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M. Snowball,36 R. A. Soltz,35 W. E. Sondheim,36 S. P. Sorensen,60 I. V. Sourikova,7 P. W. Stankus,49 M. Stepanov,40,*

S. P. Stoll,7 T. Sugitate,22 A. Sukhanov,7 T. Sumita,53 J. Sun,59 Z. Sun,16 J. Sziklai,65 A. Taketani,53,54 K. Tanida,29,54,57

M. J. Tannenbaum,7 S. Tarafdar,63,64 A. Taranenko,44,58 R. Tieulent,21,38 A. Timilsina,28 T. Todoroki,53,54,62 M. Tomášek,15

C. L. Towell,1 R. Towell,1 R. S. Towell,1 I. Tserruya,64 Y. Ueda,22 B. Ujvari,16 H. W. van Hecke,36 J. Velkovska,63 M. Virius,15

V. Vrba,15,27 X. R. Wang,46,54 Y. Watanabe,53,54 Y. S. Watanabe,12,31 F. Wei,46 A. S. White,41 C. P. Wong,21 C. L. Woody,7

M. Wysocki,49 B. Xia,48 C. Xu,46 Q. Xu,63 L. Xue,21 S. Yalcin,59 Y. L. Yamaguchi,12,54,59 A. Yanovich,24 J. H. Yoo,32 I. Yoon,57

H. Yu,46,51 I. E. Yushmanov,33 W. A. Zajc,14 A. Zelenski,6 S. Zharko,56 S. Zhou,11 and L. Zou8

(PHENIX Collaboration)
1Abilene Christian University, Abilene, Texas 79699, USA

2Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
3Department of Physics, Banaras Hindu University, Varanasi 221005, India

4Bhabha Atomic Research Centre, Bombay 400 085, India
5Baruch College, City University of New York, New York, New York 10010, USA

6Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

8University of California-Riverside, Riverside, California 92521, USA
9Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic

10Chonbuk National University, Jeonju, 561-756, Korea
11Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, People’s Republic of China

12Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
13University of Colorado, Boulder, Colorado 80309, USA

2469-9985/2019/99(2)/024903(16) 024903-1 ©2019 American Physical Society



A. ADARE et al. PHYSICAL REVIEW C 99, 024903 (2019)

14Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA
15Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic

16Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary
17ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary

18Eszterházy Károly University, Károly Róbert Campus, H-3200 Gyöngyös, Mátrai út 36, Hungary
19Ewha Womans University, Seoul 120-750, Korea

20Florida State University, Tallahassee, Florida 32306, USA
21Georgia State University, Atlanta, Georgia 30303, USA

22Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
23Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA

24IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia
25University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

26Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
27Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic

28Iowa State University, Ames, Iowa 50011, USA
29Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura,

Naka-gun, Ibaraki-ken 319-1195, Japan
30Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland

31KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
32Korea University, Seoul 02841, Korea

33National Research Center “Kurchatov Institute”, Moscow 123098, Russia
34Kyoto University, Kyoto 606-8502, Japan

35Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

37Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
38IPNL, CNRS/IN2P3, Univ Lyon, Université Lyon 1, F-69622, Villeurbanne, France

39University of Maryland, College Park, Maryland 20742, USA
40Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA

41Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
42Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA

43Nara Women’s University, Kita-uoya Nishi-machi Nara 630-8506, Japan
44National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia

45University of New Mexico, Albuquerque, New Mexico 87131, USA
46New Mexico State University, Las Cruces, New Mexico 88003, USA

47Physics and Astronomy Department, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA
48Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA

49Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
50IPN-Orsay, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, BP1, F-91406, Orsay, France

51Peking University, Beijing 100871, People’s Republic of China
52PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
53RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan

54RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
55Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan

56Saint Petersburg State Polytechnic University, St. Petersburg 195251, Russia
57Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea

58Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
59Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA

60University of Tennessee, Knoxville, Tennessee 37996, USA
61Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan

62Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
63Vanderbilt University, Nashville, Tennessee 37235, USA

64Weizmann Institute, Rehovot 76100, Israel
65Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics,

Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary
66Yonsei University, IPAP, Seoul 120-749, Korea

67Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32 HR-10002 Zagreb, Croatia
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(Received 26 April 2018; published 6 February 2019)

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at
forward rapidity 1 < |η| < 3 in Au + Au collisions at

√
s

NN
= 200 GeV, as a function of centrality. The

multiparticle cumulant technique is used to obtain the elliptic flow coefficients v2{2}, v2{4}, v2{6}, and v2{8}, and
triangular flow coefficients v3{2} and v3{4}. Using the small-variance limit, we estimate the mean and variance
of the event-by-event v2 distribution from v2{2} and v2{4}. In a complementary analysis, we also use a folding
procedure to study the distributions of v2 and v3 directly, extracting both the mean and variance. Implications for
initial geometrical fluctuations and their translation into the final-state momentum distributions are discussed.

DOI: 10.1103/PhysRevC.99.024903

I. INTRODUCTION

Collisions of heavy nuclei at ultrarelativistic energies are
believed to create a state of matter called the strongly cou-
pled quark-gluon plasma, as first observed at the Relativistic
Heavy Ion Collider (RHIC) [1–4]. The quark-gluon plasma
evolves hydrodynamically as a nearly perfect liquid as evinced
by the wealth of experimental measurements and theoretical
predictions (or descriptions) of the azimuthal anisotropy of
the produced particles [5]. Multiparticle correlations are gen-
erally taken as strong evidence of hydrodynamical flow, which
necessarily affects most or all particles in the event [6]. This is
different from mimic correlations (generically called nonflow)
that are not related to the hydrodynamical evolution and typ-
ically involve only a few particles. Multiparticle correlations
are also interesting because they have different sensitivities to
the underlying event-by-event fluctuations, which can provide
additional insights into the initial geometry and its translation
into final-state particle distributions [7,8].

Recently, experimental and theoretical efforts have been
directed towards measuring the fluctuations directly, using
event-by-event unfolding techniques. In principle, the mul-
tiparticle correlations and unfolding techniques provide the
same information about the underlying fluctuations, though in
practice with different sensitivities [9]. The techniques used
at the Large Hadron Collider (LHC) are experimentally very
different and provide complementary information [10,11].

In this paper we present measurements of two-, four-,
six-, and eight-particle correlations as well as event-by-event
measurements of the azimuthal anisotropy parameters corre-
sponding to elliptic v2 and triangular v3 flow. We estimate
the relationship between the mean and variance with both
techniques and discuss the implications for understanding the
detailed shape of the v2 and v3 distributions. These mea-
surements, while the first of their kind at forward rapidity,
are consistent with previous measurements at midrapidity by
STAR [12] and PHOBOS [13].

II. EXPERIMENTAL SETUP

In 2014, the PHENIX experiment [14] at RHIC collected
nearly 2 × 1010 minimum bias (MB) events of Au + Au

*Deceased.
†PHENIX spokesperson: akiba@rcf.rhic.bnl.gov

collisions at a nucleon-nucleon center-of-mass energy√
s

NN
= 200 GeV. The present analysis makes use of a subset

(≈109 events) of the total 2014 data sample. The PHENIX
beam-beam counters (BBCs) are used for triggering and cen-
trality determination. The BBCs [15] are located ±144 cm
from the nominal interaction point and cover the full azimuth
and 3.1 < |η| < 3.9 in pseudorapidity. By convention, the
north side is forward rapidity (η > 0) and the south side is
backward rapidity (η < 0). Each BBC comprises an array of
64 phototubes with a fused quartz Čerenkov radiator on the
front. Charged particles impinging on the radiator produce
Čerenkov light, which is then amplified and detected by the
phototube. The PHENIX MB trigger for the 2014 data sample
of Au + Au collisions at

√
s

NN
= 200 GeV was defined by at

least two phototubes in each side of the BBC having signal
above threshold and an online z vertex within ±10 cm of
the nominal interaction point. Additionally, PHENIX has a
set of zero-degree calorimeters (ZDC) that measure specta-
tor neutrons from each incoming nucleus [15]. We require
a minimum energy in both ZDCs to remove beam related
background present at the highest luminosities.

