog utjecaja
informacije o prognoziranoj brzini vjetrayajbitnija je informacija osmjen vjetra, zatim
temperaturi i relativndé1 Y O D(SIQM,\M BULWRP MH SUHGQRVW NRULA
prediktora istaknutija nad topografski planindk@mpleksnim nego nadS U H WravaoDhR
topografipm (Slika 22, str.. OsiP LIERUD PHWHRUR QOdRsablKrdgimbkaD P HW D
SRPHWERHULPpNRAUPRIGHHO R DpLQD NERRUNRRQRWWILWNH LQIRL
kao ulazne podatke za metodmalogona 3ULPMHULFH PR&H VH NRULVWL
YULMHGQRVW pODQRMBGD@QVLDPEODLAH PHWHRURORANLK S
LQIRUPDFLMH SD SULPMHULFH NRULVWLWL VDPR LQIRUP
ansambla. Provedeni testoviSIRW R QMHP V O X p &piinalad Rapinpx Misrmadie
R UDV S U a Hui@aMn{jerBnQ gtBndardnom devijacijod iznosi oko 40 % vrijednosti
doprinosa informacije o srednjaku ansan(8kka 23 str.
SURYHGHQR MH XNXSQR méteblertv artalgdrzakbl) s r@eDstvéno

razlikuju po izboru prediktor varijabli iz modelaALADIN -LAEF (Tablica 5, str..
SBUHGLNWRU YDULMDEOH XNOMXpXMX

X .RQWUROQL SUYL 6p@UQY XSIMXPEOWHRURAGERGNLK SDUD

X 6YH pODQRYH DQVDPEOD (MERMRR]IH EUJLQH YMHWUD

x Srednjake ansambla BaGRVWXSQLK PHWHRUMMBMMaNLK SDUDPHWD

XXii
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Xx 6UHGQMDNH L UDVSUaH agnsainbl ppolyhbzd HeQ &R dogtDpnih
PHWHRURORANAKESODUDPHWDUD
X 6YH pODQRYH ©O®R\DWESOQLKO PHWHRUMBREANLK SDUDPHW
x Progiozu za6 PHWHRURORANLK SDUDPHWDUD SUL pHPX
MHGQRP RGUHYHQRPRnBEM¥BEN).X DQVDPEOD
.UDWLFH SULSDGQLK HNVSHULPHQDWD QDYHGHQH VX X ]DJ
X N O M20jmXokziKu i smjer vjetra2-m temperaturu2-m UHO D W LY QuXzey@iledk Q RV W
N R O L p L Q XSvRdksperiméniti producirajansambl prognaebrzine vjetrasastavljenu od
1 pODQRYD 5H]XansbponaX \PFHRAURHGHQL VX V PHWRGRP NRMEC
statistici simuliranih podataka za ansbl prognoze EMOS) [Messner et al.; 2014]
Provedena su dvBEMOS eksperimentaEMOSws koji koristi zadnjih 30 dana zXpHQMH
metode te samo informacije o prognozi brzine vjetra kao ulazni podaEMOSstd koiji
koristi cijelo ras;RORALYR UDXGRB®HWANW YYB UDVSRORALYH PHWHRUF
Analiza pokazuje da EMOSwWsQHaWR XV SMH & Qustduned RXINVHERGES) M X V
GLVSHU]J]LMVNH SRJUHANH SURJQR]H SRpHWQRJ PRGHOD

(YDOXDFLMD DQVDPEO L SUREDELOLVWLpPNH SUI
Rezultat pokazuju da su shnEn HNVSHULPHQWL XVSMHaQL X SREROMaA|
modela(Tablicas, str Tablica?7, str. SULWRP MH UDpXQDOQR QDM]DKYV
AnEnMem najmanje uspjé@ D(@lika 29, str.. 1HSRYROMQD VYRMVWYD SRpl
SRSXW QHGRYROMQH UDVSU&GHQRVWL WH OR&H UH]JROXFL
uvjetovanih mjerenim vrijednostimae razlikuju dovolino]D UD]OL p L WiiedridMiH UH Q H
ostaju nakon primjene metodealogonals ovom eksperimentu & prisutna nego kod ostalih
eksperimenatayinjenica GD MH SURVWRU ]D WUD&HQMH DQDORJRQD F
NRMLP VH pODQRYL UDj®IMMAHWIRNMID D @R YDeXMIRIRERdperiihent
AnEnWs, NRML NRULVWL LVNOMXpLYR X\QSRUAR&ptidddMBE EU]LQL
eksperimentomAnEnMem X SREROMaADQMX XVSMHaQRMWWIstaBld RJQR]H
SRIJUHANH SULVWUDQR V.\Wakley 8kdj& @ Mekdy Dazldy® doEtpEaOsBMo
prognoza MHGQRJ PHWHR UR Oé&kgperinent BAEOMISPRoR&ZU|® da metoda
analogopnaPRaH SREROMADWL UH]XOWDWH -R3d EROML UH]XOWL
NRULVWH LQIRUPDFLMH R SURIRMARIANR & FBilEBiDd ¥ @MCPEDIQ PLHON
bolji rezultat je postignut SUL NRULAWHQMX SURJQR]D NR@WUROQRJ
analogona(AnEnCitrl D NRULAWHQMHP YL ahbarRbrekibthG €2Rdaljeb OD QD

XXiii
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SREROMaDYD 3ULWRP MROCCBRWDQRHGNDRRPHVWRW)L VYH UDV!
SRpPHWQH SURJQR]JH 1DLPH NRUKaEWHQIMHX WIEAHHG\IMDN@I R.U
ansamblp SREROMAaADYD SRpHWQX SURJQRHKao kRad 3R Wos¥eRsveM H G Q D
informacije s vrlo malostatLVWLPpNL |JWQDWOOLMOLKE] WR SRWRQMH MH |
zahtjevan postupakB]HY&dL VYH QDYHGHOQH FDRAMK K H Q&M B MU
ovaj prisup optimalan] D SULPMHQX X RSHUDWLY QRBz BfdgrBddipuroVy WLPNR
SRJUHAFLHSURD @PAHW L HILNDB&HBILQDRPW P DXN G X XNDHY R M X
NRMD MH GLQDPLpNL VLPXOLUDQD QXPHULpPpNLP PRGHORP
Svi eksperimentiSR ER GQWMABD|IXIOWDWH SURJQR]JH SRpHWQRJ PRGHOD
PDOX UDVSUGHQRVW DOQOWXREODYRMNMVWRINHEDRJIJQR]H SRS
diskriminaciie SRVHEQR KXDWUDMNHBPRMXVWLPpQL REOLFL NULYXOMD L
NRULAWHQLK ]D HYDOXDFLMX SM,GH‘_@-IXZBBH‘Q[DWLR QX ERL
rezultati primjene metoda naknadne obrag®stignuti za ljetni mjesec, kada je i rezultat
SRPpHWQRJ PRGHOD QH&WR E Rrimka (@ HpbBnozEEMQIWE Kdja PM HV H F
SRND]XMH PDQMX UDVSUaR QR W VRGJ RV BWIQORD @RVOMHGLFI
razdoblaXpHQ®HJIJR NRG RVWDOLK HNVSHULPHQDWD WH VDPR M

2SUHQIRWRRWY DQVDPERAK WRHI@GHW DO ISR RRENGSE®L]LUD W I
mjerom neprekidno rangiranog ishoda vijetogsti CRPS NRML VH PRaH UD]PDW
SRRSUHQMH VUHGQMH DSVROXWQH SRJUWik#§ H20IQ]ID SURE
Eksperimenti temeljeni na metodi analogoNaL JQLILNDQWQR SREROMAaADYDMX
modelaALADIN -LAEF (LAEFws) |D VYH S WkBRsSaERiohEtegi DQD PMHVHFD VLM
isrpanj;SIikaSO,str. 5H]XOWDWL VX EROML QRuUX QHJR WLMHNF
metodeanalogonaXVSRUHGLYL V LOL QDG EMAGX BoXi rezdliat ongvodaVH P HW
amlogonaod metodeEMOS mogu se X R pza\kratko nastupno vrijeme prognozeR S toH Q L
YLaAaH X VLMHpQMX QHJR X VUSQMX

6YL HNVSHULPHQWL |]DGRYROMDYDMX |DKWMHY VWDWLV\
uniforman (Slika34, str.. EksperimentEMOSws pokazuje pretjeranu pouzdanost kod
SURJQR]JLUDQMD YHOLNH Y MH U Rlddkekégg RMEekENORStdpremvely D UH Q M |
SRX]GDQ NRG SURJQR]LUDQMD PDOH YI\/($1ikhFBB/,ItRVWL 1D
EksperimetL NRML NRULVWH DQDORJRQH JRWRYRsvolsKo VDYUZ&tL
diskriminacip(L]PHYyX VLWXDFLMD NRMH MHVX L RQLK NRMH QLV>
YHUH BeRKOdMplognoza metodoranalogona]ERJ YHUHD WRHMEDOK SURJQR]
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XNXSQRP EURMX RVWYDUHQLK GRJDyDMD 5DJOLNH PHyYX
analogonamanje su istaknute nego kad se usporede s metodom EMOS ili rezultatom
SRpHWQRJReZRIGIHH@ENStd i AnEnAll JRWRYR VX &BWQ W2 X U
NRULAWHQMH VDAHWLK LQIRUPDFLMD R SURJQR]L SRpHWQR

B3URVWRUQRSROHB ®WIX BNERAGQM@ MOLPDWRORANX UD]GLREX
EUJLQH YMHWUD LVSROMDYDMXuUuL YHUX SR RuUHIAKBLX SRGUX
str.. Primjenommetoda naknadne obraggognoza sdodath oSREROMAaDYD VOLMHG'H
prostornu razdiobu.Pri prostornoj evaluaciji priMHUHQR MHSRGEU XpMX L]JUD]
kompleksne topografije za prostorimiske lokacije postoje velike razlike XVSMHaAQRV WL
prognozeQ X PHU L p N R Progrio@iltAEMvs XVSMHAQLMD MH ]D ORNDFLMH
ukotini RG RQLK NRMH VX QD YLaAaRM QDGPRVWHNRMERBRANMNX QI
SURJQR]X L NRaQriakob @rinyjdid metodenalogonge bolji za postaje kotlini
(Slika32,str. OHYyXWLP UHODWLYQR SREROMADQMH X RGQRVX
]JDSUDYR PQRJR YLAH L]UD&HIQEFNsRBgMvRQ DA WIHEQ IR DQ DOGRFER. WA
visinama. Takav efekt posljedica je uklanjanjastavnihizvora SRJUHAaNH SULVWU
srednjakail NRML VX X YHURM PMHUL SULVXWQL X SURJQR]L
planini.

,DNR MH SRMDYD VODERJ L XBEMHEHORR YWMHWD[P PWRUIR
SURJQR]H ]|D MDN YMHWDU ]JERJ QMHJRYRJ XWMHFDMH QD (
brzinu vjetra(u rasponu 0.5+20 mst), WHVWLUDQD MH XVSMH&AQRVW SURJ(
vjetra (Slika 35, str. Pokazano je dBAEFws SURJQR]D SRND]XMH XVSMH&aEQR
malu brzinu vjetra (npr. do 3 M Sve testiranenetode naknadne obradREROMADOH V
XVSMHAQRVW SURJQR]H L ]D YHiX dalddofeXQDN EXWGRI HEQIL\WM B |
od metode EMOS za brzinu vjetra do 10%mseovisno o dobu godineaWRYLAH HNVSHUL
AnEnStd i AnEnAll |QDpDMREROMADYDMX UH]XOWDWH SRpHWQRJ
pragove brzineX VLMHpQM X

iv. =$./-8y%$.
Rezultati pokazuju da determinitNL SURGXNW PHWRGHY B@®andstI R QD
prognoze i mjerenja tenanju SRJUHaANX X B&PHWRPUHOPWLPNL PRGHO NRML
koristi kao ulazni podatakDok prognoziranje srednjaka ansambla analogona rezultira
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§ 1 Introduction

8 1. INTRODUCTION
1.1. Motivation

The skill of shor and mediurrangenumerical weather prediction models has improved at
both global and regional scales. Their ability to simulate and forecast winds in complex
topographyand coastal areas is, however, still largely affected by insufficient resolution,
imperfect boundary and initial conditions, simplification of physical processes and numerical
approximations. It is often considered that the higher the model resolution the more accurate
the forecast, due to better resolved lower boundary conditions andatlaptation when
decreasing the grid spacing. These benetie not always eviderg.p. Mass etlg 2002; Rife

and Davies, 2005Even at the sukilometer grid spacing, statd-the-art mesoscale models

still exhibit considerable errorespecially incomplex bpographyHorvath et al., 2012 This

is particularly relevant for operational weather prediction systems that are constrained by the
available computing resources. It is thereby useful to devsiofable postprocessing
methods that reduce dfiag model errors at locations where measurements are available,
besides improving the model itself (e.g., usirg higher resolution or improved

parametrization package).

1.2. Using the analogies to predict the weather

The idea that analogies (i.e., simifast forecast, measuremerus analysis) can be used for
forecasting future weather has been explored for decades. It is based on an assumption that if
two atmospheric states are initially very close, they will remain somewhat close for some time
in thefuture.For instance, Lorenz [196@]aims thatti is hard to identify any state in the past

that can be considered a good match to the presentdeatge flow pattern, except for
mediocre analogue&urthermoreRousteenoja [1988] and Lorenk969g statethat one needs

to wait an astronomitly large number of years until the likelihood of finding two

atmospheric states that differ less than the prefmnbbservational error is sufficiently high
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enough to be considered as usaBlack then, the applicdlly of analogues for shomange
weather forecastings practically dscarded. Van den Dool [1989jowever, shows that it is
possible to find useful analogies if the number of degrees of freedom in the matching
procedure is reduced. The author usesyaeal over a localized area (i.e., not entire Northern
Hemisphere as indrenz[1969) and then uses the IPsubsequent analysis to each analogue
as a plausible 500 hPa height forecast. Various procedures are formulated afterward,
including different preditors and analogue selection critefiiis is done mainly because the
use of analogues for forecasting of meteorological fields is limited due to excessive degrees of
freedom of the problem at stak®&pplications including longange weather predictionsiag
National Oceanic and Atmospheric Administration (NOAA) outgoing {asage radiation
fields [Xavier and Goswami, 200&nd very shorterm orographic precipitation pretimns
using radar observation®dnziera et al., 20)lare proved to beskillful. The Southern
Oscillation Index (SOI) feecasts using SOl measuremerisosdowski, 1994jand point
wind speed forecastsising wind speed measurements [Klausner et al., 2@g8]bit
satisfactory resultsas well Besides single fields, also the use of sjiti correlated
observational variable$\Ju et al., 201Palso proofed to be suitable.

