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Abstract The ALICE Collaboration has measured the
energy dependence of exclusive photoproduction of J/ψ vec-
tor mesons off proton targets in ultra–peripheral p–Pb colli-
sions at a centre-of-mass energy per nucleon pair

√
sNN =

5.02 TeV. The e+e− and μ+μ− decay channels are used
to measure the cross section as a function of the rapidity
of the J/ψ in the range −2.5 < y < 2.7, correspond-
ing to an energy in the γ p centre-of-mass in the interval
40 < Wγ p < 550 GeV. The measurements, which are consis-
tent with a power law dependence of the exclusive J/ψ pho-
toproduction cross section, are compared to previous results
from HERA and the LHC and to several theoretical models.
They are found to be compatible with previous measure-
ments.

1 Introduction

One of the most interesting aspects of perturbative Quantum
Chromodynamics (pQCD) is the evolution of the structure
of hadrons in terms of quarks and gluons towards the high-
energy limit [1]. Very precise measurements at HERA [2,3]
have shown that the gluon structure function in protons rises
rapidly at small values of the Bjorken x variable, which cor-
responds to the high-energy limit of QCD. This rise, inter-
preted as the growth of the probability density function for
gluons, has to be damped at some high energy to satisfy uni-
tarity constraints [4]. Although gluon saturation [5] is the
most straightforward mechanism to slow down the growth
of the cross section, no compelling evidence for this effect
has been found so far. Gluon saturation would have impor-
tant implications in small-x physics and in the early stages of
ultra-relativistic heavy-ion collisions at RHIC and LHC; con-
sequently, finding evidence for gluon saturation has become
a central task for present experiments and for future projects
[6,7].

The exclusive photoproduction of charmonium off protons
(γ p → J/ψp) is a very clean probe with which to search for

� e-mail: alice-publications@cern.ch

saturation effects, because the cross section for this process
depends, at leading order in pQCD, on the square of the
gluon density in the target [8]. The mass of the charm quark
provides a scale large enough to allow calculations within
pQCD. A reduction in the growth rate of the cross section for
this process as the centre-of-mass energy of the photon-target
system increases would signal the onset of gluon saturation
effects.

This process has been extensively studied in ep interac-
tions at the HERA collider. Both ZEUS and H1 measured
the energy dependence of exclusive J/ψ photoproduction off
protons at γ p centre-of-mass energies, Wγ p, from 20 to 305
GeV [9–11]. H1 has also measured exclusive ψ(2S) photo-
production off protons with Wγ p between 40 and 150 GeV
[12].

The exclusive photoproduction of charmonium can also
be studied at hadron colliders, where one of the incoming
hadrons is the source of the photons and the other the target.
CDF measured exclusive J/ψ production at mid-rapidities
in pp̄ collisions at the Tevatron [13], while LHCb reported
measurements of exclusive J/ψ and ψ(2S) production at for-
ward rapidities in pp collisions at the LHC [14]. In addition,
ϒ production has been studied, both at HERA [15–17] and in
pp collisions at the LHC [18]. In all cases, the experimental
signature is the production of a vector meson in a collision
in which there is no other hadronic activity, apart from the
possible emission of a few very forward neutrons.

In hadron colliders, as the incoming particles can each be
both source or target, there are two possible centre-of-mass
energies for the photon-target system. This ambiguity can be
resolved if the contribution of one beam acting as the source
is much stronger than the other. This is the case for p–Pb col-
lisions, because photon emission grows with the square of the
electric charge and thus emission by the Pb ion is strongly
enhanced with respect to that from the proton. ALICE pub-
lished the first measurement of exclusive photoproduction of
J/ψ , at forward and backward rapidities, in p–Pb collisions
at the LHC [19].
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In this Letter we present the measurements of exclusive
J/ψ photoproduction in collisions of protons with Pb nuclei
at a centre-of-mass energy per nucleon pair

√
sNN = 5.02

TeV. The measurements are performed in the semi-backward
(−2.5 < y < −1.2), mid (|y| < 0.8) and semi-forward
(1.2 < y < 2.7) rapidity intervals, where the rapidity
y of the J/ψ is measured in the laboratory frame with
respect to the direction of the proton beam. The value of
Wγ p is determined by the rapidity of the J/ψ according to
W 2

γ p = 2EpMJ/ψ exp(−y), where MJ/ψ is the J/ψ mass
and Ep = 4 TeV is the energy of the proton beam. Thus,
the measurements presented here span the Wγ p range from
40 to 550 GeV. Together with the measurements presented
in [19] (for the rapidity ranges −3.6 < y < −2.6 and
2.5 < y < 4), ALICE data map the Wγ p dependence of
the cross section for this process from about 20 to 700 GeV,
which, using the standard definition x = M2

J/ψ/W 2
γ p, cor-

responds to three orders of magnitude, from ∼2 × 10−2 to
∼2 × 10−5.