The centrality definition is based on the combined signal
in the north and south BBCs. The charge distribution is fitted
using a Monte Carlo (MC) Glauber [16] simulation to estimate
the number of participating nucleons (Npart) and a negative
binomial distribution to describe the BBC signal for fixed
Npart. All quantities in the present paper are reported as a
function of centrality and the corresponding Npart values are
shown in Table I.

The main detector used in the analysis is the forward sili-
con vertex detector (FVTX). The FVTX [17] is a silicon strip
detector comprising two arms, north and south, covering 1 <
|η| < 3. In Au + Au collisions there is a strong correlation
between the total signal in the BBCs and the total number of
tracks in the FVTX. To remove beam-related background, we
apply an additional event selection on the correlation between
the total BBC signal and the number of tracks in the FVTX.

Each FVTX arm has four layers. In the track reconstruction
software, a minimum of three hits is required to reconstruct
a track. However, it is possible for there to be hit sharing
with the central rapidity detector (VTX), so that one or two
of the three required hits can be in the VTX. We select
tracks using a stricter requirement of at least three hits in
FVTX, irrespective of the number of hits in the VTX. We
further require that the track reconstruction algorithm have a
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TABLE I. Npart values for various centrality
categories.

Centrality 〈Npart〉
0%–5% 350.8 ± 3.1
5%–10% 301.7 ± 4.7
10%–20% 236.1 ± 3.8
20%–30% 167.6 ± 5.5
30%–40% 115.5 ± 5.8
40%–50% 76.1 ± 5.5
50%–60% 47.0 ± 4.7
60%–70% 26.7 ± 3.6
70%–80% 13.6 ± 2.4
80%–93% 6.1 ± 1.3

goodness of fit of χ2/d.o.f. < 5 for each track. Lastly, we
require that each track has a distance of closest approach
(DCA) of less than 2 cm. The DCA is defined as the distance
between the event vertex and the straight-line extrapolation
point of the FVTX track onto a plane, which is perpendicular
to the z axis and contains the event vertex. A 2 cm cut selects
the FVTX tracks that likely originate from the event vertex,
and is conservative in accepting the nonzero DCA tail that
stems from the uncertainty in the determination of the vertex
position and the bending of the actual track in the experi-
mental magnetic field. Due to the orientation of the FVTX
strips relative to the magnetic field, momentum determination
is not possible using the tracks in the FVTX alone. However,
GEANT-4 [18] simulations have determined that the tracking
efficiency is relatively independent of momentum for pT �
0.3 GeV/c. Figure 1 shows the pT dependence of the FVTX
tracking efficiency averaged over 1 < |η| < 3. Figure 2 shows
the tracking efficiency as a function of η in the FVTX for
two different z-vertex selections. The single-particle tracking
efficiency has a maximum value of 98.6% as a function of η.
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FIG. 1. Tracking efficiency and acceptance in the FVTX as a
function of pT . At pT = 0.3 GeV/c the efficiency is 75% of its
asymptotic value.
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FIG. 2. Tracking efficiency in the FVTX as a function of η for
two different z-vertex selections.

When averaging over 1 < |η| < 3, the maximum value of the
pT -dependent efficiency is 67.9%, and pT = 0.3 GeV/c the
efficiency is at 75% of its maximum value.

III. ANALYSIS METHODS

The azimuthal distribution of particles in an event can be
represented by a Fourier series [19]:

dN

dφ
∝ 1 +

∑
n

2vn cos[n(φ − ψn)], (1)

where n is the harmonic number, φ is the azimuthal angle of
some particle, ψn is the symmetry plane, and vn = 〈cos[n(φ −
ψn)]〉. There are many experimental techniques for estimating
the vn coefficients, some of which we discuss in this section.