Besides predicting the weather using past measurements or analyses, analogies can be
employed to reduce the errors in the numerical weather pred{®t\dt) model simuléions.
This approach utilizethe achievements of numerical modeling in predicting future state of
the atmosphere. Additionally, it can reasonably absorb the information of the analogues in
historical data (statistical model) in order to improve foreck#t & shown for idealied
cases with lonorder modelsRen and Chou, 200&nd general circulation modelingspo &
al., 2006; Ren and Chou, 2007]

Van den Dool [1989teveas that analogues can be used to predict the forecast skill of a
NWP model. Hamli et al. [2006] and Hopson [2008ktend the idea and apghe analogues
to ensembldorecasts. Hamill and Whitaker [2006tate that, when comparing the pattern
match of the historical local ensemisieean forecast to the current enserrbkan forecasni
the same region, it is possible to find many similar and useful analogs within a few decades of
re-forecasts. Their study focus®n probabilistic forecasts of 24 precipitation. All the
aforementioned analeigchniquesreable to improve the Brier dkiscore, resulting in a skill
comparable to a logistic regression technique. The authors, while comparing different analog

techniques, also conclude that selecting analogs for each member rather than for the ensemble
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mean generally decrease the forecdsl. sAnother successful example @t calibrating
ensemble forecast can be found in Hopson and Wel2§i#0]. The authorseekanalogsin

orderto generate the final set of discharge ensembles accounting for all aspects of discharge
forecast uncertaintynfeteorological and hydrological). This part of the fully automated
operational 110-day multtmodel ensemble forecasting scheme for the major river basins of
Bangladesh helped to evacuate many thousahplsople and livestock during flood events in
2007.

As a very successful continuation of the aforementioned stu@liebde Monache et al.

[2011] propose two variations of analogbased posprocessing method to improve
deterministic NWP forecasts of 40 wind speed, based on a historical data set including
NWP data and observations at a single site. The weighted (ABQrof the analog ensemble
(AnEn) is tested and compared to a linear, adaptive and recursive Kalmarfkiepost
processing approadibelle Monache et al., 2006, 2008, 201Ahother approdtis to apply

Kalman filter to the historical set of (starting) model forecasts in the analog space, ordered
from the worst to the best analog (Kalman Filter in Analog Spa€eAS; Delle Monache et

al. [2011). With that approach, the correction of tharent forecast is based on a higher
weight to the analog forecasts closer to it. The authors demonstrate that both approaches
increase correlation and reduce random and systematic errors. Similar approaches are used for
predicting other variles as well.Djalalova et al. [2015show similar resu#t predicting
PM2.5concentrationswhile Nagarajan et al. [2015st the techniques across several models
and meteorological variableAdditionally, Djalalova et al. [2015&pply theKF to the time

series of théN, resultingin a new deterministic forecast called tKEAN.

Delle Monache et al. [2013¢xplore benefits from using theanalogsto produce
probabilistic 16m wind speed and-&h temperaturéAnEn forecasts from a deterministic
NWP. The authors show th#tte AnEn exhibits high statistical consistency, reliability and the
ability to capture the flovdependent behavior of errors. The useaménalogbased method
to produce probabilistic output is not limited to short mediumrange forecasts. Vanvyve et
al. [2015] provide highquality longterm wind resource estimatecharacterized by an
accurate wind time series and frequency distribution. In addition to using probabilistic-analog
based predictions to gain wind resource estimataavyve ¢ al., 2015;Zhang et al., 2015]

they are also used to downscale preatpn [Keller et al., 2017], to predict solar irradiance
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[Alessandrini et al., 2015a], 1 wind speed [Sperati et al., 2017] and wind power
[Alessandrini eal., 2015b; Junk et al., 2015]

Additional to using a derministic NWP to create AnErDglle Monache et gl2011;
2013, the same approaclarcalso be applied usinghdNWP ensemble. The AnEn ability to
capture the flondependent error growtis complemented with the aspects of error growth
that @an be represented dynamically by the multiple model runsroN®P ensemble.
Following thatidea, Eckel and Delle Monache [20J@8pduce m analogs for each member of
the n-member NWP ensemble, resulting in 1 Q 3K\EANE®G The approach yietd
mixed results forthe 100m wind speed forecasts, while the application fbe 2-m
temperature forecass more successful. Mugume et al. [201%/ho use the analogbased
method to postprocess ensemble membength different convectionparameterization
sclemes, also explore the same idea. The authors demonstrate-raeemsiquare error
(RMSBH and bias reduction in rainfall prediction when using corresponding predictions of the
(starting) ensemble mean analog as a forecast. Slightly better results (efigasigreduction
of negative bias errore achieved when seeking the analog for every (starting) ensemble
member and then average the analdgsally, since he AnEn can be affected by a
conditional negative bias, especially when predicting eventkerright tail of the forecast
distribution, thenovel bias correction methos proposed by Alessandrini et al. [2019].

1.3. Research objectives

In this researchwe propose an wdepth analysis of analdgased methoddver complex
topography. The target aref thisresearchs located in Croatia, whemifferent mesoscale
wind regimesinclude strong bora downslope windstorms (which may reach hurricane scale
strength, e.g., seeview by Grisogono and Beludi2009), mountain valley and slope winds,
and themally-induced lanesea breeze (e.g., Tdan Prtenjak and Grisogon@007;
Horvath et al[2011]). Due to the importance of model resolution necessary to represent wind
processes in the target area, we study whether theppxstssing improves resulighen

using a higheresolution starting model. We thus test the role -oai&d 2km grid spacing
full-physics Aire Limitée Adaptation dynamique Développement InterNational (ALADIN)
model In addition, we use a modglatdynamicaly adaptsthe 8-km ALADIN output to the
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2-km grid spacing The latteris D FRQILIJXUDWLRQ H J abJbu -DQG 5DN
aDKGDQ DQG 7 xsedrfor operati@al wind forecastingthe ALADIN consortium
and Croatian Meteorological and Hydrological Service

We study the performance of different ppsbcessing metids using metrics that
consider wind speed as both continuous and categorical predictand. These Ai¢|uClE,
KFAS, and KFAN, as described above. We analyze the results across three regions with
distinct wind regimes:

i.  coastal complexopographywhere tle most significant portion of mesoscale energy
is governedby strong downslope windstorms as well as thermally induceddead
circulations,

ii.  mountain complextopographywhere the most significant portion of mesoscale
energy iggovernedoy the weakto-moderate valley and slope mountain windsd

lii.  continental nearly flatopographywhere the motions are predominantly of syneptic
scale variability and origindaninovitetal., 2008; Horvath et al., 2011]
The focus is set on the compl®pography primarily coastal region. Therefore,enstudy the
importance of the starting model resolution and formulation by using three versions of
ALADIN focusing on coastal completopographycharacterized by plethora oimesoscale
wind processes.

In contrast to coastatomplex topography the availability of the quality data over
mountain complexopographyin Croatia is limited. Only thremountainlocatiors satisfy the
necessary quality demands for the analog method testing and implemeimadbetirst part
of this research (i.e. having similar amount of data after basic quality control as for other
sites) For that reasgnthe regarch is extended using 29 meteorological observation sites
(TAWES) in Austria for winter (January) and summer (July) month of82QAfter
investigating wind speed as continuous and categorical predictand, the focusesteoad
to the ensemble and probabilistic wind speed forecasting. In addition to detegministic
NWP input toanalogbased methqdthe ability to calibrate the enable NWP is also
investigated. Thereforegn in-depth analysis othe analogbased methodpplied to the
AustrianALADIN -LAEF (Aire Limitée Adaptation dynamique Développement InterNational
tLimited-Area Ensemble Forecastingnsemble forecasts providedin the second part of
this researchFollowing the veork of Eckel and Delle Monache [2016] and Mugume et al.

[2017, the main goal is to significantly improve the ALADIDMAEF ensemble 1.0n wind
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speed forecast while maintaining low computational cost feratalog search. To test the
performance of the@nalogbased methodnd determine the optimal configuration, several
experiments using different sources of information available oAL#DIN -LAEF ensemble
forecasts are performed. The experiments includimguone or moreALADIN -LAEF
meteorological variables as predictoffie experiment using onlXLADIN -LAEF control
member for several meteorological variables as predictors is included to represaratidige
based methogerformance using the determingstnput, similarly aghe ALADIN model is
used within the first part of this thesis.

Through performed analysis, the experiments including only information about the
ALADIN -LAEF ensemble mean (asiggested by Hamill and Whitak¢200g) or every
ensemble ramter (similar as in Mugume et g2017) are also tested. A novelty in this
researchs the usage of the starting model ensemble uncertainty through its standard deviation
(3 in addition to ensemble mean).( The hypothesis additionally explored in thiesisis
that using a summarized meastuiles standard deviatiord, is the optimal way to dynamically
represent the aspects of error growth of the input ensemble motelftow-rdependent error
growth, which is already captured by the analog apprca2lGDN 3OHQNRY LTlheHW DO
ensemble model output statistic ppsbcessing approactEOS [Gneiting et al.2003) is
used as a reference model in order to betteerstand the analegearch impact on the raw
forecasts. All eperiments providel7 members wind spee8inEn forecast, as well as the
ALADIN -LAEF forecast.
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8§ 2. ANALOG -BASED METHOD

The AnEn can be used to estimate the probability distribuBido TY; of the observed future
value of the variabldJata given time and locatiarrhe TUrepresentsG/ariabIes predictor$
from the deterministic (startinghodel TV L KT5&T$4 450 To generate Usamples the
analogbased methodseshistorical datawithin a specifiedanalog trainingperiodfor which

both the deterministic NWR(starting modelland the verifying observation are availglds

schematically shown jRigurel
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Figure 1. Theanalogbased methodchemefor 4-member AnEn forecast & UTC lead
time In this example, 3 predictor variabl@se. wind speed, wind directipand temperature)
from the current NWP are us@dthe analog search proceduror eachvariable the values
within a 3-leadtime-stepswide time window (centered arouf8 UTC) are compared to the
historical forecast within the time window of the same width (also centered a@9uud@C).
The predefined metrid (#.! is usedto determie the quality of the matclonce the most
similar historical forecast are found, the AnEn is formexlit of verifying observations. The
deterministic forecast can then be issued as, for exatmgaenearof the AnEn. On the other
hand, the probability of apre-defined even{probabilistic forecast)}can be calculated by
counting the AnEn members predicting the event will happen.
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The bestmatching historical forecasts to the current predictsmcalled analogs may
originate in any past date in the traigiperiod. The quality of the analog is evaluated by the

following metric:

~C, BAa ¥ 6
I (oHo! L Aﬁ@—ﬂ? ASgp Kligov F #igonv0, €y

whereF is the current NWP deterministic forecastaaiivenlocation, valid at the future time
t, whereasAr is an analog at given location with the same forecast lead time, but valid at a
past timet'. The Na is the number of predictors used in the search for analegse the
weights corresponding tthe paricular predictor The absolute value of the metric is not
important as such since it is only used for the tenparison of analogs when used for
sortingby the quality Therefore, the weights are not constrained (i.e. their sum does not need
to be fixed. For the fair comparison between different meteorological parameters, however,
the weightsare normalizedusing the standard deviatio(}) of past forecasts of a given
variable at the same location. Tis equal to half the number of additionah&s over which
the metric is computed (the half of the tinvendow of any specified width)Therefore Fi
andAi -+ are the values of the forecast and the analog in the time window for a given variable,
respectivelyThe time window is used to accduor shifts and/or trends in the starting model
forecastAnalogs are found independently for every forecast time and locaaormwing the
search arouna particular ime of a day by a time window. In other wordke number of
degrees of freedom in alog finding procedure is reducdds proposed in Van den Dool
[1989). The Pkalue used in this researchequal tol lead time step, asquosed by Delle
Monache et al. [2013]The verifying observations of theestmatching analogs are the
members bANEN.

The assumption is that the errors of the good (quality) analog forecasts are likely to be
similar to theerror of the current forecast [Delle Monache et al., 2@htihencereduced by
the historical observation use8everal authors state thatetthnEn rank histograms are
uniform (e.g., Delle Monache et.gR013). Therefore, every member of the AnEn is an
equally probable outcome, even though, measured by previously defined metrics, some
analogs are closer to the current forecast than the @he@ncethe AnEn is formed, it can
be used to producthe deterministicanalogbasedprediction as well asthe probabilistic

forecast (e.g., to estimate the probability of a predefined event).
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§ 3. POST-PROCESSING THE DETERMINISTIC
NWP

3.1. Observations and éimatology

The postprocessed forecasting methodse tested at 14 locations in Croatia, covering

different climatological regiong~(gure?2). The locations are selectbdsedon the availability

of wind speedmeasurement§l0-minute average valuegt 10 m above the ground the

20102012 periodThe list of locations with the geographical features is givgraiviel

Figure 2. Topography and spatial distribution of tHe!l staions providing the 10n wind
speed observations usedtime section 3The stations are divided in three groups: coastal
complex (group I; red markers), mountain complex (group Il; blue markers) and nearly flat
continentaltopography(group lll; yellow makers).