2 Experimental set-up

The ALICE detector and its performance are described in
detail in [20,21]. It consists of two main sections: a central
barrel placed in a large solenoid magnet (B = 0.5 T), cov-
ering the pseudorapidity region |η| < 0.9, and a muon spec-
trometer covering the range −4.0 < η < −2.5. In addition,
the analyses presented here make use of two other detector
systems, V0 and ZDC, which are placed near the beam pipe
and cover large pseudorapidities.

Because the proton and Pb beams had different energies,
4 TeV and 1.58 TeV per nucleon respectively, the nucleon-
nucleon centre-of-mass was shifted, with respect to the lab-
oratory frame, by �yNN = 0.465 in the direction of the
proton beam. Collisions were performed in two configura-
tions, denoted by p–Pb and Pb–p below, by reversing the
directions of the LHC beams. According to the naming con-
vention the first named particle (e.g. ‘p’ in p–Pb) is the one
where the beam travels from the interaction region towards
the muon spectrometer. Note that the convention in ALICE
is that the pseudorapidity is negative in the direction of the
muon spectrometer. In contrast, the laboratory rapidity is
measured with respect to the direction of the proton beam
and changes sign accordingly for the p–Pb and Pb–p config-
urations. In the semi-backward and semi-forward analyses,
the negative rapidity points come from the Pb–p data, and
the positive rapidity points from the p–Pb.

The ALICE apparatus consisted of 18 detector systems at
the time the data used in this study were taken. The detectors
relevant for the analysis are described in more detail below.

2.1 The ALICE central barrel

The innermost component of the central barrel is the Inner
Tracking System (ITS) [22]. The ITS contains six cylindrical
layers of silicon detectors, with the innermost layer at a radius
of 3.9 cm with respect to the beam axis and the outermost
layer at 43 cm. The two rings closest to the beam form the
Silicon Pixel Detector (SPD) and cover the pseudorapidity
ranges |η| < 2 and |η| < 1.4, for the inner and outer layers
respectively. It is a fine granularity detector, having about
107 pixels. In addition to functioning as a tracking device,
the SPD signals can be used to build triggers. The other four
layers, two employing silicon drift chambers and two silicon
microstrips, are used in this analysis exclusively for tracking.

The Time Projection Chamber (TPC), surrounding the
ITS, is a large cylindrical detector used for tracking and for
particle identification [23]. Its active volume extends from 85
to 247 cm in the radial direction and has a total length of 500
cm longitudinally, centred on the interaction point. A 100 kV
central electrode separates its two drift volumes, providing an
electric field for electron drift. The two end-plates are instru-
mented with Multi-Wire-Proportional-Chambers (MWPCs)
with 560,000 readout pads in all, allowing high precision
track measurements in the transverse plane. The z coordi-
nate is given by the drift time in the TPC electric field. The
TPC acceptance covers the pseudorapidity range |η| < 0.9
for tracks fully traversing it. Ionization measurements made
along track clusters are used for particle identification.

Beyond the TPC lies the Time-of-Flight detector (TOF)
[24]. It is a large cylindrical barrel of Multigap Resistive
Plate Chambers (MRPCs) giving very high precision timing
for tracks traversing it. Its pseudorapidity coverage matches
that of the TPC. It is also capable of delivering signals for
triggering purposes [25].

2.2 The ALICE muon spectrometer

The muon spectrometer consists of a 3 Tm dipole mag-
net, coupled with a tracking and a triggering system. A ten
interaction-length conical front absorber, made of carbon,
concrete and steel, is placed between the interaction point
(IP) and the muon spectrometer tracking system, between
0.9 and 5 m from the IP, to filter out primary hadrons. Muon
tracking is performed by means of five tracking stations, each
one made of two planes of Cathode Pad Chambers. A 7.2
interaction-length iron wall is placed after the tracking sta-
tions. It is followed by the muon trigger system, based on
two stations equipped with Resistive Plate Chambers. The
trigger system can provide single-muon and dimuon triggers
with a programmable pT threshold. The pT threshold is an
approximate value owing to the coarse grain of the trigger
spatial information. In addition, there is a conical absorber
made of tungsten, lead and steel, that surrounds the beam
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pipe at small angles (θ < 2◦) and shields the spectrometer
from secondary particles produced in interactions of primary
particles in the beam pipe.

2.3 The V0 and the ZDC systems

Two sets of hadronic Zero Degree Calorimeters (ZDC) are
located at 112.5 m on either side of the interaction point. Each
station consists of two detectors, one to detect protons and the
other neutrons. The neutron ZDCs detect neutrons emitted in
the very forward region (|η| > 8.7). The calorimeters detect
the Cherenkov light produced in quartz fibers by the hadronic
showers. Each detector is read out by five photomultipliers.
Their timing and energy resolution allow one to select events
with neutrons produced at very forward rapidity, as could be
the case in events with proton dissociation.