The main ingredient in the present analysis, for both the
cumulant results and the folding results, is the Q vector. The
Q vector is a complex number Qn = Qn,x + iQn,y with the
components defined as

RQn = Qn,x =
N∑
i

cos nφi, (2)

IQn = Qn,y =
N∑
i

sin nφi, (3)

where φi is the azimuthal angle of some particle and N
is the number of particles in some event or subevent—a
subevent is a subset of a whole event, usually selected based
on some kinematic selection, e.g., pseudorapidity. Because
the PHENIX FVTX detector subsystem is split into two
separate arms, north (1 < η < 3) and south (−3 < η < −1),
it is natural to use tracks in the two arms as separate subevents
for some calculations. In other calculations, all tracks from
north and south will be combined into a single event.

Additional corrections to the data are needed to account
for any nonuniformity in the azimuthal acceptance. In the
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case of uniform azimuthal acceptance, the event average of
the Q-vector components is zero: 〈Qn,x〉 = 〈Qn,y〉 = 0. In
the case of nonuniform acceptance, there can be a systematic
bias such that this relation does not hold. In the case of
few-particle correlations, i.e., two- and four-particle correla-
tions, the bias can be corrected analytically in a straightfor-
ward manner [20]. In the case of correlations with a larger
number of particles, however, this becomes impractical. The
total number of terms in a k-particle cumulant calculation
without the assumption of azimuthal uniformity is given by
the Bell sequence: 1, 2, 5, 15, 52, 203, 877, 4140, . . .—that
is, the number of terms for two- and four-particle correlations
is a rather manageable 2 and 15, respectively; contrariwise,
the number of terms for six- and eight-particle correlations
is a rather unmanageable 203 and 4140 terms, respectively.
For that reason, the only practicable choice is to perform
calculations on corrected Q vectors. The present analysis
makes use of Q-vector recentering [21]. In this procedure one
has the relation

Qcorrected
n = Qraw

n − Qaverage
n , (4)

where

Qaverage
n = N〈cos nφ〉 + iN〈sin nφ〉, (5)

and

〈cos nφ〉 = 〈Qn,x/N〉, (6)

〈sin nφ〉 = 〈Qn,y/N〉. (7)

In the present analysis, we perform the Q-vector recenter-
ing procedure for each FVTX arm separately and as a function
of NFVTX

tracks . To assess the associated systematic uncertainty, we
perform the Q-vector recentering as a function of centrality
instead, as a function of additional secondary variables (event
vertex and operational time period), and for combined arms
instead of separate.

A. Cumulants

The cumulant method for flow analysis was first proposed
in Ref. [22]. In the present analysis, we use the recursion
algorithm developed in Ref. [23], which is a generalization
of the direct calculations using Q-vector algebra first derived
in Ref. [20]. We consider two-, four-, six-, and eight-particle
correlations. The multiparticle correlations are denoted 〈k〉 for
k-particle correlations and are estimators for the kth moment
of vn, i.e., 〈k〉 = 〈vk

n〉. In terms of the angular relationships
between different particles, they are

〈2〉 = 〈cos[n(φ1 − φ2)]〉, (8)

〈4〉 = 〈cos[n(φ1 + φ2 − φ3 − φ4)]〉, (9)

〈6〉 = 〈cos[n(φ1 + φ2 + φ3 − φ4 − φ5 − φ6)]〉, (10)

〈8〉 = 〈cos[n(φ1 + φ2 + φ3 + φ4 − φ5 − φ6 − φ7 − φ8)]〉,
(11)

where φ1,...,8 represent the azimuthal angles of different parti-
cles in the event.

The k-particle cumulants, denoted cn{k}, are constructed
in such a way that potential contributions from lower-order

correlations are removed. Because the cumulants mix various
terms that are of equal powers of vn, the cumulant method vn,
denoted vn{k}, is proportional to the kth root of the cumulant.
The cn{k} are constructed as follows:

cn{2} = 〈2〉, (12)

cn{4} = 〈4〉 − 2〈2〉2, (13)

cn{6} = 〈6〉 − 9〈4〉〈2〉 + 12〈2〉3, (14)

cn{8} = 〈8〉 − 16〈6〉〈2〉 − 18〈4〉2 + 144〈4〉〈2〉2 − 144〈2〉4,

(15)

and the vn{k} are

vn{2} = (cn{2})1/2, (16)

vn{4} = (−cn{4})1/4, (17)

vn{6} = (cn{6}/4)1/6, (18)

vn{8} = (−cn{8}/33)1/8. (19)