Our goal is to compare and contrast the performance of the different methods, generated
from different NWP models, and at different comptepographyand coastline sites. The
locations are thereby divided in three groups:

I.  Group | is a coastal cortgx topographyregion that includes the locations near the
coastline and near the western slopes of Dinaric Alps. The prominent wind in this area
is bora, a strong and gusty downslope windstorm (e.g., see review by Grisogono and
Belua L[R009). The bora wind is more frequent in the northern than in the southern
Adriatic. Nevertheless, its maximal stggh is similar in both regions [Horvath et al.,
2009] Other mesoscale wind circulations are also notable and are governed by the
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surface inhomogeneity (e.g. laisga breeze) and vicinity of the mountains (e.g.,
mountainplain circulation, gap flows, weak downslope flows). Therefore, the diurnal

cycle is shaped by the proximity of the sea &ewlain elevation. The highest wind

speeds amyzed in thissectionare recorded in this ar¢gigure3a) and the mean wind
speed is 4.0 m's
Group Il is a mountain complérpographyegion with highlycomplex topographical

features. Locations in this area are farther fitn coastline and at higher elevation
than the locations in any other group, with mountain tops negdb00 m above sea

level. Because of terrain complexity and low population density the measurements are
coarse in space in this area. The measurementsalsa be prone to longer data gaps

due to remoteness of locations and generally more severe winter climate. After our
analysis, we therefore choose three locations that satisfy the basic quality requirements
within this area (e.g. that there are no gapsgér than a few weeks). This area is
characterized by a significant portion of energy variance due to mountain slope and

valley winds. Wind speeds in the mountain comptgpographyare lower than in the

coastal completopographyFigure3p) and the mean wind speed is 2.0'ms

Table 1. The list of thel4 stations providing the Xt wind speed observations used in
section 3. The statioreze divided in three groups: coastal complex (group I; red), moantai
complex (group Il; blue) and nearly flat continentapography(group IlI; yellow).

Location name Latitude Longitude Altitude [m]
Dubrovnik 42.6 18.1 52
Jasenice 44.2 15.6 170
Krk 45.2 14.6 57
Split 43.5 16.4 122
ALEHQLN 43.7 15.9 77
*RVSLU 44.6 154 564
Knin 44.0 16.2 255
Ogulin 45.3 15.2 328
Bilogora 45.9 17.2 262
*UDGLaAWH 45.2 18.7 97
Osijek 45.5 18.6 89
Slavonski Brod 45.2 18.0 88
9DUDAaGLQ 46.3 16.4 167
Zagreb 45.8 16.0 123

10
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Group Il stations are located in the nedtht inland coninental climatological

region of Croatia. The terrain elevation is up to 10@bove sea levelThe diurnal

cycle is shaped mainly by the gentle microscale variations of the topography. The
region is still influenced by nelocal effects of théinaridesmountain system to the

west and southwest, since these mountains affect predominant westerly flow through
channeling, blocking and other mesoscale processes. A strong wind is very rare in the
continental area, and it occurs during the cold air outbreaks folar or Siberian

areas in winter oIGXULQJ URXJK ZHDWKHU LQ VXPFhEWING=DQLQR

speeds are relatively loJFigure3t) and themean wind speeig 2.0 mst.

Figure 3. The loxplots oftheobserved data (outliers are not show@pending on time of the
day. The data aremeasuredduring the 2012012 period atl4 stations in Croatia. In
addition to the boxplot for all the data available (d), the data are sorted into groups (a
based ontopographytype and basic climatological featureBhe green lines represent the
50" and red triangle markers the 9Q0percentile, respectively. Those values are used as
thresholds between categories in the verification procedline. exact valuesra listed at

Table2

Mean wind speed for all 14 stations is 2.7'riBhe maximum of the diurnal cycle occurs

around 12 UTC on average for all statiofflsg(re 3¢). However, different processes

contributeto the average daily cycle at different locations.

11
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Table2. The exact values of the™sand 9¢" percentile of the observed data at 14 stations in
Croatia during the 2012012 period depending on time of the day (as show[Figure 3).
The data is sorted intgroups based ortopographytype and basic climatological features.

Time UTC [h] Group | Group I Group I All
Percentilel 50" 90" 50" oo" 50" 90" 50" 90"

2.4 9.0 1.0 4.1 1.3 3.8 15 5.7

2.5 9.6 0.9 4.2 1.4 3.6 15 5.6

0
3 2.7 9.4 0.9 3.8 1.3 3.7 15 5.6
6
9

2.5 9.6 15 4.9 1.9 4.4 2.0 6.0

12 3.3 8.6 2.5 5.4 2.2 4.7 2.6 6.2
15 3.2 8.6 2.8 5.4 2.1 4.5 2.5 5.9
18 2.2 8.7 14 4.6 15 3.8 1.6 5.5
21 2.2 9.1 11 3.9 15 3.9 15 5.6

Finally, the values of 30and 9¢' percentile are shown |iﬁigure3 and listed ifiTable2
Those values are used as thresholds between categories in the verification procedure.

3.2. NWP model data

Threeoperdional configurations of the limitedrea mesoscale NWP model ALADIMire
Limitée Adaptation dynamique DéveloppeménterNational modégl[ALADIN International
Team, 1997]that were issued #he Croatian Meteorological and Hydrological Servitcéhe
2010-2012 periodare used to generate-tdwind speed forecasits this thesis
I.  The operational limitedrea mesoscale ALADIN modelas launched twice a day (00
UTC and 12 UTC) at &m horizontal grid spacingA8). The A8 model usedhe
hydrostatic dynamicsvith spectral solver on 37 hybrgilgmapressure vertical levels
[Tudor et al., 2013Ilvatek aD K G D Q H WTlanitial conditionsverebased on a
variational data assimilation scheme for the ugpefields and optimal int@olation
for surface vaJ LD EO H YV, 2041} Dh@ Ht@daliboundary conditiomgere given by
the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) global model,
which was run operationally at Meteo France. Vertical transfer of momentum, heat

and moistureverebased o a scheméhatusel progngstic turbulence kinetic energy

12
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[Geleyn et al., 20Q6combined with modified Louif1987 stability cependency in the
surface layer [Redelsperger et al., 200Qpntribution of shallow convection tihe
evolution of prognostic fids was calculated within the turbulence parametiarat
according to Geleyn et al. [1987Deep convection is described laymodified
diagnostic Kuo scheme [Geleyn et al., 1994]. Microphysics parametrization [Catry et
al., 2007]included prognostic treatent of cloud water/ice, rajmnd snow, as well as
a statistical approach fosedimentation of precipitation [Geleyn et al., 2008]
Radiation effectsveredescribed according to Geleyn and Hollingswditt79], and
Ritter and Geleyn [1992]The impact of Gil processes on prognostic model fieldss
accountedor by a twelayer Interaction Soil Biosphere Atmosphere (ISB&heme
[Noilhan and Planton, 1989jvhich was also used for the surface data assimilation
[Giard and Bazile, 2000]Physics contributiorwas coupled to the dynamics via
interface based on a fltoonservative set of equations [Catry et al., 2007]

II.  An operational ALADIN highresolution dynamical adaptatioDA) model. TheDA
SURFHGXUH >aDJDU DwastakimptidRoutpir fields f@n theA8. The
DA dynamically adatd wind fields to the higher resolution horizontal terrairk(@
grid spacing) by adopting the model field to reach a gsiasionary state forced by
time-invariant lateral boundary conditionsvhtek AaD KG D Q D Q G04Y X &stivdl
levels in the planetary boundary layegreapproximately at the same heights as in the
A8 model (the lowest level is about 17 m above ground). The vertical levels in the
upper troposphere and stratospheegereduced, i.e., th®A wasrunon 15 levels in
the vertical. The wind fieldvasinterpolated to the height of measurements using the
stability functions andthe Monin-Obukhov similarity theory [Geleyn, 1988]
Turbulencewasthe only parametrization scheme used in@i#e while contribuions
of moist and radiation processesere neglected. This costffective forecast
refinementwasrun operationally twice a day (00 and 12 UTC run) for 72 h ahead with
a 3h model output frequency. Ithe complextopography the DA improved near
surface wnd predictions, as described in a number of studies such as Tudor and
lvatek aADKGDQ > -@DKGEDWHNQG 7XGR-ADKG DA DYEBNHN Qp
BLFHN > @ al.y200v, 12008 Horvath et al. [201]1]etc. TheDA wasused
for operational windorecasting in several countries that are members of the ALADIN

consortia.

13
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lll.  ALADIN at 2-km horizontal grid spacingAQ) wasconfigured similar to thé8, but
with nonhydrostatic dynamicflvatek- AaD KG D Q H W PbySics para@etrizations
included a full parametrization set as in tA, with an upgrade of a deep convection
parametrization. Unlike thA8, the deep convection in & wasa piognostic mass
flux type schemeGerard and Geleyn, 2005; Gerard, Z00he convective processes
in the A2 wereaccountedor the use of prognostic variables for updraft and downdraft
vertical velocities and mesh fraction§&é¢rard et al.,, 20Q9 The A2 was initialized
from the 06h forecasts of the operationdB 00 UTC run, and iwas run with the
ScaleSelectiveDigital Filter Initialization [Teremonia, 2008]This highresolution
forecastwas run once daily for 24 hours in advance (until 06 UTC of the following
day), with £h model outputrequency on 37 vertical level§ydor et al., 2013

Figure 4: The ALADIN model domains andpography +larger with 8 km horizontal grid
spacing A8) and smaller with 2 km horizontal grid spacimg( DA).

All three ALADIN configurations A8 00 UTC,DA 00 UTC andA2 06 UTC)wereused

to prepare foreasts for the period 2012012. The domains for all configurations are shown

in|Figure4| For every location of the analyzed measurement stations, the closest model grid

point (on land) is chosen from the four grid points surroumthe observation location.

14
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3.3. Referencemethod: Kalman filter

Generally, the Kalman filter (KF) approach is a recursive -postessing method used to
estimate a signal from noisy measurements. It has been mainly used in data assimilation
schemes to impwe the accuracy of the initial conditions for the NWP [e.g., Burgers et al.,
1998; Houtekamer et al., 2005]. The KF has also been used for NWP model forecasts as a
predictor bias correction method during ppsicessing of shoterm weather forecasts
[Homleid, 1995; Roeger el., 2003]. In a posprocessing predictor bias correction method,
the information (i.e., recent past forecasts and observations) is used to revise the estimate of
the current raw forecast. Previous bias values are used as indatTh&kbLDV KHUH LV GH¢ ¢
as the Wifference of the central location of the forecamtsl the observatiorigJolliffe and
Stephenson 2003]. The filter estimates the systematic component of the forecast errors (i.e.
bias). Once the future bias has been estimétedn be removed from the forecast to produce
an improved forecast. Such a corrected forecast should be statistically more accurate in a
leastsquares sensd-urther details on the Kpredictor bias correction peptocessing
method aragjivenbelow.

The gtimal recursive predictor of forecast bidgat time Hs derived by minimizing the
expected mean square error. KalnfaB60] shows thatT; at time Pcan be written as a
combination of the previous bias estimate and the previous forecast @rfthre hat (%)

indicates the estimate

Conge L QerngE -ckW F Qoo 0 )
The - .is a weighting factor called Kalman gain and can be calculated from:
ger” g
K R Top—
@rer> 8> gA 3

The expecteé meansquare error.can be computed as:
Lo L kigonoE €%0:s F - .. (4)

The ée@ and ée@ are variances of the noise term and the unsystematic error term,
respectively. Theiso-called errorratio is set to 0.01 vady following the other authors (i.e.
Delle Monache et a[2006; 201)). However, it needs to be noted tha¢ tKF performance is
sensitive to the error ratidf. the ratio is too high, the filtewill put excessive confidenca i
the previous forecast, aride predicted bias will respond very quickly to previous forecast

errors. On the other hand, if the ratio is too low, the predicted bias will change too slowly
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§ 3 Postprocessing the deterministic NWP

over time.More details on the sensitivity of the error ratio can be found in Delle Monache et
al. [2008].

For any plausible estimate of, and -, the KF algorithm converges promptly
producing the Kalman filter foreca¥F). Additional details of the procedure and algorithm
applied in thigesearclktan befound in Delle Monache et al. [26D

The KF is easy to implement and computationally inexpensive. Since the KF approach
adapts its coefficients during each timestep there is no need for a long training Ppeeod.
advantages of th&F approachalso includethe ability to adapt to changirseasons, and even
changing models. However, a disadvantage of this method is that it is not likely to predict
sudden changes in the forecast error caused by rapid transitions from one weather regime to
anotherDelle Monache et al., 2011Dverall, heseadvantages and disadvantages make the
KF a valuable reference to assess the performance of the proposedbasaidgnethod.

3.4. Description of experiments

The AN forecastfor the future time Pat a given locatiofis anaverage (weighted, iUMs 0)
of the observationslcorresponding to0 most similar analogs# (measured by metrics
previously defined in equatidl):
#0, Lg A% U & #qs. (5)

In other wordsthe nz .is a (weighted) mean o@-sized Ankn fora (future) timet. Several
authors such as Delle Monache et al. [2018fate that theAnEn rank histograms are
uniform. Every member othe AnEn isthusan equally probable outcome, even though some
analogs are closer to the current forecast than therotmeasured by previously defined
metrics).Hence the value assigned to the weighis 1.

Forecasting the median of the AnEANM) is additionally used asan alternative to the
AN that isless sensitive to the assumptions about the overall natuhe data (e.g. robust)
andto the small number of outliers (e.g. resistawilks, 2011]. The analogs are searched in
forecast space onlypr bothAN and ANM. Thereforeno observations are used to select the

best analogandsome sort of correction in reaime is desired.
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The KF approachuses all the available information to estimdte error of the current
forecast recursively giving higher weights to the most recent ddtavever, theKF alone is
not able to predict large ddag-day changes in the prediction error, as discussed thoroughly in
Delle Monache et a[2011]. Benefitsandshortcoming®of the methods using analogs and KF
complement one anothehencecombining them seems like a reasonable choice. In this
researchwo different ways to combine these methods are tested and schematically presented

in|Figureb

Figure 5. The schemes for tH€FAN and theKFAS forecasts in reatime. For theKFAN
forecasting, the last member of tA&l time series is created, while previously issued
forecasts are saved. TheN is hereby the ean of the Nmember ensemble (N=4 in this
example). Th&F is then applied to the time seriesAd values and reatime measurements,
recursively giving the highest weight to the most re@et(i.e. closest in time). For the
KFAS forecasting, the entirdime series of previously issued model forecasts (analogs) are
sorted by their similarity to the current model forecast, thus forming an analog space. Then,
theKF is applied to the analogs and corresponding measurements in the analog space, giving
the mosweight to the most similar forecast.
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The first combination of analegnd KFbased approaches includesining algorithms
independently. Firstthe AN forecasts are issued (or already savednpleting thetime
series othe AN forecasts. The last membef the AN time series ivalid at the future time
Then, theKF algorithm is applied(in time) to the time series ofthe AN forecasts The
Kalman filterof the AN forecastis created+thereforethe KFAN forecast. In other wordshe
KF is applied tohe timeseries of the mean AnEn values. Herebyeryensembleonsists of
observations correspondimgly to the N best analogsThe KF algorithm gives more weight
to the recentAN forecast than theAN forecasts issued at some time in the .paste
hypottesis is that th&FAN forecast is as adaptabletag AN forecast (e.g. when large day
to-day changes in the prediction error are presbnt)unbiased athe KF forecast.