The V0 counters [26] consist of two arrays of 32 scintilla-
tor cells each, covering the range 2.8 < η < 5.1 (V0A on the
side opposite to the muon spectrometer) and –3.7 < η < –
1.7 (V0C, on the same side as the muon spectrometer) and
positioned respectively at z = 340 cm and z = − 90 cm from
the interaction point. The raw signals are used in the trigger,
but are refined offline for use in the final data selections. For
example, these detectors provide timing information with a
resolution better than 1 ns, which can be used to distinguish
two different timing windows, one corresponding to the pas-
sage of particles coming from collisions, and the other to
particles coming from upstream interactions with residual
gas molecules, termed “beam-gas” interactions.

2.4 Triggers

Two different signatures have been used in the analyses
described below. In one case, the mid-rapidity analysis, the
J/ψ candidate decays into a pair of leptons (either e+e−
or μ+μ−), both of which are detected with the central bar-
rel detectors. The second case, the semi-forward (or semi-
backward) analysis, corresponds to a J/ψ candidate decay-
ing into a pair of muons where one of them is measured with
the muon spectrometer and the other with the central barrel
detectors.

The trigger for the mid-rapidity analysis required at least
two, and at most six, fired pad-OR in the TOF detector [24],
such that at least two of the signals came from modules sep-
arated by more than 150 degrees in azimuth, since the J/ψ
decay products are predominantly produced back-to-back in
azimuth. The trigger also required no signal in V0A and no
signal in V0C, to ensure that there is very little extra hadronic
activity in the event, and at most six fired pixel chips in the
outer layer of the SPD. In addition there were required to be
two inner-outer pairs of these pixels having a back-to-back
topology.

Three triggers were used for the semi-backward and semi-
forward analyses. The first was active during the p–Pb data
taking period. It required a muon candidate in the muon spec-
trometer trigger system with a transverse momentum above
0.5 GeV/c (as assessed in the trigger system electronics), at
most 4 cells with signal in the V0C and no activity in the
V0A. The SPD requirement was to have at least 1 pixel hit in
either the inner or the outer layer and less than 7 pixels fired
in the outer layer. Two different triggers were active during
the Pb–p period. For the first one, in addition to the previ-
ous conditions, it was also required that at least one cell of
the V0C had a signal. The second one had the same require-
ments as the first, but in addition vetoed signals from V0A
compatible with beam-gas timing. These tighter conditions
were required owing to an increased background trigger rate.

The integrated luminosityLint was corrected for the prob-
ability that the exclusivity requirements could be spoilt by
multiple interactions in the same bunch crossing. This pile-
up correction is on average 5%. The total luminosity of the
sample used for the mid-rapidity analysis is 2.1 nb−1 (4.8
nb−1) in the p–Pb (Pb–p) period, while for the semi-forward
(semi-backward) analysis it is 3.1 nb−1 (3.7 nb−1) in the p–
Pb (Pb–p) period. Note that in the mid-rapidity case, the p–Pb
and Pb–p data samples have been analysed together, taking
into account the inversion of the rapidity sign, to increase the
size of the central rapidity data sample.

3 Data samples

3.1 Event and track selection for the mid-rapidity analysis

The events used in the mid-rapidity analysis fulfilled the fol-
lowing criteria.

1. They fired the corresponding trigger.
2. There were exactly two tracks reconstructed with the TPC

and the ITS.
3. The primary vertex had at least two tracks defining it.
4. Each track had at least 50 TPC space points out of a

maximum of 159, a TPC-χ2/dof < 4, at least one SPD
point and pseudorapidity |η| < 0.9.

5. The distance of closest approach of each track to the
(nominal) primary vertex (DCA) was less than 2 cm in the
longitudinal direction and less than 0.0182+0.035/p1.01

T
cm, with pT in GeV/c, in the transverse direction [21].

6. Neither track was associated with a kink candidate.
7. The coordinate of the primary vertex of the interaction

along the beam-line direction was within 15 cm of the
nominal interaction point.

8. The two tracks had opposite electric charge.
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To build dilepton candidates the tracks were separated into
electrons and muons using the energy loss measured by the
TPC, such that:

1. the quadratic sum of the normalised deviation from the
corresponding Bethe-Bloch expectation for the positive
and negative track had to be less than 16;

2. the rapidity, measured in the laboratory frame, of the
dilepton candidate, formed by the 4-vector sum of the
two tracks with the corresponding mass hypothesis, had
to be in the range |y| < 0.8.

In addition, the events had to

3. have no signal in V0 as determined by the offline decision,
and

4. no signal in either of the neutron ZDCs.

3.2 Event and track selection for the semi-backward and
semi-forward analyses

The events used in the semi-backward and semi-forward
analyses fulfilled the following criteria.