It is also possible to construct cumulants in two or more
subevents, though in the present analysis we will only concern
ourselves with two subevents. For two-particle correlations,
rather than 〈2〉 = 〈cos[n(φ1 − φ2)]〉 where φ1 and φ2 are
from the same subevent, one has instead 〈2〉a|b = 〈cos[n(φa

1 −
φb

2 )]〉 where a, b denote two different subevents. The cumulant
and vn have the same relationship as in the single-event
case, i.e., vn{2}2

a|b = cn{2}a|b = 〈2〉a|b. The two-subevent two-
particle cumulant is also known as the scalar product
method [24].

Subevent cumulants for correlations with four or more
particles were first proposed in Ref. [25]. For two-subevent
four-particle correlations, there are two possibilities:

〈4〉ab|ab = 〈
cos

[
n
(
φa

1 + φb
2 − φa

3 − φb
4

)]〉
, (20)

〈4〉aa|bb = 〈
cos

[
n
(
φa

1 + φa
2 − φb

3 − φb
4

)]〉
, (21)

where the former allows two-particle correlations within sin-
gle subevents and the latter excludes them. The latter is there-
fore less susceptible to nonflow than the former, although both
are less susceptible to nonflow than single-event four-particle
correlations. The cumulants take the form

cn{4}ab|ab = 〈4〉ab|ab − 〈2〉a|a〈2〉b|b − 〈2〉2
a|b, (22)

cn{4}aa|bb = 〈4〉aa|bb − 2〈2〉2
a|b, (23)

and the vn{4} values have the same relationship to the
cumulants as in the single-particle case, i.e., vn{4}ab|ab =
(−cn{4}ab|ab )1/4 and vn{4}aa|bb = (−cn{4}aa|bb )1/4.

To determine systematic uncertainties associated with
event and track selection for the cumulant analysis, we vary
the event and track selection criteria and assess the varia-
tion on the final analysis results. The z-vertex selection is
modified from ±10 cm to ±5 cm. The track selections are
independently modified to have a goodness of fit requirement

024903-5



A. ADARE et al. PHYSICAL REVIEW C 99, 024903 (2019)

(South)
x

(North) - QxQ
1− 0.5− 0 0.5 1

(S
ou

th
)

y
(N

or
th

) 
- 

Q
y

Q

1−

0.5−

0

0.5

1

0

10

20

30

40

50

60

70=200 GeVNNsPHENIX Au+Au 
n=2, 20-30% Central

(South)
x

(North) - QxQ
1− 0.5− 0 0.5 1

1

10

210

310

410
 = 0.12092SE,xδ

(South)
y

(North) - QyQ
1− 0.5− 0 0.5 1

1

10

210

310

410
 = 0.12002SE,yδ

(a) (b) (c)

FIG. 3. Example distribution of Qnorth − Qsouth for the n = 2 case corresponding to Au + Au collisions at
√

s
NN

= 200 GeV and centrality
20–30%. (a) The two-dimensional distribution. (b) The projection onto Qx . (c) The projection onto Qy . Shown for (b) and (c) are the extracted
Gaussian widths δ2SE—the χ 2/d.o.f. values of the fits are 1.02 and 1.18 for (b) and (c), respectively.

χ2/d.o.f. < 3. These changes move the cumulant results by
an almost common multiplicative value and thus we quote the
systematic uncertainties as a global scale factor uncertainty
for each result.

B. Folding

Here we describe an alternative approach where one uti-
lizes the event-by-event Qn distribution to extract the event-
by-event vn distribution via an unfolding procedure. For our
analysis we attempt a procedure similar to that used by
ATLAS as described in Ref. [10].