Another possibility is to rurthe KF algorithm through an ordered set ¢&ll) andog
forecasts rather than in timeThe entire time series of analogs is ordered from the least
similar (worst analog) to the most similar (best analog) model forecast to the current one
forming an analog spader every future timeP Then, theKF is aplied to the ordered set of
analogs in analog space (the KF in Analog Spak&AS). The KFAS algorithm weights
closeness in analog spa@ad notproximity in time (as th&KFAN forecast) Therefore, the
starting model forecast (issued in the past) thahésmost similar to the current starting
model forecast is given the most weighhis procedure should be able to cope even with
drastic changes in bothe starting model anthe AN forecast error.

Model and observation datasets over the 28012 perpd are divided into training and
verification periods. The training period is from 2010 to 2011, and 2012 is used as the
verification period. The training period increases gradually after every forecast. As the newer
observations might be available sSomereattime operational settingshey are added to the
training database, together with the corresponding NWP model forecast. Therefore, the
training period is initially 24 months long (for the first verified forecast initialized January
1st, 2012) and the prolonged on a daily basis up to 36 months (for the last forecast,
initialized December 31s 2012). Delle Monache et al. [2008how that there is an
improvement in skill for longer training datasets. The improvement is intense with increasing
the trainng period, especially for training periods up to 6 months. The improvement in skill
becomes less notable at around a yearlong dataset. Thus, a dataset ranging from 2 to 3 years
should be long enough for this method in our opinion. Furthermore arlaébogbased

predictionswork best witha consistent model setup. Since (operational) model setup changes
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every once in a while, in our opinion it would be better to develop a methodology that can
easily adapt to those changes. It is, however, possible thairgylosger training dataset the
prediction of rare events such as extremely strong wind would be even better.

When using thé\8 or theA2 as the starting model, five predictors are used: wind speed
and direction logarithmically interpolated to -® height air temperatureand relative
humidity logarithmically interpolated to-2 height, and air pressure reduced to the mean sea
level. The DA does not include moist and radiation physics. Hence, only physical variables
related to wind fields are included imet search for the best analogs: wind speed and direction
logarithmically interpolated to Xt height, and vorticity and divergence at the lowest vertical
level (y17 m). The weight assigned to wind speed and direction is 1, and it is 0.8 for all other
variables. The time window used to find the most similar analogs is defined by one time step
before and after the lead time of interest. For instance, in eqig®dual to 1, hence forming
a 6-h time window for theA8 and theDA models, or zh time window for theA2 model. The
time window, the predictors and the corresponding weights used to find the most similar
analogs are the same for tKEAN and theKFAS asfor the AN and theANM. The same
recursive algorithm is used for generating kAN and theKFAS as for theKF.

To determine if the difference in scores between the experiments is statistically
significant, the bootstrap techniqige applied The Matlab @inction Aootci3, with default
bias corrected and accelerated percentile metisoty 1000 resamples at a confidence level
of 95%,is used.

3.5. Evaluation of the wind speed as a continuous predictand

To evaluate the performance of the different deterninisbstprocessing methods, wind

speed can be considered as a continuous or categorical predictand. Considered as a continuous
variable, wind speed forecasts error is quantified by-moesnsquareerror RMSH, which

penalizes a larger discrepancy morartta smaller ondhe source of error of a model can be
specified when decomposing tRMSEto the bias of the mean (or simply bias), the bias of

the standard deviationlpias) and the dispersion (phase) error (e.g., Mufd®8g; Horvath

et al.[2013):
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4/5'¢L :BFBOE:6 F&,°Ete &:sFNga (6)

where F represents forecast arfd observations,1is the standard deviatipandr is the
correlation coefficient between the forecast and observed 8miee the sm of the three
termsin (6) is exactly thesquare of th&@MSEvalue, it is enough to provide information about

two out of these three terms to describe the dominant source of the error (the third term is the
squaredRMSEvalue reduced by the value of tbther two terms). The term describing the
dispersion error involves the Pearson correlation coefficetghted with thestandard
deviation lof both forecasts and measurements. Correlation coefficient and dispersion error
are thus closely related: the smaller the correlation coefficient, the larger the dispersion error
term in RMSE decomposition. In thégction the rank correlation coeffient RCQO is used

as a robust and resistant alternative to Pearson correlation, appropriate if dealing with non
Gaussian distributed variables such as wind speed. Unlike the Pearson correlation coefficient,
the RCCis a nonparametric statistic. THRCC therefore allows a nonlinear relationship

betweea predictions and observation&/ijlks, 2011 Jolliffe and Stephenson, 2011]

3.5.1.The impact of the ensemble size to the deterministic forecasting

The first step in testing an ensembkesed method is to selechumber of ensemble members
(N). For that purposenve analyze thd&RMSEaveraged over all locations and all lead times

Figure6p). The optimaénsemble sizes presented and determined for &&starting model

The mean confidere intervals shown here are estimated with bootstrappismigreviously
described

Generally, the results are determined by the wind climate, complexity of topogeayghy
the low resolution of the driving mesoscale model. The starting model foreA&ytgi€ld
RMSEof 2.35 m&, correlation coefficienRCCof 0.58, and almost neaxisting bias 0f0.01
ms?t. However, it needs to be noted that this is aggregated (averaged) bias value, therefore not
necessarily implying that th&8 forecast bias is smallverywhere or during any time of a

day. For that reason, more detailed insight is provided in the following subsections.
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All tested posprocessing method# averaged over the three studied regiomgprove

the results of theA8 model. TheKF forecastsignificantly reducesRMSE (Figure 6g),

improves correlatior[F(lgureGJ), while bias remains smd¥lFigure6¢) when compared to the

A8. Using analogs improves results even furttentjust theKF, as it can be seen for the
KFAS. The KFAS uses the entire analog space and therefore does not depend on the
ensemble sizeThe otheranalogbased predictionAN, ANM, and KFAN) produce similar
results as th&KFAS for about 10 or more enséte members. Furthermore, theN, the

ANM, and theKFAN show similar behaviorrthe RMSEis reduced at first by increasing the
ensemble sizebut then it increases again fomore thanl5 ensemble membersThe
correlation also improveby increasing theenemble size while bias slightly worsens. The
mean of the observed wind speed during the verification period differs from the mean during
the training period for approximately 0.2 ™asThe bias is likely converging to that value
when increasing theenseml# size. Even though thbiases after postprocessingare
significantly differentfrom bias for theA8, one should take into consideration that the bias
under 0.5 m3$ can be considered relatively small. It is an order of magnitude smaller than the
other two terms inRMSEdecomposition and comparable to observational error (up to 0.5 ms

1 or even higher; WMO, 2008pdditional uncertainty comes from the fact that some of the
observation stations are subject to urban effects (heat islands, somestaitgeheltering),

while these urban &#cts are not represented in tested ALADIN model configurati®iven

the RMSEand bias growthvith the ensemble sizéhe optimal number of ensemble members

is set to 15, which is used hereinaffiersection 3)

It can ke noticed that th&NM experimenthas the highes®RMSEand the highest bias if
different analogbased predictionare compared. Since the othammalogbased predictions
produce better results than tA&IM, and specific benefits are not achieved in testexes
presented in this work, results for tABIM arediscardechereinafter.

Both AN and KFAN considerably reduce tieRMSE(as evident frorFigure 6g), better

than any other technique tested here. At the same tiv@g improvethe correlation|Figure
IEF). BothAN andKFAN have a very small negative bias, mostly betweh and-0.2 ms.
The AN has slightly better correlation and worse bias results thafKE#eN, resulting in
indistinguishabldeRMSE
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Figure 6. a) Rootmeansquareerror (RMSE), b) rank correlation coefficient (RCC), and c)
bias dependency on number of analog ensemble members (N) fox tilee ANM and the
KFAN forecass. The results are generated with #h@ and averaged over all of lead times
and 14 locations during 2012. Th&N, theANM and theKFAN results are then compared to
the A8 model, theKF and theKFAS forecasts, which do not depend on N. The mean values of
the 95% bootstrap confidence intervals areiGated by the error bars.

Since theKFAN forecast is created by applying the KF to tAdl forecast, the
differences between thEFAN and theAN in the correlation and bias results may be
expected. The KF algorithm updates its estimate of the future piasimg the old bias plus
uncertainty. The estimate is corrected by a linear function of the difference between the
previous prediction and the verifying bias. It ikerefore very successful in removing the
systematic errors (such asdias of the mean)f the bias does not change rapidly (i.e. large
hourto-hour variations).However the application of the KF algorithm can also lead to the
decrease ofhe correlation coefficient (i.ean increase of the dispersion eroespecially if

there ardargehourto-hourbiasvariations[Delle Monache et al., 2006; 2008].
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3.5.2.Lead time performance for differaimpographytypes

A more detailed insight into the performance of plostprocessing methodsan be gained by
analyzing the metrics in topographicatlifferent regions and at different lead times.
The first step is to analyze ti#8 performance in the coastaebmplextopography The

A8 model has the highe®MSEfor the coastal completopographyamong all groups of

stations|Eigure7q). Besides the increasing trend for longer lead timesA8®RMSEerror is

typically the largest during nighttime and peaks at 06 U @e coastal area. While during

nighttime the A8 exhibits maximum correlationF{gure 7¢), it underestimates the mean

Figure 7|) and underestimates trstandard deviationl (Figure 8a) more than duringhe
daytime. While observed wind speed shows the highest variability at OgEig@€8a), the

A8 forecast almost does not shtle standard deviatioddiurnal cycle. That result suggests

a systematic source of the errors for the diurnal shape8d®MSE(Figure7g). It is possible

that theA8 model underestimates land breeze, the combination of land bredzi®anslope

wind called burin [Poje, 1995)r underestimates both mean speed and variability of the
strong bora wind, which can be determined with analysis by season (e.g., bora austiys m
during wintertime and it is variable and intense, while land breeze can be dominant during
summertime stable conditions) or by examining case studies.

It is crucial to determine whicpostprocessing methoid the most successful in the error
redudion, especially in this particular group of stations where the error is the largest.
Additionally, it is important to demonstrate which term of tR®MSE decomposition is
reduced by whiclpostprocessing methodFor that reasqrthe performance of differémpost
processing methods in the coastaimplex topographywill be presented in the next
paragraphThe results are presented in s@cmanner that one can thus decide whcst
processing methots the most applicable for a specific situation, aftelinapke statistical

analysis of the potential starting model.
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Figure 7. Rootmeansquareerror (RMSE)(ad), rank correlation coefficient (RCC)-f@ and
bias (+l) dependency on forecast lead time for &&starting modelnd the corresponding
postprocessing meth@dKF, AN, KFAN and KFAS). The results are averaged ovire
corresponding groupand for 14 locationsin Croatia during 2012. The mean values of the
95% bootstrap confidence intervals are indicated by the dyans.
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Secondly, we aim to answer how well doesHKlikereference method perforagainst the
A8 model and against other analbgsed experiments in the coastamplextopographyThe

KF reducesRMSEand bias|Figure 7a andFigure 7|) while increasestandard deviationl

Figure8a), maintaining very similar dependency on lead time a®\&el'he otheranalog

based predictionfAN, KFAN, and KFAS) improve theA8 results even furtheereducing
RMSEand bias whilestandard deviationlis even closr to thestandard deviatiof the
measurements. Moreover, even thoughstia@dard deviatiors still a bit underestimated, the
diurnal cycle ofthe standard deviations more similar to the diurnal cycle of the
measurements than for tha8. Previously rentioned systematicA8 error (possibly
unresolved land breeze, underestimation of burin wetd.) is thus reduced or removed
completely. Thestandard deviatiorof the analogbased predictionss very close to the
standard deviationf the measurements alable over the training period. Tlmalogbased
predictionsunderestimation of thetandard deviatiors, therefore partially explained by the

fact that there is atandard deviatiodifference between training and testing peridi$o, in

the coastatomplex area,hte KF hasa smallercorrelation coefficient RCCO than theAS,
unlike all theanalogbased predictionshich havea higher correlation coefficienthan the

A8. Improving thecorrelationshows that by using analogs and measurements to build a
prediction the random error is reduced, suggesting that additional information on physical
processes is included in thaalogbased predictions.

After the general comparison of the analmgped predictions against the reference
method KF in the coastatomplextopography we will take a more detailed look into the
differences among analdgpsed predictions for this group of stations in the next three
paragraphs. We will focus on the underestimation of the standard deviation and the ability of

the analogbased predictions to reduce random error (i.e. increase the correlation).
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1[ms]

A8: Standard deviation

Figure 8. The dependency of the standard deviation on forecast lead time for the observations
during the training (2012011) and the verificatio period (2012), thé8 starting model and

the corresponding pogtrocessing metha&dKF, AN, KFAN andKFAS). The resultseferto

the correspondinggroups (ac), and tol14 locationsin Croatia (d) during 2012. The mean
values of the 95% bootstrap confiderintervals are indicated by the error bars.

Among the analogpased predictionshé AN forecast is the most prone to systematic
underestimation of thetandard deviatioEigure8 in the coastatomplextopography(but
also in general) This reduction of the forecast variability is due to averaging of AnEn

members while predicting the mean of the ensemble. This averaging naturally reduces the
variability and might partially be improved by using the lower number of ensembleeremb

This systematic error is partially removed by the application of the KF algorithm in the
KFAN forecast.
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Figure 9. Schematic representation of a Kalman filter correction for wind speed prediction
(WSPD) (a) run in timeKF) or (b) through an ordered set of analog forecasts (ANKF
equivalent to the abbreviatiokFAS used in this thesjs Whitearrows at forecast time (far
right) indicate the posprocessing methods estimate of the foreeasir. Circles indicate
observatims, asterisks refer to the raw prediction, and the dashed repeesens the
corrected predictions (from Delle Monache et[@01], page 3557).