1. They fired the corresponding trigger.
2. There was exactly one track reconstructed with the TPC

and the ITS.
3. This track fulfilled similar requirements to those for the

central analysis tracks, with two modifications: it had
to be compatible with a muon (within 4σ ) according to
the energy-loss measurement, and the acceptance was
enlarged to |η| < 1.1.

4. Furthermore, the distance of closest approach of this track
to the nominal interaction point had to be less than 15 cm
in the direction along the beam-line.

5. The event also had to have exactly one track in the muon
spectrometer such that:

(a) the track is matched to a trigger track above the pT

threshold;
(b) the radial coordinate of the track at the end of the

front absorber (Rabs) was required to be in the range
17.5 cm < Rabs < 89.5 cm;

(c) it had a pseudorapidity in the range −4.0 < η <

−2.5 (−3.7 < η < −2.5) in the p–Pb (Pb–p) period
and fulfilled the so called p×DCA requirement.
The p×DCA requirement uses the difference in
the distributions for signal and beam-induced back-
ground in the (p, DCA) plane, where p is the track
momentum and DCA is the distance between the
interaction vertex and the track extrapolated to the
vertex transverse plane. If in a given event no inter-
action vertex was found, the point (0, 0, 0) was used

to calculate the distance of closest approach. The
pseudorapidity ranges are different in p–Pb and Pb–p
owing to the additional V0C trigger requirement (see
Sect. 2.4).

6. The two tracks had to have opposite electric charge.
7. The rapidity, measured in the laboratory frame, of the

dimuon candidate, formed by the 4-vector sum of the two
tracks with the muon-mass hypothesis, had to be in the
range 1.2 < y < 2.7 for the p–Pb and −2.5 < y < −1.2
for the Pb–p sample, respectively.

8. In addition, the events had to have no signal in V0A, at
most one cell with a signal in V0C, (in both cases as
determined by the offline reconstruction), no signal in
either of the neutron ZDCs and at most one tracklet in
the SPD layers.

3.3 Selection of background samples

Several background samples, one for each analysis, were
selected. The events in these samples satisfy the condi-
tions listed in the previous sections, and in addition there
is required to be a signal, compatible with the presence of
a neutron, in the ZDC placed in the proton direction. Both
like-sign and opposite-sign dilepton candidates are accepted.

These samples are highly efficient to tag dissociative pro-
cesses (where the target proton breaks up) and other hadronic
collisions and were used to build templates to subtract the
remaining background in the real data samples as explained
below. As the trigger suppresses events with higher pT dilep-
tons (pT ≥ 0.5 GeV/c), due to the condition on azimuthal
separation, the number of events in this pT range is limited.
Therefore, each background spectrum was used to gener-
ate a high statistics sample, which was smoothed to pro-
duce the final template. This is referred to as “non-exclusive
background” in the analysis of the pT spectrum. The selec-
tions and smoothing algorithms were varied to estimate the
systematic uncertainties, and the background pT distribution
was verified independently by selecting hadronic activity in
V0C instead of the ZDC.

3.4 Monte Carlo samples

The STARLIGHT Monte Carlo generator [27,28] was used
to generate large samples for the following processes: exclu-
sive J/ψ photoproduction off proton (γ p → J/ψp) and
Pb (γ Pb → J/ψPb) targets, exclusive photoproduction
of ψ(2S) decaying into J/ψ + X , and continuum dilep-
ton production γ γ → l+l−. The physics models used by
STARLIGHT are described in [28–30]. All generated events
were passed through a full simulation of the detector based
on GEANT 3 transport code [31] and subjected to the same
analysis chain as real data. The Monte Carlo took into account
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the changing status of the detectors during data-taking, and
their residual misalignment.

In all cases the polarization of the photoproduced char-
monium was taken as transverse, as expected for photopro-
duction of vector mesons. For the ψ(2S) sample three cases
were studied, corresponding to an assumption of longitudi-
nal, transverse and no polarisation of the J/ψ produced by
the decay of the ψ(2S).

The dependence of exclusive photoproduction on the
momentum transferred in the target vertex is modelled in
STARLIGHT using an exponential distribution F(Q2) =
e−bQ2

, with the slope b taking the default value of 4 GeV−2

[32]. HERA measurements have shown that the value of this
parameter depends on Wγ p [10]. This effect is particularly
important for the mid-rapidity and the semi-backward sam-
ples, where Wγ p is larger. To take this into account additional
samples of exclusive J/ψ were produced using STARLIGHT
with a value of b given by the H1 parameterisation from [10].

4 Data analysis

4.1 Signal extraction

The mass distributions for the dilepton candidates that passed
the selection described in the previous section are shown in
Fig. 1. In all cases a clear J/ψ signal is observed over a small
background. The data can be satisfactorily described in all
cases by a combination of a Crystal-Ball function (CB) [33]
and an exponential distribution, which represent the signal
and the background from continuum dilepton production,
respectively. The tail parameters of the CB distribution have
been fixed to the values obtained by fitting simulated events.