In brief, ATLAS successfully carries out the unfold in
Pb + Pb collisions at 2.76 TeV and finds that the event-
by-event probability distribution for elliptic flow p(v2) is
reasonably described by a Bessel-Gaussian function

p(vn) = vn

δ2
vn

e
− (v2

n+(vRP
n )2 )

2δ2
vn I0

(
vnv

RP
n

δ2
vn

)
, (24)

where vRP
n and δ2

vn
are function parameters that are related

but not equal to the mean and variance of the distribution,
respectively. Because flow is a vector quantity, it has both a
magnitude and a phase. When measuring vn one measures the
modulus of the complex number, meaning there is a reduction
in the number of dimensions from two to one. If the fluctu-
ations in each dimension are Gaussian, one then expects the
final distribution of values to be Bessel-Gaussian. Recently
the CMS experiment has carried out a similar flow unfolding
and observes small deviations from the Bessel-Gaussian form,
favoring the elliptic power distribution [26].

For the unfolding, ATLAS determines the response matrix
in a data-driven way. The smearing in the response matrix
is modest as Pb + Pb collisions have a high multiplicity
and the ATLAS detector has large phase-space coverage for
tracks −2.5 < η < +2.5. In our case, the multiplicity of
Au + Au collisions is lower in comparison with the multiplic-
ity in Pb + Pb collisions and the phase-space coverage of the
FVTX detector is significantly smaller. Hence, the smearing

as encoded in the response matrix is significantly larger and
the unfolding is more challenging.

To estimate the response function of the detector, we
follow the procedure from ATLAS [10], which is to examine
the difference between two subevents for both Qx and Qy .
We compare the Q vector determined in the south arm of
the FVTX, Qsouth, to the Q vector determined in the north
arm of the FVTX, Qnorth. Figure 3 shows an example of
this procedure for the n = 2 case. Figure 3(a) shows the
two-dimensional distribution for the 20%–30% centrality se-
lection; Fig. 3(b) shows the one-dimensional projection of
this onto the x axis (i.e., the one-dimensional distribution of
Qnorth

x − Qsouth
x ); Fig. 3(c) shows the one-dimensional projec-

tion of this onto the y axis (i.e., the one-dimensional distri-
bution of Qnorth

y − Qsouth
y ). These distributions in all centrality

selections are Gaussian over four orders of magnitude, and we
characterize them via their Gaussian widths δ2SE , which are
given in Table II. It is notable that these widths are more than
a factor of two larger than those quoted by ATLAS in Pb + Pb
collisions, for example δ2SE = 0.050 for Pb + Pb 20%–25%
central events [10].

If there is a modest longitudinal decorrelation between the
two subevents, it will manifest as a slight increase in the
δ2SE parameter. The final vn is averaged over that decorre-
lation. This effect, as in previous unfolding analyses [10], is
neglected.

TABLE II. Resolution parameter δ2SE values for n = 2 and
n = 3 for various centrality categories.

Centrality δ2SE (n = 2) δ2SE (n = 3)

0%–5% 0.117 0.115
5%–10% 0.115 0.113
10%–20% 0.115 0.113
20%–30% 0.121 0.119
30%–40% 0.133 0.130
40%–50% 0.154 0.151
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FIG. 4. Example distribution of Q for the (a), (b) elliptic n = 2 case and (c), (d) triangular n = 3 case (bottom). (a) and (c) show the
two-dimensional distribution. (b) and (d) show the one-dimensional distribution |Q|. The distribution corresponds to Au + Au collisions
at

√
s

NN
= 200 GeV and centrality 20–30%. Also shown in (b), (d) is the best fit for this run Bessel-Gaussian truth distribution and the

corresponding forward folded result (i.e., pushing the truth distribution through the response matrix).

We highlight that even in the case of a perfect detector
with perfect acceptance, there remains a smearing due to the
finite particle number in each event. This raises a question
regarding the meaning of a true vn that is being unfolded
back to. In a hydrodynamic description, there is a continuous
fluid from which one can calculate a single true anisotropy vn

for each event. If one then has the fluid breakup into a finite
number of particles N , e.g., via Cooper-Frye freeze out, the
anisotropy of those N particles will fluctuate around the true
fluid value. However, in a parton scattering description, for
example AMPT [27], the time evolution is described in terms
of a finite number of particles N . In this sense there is no
separating of a true vn from that encoded in the N particles
themselves. Regardless, one can still mathematically apply the
unfolding and compare experiment and theory as manipulated
through the same algorithm.