The KFAS forecast on the other hanaxhibits the highesdtandard deviatioamong the
analogbased preditons in the coastacomplextopographyand in generalThis is worth
additional discussionThe simplified schematic example for improving the adaptability of the
KFAS forecast is povided in Delle Monache et al. [20114s shown irl\lziguj The
hypothesis is that applying the KF algorithm in analog space (rather than in time), results in

higher forecast variability during alternating wind regimes. The higkieAS standard
deviationthan theKFAN standard deviation the coastahrea supports this hypothesis. The
difference in thestandard deviatiobetween thaKFAN and theKFAS does not necessarily
mean that the higher variability for th&AS is occurring during alternating wind regimes

(i.,e. on the time scales shorter than &)dahe remaining underestimation efandard
deviationdepends on other aspects such as the variability of starting model forecasts-and fine
tuning of the analog search setup (e.g., choice of predictors, correspomagyngsywas shown

by Junk et al[2015]). The variability in the training period might be enlarged by prolonging
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the period itself (i.e. including El Nifio/Southern variations). Finally, the variability of the
postprocessedorecastsin general might be further improved by additional caltion For
example,applying theensemble model output statistic ppsbcessing approach (EMOS;
[Gneiting et al., 2005]on the analog forecasts or directly combining the two methods might
be a possible future research avenue.

Among differentanalogbased predictionsthe AN seems to have the highest correlation,
while theKFAN reduces the bias the most, as previously described in the more general case.
The KFAS exhibits the highesstandard deviatioramong theanalogbased predictions
supporting the hyothesis that using the analog space improves variability during alternating
wind regimes. After all, therareno significant differences ithe reduction ofRMSEfor the
AN, theKFAN, and theKFAS.

After analyzing the forecasts in the coastamplex ara, we will shift our focus to the

othertopographytypes. We will also statty examining the starting mod@&l8 performance.

The A8 exhibits considerably small&VSEfor the mountain complep{gure7p) and nearly

flat topography{Figure 7¢) than it is the case for the coastal complex Ma). The

smallerA8 RMSEis predominantly due to lower, less underestimatatidard deviatioof

measured wind speed for these groliigyre8p-c) than for the castal complexopography

Even though thé\8 error is smaller than in the coastal complegography it is still very
important to determine which term in tRMSEdecomposition is dominant and how indae
reduced by pogprocessingUnlike underestimation of (on average) higher wind speed in the

coastaltopography the A8 overestimates (on average) lower wind speed in the mountain

complex(Figure7[) and the nearly flatbpograghy (Figure7k), exhibitingthe similar absolute

value of the bias. ThA8 standard deviatiors much closer to measured wind sps&hdard

deviationfor the mountain complep{gure8p) and the nearly ftgFigure8t) than the coastal

complextopography The A8 correlation coefficientRCQ is lower for the mountaipFgure

and for the nearly flafHigure 7g) than for the coastaomplextopography therefore

decreasing with measuredeanwind speed and correspondistandard deviatianlt seems

that the lower the average wind speed for a certain group, the lower the correlation of
measurements and predictions, implying that wegtld is less predictable thanstrong one.

This especially makes sense for wind speeds that are comparable to observational error (up to

0.5 ms! or even higher; WM(Q[2009). In other words, models are more successful in
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simulating winds which are due stronger forcings i.e. pressure gradients, than weak winds
in nongradient situations.
Even though some statistical properties ofAlBepredictions are similar for the mountain

and nearly flatopography the physical processes influencing the flowsdifferent. This is

due to different dominant topographic characteristics, as explained in g8ctidfor this

reasonit is interesting to compare the effectpuistprocessingn a certain group of stations.
We will start byexamining theKF performance for differentopographytypes. The KF
forecastexhibits significantly lowerRMSE than theA8 in the mountain and nearly flat
topography The A8 bias is almost completely removed by tKé&, regardlessof the
k)
wind speed. Th&F standard deviatiorlin the mountain and the nearly flatpographyis

topographytype andif the A8 is underestimatin?F@gure?) or overestimatingKigure 7|

almost the same as tiA8, and very clos¢éo measuredlas well. In addition to reducing the
A8 bias of the mean and maintaining bias of stkendard deviatioalmost norexistent, the
KF also improves theorrelationfor all of thelead times in the mountain and the nearly flat
topography Unlike for the coastal complex, dispersion error is therefore reduced b¥fFthe
especially for the nearly flabpography Furthermore, th&F forecastdependency on lead
time is different than for thA8 in the nearly flatopography TheKF forecastexhibitsalocal
correlation coefficienimaximum around 00 UTC, while th&8 exhibits a local minimum

Figure7Q).

After examining theKF performance in differentopographytypes, we will compare
those results against the analmsed preidtions. The analogbased predictionfAN, KFAN,
and KFAS) in the mountain complex and the nearly fi@apographyreduce theA8 RMSE
evenmorethan theKF forecast further improvingcorrelationand reducing bias. THRMSE
correlationand bias dependensi®na lead time are similar as for th&=. This is especially
interesting in the nearly flabpography where previously mentioned improvement of &
correlation coefficienRCCis even more indicated when using analogs than foKeheThe
analog apmach selects similar numerical predictions (not necessarily recent) for assessment
of the starting model error, unlike naelectively using previously predicted (recent) values
in the KF algorithm. The KF would be capable of improving persistent errpredicting
stable boundary layer flow once it is started, as previously mentioned for the application of

the KF algorithm.The analogbased methodvould be more adaptable and capable of
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predicting the beginning of the flow, thus resultingaimeven highe correlation coefficient
than for the KF.

We will now take a detailed look into the analogsed predictions performance in
differenttopographytypes.Similarly to the coastal complex, in the mountain complex and the
nearly flattopographythe AN seemgo be the most highly correlated with measurements. The
KFAN hasaslightly lowercorrelation coefficienRCCbut is almost unbiased. Unlike tA&

and theKF, theanalogbased predictionexhibit a slight underestimation ofin the mountain

complex |Figure 8p) and nearly flatopography(Figure 8¢). The underestimation of the

standard deviatioms the smallest for th&FAS and the largest for th&N, for the same
reasons apreviously mentioned. The results for tiEAN are mostly in between these two
(AN and KFAS), which may be explained by the fact tkEAN shares important features
with both methods.

Finally, we will try to summarize the previous analysis by aggregatisgltsgfor all
available stations, regardlest the topographytype. Overall, theA8 RMSEis significantly
reduced by evergostprocessing methoeksted for all othelead times, more by thenalog
based predictionfAN, KFAN, andKFAS) than for theKF (Figure 7d). All postprocessing
methodsreduced theA8 bias, which is evident foa specific group and lead tim&igure7

k), even though it seems nemistenton average for theA8 (Figure 7[). The KFAN

predictions seem to be the most successful in removing bias, whitd\th@pears to exhibit

the highest correlation|F{gure 7h). Measured wind speedtandard deviation1l is

underestimated on average by th8 model and allpostprocessing methodEigureS,

mostly due to the underestimatiohstandard deviatiom the coastal area (group I). Overall,
thestandard deviation d{FAS is the closetsto the observed value.

3.5.3.The influence of the starting model

To investigate the influence of the starting model used to generate analogs, results are

averaged over all lead times for every group of stations. A reasonable hypothesis could be that

the mae physical processes that are directly simulated in the starting model (e.g., with higher

resolution), the better the forecast will be. TRIRISE(Figure 10p) and biagKigure 10f) are

lower for theA2 andthe DA models than for thé\8 in the coastal completopography
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empirically supporting this hypothesis. Therrelation coefficientRCC does not differ
significantly among different modelEigure 10e). It must be noted that it @ifficult to

quantify the improvement of more detailed forecasts over coarser ones usindpgsant
verification metrics [Rossa et al., 2008Jolliffe and Stephenson, 2006Pointbased
verification metrics tend to penaliapatial and phase errors, caminating finer resolution
simulations more than coarser ones. Hence, it might be challenging to easily demonstrate the
true benefits of using higherresolution forecast. To determine if that is the case, it would be
advisable to do case studies and s@ort of s@tial verification (for gridded forecastsyhe
selection of bora and sirocco cadadies might provide an interesting insight into pest
processing performandaenefits of using high resolutiofie. prediction of extremely high

wind speed). Tis is especiallythe caseif the experiments are provided usifgven the
simple) NWP model but with a more similar setup, preferably changing the resolution and
making only the necessary adjustmefigsrthermore, using the gridded forecasts and analysis

in the analog searchas well asthe spatial verification tool, is ra inevitable future
developmentSince the computational efficiency needs to be adequate, the analog approach
might also include othemethods (such as clustering, using empirical orthdgfumetions,

etc.).

All postprocessing methodested in thisectionimprove model predictions. It is to be
expected that th@nalogbased predictiongAN, KFAN, and KFAS) also achieve better
results when using th&2 or theDA than when using th&8. The quality of an analog should
increase the bettdhe representation ophysical processes simulated in the starting model
(i.,e. with higher resolution, nehydrostatic dynamics in thé2, etc.). This type of
improvement is clearly evident, for exampler fthe AN results in the coastal complex
topography The results show that the differences using different starting model
configurations are much smaller after ppsbcessing than for three starting models.
However, theRMSE correlation and bias scas are similar for thpostprocessing methods
applied to all three starting models. For some scores, such &MB& the analogbased

predictionshave the best results when applied toABenodel.
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Figure 10. The average agotmeansquareerror (RMSE) (ad), rank correlation coefficient
(RCC) (eh) and bias @) for three different starting models and the correspondiogt
processing methad KF, AN, KFAN, and KFAS). The results are avaged overthe
correspondinggroups and overall stations in Croatiaduring 2012. The colors represethie
starting model usedA8, A2, and DA), while the xick labels stand for model and
corresponding postprocessing methad The values of the 95% bootstrap confidence
intervals are indicate by the error bars.
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Finally, it seems that even though the higher resoluidandDA models achieve better
results if the results are averaged over all available stations. Howheemnalogbased

predictionsbased on théA2 and theDA do not statigcally outperform theanalogbased

predictionsbased on thé8 (Figure 10d, 10h and 1Ql This does not necessarily mean that

improvementis not made at all. The benefits might be partially hidden because of the
imperfections of e verification metrics used. To investigate the benefits of using higher
resolution further, one can analyze the forecasts categorically (i.e. to examine the forecasts of
the rare events such as strong wind), perform a spectral analysis or look aetbidg3 he
categorical verification results and spectrablgsis are presented in the next two sections
while it is previously discusseldow the case studies aagpossible future research avenue.

3.6. Evaluation of the wind speed as a categorical prediahd

To verify a categorical predictand the event or events need to lmefimed.Wind speeds
thereforedivided ino 3 categories: weak (or no wind at all), moderate and strong wind,
depending on the climatology of the corresponding group of statibiesholds are

determined as the %tand 98" percentile of the entire group. This is done independently for

each lead time, so the thresholds vary due to the diurnal gydare 3). After defining

categories (eants), the next step the calculation ofa so-called ©ntingency tabl¢Table3).

The forecasbbservation pairs corresponding to the same (real) time populate the contingency

table, representing the joint distuitoon (i.e. fields Al in|Table 3). At the right side and the

bottom, the marginal distributions are also sh@rields 3P inTable3).

The a@ategoricalverification procedue includes frequency biagBias), critical success
index (CS)) and polychoric correlation coefficienPCC). The choice of these measures is

consistent with the continuous case.
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Table3. The example of a contingency table

; . Observed
Wind speecpredictor Below 50" Between the 5f¢ | Above 9& ol
percentile | and 90" percentile | percentile

Below 5_(91 A 5 - ]
percentile
Between the 58

Forecast and 90" percentile D E F K
Above 9@‘ G ) | ]
percentile
Total M N o P

The polychoric correlation coefficienPCC measureghe association of forecasts and
observations in the contingency table. The idea bethieBCCis to assign a density function

to the contingency table and then cut the domain into rectangles correspmntagells of

the contingency tabl@~igure11). ThePCC s the parameter value of tisgéandardbivariate

normal density function for which the volumes of the discretized distribatieaqual to the
corresponding joint probdities of the contingency table-KUDV DQG 3DWVbBeULU
standardivariate normal density functias completely determined by one parameRZQ(),
while the mean value is set to 0 and $tendard deviation parametsrset to 1. However, is
not appliedto the laten{i.e. underlying continuousjariables directly, but to corresponding
standard normal deviat&s using the following transformation for tleentinuousvariableX:

< L 075k0, :: ;04 (7
where the 0, represents the curative distribution function ofX, while the O is the
cumulative distribution function of standard normal distributiblaving the contingency
tableg it is implicitly accepted that we are dealing with categorical variables, which in our case
are observatio (O) and forecastH). It is assumed that thendom vector4o, Zr) follows the
bivariate normal density functioisimilarly, the thresholds between different categories are

also transformed.
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Figure 11. Standard bivariate normal density function for which the volumes of the
discretized distributionare equal to the corresponding joint probabilities of ti3x3
contingency table

For dichotomous forecastthe PCCis calledthe tetrahoric correlation coefficientf the
Z, andz- are standard normal deviates of the marginal probabjlitresrelation between the
tetrahoric correlation coefficierdand the A field of the 22 contingency tablas uniquely

determined
Bl + ;té’d:—s:\EE\PFt\éV?KO’PiKO%h@Fa ®
te paarig t ¢ ¢

For the highetorder (i.e. 3x3) contingency tablehe relation betwee®CC and A is not
unigue. Nevertheless, it can be approximated. The conditional maximum likelihood method is
used in this reearch Additional details of the procedure applied in ttésearctcan be found
in -XUDV DQRROGAVDULID

Therange forthe polychoric correlation coefficierCCis betweenl and 1. Thd>CC
value for the random forecast is defined as 0, while uingefined for the constant forecast.
The measure does not depend on the underlying climatology for titefmed events. For
this reason, it is suitable for comparison among climatologically different regions.