Figure 2 shows the distribution of transverse momen-
tum for dilepton pairs having mass (ml+l−) in the range
2.9 < ml+l− < 3.2 GeV/c2 for all the samples, except for
the dimuon case in the mid-rapidity analysis where the lower
bound was raised to 3.0 GeV/c2 to make use of the better mass
resolution of this channel. In all cases the transverse momenta
populate the region below about 1 GeV/c, as expected from
exclusive photoproduction off protons. These distributions
are used to extract the number of exclusive J/ψ , within the
stipulated mass range, in each of the measured rapidity inter-
vals. An extended binned likelihood method is used in fits of
data to a sum of templates for signal and background obtained
from data (see Sect. 3.3) and from Monte Carlo (see Sect. 3.4)
samples. These templates are also shown in the figure.

The number of candidates from the continuum dilepton
template, which is a free parameter in the fit, was found
always to be less than what is obtained, in the given mass
range, from the exponential part of the fit to the mass distri-
bution. This exponential distribution includes both the exclu-

sive and the dissociative dilepton production, while the tem-
plate describes only the exclusive component. The number
of candidates for coherent J/ψ production off lead has been
estimated using STARLIGHT. The STARLIGHT predictions
were rescaled so as to be compatible, within the uncertain-
ties, with ALICE measurements in Pb–Pb collisions [34,35].
The normalisation of the exclusive J/ψ and non-exclusive
background templates have been left free. Note that the
non-exclusive background is lower at higher energies of the
photon-target system, as has already been observed at HERA
[10,11], and also by ALICE [19].

The number of candidates obtained from the fitted tem-
plate for exclusive J/ψ production has been corrected for
the feed-down from exclusive production of ψ(2S) decay-
ing into J/ψ + X [35]. This correction amounts to about 2%
(4%) for the semi-backward and semi-forward (mid-rapidity)
analyses. The correction factor to take into account the accep-
tance and efficiency (ε × A) of the detector was computed
using simulated events, as described in Sect. 3.4. This factor
depends on the rapidity of the J/ψ and varies from around
3% to almost 9%. For the semi-backward sample the ε × A
includes the efficiency of the V0C (around 60%) to detect the
passing muon (because it is included in the trigger). The val-
ues for the number of exclusive J/ψ extracted in the different
data samples, as well as the corresponding ε × A factors and
available luminosity, are summarised in Table 1. Note that,
in order to make best use of the available statistics, both the
central and the semi-forward (but not the semi-backward)
samples have been sub-divided into two rapidity bins.

4.2 Estimation of systematic uncertainties

Several sources of systematic uncertainty have been studied.
They are discussed below, while their contribution to the
uncertainty on the measured cross sections are summarised
in Table 2.

The uncertainty on the tracking efficiency in the TPC
was estimated repeating the analyses using different track
selections. Four different values for the minimal number of
points and three values for the minimum number of TPC
pads crossed by the track were used. The systematic uncer-
tainty related to the selection of tracks at mid-rapidity was
estimated from the spread of the variations with respect to
the standard selection. It varies from 0.8 to 5.7%.

The uncertainty related to the identification of electrons
and muons using their energy deposition in TPC has been
obtained using an alternative selection based directly on the
energy loss [36]. The difference between the two methods
was used as an estimate of the systematic uncertainty, and
was at most 1.3%. Cross contamination from muon pairs in
the electron sample and vice versa was found to be negligible.

The uncertainty on the single muon tracking efficiency in
the muon spectrometer was obtained by comparing the results
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Fig. 1 Mass distributions of selected dileptons for the dielectron
(upper left) and dimuon (upper right) samples for the central analy-
sis and dimuon samples for the semi-forward (lower left) and semi-
backward (lower right) analyses. In all cases the data are represented

by points with error bars. The solid blue line is a fit to a Crystal-Ball
function plus an exponential distribution, where this last contribution is
shown by a dotted red line

of measurements performed on simulations with those from
real data [35] and amounts to 2% (3%) for the p–Pb (Pb–p)
period. There is also a 0.5% contribution from variations on
the conditions required to match the trigger and the tracking
information of a given muon.

The uncertainties related to triggering in the muon spec-
trometer have been evaluated as in [36]. The efficiency maps
of the trigger chambers have been obtained using data. The
statistical uncertainty on this procedure has been used to vary

the efficiency in simulations, which was then used to esti-
mate a systematic uncertainty of 1%. There is also a small
discrepancy between the efficiency in data and in simula-
tions around the trigger threshold. This gives a contribution
of 1.7% (1.3%) for the p–Pb (Pb–p) period. The addition
in quadrature of these two effects yields the uncertainty on
muon triggering.

The two main contributions to the uncertainty on the
trigger efficiency for the mid-rapidity analysis come from
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Fig. 2 Transverse momentum distributions of dileptons around the
J/ψ mass for the dielectron (upper left) and dimuon (upper right) sam-
ples for the central analysis and dimuon samples for the semi-forward
(lower left) and semi-backward (lower right) analyses. In all cases the
data are represented by points with error bars. The blue, magenta (dash)

and green (dash-dot-dot) lines correspond to Monte Carlo templates for
J/ψ coming from exclusive photoproduction off protons or off lead and
continuous dilepton production respectively. The red (dash-dot) line is a
template for dissociative and hadronic background obtained from data.
The solid black line is the sum of all contributions

the back-to-back topology condition in the SPD and TOF
detectors. The first one was estimated using a data sample
obtained using a zero-bias trigger (all bunch crossings taken).
It amounts to 4.5%. The second one was taken from the anal-
ysis of [35]. It amounts to (− 9%, + 3.8)%, using a zero bias
trigger to compute the efficiency and comparing the result
with the efficiency from simulated events.

The efficiency of the V0C to detect one muon from the
J/ψ decay, which is needed in the semi-backward analy-
sis, was estimated using events from the p–Pb period, whose
trigger did not include this V0C requirement. The procedure
was cross checked using the forward dimuon sample used
for the analysis described in [19]. The efficiency depends
slightly on the mass range used to compute it. The addi-
tion in quadrature of the statistical uncertainty (2.7%) and
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Table 1 Number of measured exclusive J/ψ , value of the efficiency
and acceptance correction factor, as well as integrated luminosity for
each rapidity interval. These values are used in Eq. (1) to compute the
measured cross sections

Rapidity NJ/ψ ε × A Lint (nb−1)

(1.9, 2.7) 73 ± 15 0.071 3.147

(1.2, 1.9) 98 ± 17 0.086 3.147

(0.0, 0.8)

Dielectron 106 ± 16 0.029 6.915

Dimuon 196 ± 17 0.057 6.915

(−0.8, 0.0)

Dielectron 117 ± 13 0.033 6.915

Dimuon 199 ± 20 0.063 6.915

(−2.5, −1.2) 76 ± 11 0.037 3.743

the mass dependence (2.0%) yields an uncertainty of 3.4%.
The veto efficiency of the V0 detector can also be estimated
offline using a more complex algorithm than that used in the
online trigger. To estimate the uncertainty on the use of V0
to veto extra activity, the analyses were compared using the
online V0 decision only and requiring (standard selection) in
addition the offline decision, with the difference giving the
systematic uncertainty. The uncertainty varies from 1.2% to
3.5%.

The trigger conditions associated with the upper limits in
the activity in TOF, SPD and V0C have a negligible effect
on the systematic uncertainty, because the limits are set well
above the levels of activity produced by the signal in our
sample.

The systematic uncertainty on the yield was obtained by
varying the range of fit to the transverse momentum template,
the width of the binning and the selections and smoothing

algorithms used to determine the non-exclusive template (see
Sect. 3.3). Furthermore, the value of the b parameter used
in the production of the exclusive J/ψ template was varied,
taking into account the uncertainties reported by H1 [10]. The
uncertainty varies from 1.9 to 3.6% (see “signal extraction”
in Table 2).

The polarization of the J/ψ coming from ψ(2S) feed-
down is not known. The uncertainty on the amount of feed-
down has been estimated by assuming that the J/ψ was either
not polarised or that it was fully transversely or fully longitu-
dinally polarised. This uncertainty is asymmetric and varies
from + 1.0 to − 1.4% (see “feed-down” in Table 2).

The uncertainty on the measurement of the luminosity has
a contribution of 1.6%, which is correlated between the p–Pb
and Pb–p data-taking periods and, in addition, an uncorre-
lated part of 3.3% (3.0%) in the p–Pb (Pb–p) configuration
[37]. For the mid-rapidity analysis, which has data from both
p–Pb and Pb–p, the uncorrelated part of the uncertainty on
the luminosity amounts to 2.3%.

Furthermore, the uncertainties on the TPC selection, parti-
cle identification, offline V0 veto efficiency and signal extrac-
tion are uncorrelated across rapidity. The uncertainty on the
ψ(2S) feed-down is correlated for all rapidities. The uncer-
tainties on muon tracking, matching and trigger efficiencies
are mostly uncorrelated across rapidity, and for the purposes
of this analysis we treat the uncertainties as fully uncorre-
lated. (This includes also the measurements from [19].) The
trigger efficiency at mid-rapidity is correlated between the
(0.0,0.8) and (− 0.8,0.0) rapidity intervals.