Ekstrom [2011]shows tle @symptotical equivalerce of the rank correlation coefficient
RCC andthe polychoric correlation coefficierCC under several conditions including that

the number of categories is as large as the number of measufereeast pairs, the
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underlying joint distribution isinormal, etcEYHQ WKRXJK D rankLcBrgfationL HG "
coefficientRCCcan be recalculatedf the ordinal variables arise from discretizatgrch as
groupings of values into categories (as in this section), it has some undesirable préjmerties
instance,it can achieve a value of 1 even if Rdiscretized empirical variables are not
perfectly dependenthe polychoric correlation coefficierRCCis thereforeconsidered to be
more conservative and better suited for statistical inference about gbeiagi®n of the
underlying, nordiscretized variablethan therank correlation coefficierRCC

The frequency biag-bias similarly to bias, measures the tendency to forecast too often
(FBias greater than 1) or too rarel¥Bias lessthan 1) a particulacategory Wilks, 2017
Jolliffe and Stephenson, 2011 other words, itis the ratio of thenumberof forecasted

eventsandthe number of occurred events, calculated separately for each category, as follows:

($E%mfa($E%®éa($E;®ja ©)

The Fbias provide the information about the forecast distribution (i.e. whether the event is
under or overforecasted) and not the forecast accurdegr example, the persistee
forecasting (forecasting the last measured value) is almost completely unbiased. However, it
is often not accurate and it lacks skill.

The critical success inde€SI measures the fraction of observed forecast eventatbat
correctly predicted. It cabe thought of as the relative accuracy when correct negatiges
removed from consideratioft is computedrom the contingency tabjeseparately for each
categoryas follows

' ) + (10)
- - 0 -
E/ F# “Eof A% L8

The CS|, therefore measures the error (similar tiee RMSE in continuous case). Sensitive to

%5 L a%5% L

hits, the CSI penalizes both misses and false alarthgloes not distingsh the source of
forecast errors andenceadditional verification measures need to be examjiitks, 2011
Jolliffe and Stephenson, 2011[he CSl value ranges from 0 to 1deally, itis equal to 1,
which means there is not a single false forecast.

Assessing the quality of predions of extreme weather evergscomplicated by the fact
that measures of forecast quality typically degenerate to trivial values as the rarity of the
predicted event increasé&he extremal dependence indeRI is a measuraleveloped for the

extreme weather events verificationdependenton underlying climatology[Ferro and
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Stephenson, 20111t is a function of the false alarm rafeand hit rateH and is calculated as

follows:

A Pt ZMFZ % (11)
13 (L7 8y L e, 8

TheEDIz is of use when the aim is to assess the quality of the forecast for discriminating
the antecedent conditions leading to the occurrence of extreme weather from those which do
not (i.e. discrimination propy). It is a regular, asymptotically equitabl@easure that is
GLIILFXOW WR KHGJH D Q G TheWaluie Tor the PaffedtDotedddt is L. @

3.6.1.Theassociation of forecasts and observations in the contingency table

The polychoric correlation @efficient PCC results for different forecast§igure 12a-d) do

resembldaherank correlation coefficierlRCCresults|Figure7e-h) when results are averaged

for all of the lead times in a certain grouphe DA andthe A2 exhibit higher association in
the coastal complex but not in the othtepographytypes. Association issignificantly
improved by almost alpostprocessing methods all groups of stations and overadls
already presented.he exceptions the KF forecast in the coastal complepography The
analogbased predictionschieve bettetboth rank and polychoric correlation coefficient
resuls thanthe KF in general, particularlyhe AN. There are some differences between the
rank correlatiorcoefficientRCCandpolychoric correlation coefficie®CC results that need

to be highlighted in order to determine the orjgulether it is due to statistical properties of
the verification measure used or it is a direct consequence of discretizaticghe grouping

of wind speed into 3 categories). If batbefficientsare calculated for the same (ordered) data
and grouped into identical categoriethe rank correlation coefficienRCC would havea
slightly higher value Ekstrom, 2011] The polychaic correlation coefficientPCC shows
higher values thatherank correlation coefficierRCCcalculated for the continuous variable,
henceconfirming the assumption that it is easier to predict the category than the exact

(continuous) value of wind speed.
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a) b) C) d)

Figure 12. The polychoric correlation coefficient (PCC) for three different starting models
(A8, A2, and DA) and the correspondingostprocessing method®&F, AN, KFAN, and
KFAS). The results are averaged ftite corresponéhg groups (ac) and for all (d) ofthe
locations in Croatia during the year 2012. The PCC is calculated using three different
categories, divided by the B0and 90" percentile. The values of the 95% bootstrap
confidence intervals are indicated by theogrbars.

3.6.2.Frequency bias

Thereis a variety offrequency biagFbias) results depending on the exact model, group of

stations and wind categoffigure 13). For instancethe DA predicts category too often

Figure13e), while predicting the other two categor|€sg(re 13a and13i) too rarely inthe

coastal arealThefrequency biasesults for theA8 model are somewhat similar, whilee A2
is almost unbiased in this case. Athising models undeiorecast weak windategorywhile
overforecast moderate and strong wioategoriesn the mountain complex and the nearly
flat topography{Figure 13;, 13g, 13 and 13k). The exact values differ for differentagels

and categories yielding mixed results in terms of determining thepbdsirming starting
model.
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TheKF only slightly impactghe A8 frequency biady decreasing the value for the weak

wind category(Figure 13p), while onlyindicating the increasedalue forthe moderate and

the strong windcategorieqFigure 13¢ andFigure 13|) in the coastal area. More generally,

besides théequency biaseduction for the weak windategoy (Figure 13atFigure13d), the

KF does not have a noticeable impact on the starting model results. thalikeastal arean
the mountain compleandthe nearly flatopographythe KF seensto be less lased than the
corresponding (starting) model for all cases tesléds is indicated by the significantly
smaller bias for the weak wirghtegory and smaller confidence intervals near the zero value
for the moderate and strong windtegoris. Thesmallg confidence intervateferring tothe
same sample size means smaller variability within the results.

Thefrequency biasesults forthe analogbased predictionfAN, KFAN, andKFAS) seem
to exhibit much less variety depending ardifferent group of stédns. The results are

indistinguishable among different starting models, especially for the moderate and strong

wind categoris [Figure 13piFigure 13]). For any given groupthe analogbased predictions

consistently ovespredict moderate wind spee(iSategory 2) while undefpredict rarer and
stronger windCategory 3) Theseanalogbased predictionsometimes even underedict the
occurrence of weak wind. THeFAS seems to be the least biasmthlogbasedprediction
showing the highest values for strong woategorywhile being as unbiased #® AN in the

other two categoriesHowever, it needs to be mentioned that these differences are not
statistically significant, partially due to the small sampbigg.

Overall,the postprocessediorecastsin generalreduce bias fothe climatologicallymost
common wind speed categofweak wind). The analogbased predictiongrequency bias
results are not as variable as fbe starting model andhe KF, inherting only a slight
difference from the corresponding model for an exact technigiie KFAN or KFAS). The
main deficiency othe postprocessing methodseems to be undéorecasting the occurrence
of strong wind, witithe KFAS being the most success@).
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Figure 13. The frequency bias (Fbias) for three different starting mod&ss A2, and DA)

and the correspondingostprocessing methad(KF, AN, KFAN, and KFAS). The results
are averagd for the correspondingroups and all othelocationsin Croatiaduring theyear

2012. The Fbias is calculated for three different categories, divided by therfD 9¢"

percentile. The values of the 95% bootstrap confidence intervals are indicatbd byror
bars.
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3.6.3.Evaluation of the forecast quality

If resultsamong different starting modedse comparedt can be seen th&tr theweak wind

category theA2 produces highecritical success inde€SIthanthe A8 andthe DA (Figure

). Furthermore, finer horizontal resolutialightly improves relative accuracy fdhe

strong windcategoryin the coastal complex topograp ). The results forthe
moderate windcategory are similar acrosshe different starting modelsFigure 14g).

(U

Increasing the horizontal resolution does not necessarily imgineegitical success index in
other groups of stationBue to the small sample size, the results rarely differ signtfican

The critical success indesesults are considerably higher the KF than for the starting
models A8, A2, andDA) for theweak windcategoryin the mountain complex and the nearly
flat topography but not as much inhe coastal arearhe indicationKF being the most
successful in predicting the strong win@ategory 3)in nearly flat continentalopography
even though not statistically significant, might stiliggest dominantsystematicerrorin the
PRGHOVY SUHGLFWLRQV frRyudhkytbiaévibwé @JthedFQt@an farkakly
starting model, which combined withhighercritical success indexdicates that the number
of false alarms is reduced.

Analysis suggests thatnalogbased predictionsoutperform starting models and

correspoading KF forecasts for all othe categories and all groups of statiogscept the

strong winds in the nearly flat continentapographyFigure 14k). The improvement ofhe

critical success indexalue is the most evidenand satistically significant,for the most

common weak windategory{Figure14g-d). However the larger sample is neededptmvide

a more rigorous proof of thatatementor the moderatand strong wind

Overall, all postprocessig method improve thecritical success indexalue. The AN

forecasts achieve the best result for predicting weak y#igi(e 14d), while the KFAN and
the KFAS produce slightly better results th#re KF andthe AN for the other tw categories
Figurel4h and14l).

It needs to be noted that the results for the moderate and stiothgpeed categoriese

rarely statistically significantpartially due tothe small sample sizeHowever, analysis
suggests @ the best results are achieved when usirggA2 as the starting model, mostly
due to the highecritical success inde the coastal completopographythan when using a

coarser resolution starting moddL is possible that additional improvements miag
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generated by increasing the resolution (1 kmless) inthe complex topography The
necessity to use evenk?n grid spacing ishowever,guestionable and might be reexamined
for nearly flat continentalopography(i.e. by spectral analysisin addition toimproving the
relative accuracy in coastal compleéapography the categorizatiorsuggests thenhigher
association fothe full-physicsA2 model and correspondingpstprocessing methods the
coastal complex and the nearly flat continemtgdograply, as shown beforeThese results
combined might suggest thidte higherresolutionfull -physicsA2 modelis better capable to
distinguish low from moderate or unusuadlirong wind especially inthe coastal complex
topography This capability is then mdg inherited bythe differentpostprocessing methogds
includingthe analogbased predictions
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Figure 14. Critical success index (CSIgr three different starting model&8, A2, and DA)

and the correspondingpostprocessig method KF, AN, KFAN, and KFAS). The results
are averaged for th correspondingroups and for all othe locationsin Croatia during the
year 2012. The&CSlis calculated for three different categories, divided by thé &ed 9"
percentile.The values of the 95% bootstrap confidence intervals are indicated by the error
bars.

There is adecrease ithe critical success indexalues for moderat@Category 2)and in

particular strong windCategory 3) regardless of the exact group of the stations er th
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forecast It should be mentioned th#hat decreasés partially the direct consequence of
sensitivity of the critical success indexnetrics tothe climatological probability of the
predefined category that is being evaluated, and therefore it shoafthlyzed with caution.

The sensitivity to climatology is due to counting the portion of correct forecasts that can be

accurately predicted by random chance. Atkedifferent values across different groups for

the same categof.g., strong winds gigure 14{-k) might suggesthat unusuallystrongand

rare windis predicted more easily in coastal than in continental area, regardless of the exact

forecast.

Figure 15. Extremal dependence ind@&DI) for three different starting modelé&8, A2, and

DA) and the correspondingpostprocessing methad (KF, AN, KFAN, and KFAS). The
results are averaged for ¢hcorrespondinggroups and for all othe locationsin Croatia
during the year 2012. TheEDI is calculaed for theCategory 3 (strong wind; aboved"
percentilg. Thevalues of the 95% bootstrap confidence intervals are indicated by the error
bars.

Since thecritical success indexalue degenerateas the rarity of the predicted event
increasesit is had to producea statistically significant result, especially when dealing with
only ayearlong dataset. For that reasdhe measurextremal dependence ind&DIs, which

is independentfounderlying climatologyjs also used to evaluatke forecastof rare events
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(i.e. strong wind)The resultqFigure15) are generally consistent with the previously shown

critical success indeanalysis{Figure14), with smaller confidence interval.resultsamong

different starting modelre comparedt can be seen thédr the coastal complexopography
the A2 producessignificantly higher EDIz thanthe A8 andthe DA. This is not the case for
other types otopography The KF approachperforms better in a flat conental, whilethe
analogbased methogherforms better in the mountain compl®pography In the coastal
complextopographythe KF is the bespostprocessing methotbr the A2 postprocessing,
while the analogbased methods more successful thaldF for postprocessingA8 and DA
forecass. Overall, theanalogbased methodgerforms better tharKF. Among different
analogbased experimentshe best result is achieved for tkEAN forecast The analog
based methot more successful if started withA2 than if it started withA8 or DA models,

which is consistenwith the previougesults.

3.7. Spectral analysis of wind speefbrecast

The small spatial and temporal errors @enerally well-simulated phenomena can
profoundly change the verification resyllass et al. 2002; Rife et al. 2004tor that reason,
spectral analysis ithe frequency domain is utilized to provide a sedépendent measure of
different postprocessing methodgerformancewhich is essentially insensitive to temporal
errors Spectral nalyds allows quantification of power distribution among different temporal
scales It is relevant to determine thexposure ofa particular station to longahandiurnal
(LTD), diurnal (DIU) and shortethandiurnal (S'D) motions andthe forecast abiliy to
simulatethese motionfHorvath et al., 2012]

Spectral decomposition ahe detrended time seriels performed using the Welch
periodograrsbased methodWelch, 1967 with 50% overlapping segment$he datatime
seriesis dividedinto smaller segment3 he periodogramis calculated for each segment, and
the estimations ar¢hen averagedn other words, » introducingso-called data, lag and
spectralwindow, the variance of the estimator is reduced for longer 8erees (otherwise it
is independenbn time series length) making the spectrum smoothdérhe length ofthe
Hamming spectral windowghosen length i256, approximately a monttong) is adjusted to

optimally emphasize the differeneenong testegostprocessing methodsiere, for a year
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long time series, there arapproximately 24 estimains. The distribution of the spectral
estimator is often approximated &< distribution to provide the information on typical
variability and confidence intervalfPapoulis, 1984 Koopmans 1974. The ®nfidence
intervalfor the power spectr®:i ;is calculated as:
6% &; ) B 8; 12
HSLfT O5:i; O%Ut;a (12

where B3represents the averaggeriodograms dstimationy in frequency domaing U
representshe number of degrees of freedgaepending on the exact spectral window,
overlapping, timeseries and interval length),Urepresents the significance level and the
distribution used is ©. This interval is usually shown as a small cross signishiatiependent
on the logarithmic scaleéSince not changing the sizé,dan easily be moved up and dow
providinga simple visual comparison with the spectrum

It should be noted that power spectral den§R$D analysis performed contains the
effect d aliasing, necessarily contaminating all scales by oscillations with periods shorter than
6 hours (here corresponding ttee Nyquist frequency). Testing this effect on measured data
suggests that is rather smalbnlongerthandiurnalscales Sgnificant effects howevermay
be found onshorterthandiurnal scales, especially near the periods corredpm to the
Nyquist frequency fDJDU HW Hr@stinski et al., 2015]Sincethe A8 and theDA
forecasts ararchivedevery 3 hour¢andthe A2 andthe measurements are adjustgdsimply
using the same output frequehay is not possible to circumvent this effect. However, it may
be noted that all the forecasested(and measurementaye aliasesimilarly; therefore the
effect is not crucialdr the intercomparison.

The forecasbutputfrequency is 3 for all forecastsandonly the 24-hour forecast period
is consideredn the analysisriaking a continuous timgerie$. Missing data are provided by
using linear interpolationt should be ated that the typical diurnal rotation of winds in the
Adriatic partially hides the diurnal spectral peak if the anaiggperformed using wind speed
values [7 H Odnd@*tenjak and Grisogono, 200However, the preferred spectral analysis of
wind componats is not possible as tlamalogbased methodh our analysigredics only the
wind speed (not the direction).

The spectral analysis is performed for all forecasts and locations included parthcf

the thesis (section 3pr the entire year of 201%shown inAppendix A. However, it is
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decided that it is more comprehensive to show the results for several representative locations,
instead of any sort of averaging or summarizing the results. The particularities that could not
be easily seen on figures are pointed out and explained in the text. Two locations (Dubrovnik
and Jasenice stations) correspondh®coastal group of stations, covering the northern and

the southern part of the coastline. The reason for including thesestations is that the
governing processes somewhat differ (e.g. processes that lead to bora windstorm as explained
in Horvath et al.[2009). Osijek is chosen as mepresentative station fdahe nearly flat
continental topography while Ogulin is chosento represent the mountain complex

topography
3.7.1.TheKalman filter approachnfluence
TheKF LQIOXHQFHV WKH PRWLRQV RQ WKH WLPH VFDOHV

power spectral densitPSD function is biased. Th&F forecast therefore enlargesthe

energy of these larggcale motions in the coastal graa shown iEigurelBa, Similarly, KF

reduces the energyat is overestimated by the NWP modgelthe nearly flat continental

topography(Figure 16p). Besides the large scale motions, e does not significantly

influence the shorter time scale. Similarly, KIEAN is almost the same as tA&l spectrum
except rarely significant differences for large scale motidhs. same effect can be noticed
regardless of the starting modes VKRZQ LQ 2GDN 3 @bug)NRe ety ¢dll D O
difference among spectra before and afiterapplication of the KF algorithm might mean
that the ratio of the variancésrror ratio)used in the algorithm is h@ptimal. If theerror

ratio is set too high, the filter puts excessive confidencthe past forecasts, and therefore
failing to remove any error. On the other hand, if the ratio is too low, the filter will be unable
to respond to changes bias Pelle Monache, 2006 The increase of the error ratio might
lead to KF algorithm affecting somewhat shorter scales (e.g. synoptic), and possibly even
increase the correlation with the observations (as in Delle Monache et al. [2008]).
sensitivity of these mailts to changing the ratio of the variances used in the algorithm
therefore might be tsted infuture work. However, he qualitative effect of affecting only
large scale motions would presumably remain the same. Finalli{Rlspecta arethe same

asthe model spect and theKFAN specta arethe same as th&N specta for the scales
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shorter than 10 days and therefore would not be shown or discussed further in this section.
However, itneeds to be mentioned that these forecasts are not the same,tbeersgectra
approximately are. Other verification measures shown in previous sections exhibit substantial
differencesFor example, one can compare a forecast time series to a forecast time series that
is exactly the same but tirlegged and bias of thmean is added (e.g. a persistency forecast
with a 3-hourly time lag with an added fixed value of 5thsin comparison, the spectra for
these two forecasts will differ only in frequenafyO Hz However, the accuracy might differ
substantially leading ¢ very different accuracy measuréise. RMSE values) This is

precisely the reason wlilge verification procedure needs to include various aspects.

—A8 —AN —OBS
KF ---"KFAN

Figure 16. The power spectral densiflSD)of the observed 1t wind speedstarting model
forecastA8, the correspondind\N. The effect of thKF on the spectra is showia KF (KF
applied on the NWP model data) ak&AN (KF applied on the AN forecasts). The spectra
are shown forcoastal Dubrovnik andcontinental Osijek stationsin 2012. The confidence
intervals (in the logarithmic scale) are noted by the cildss symbol in the upper right
corner.

3.7.2.How theanalogbased methodffectsthe A8 NWP spectra

It can easily be seen th#ite largest portion of measured power at aktisins is
associated witlthe longerthandiurnal motions Theselongerthandiurnal motionsare more
energetic for the coastal area (Jesenice and Dubrovnik sta{iléigwre 17g-b) than for the

mountain compleXKigure 17¢) andthe nearly flat continentalopography{Figure 17¢). As
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shown by several other authors, this is related to the strong and gustyiboriglorvath et
al., 2009 Horvath et al., 202, IHrastinski et al. 2015tc.].

The longerthandiurnal motions are severely underestimated with A8&modelin the

coastal aregFigure 17g-b). The longerthandiurnal motions inthe AN andthe KFAS data

contain more energsompared tdhe modelpower sgctral density?SD, thereforeimproving
the model This showgyreat potentiafor the analogbased predictiont improve the model
forecastwhenthere is a model underestimationlohgerthandiurnal motiors, evenin the

complextopography

— A8 —AN
KFAS—OBS

Figure 17. The power spectral densiflSD)of the observed Xt wind speed, starting model
forecastA8, and the correspondingostprocessing meth@d(AN and KFAS) for stations
Jasenice, Dubrovnik, Ogulin and Osijek duritige year 2012.The confidence intervals (in
the logarithmic scale) are noted by the crike symbol in the upper right corner.

In the nearly flattopographythe A8 model simulates well or overestimates the energy of

longerthandiurnal motions (Figure 17(). The analogbased prediction¢AN, KFAN, and

KFAS) lower the energy oflongerthandiurnal motions if it is well simulated or
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overestimated by the model. This sometimes leadantanderestimation ofongerthan
diurnal motions, especiallydr the AN. The KFAS exhibits the longerthandiurnal power
spectral densitgpectrumvery similar to measurementshus, theKFAS shows the greatest
potential forthe forecast improvement the model overestimates the enemjylongerthan
diurnalmotionsin thenearly flattopography

The A8 results forlongerthandiurnal motions inthe mountain complexconsistof all
previously mentioned scenarios, depending on the location and the exact time scale. For
instance, it is well simulated for periods longkan 3 days and underestimated for shorter
time scales at Ogulin stati@:). The analogbased predictionact similarly as in
previous types afopographyexhibiting more energy if it is underestimatedtbg A8 mode]|

or less if it is not.
The shorterthandiurnal motions are severely underestimated by Al8emodel forthe

majority of locations, regardless dfettopography(e.g. Horvath et a[2011]). Only at a few

stations (e.g. Osijekn [Figure 17() is the amount of energy at these scales comparable to

measured values. THeN forecast is, once again, the most prone to energy underestimation.
The shorterthandiurnal KFAS spectra, on the other hand, seems very similar to model
spectra. Moreaar, it seems that theFAS exhibitspower spectral densifySDvalues similar

to theAN and observations for longer time scales, but it is similar to model values at shorter
time scalesHowever, it must be noted again that aliasing of scales shorte8 thaurs adda
considerable share tie energy ofshorterthandiurnalmotions in spectral analysis, which is
why these results should be interpreted with cBmeally, it is interesting to note that even
thoughthe energy of theshorterthandiurnalmotions is underestimated, the harmonics of the
diurnal cycle (24 h, 12 h and 8 h period) are very well simulated bs&heodel and all of

the postprocessing methad

3.7.3.Theinfluence of the starting model on thealogbased predictions

Introducingthe higherresolution orographwffects thedynamical processes and increases the
amount of energyt all temporalscales (e.g. & D J& W@l, 2006). Therefore, the difference

betweenthe A8 and the DA is that there is almost no underestimationthe longerthan

diurnal motions, even in the coastal complex areay.[Figure 18p). The exception ighe
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Dubrovnik station|figure 18f), which is very similar as it is fahe A8 model |Figure 17b).

The energy simulated kihe DA is higher athe mountain complesstation{Figure 18f) than

when simulated with thé8 (Figure 17¢), overestimating théongerthandiurnal motions

Introducingthe higher resolution orography into nearly fl@ontinentaltopographyresuls

with very similarpower spectral densityurvesfor the DA, as it is the case fahe A8 (e.g.

Figure 18h, compared tgFigure 17¢). This is to be expected because the flatter the

topographythe number of details added by increasing horizontal resolution is snraltee
mountain complexopography(group Il) results may be improved by usiag even finer
model resolution to represemchl flows. However, the need for usingdpposed to &m
grid spacing for weak wind in the nearly flat continentgdography(group IIl) may beess
pronouncedNaturally, thepostprocessing methodsre also exhibiting similar effect as it is
the casef the A8 model.Similarly, introducinga higher resolution field intthe A2 forecasts
increases the power at all time scales. All the conclusions reggrdimegr spectral density
spectra that are valid fahe DA longerthandiurnal motions are valid fothe A2 model as
well.

Additionally, due tothe more complete package pifiysics parametrizations and Ron
hydrostatic effects, th&2 modelshorterthandiurnal part of power spectral densitypectra
contains more energy than fitve A8 andthe DA models partially due to aliasing effedBoth
the A8 and the DA models severely underestimate the power at scales below Idiaena
UHSRUWHG E\ abD JDnikeHh&A®aDdtire DA rapdels,the A2 simulates well or
evensometimes overestimates thigorterthandiurnal motions.The exception is Dubrovnik
station, where some underestimation of the shaéntardiurnalmotions can still be noticed.

Even when the model overestimates the shani@rdiurnal motions,the analogbased
predictions reduce theshorterthandiurnal power, often leading to underediction of
shorterthandiurnal motions When the shortethandiurnd motions are well simulated or
underestimated by the modéhetAN forecast often severely lacks power for thekerter
thandiurnal motions The KFAS forecast, howeverexhibits power spectral densityalues
similar to theAN and observations for longéme scales, but it is similar to model values at
shorter time scale#n other words, th&FAS forecast is less prone to underestimation of the
shorterthandiurnal motions than otheranalogbased predictiongested. This result is

consistent regardlesd the starting model.
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—— model —— AN
KFAS — OBS

Figure 18 The power spectral density of the observedril@vind speed, starting model
forecasts A2 and DA) and the correspondingostprocessing meth@AN and KFAS) for
stations Jasenice, Dubrovnik, @@ and Osijek during year 2012. The confidence intervals
(in the logarithmic scale) are noted by the crike symbol in the upper right corner.
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8§ 4. POST-PROCESSING THE ENSEMBLE NWP
(ENSEMBLE CALIBRATIO N)

4.1. Observations and climatology

The Austrian metarological observation network, TAWES, consists of more than 300 sites

across Austria. In this workR9 TAWES sites are used representing the different Austrian

climate zonesas listed ififable4| The locations are selected basedhe availability ofwind

speedmeasurementElO-minute average valuat 10 m above the grouma the selected time
period All sites monitor2-m temperature,10-m wind speed and directior2-m relative
humidity, surface pressure, precipitation, and, pdding on the site, different radiation
measurements are carried out. Here, oniymtder wind speed observations are used. The
2015 and 2016 wind speed observations are used for the drzed method training period
in this section For the performanctesting, two target months are chosen, January and July
2018. These months are selected to investigate the forecast performance during a winter and a
summer period. The January and July 2017 wind speed observations are used for independent
sensitivity teting (weight optimization)which is a procedure explained further below

The observed average monthly wind speed is slightly higher in January (2338haus
in July (2.22 m3), across all available stations and Kiaces. Additionally, the standard
deviation of the wind speed measurements is also higher on average in January £3.27 ms
than in July (1.92 m%.

Figure 19. The spatial distribution of the observed monthly mean wind speed in the January
(left) and July (ridnt), 2018. The arrows mark mountain stations for later comparison.
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Table 4. The list of the 29 stations providing the-mOwind speed observations used in

section 4with main geographical features

Station name Latitude Longitude Altitude [m]
Weitra 149 487 572
Wien-Hohe Warte 164 483 198
Schwechat 16.6 48.1 183
Linz-Stadt 14.3 483 262
Krems 156 484 203
Bregenz 9.7 475 424
Gaschurn 10.0 47.0 976
Patscherkofel 115 472 2251
Lunz Am See 151 479 612
Rax/Seilbahnbegystation 15.8 477 1547
EisenstadiNordost 16.5 479 184
Gissing 16.3 471 215
Lienz 128 46.8 661
Kanzellbhe 139 46.7 1520
Firstenfeld 16.1 47.0 271
Gmind 135 46.9 738
GrazUniv. 154 47.1 367
InnsbruckUniv. 114 47.3 578
Sonnblick 13.0 47.0 3109
Kolm Saigurn 13.0 47.0 1626
Rauris 13.0 472 934
Salzburg/Freisaal 13.0 47.8 418
Bad Mitterndorf 139 476 814
Reichenau/Rax 158 47.7 488
Semmering 158 476 988
Hirschenkogel 158 47.6 1318
St Polten/Landhaus 156 48.2 274

The wind speeds weak and moderated. < 80 ms?) for both JanuaryRigure 19) and

July [Figure 19p) at the majority of the stations. The average monthly wind speed increases

towards the norteastern part of AustridPannonian basin) for both January and July.

Exceptions are the three mountain stations (arroy

Sigare 19?, where the average wind

speeds are much higher if compared to the neighboring valley stations.

Most of the stations arecated in or near the Alps, which significantly modulates the

related local wind regimes. The compl@pographyof the Alpine area is characterizbyg a
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variety of different wind processes such as foehn and downslope windstorms, gap winds,
valley and slpe winds, flow blocking and other. To investigate those phenomena, among
other, Alpine region is also the target area to several major field experimertsasuc
ALPEX, MAP and TEAMx Kuettner, 1986; Bougeault et al., 2001; Lehner and Rotach,
2018; Serafiret al, 2018etc.] Nevertheless, many challenges related to the NWP in complex
topographystill exist (e.g. Arnold et al.2013), including modeling wind climatology of the
Alpine areas prone to such downslope windstoreng. Horvath et al[2011)) andobjective

foehn wind classification (e.g. Mayr et [201§).