The mid-rapidity analysis offers two other possibilities to
cross check the consistency of the results. One can compare
the results of the cross section in the p–Pb and Pb–p peri-
ods, and one can compare the results of the electron and the
muon decay channels. The cross sections agreed in all cases

Table 2 Summary of the contributions to the systematic uncertainty, in percent, for the J/ψ cross section in the different rapidity intervals

(1.9, 2.7) (1.2, 1.9) (0.0, 0.8) (− 0.8, 0.0) (− 2.5, − 1.2)

TPC track selection 5.7 1.2 0.9 0.8 3.3

Particle identification – – 1.3 0.6 –

Muon tracking efficiency 2.0 2.0 – – 3.0

Muon matching efficiency 0.5 0.5 – – 0.5

Trigger efficiency 2.0 2.0 +5.9
−10.1

+5.9
−10.1 1.6

V0C Trigger efficiency – – – – 3.4

Offline V0 veto efficiency 2.7 3.5 2.1 2.1 1.2

Signal extraction 3.6 2.2 2.1 1.9 3.0

Feed-down +0.0
−1.3 1.0 +0.6

−1.0
+1.0
−0.6

+0.0
−1.4

Luminosity uncorrelated 3.3 3.3 2.3 2.3 3.0

Luminosity correlated 1.6 1.6 1.6 1.6 1.6

Branching ratio [38] 0.6 0.6 0.4 0.4 0.6

Total 8.7 6.4 11.1 11.0 7.7
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Table 3 Measured differential cross sections dσ/dy for exclusive J/ψ
photoproduction off protons in ultra-peripheral p–Pb (positive rapidity
values) and Pb–p (negative rapidity values) collisions at

√
sNN = 5.02

TeV in the different rapidity intervals. Values of the photon flux kdn/dk,
the interval in Wγ p corresponding to the rapidity, the average Wγ p

(〈Wγ p〉) and the extracted cross section σ(γ + p → J/ψ + p). The
first uncertainty in the cross sections is statistical, the second is sys-
tematic and the third comes from the uncertainty in the photon flux

Rapidity dσ
dy (μb) k dn

dk Wγ p (GeV) 〈Wγ p〉 (GeV) σ(γ + p → J/ψ + p)(nb)

(1.9, 2.7) 6.9 ± 1.4 ± 0.6 163.6 ± 1.5 (40.8, 60.9) 50.4 42 ± 9 ± 4 ± 1

(1.2, 1.9) 8.7 ± 1.5 ± 0.6 140.2 ± 1.5 (60.9, 86.4) 73.1 62 ± 11 ± 4 ± 1

(0.0, 0.8) 10.6 ± 0.8 ± 1.2 104.3 ± 1.5 (105.5, 157.4) 129.9 101 ± 8 ± 11 ± 1

(− 0.8, 0.0) 10.0 ± 0.8 ± 1.1 79.4 ± 1.5 (157.4, 234.9) 193.3 126 ± 10 ± 14 ± 2

(− 2.5, − 1.2) 7.1 ± 1.0 ± 0.5 36.5 ± 1.4 (286.9, 549.5) 391.2 194 ± 27 ± 15 ± 7

within the statistical uncertainties. As a cross-check, the pos-
sible contribution from incoherent production of J/ψ off the
Pb nucleus was investigated, and found to be negligible. In
addition, the effect on the ε × A correction of varying the
slope parameter b within the HERA limits was also found to
be negligible.

Systematic effects related to noise or pileup events in the
ZDC are estimated using randomly triggered events and are
also found to be negligible.

5 Results

5.1 Cross sections for exclusive production of J/ψ in p–Pb
collisions

The measured cross section for the exclusive production of
J/ψ in collisions of protons with lead nuclei is computed
according to

dσ

dy
= NJ/ψ

ε × A · BR(J/ψ → l+l−) · Lint · �y
(1)

where �y represents the width of the rapidity region where
the measurement is performed and the branching ratios are
BR(J/ψ → e+e−) = (5.97 ± 0.03)% and BR(J/ψ →
μ+μ−) = (5.96 ± 0.03)% according to [38]. The values
that go into this equation are listed in Table 1, while the
measured cross sections are given in Table 3.

For the mid-rapidity analysis the measurements in the
muon and electron channels are computed independently.
The cross sections in the rapidity range −0.8 < y < 0
(0 < y < 0.8) are 10.7 ± 1.3 (11.1 ± 1.8) μb for the electron
channel and 9.6 ± 1.0 (10.4 ± 1.0) μb for the muon channel,
where the errors represent the statistical uncertainty. These
measurements have been averaged, weighting each cross sec-
tion with its statistical uncertainty.

5.2 Cross sections for exclusive photoproduction of J/ψ
off protons

The relation between dσ/dy and the cross section for the
photoproduction of J/ψ off protons, σ(γ + p → J/ψ + p),
is given by

dσ

dy
= k

dn

dk
σ(γ + p → J/ψ + p) (2)

where k = 0.5×MJ/ψ exp (−y) is the photon energy in the
laboratory frame and kdn/dk the flux of photons with energy
k emitted by the lead nucleus. Using STARLIGHT, the flux
has been computed in impact parameter space and convo-
luted with the probability of no hadronic interaction. The
uncertainty in the flux is obtained varying the radius of the
lead nucleus, used in the nuclear form factor, by ± 0.5 fm,
which corresponds to the nuclear skin thickness.

The measured cross sections are given in Table 3, and also
include the value of the centre-of mass energy of the photon-
proton system, 〈Wγ p〉, computed as the average of Wγ p over
the rapidity interval weighted by the photoproduction cross
section predicted by STARLIGHT.

5.3 Energy dependence of the exclusive photoproduction of
J/ψ off protons

Figure 3 shows all ALICE measurements, including those
from [19], for the exclusive photoproduction of J/ψ off pro-
tons as a function of Wγ p. The data cover the Wγ p range from
24 to 706 GeV, which corresponds roughly to three orders
of magnitude in x , from ∼ 2 × 10−2 to ∼ 2 × 10−5. The
error bars are the quadratic sum of the statistical and the total
systematic uncertainties.

The same figure shows the result of a χ2-fit of a power law
N (Wγ p/W0)

δ to the full set of ALICE data, with W0 = 90.0
GeV as was done before in HERA analyses [40]. The fit
takes into account the statistical and systematic uncertain-
ties, according to the technique used by H1 in [41]. The
parameters found by the fit are N = 71.8 ± 4.1 nb and
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Fig. 3 (Upper panel) ALICE
data (red symbols) on exclusive
photoproduction of J/ψ off
protons as a function of the
centre-of-mass energy of the
photon–proton system Wγ p,
obtained in collisions of protons
and lead nuclei at

√
sNN = 5.02

TeV, including results from [19],
compared to a power-law fit, to
data from HERA [9,11], to the
solutions from LHCb [39] and
to theoretical models (see text).
The uncertainties are the
quadratic sum of the statistical
and systematic uncertainties.
(Lower panel) Ratio of the
models shown in the upper panel
to the power law fit through the
ALICE data points. The Bjorken
x value corresponding to Wγ p is
also displayed on the top of the
figure, see text for details
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δ = 0.70 ± 0.05 with a correlation of −0.06 between both
parameters. The quality of the fit is χ2 = 1.21 for 7 degrees
of freedom. The value of the exponent is compatible to that
found using previous ALICE data [19], as well as with that
found by HERA experiments [9,11].

The comparison of ALICE measurements to data from
other experiments as well as to the results from different
models is also shown in Fig. 3. HERA [9,11] and ALICE
data are compatible within uncertainties. LHCb measured
the exclusive production of J/ψ in pp collisions, where the
photon source can not be identified. Thus the extraction of
the photoproduction cross section is not possible without fur-
ther assumptions. For each measurement they reported two
solutions [14] which also agree with ALICE measurements.

ALICE measurements are also compared to theory in
Fig. 3. The JMRT group [42] has two computations, one
is based on the leading-order (LO) result from [8] with the
addition of some corrections to the cross section, while the
second includes also the main contributions expected from a
next-to-leading order (NLO) result. The parameters of both
models have been obtained by a fit to the same data and their
energy dependence is rather similar, so only the NLO version
is shown. Recently, three new studies have appeared, describ-
ing theW (γ p) dependence of the exclusive J/ψ cross section
in terms of a colour dipole model [43] (CGC) or of the BFKL
evolution of HERA values (HERA Fit 2) with a photopro-

duction scale M2 = 2.39 GeV2 [44] (NLO(BFKL)). These
are shown as bands in the figure. A third model, based on the
colour dipole approach, and incorporating the energy depen-
dence of geometrical fluctuations of the proton structure in
the impact parameter plane [45] is also shown (CCT). The
models are in reasonable agreement with our data. Finally
the STARLIGHT parameterisation relies on a power-law fit
to fixed-target and HERA data. This model also agrees with
our measurement.

6 Summary

The ALICE Collaboration has measured the photoproduction
of J/ψ mesons off protons in p–Pb interactions. New mea-
surements, summarised in Table 3, at central, semi-backward
and semi-forward rapidities are added to those previously
given at forward and backward rapidities. Each rapidity inter-
val corresponds to a given energy for exclusive photopro-
duction in photon–proton interactions. The data agree with
the previous ALICE measurements at forward and backward
rapidities, with the LHCb results in pp interactions and with
previous HERA measurements over a smaller energy range.
The ALICE measurements are consistent with a power law
dependence σ(γ p → J/ψp) ∼ W δ

γ p, with δ = 0.70 ± 0.05.

Several models, based on different physics assumptions,
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reproduced this behaviour within the current experimental
uncertainties. The model predictions around and above 1 TeV
are not very precise although all tend to go below the extrap-
olation of the fit, as shown in the lower panel of Fig. 3. This
energy range will be reachable with the new LHC data from
Run 2 and the data to be collected in Run 3 and Run 4. The
data presented here, augmented with the results from future
measurements, will be a powerful tool to better understand
the role of saturation at the highest energies.
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