4.2. NWP model data

The numerical model used withisection 4 is theALADIN model configuration used in
ALADIN -LAEF (Aire Limitée Adaptation dynamique DéveloppeménterNational model+
Limited-Area Ensemble ForecastinjyVang et al., 201,12019]ensemble forecasting system.
It is adjusted to fit the Austrian purposes and is running in operational mode sinc&d2609.
NWP is initialized daily at 0000 and 1200 UTC with one hourly {@ax, up to72 hours.
Only the dataset corresponding to the model run initialized at 0000 UTC is used in this work.
The ALADIN-LAEF uses the underlying hydrostatic and spectral lirsited model
(LAM) ALADIN -Austria [Wang et al., 2006]lt uses a twdime-level seni-Lagrangian
advection scheme, semmplicit time-stepping, fourtkorder linear horizontal diffusion,
DaviesKalberg type relaxation and digital filter initialization, and set of parametetrizations
of unresolved physics processes [Wang et al., 2006]

The ALADIN -LAEF integration domain covers the whole of Europe and a large part of

the Atlantic, as shown |Rigure20| The resolution of 11 km on a Lambert conformal grid is

used in the horizontal. In the vertical, 45 terrimhowing pressurdased hybrid coordinate
levels with on average nine levels within the lowest 1000 km above ground level are used.
For dealing with the initial uncertaies, a blending method is used [Wang et al., 2014]
based on the idea of combining the t&asgale perturbation from the ECMWF (European
Centre for MediurRange Weather Forecasts) singular vectors and the -soaddi
perturbations from the LAM native breeding vectors. The coupling with ECNBR'S
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(Ensemble Prediction System) members are usedddafing with thelateral boundary
conditionuncertainties YWeidle et al., 2013 A multi-physics is implemented to account for
model uncertainties in the atmosphéerbe perturbed initial land surface conditions, such as
soil moisture and surface temperatuare obtained through an ensemble of land surface data
assimilation>% HOOXa HW DO @

Figure 20. Domain and model topography of ALADIMEF. (from Wang et al[2019, page
3355. The inner limitedarea domain in redepresents the areauthorsused for erification
of ensemble experimepts

The ALADIN-LAEF consists of 17 ensemble members: 16 perturbed members and one
control run. The 16 perturbed members are driven by 16 ECMRS members. Given the
structure and compii®n of the LAEF ensemble, it can be considered as aemochangeable
ensemble. Howeve as shown by Baran and Lerch [201tbe differences between the
treatment of a noexchangeable ensemble as fully exchangedibl@ot worsen the results to
statisticdly relevant size. Therefore, we decided to treat AbADIN -LAEF ensemble as
exchangeable.

A subset of six ALADINLAEF parameters to be used as an input toat@ogbased
methodincludes temperatureg2m), wind speed Ws and direction dd), relative lumidity
(rH), pressurer) and precipitationgreg. The NWP datasets correspond to the observation
datasetsFrom the four grid points surrounding the observation locatio® closest model

grid point is chosenThe 2year long dataset (201%2016)is used for training. January and
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July 2017 are used for weight optimization. Finally, the results are given for the independent
dataset consisting of January and July 2018.

4.3. Reference méhod: Ensemble model output statistics(EMOS)

The reference forecast rfdhe analogbased metho@&nsemble calibration is the ensemble

model output statisticsEMOS). The EMOS is introduced by Gneiting et aJ2005 and

adaped for wind by Messner et al. [2014herefore, a nehomogeneous regression with a

30-day rolling traning window is fitted on every leatiime and station. To capture the natural
boundary of wind at 0 m's a leftcensored logistic regression is usém.the EMOS the

observed wind speed)is explained by a logistic distribution censoredexo( ag) with p as

a mean andlas a spread. A logistic distribution has a similar bell shape as a Gaussian
distribution but with slightly heavier tails. Additionally, censoring at zero statdsniha

negative wind values can occur. Further detads be found in Messner et al. [2014]
&HQVRULQJ DQG WKH OLQHD tefigddasddlomg:LRQV IRU — DQG 1 D

Ul ag:448;4 (13)
aL UE WSO (14)
Z2'%; L GE § Z%S0;4a (15)

with = and - as the regression coefficientsS @ as an ensemble mean an& O as an

ensemble spread of the wind speed members. The logarithmic link function is used to ensure

positive values. Further applications of tlEMOS to wind speed can be found i

Thorarinsdottir and Gneiting [2010], Baran and Lerch [2015] or Scheuerer and Mdller.[2015]
The 30 days rolling training window is often used for EMOSwsexperiment, making it

a good reference for the analog experiment tisas onlythe raw model wind speed data.

However, since the other analog experiments use all available variables, a second reference is

added. The second experimeBMOSstd uses all available variables. The boosting method

of Messner et al. (2017), wiids implemented in the - -SSDFNDrdtH 3LV D& SO LHG

variables and the whole dataset, instead of the rolling training window. Additionally, annual

and biannual harmonic functions are added to capture a seasonal bias. A variable selection
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method, sule as boosting, is needed to prevent overfitting. The boosting is able to choose the
most important variables and exclude the other variables using zero value. As a result, a single
fit per station and lead time can be used to forecast both test months.

Corcluding, whereas thEMOSwsonly uses the last 30 days as training and only the
wind speed asan input, the EMOSstd uses all available training data and all variables

including seasonal functions.

4.4. Sensitivity tests

In the previously described experiméhV VHFWLRQ WKH SUHGLFWRUV DUI
andHUURU?® DSSURDFK VLPSO\ WU\LQJ VHYHUDO FRPELQDWL
keeping the one that sesto be the most successfiollowing the work of Delle Monache
et al. [2013] all predictor weights are set to valu@d However,several authors in more
recent workshow thatinstead of assigning the same importance to each predictor variable,
the bruteforce weight optimization can increase the AnEn performance. This is deatedst
in several applications, such as Junk et[2015 and Alessandrini et al20153. The
ZHLIJKWVY RSWLPL]I|DWLRQ LV EDVHG RQ FKRRVLQJ WKH [
(measured by the continuous rank probability scét@).that reasant is decided to include
predictor weighting strategy in the second part of this thesis.

Even though it is the best possible approalie to the limited computational resources,
not all the possible combinations are tested in this wiilk. forward selection lgorithm is
used instead, starting with weight value fixed at ltiewind speed parameter. Then, one by
one (ensemble mean) predictor frapre-selected subset of six ALADHNAEF parameters
is added, optimizing the weights independently at each lacatjoerror minimizationThe
forward selection algorithm is computationally less demanding than testing all the possible
combinations independently at each location. However, it needs to be noted that the algorithm
makes a key assumption that is oftentna¢ - assuming that all predictors are independent of
each other, which is generally not the case.

As already mentioned, six ALADINLAEF parameters are used as an input taatieog
based methadwind speedws) and directiondd), temperaturetm), relative humidity (H),

pressure ) and precipitationfreg. They are tested usinpe forward séection algorithm

58



§ 4. Postprocessing the ensemble NWP

one after anotheiin the same order as listdéive possible weight values (0.00, 0.25, 0.50,

0.75 and 1.00) are investigatnt each preittor variable. The predictor weighting strategy is
carried ouffor January and July 201dsing the 2012016 period for the training herefore,

the optimization procedure uses a completely independent dataset from thefqrewbath

training, as wellas for which forecasting is performeqJanuary and July 2018)he
independency of the datasets used is an important aspect that ensures the objective validity of

the results.

Figure 21. The histogram of the optimized weightsdach predictor testeflsing the AnEn
mean valuesat 29 stations in Austrien Januaryand July2017.

The results show that the wind direction is the most important predictor in addition to

wind speedFigure21). Even thought seems the values are slightly higher in the complex

topography the values are quite higlor all stations|Figure 22). The wind directionis

followed by temperature and relative humidity parameters, especially in the moreexkompl
topography such as the alpine area. The pressure and precipitation parameters are often
optimized with the 0.00 weight, meaning that they are not carrying additional benefits at
certain stations. But, that is not always the case. For instdreceresure parameter is also
optimized by taking higher values in the complex alpine dfeaprecipitation parametea

similar behavior is found at the southern slopes of the Alps, a region pronectntrezive
precipitation The increasedmportance of th precipitation predictor in this areaight, for
example,indicae the forecasimprovementunderfoehnconditions, when foehtriggers the
precipitationwhile approachinghe southern Alps.
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Figure 22. Thespatial distributionof the optimized weights for each predictor tested, at 29
stations in Austrian Januaryand July2017.

Supplementary to using the mean value of 17 ALAIDIAEF ensemble members for
each meteorological parameter, the standard deviation of those 17 membaiso be used
as an additional predictor. Thus, the informatiorttee starting model ensemble uncertainty is
included in the analog search. The standard deviation predictors are optimized as one
multiplying factor to the all prealculated weights formeteorological parameters,
independently for each location. Five possible values of this multiplying factor are tested:
0.20, 0.40, 0.8, 0.8), and 1.0. If using neither of the values results in a forecast

improvement, the value M0s used ashe besfit. In the following illustrative example, it is
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assumed that the optimal weight for the ALADIMAEF temperature ensemble mean
predictor is 0.75 at a particular location. Similarly, the weight for the relative humidity is
optimized as 0.50, for precipitah as 0.00, etcThen, the weight for the six ALADINLAEF
ensemble standard deviation predictors is optimized @valRe. Thew; in Eql. would be
0.20x0.75 for the temperature standard deviation predictor)x0.80 for the relative
humidity standarddeviation predictor, 00.00 for the precipitatigretc. The distribution

for the optimized standard deviation multiplying factors is given a@. The result
shows that the optimal contribution of the standard devigiredictors is about 40% of the
HQVHPEOH PHDQ SUH G inF iveRidajofity HiR Qivvid) teEtexdNoWdv€), no
distinctive spatial distribution pattern regarding the optimal values is noticed.

Figure 23. The histogran{left) and the spatial distribution (righ©)f the optimized weights
for standard deviation predictor for different meteorological parameters tested at 29 stations
in Austria in Januaryand July2018.

The AnEn can be affected by a conditional negative, bespecially when predicting
events in the right tail of the forecast distribution. For that reason, the novel bias correction
method is appliedor these experimentsas poposed by Alessandrini et al. [2019The
methodis based on correction factor partional to the linear regression coefficient between
the wind speed observations and raw model forecast (i.e. ALAIARF wind speed
ensemble mean) during training, as well as to the distance between the current raw model
forecast and the average valuetloe previous raw model forecasts that correspond to the
currently selected analogs in the AnEn. The {&ad-independent correction factor is added
to all the members of the AnEn if the current raw model forecast is above a certain threshold

value. If he threshold is set too low, the bias correction adjustment can become small and
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noisy, leading to forecast performance degradation. After the simple minimizirRMB&
the 95. percentile of the climatological raw model forecast distribution (duringintai

period) is chose as a threshold in this work.

4.5. Description of experiments

In total, six different input configurations using the observations and the ALADBIEF

ensemble data are investigatddee|Table 5| for a summary) All six investigated

configurations provide aAnEn forecast consistingof the past observation corresponding to

the 17 most similar past ALADINLAEF ensemble predictions. Thus, the namalog
ensemble forecast provides the 17 ensemble members, equigatbet originalALADIN -

LAEF model. The chosen ensemble size does not only reflect the input NWP ensemble but is
close to the optimal size of 15 members for the deterministic application of the analog
ensemble found by Odak PleRky LU HW DO > @

Table5. The summary information for the experiments testegdtion 4.

Name Meteorological variables ALADIN -LAEF input (predictors) Nb. of analog searches
used per lead-time

LAEFws WS X X

EMOSWS ws (QVHPEOH — DQG 1 |RU X

wind speed?2 predictors)
(QVHPEOH —sip@rémdied @2)
predictors)

AnENCtrl ws, dd, t2m, rH, p, prec Control ensemble memb&rr Six .
parameters (6 predictors)

ANEnWs o 17 e.nsemblwmd speednembers 17 1
predictors)

Ensemble p for six parameters (6

EMOSstd ws, dd, t2m, rH, p, prec X

AnEnMu ws, dd, t2m, rH, p, prec predictors) 1
AnEnStd ws, dd, t2m, rH, p, prec (Q\_/HPEOH — bQG 1 IRU 1
predictors)
17 ensemble members for 6 parameter
2 H . 1
AnEnNAlI ws, dd, t2m, rH, p, prec (6 x 17 predictors)
SR |, E6 A 1 ensemble member for every paramet 17

(6 predictors)
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Dabernig et al. [2015]show the value of an ensemble forecast compared to its
deterministic control run. Therefore, the first experiment,Ah&nCtrl, uses theALADIN -

LAEF control member for the six meteorological parameters available as six predictors. The
AnENnWs, uses all 1ALADIN -LAEF ensemble member wind speed predictidoSHFws)

as 17 predictors. More meteorological variables are erglait theAnEnMu experiment. In
contrast to thé&nEnWs, only the ensemble meanfor every parameter is used apredictor

in the AnEnMu experiment For the AnEnStd ensemble forecaststhe ALADIN-LAEF
ensemble uncertainty ) and the ensemble meap) (of the defined six meteorological
parameters are used. THenEnStd includes the aspects of error growth, represented
dynamically by the used ensemble model, as ex@thin Eckel and Delle Monache [2016]

This adds additional information to the fladependenerror growth already captured by the
analog approach (e.g. AnNEnMu).

In addition to the aforementioned experiments, two diverging ways of including all the
ALADIN -LAEF information available are investigated. The first additional experiment, the
AnEnAll, uses every member of th&LADIN-LAEF ensemble for every defined
meteorological predictor. Thus, in thegperiment6 variables and 17 ensemble members are
used, which equals 6 x 17 predictors. An important goal ofréisisarchs to evaluate if all
probabilistic information is needed or summary measures, such as mean or spread, are already
VXIILFLHQW 7KH VHFRQG DGGLWLRQDO H[SHULPHQW LV
AnEnMem. Here, the analog search procedure is carried out for eMeADIN -LAEF
membe