As noted before, the one-dimensional radial projection of
a two-dimensional Gaussian is the so-called Bessel-Gaussian
function. In this case it means that the conditional probability

to measure a value vobs
n given a true value vn has the following

Bessel-Gaussian form:

p
(
vobs

n

∣∣vn

) ∝ vobs
n e− (vobs

n )2+v2
n

2δ2 I0

(
vobs

n vn

δ2

)
, (25)

where δ is the smearing parameter characterizing the response
due to the finite particle number (including from the detec-
tor efficiency and acceptance), and I0 is a modified Bessel
function of the first kind. The smearing parameter δ uses
the combination of the two FVTX arms and is related to
the result from the difference by δ = δ2SE/2. We highlight
that the Bessel-Gaussian in Eq. (25) is different from the
Bessel-Gaussian in Eq. (24), though both arise from a similar
dimensional reduction.

We have employed the iterative Bayes unfold method as
encoded in ROOUNFOLD [28] and our own implementation
of a singular value decomposition (SVD) unfold method
[29,30]. In both cases, the response matrix is populated using
Eq. (25) using the data-determined smearing parameters. The
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FIG. 5. Two-dimensional color plot of χ 2 − χ 2
min values as a function of the two Bessel-Gaussian parameters, vRP

n and δvn for the 20%–30%
centrality bin. (a) shows the second harmonic and (b) shows the third harmonic. Only χ2 values up to χ 2

min + 25 are shown.

FVTX-determined event-by-event Qn distributions are used
as input to the unfold. Figure 4 shows this dimensional reduc-
tion for the n = 2 and n = 3 case, respectively. Figures 4(a)
and 4(c) show the two-dimensional distribution of Qn and
Figs. 4(b) and 4(d) show the one-dimensional distribution of
|Qn| for the 20%–30% centrality range.

The Au + Au 20%–30% centrality class is expected to
provide the best conditions, in terms of the predicted 〈v2〉
and resolution δ, to determine p(v2) via unfolding. However,
because it is quite challenging to unfold the measured distri-
bution directly, we constructed a test version of the problem
to illustrate the procedure using the SVD method. The details
of this test are given in Appendix, but the end result is that
the unfolding procedure is inherently unstable and therefore
fails to converge for the resolution parameters in the present
analysis.

As a result, instead of inverting the response matrix, we
can make an ansatz that the probability distributions, p(v2)
and p(v3) are exactly Bessel-Gaussian in form. Under this
restrictive assumption, because the Bessel-Gaussian form has
only two parameters as shown in Eq. (24), we can simply
evaluate a large grid of parameter combinations as guesses
for the truth distribution and forward fold them, i.e., passing
them through the response matrix to compare to the observed
Qn distribution. We have carried out such a forward-fold
procedure with over 10000 parameter combinations. We then
determine the statistical best fit parameters and their statistical
uncertainties based on a χ2 mapping. We consider only the
Gaussian statistical uncertainties here, and detail our treat-
ment of systematic uncertainties in Sec. IV B. Some advan-
tages of this procedure are that we explore the full χ2 space
and have no sensitivity to an unfolding prior regularization
scheme and number of iterations. The disadvantage of course
is the ansatz that the distribution is precisely Bessel-Gaussian.

Examples of this χ2 forward-fold mapping are shown in
Fig. 5. It is striking that for the v2 case in the Au + Au
20%–30% central bin, the forward folding reveals a tight
constraint on the Bessel-Gaussian parameters. In contrast, for
the same centrality bin and v3, there is a band of parameter

combinations providing a roughly equally good match to the
experimental Q3 distribution. Shown in Fig. 4 for v2 (top) and
v3 (bottom) are the best Bessel-Gaussian fit distributions (red)
and their forward-folded results (blue). Both cases show good
agreement between the forward-folded results and the mea-
sured experimental distribution. The corresponding best χ2

min
values indicate a good match. It is notable that in the v3 case,
the χ2

min values are slightly worse in all cases and significantly
worse in the most peripheral selection. The more peripheral
data have a slightly larger tail at high Q3 values, which could
indicate an incompatibility with the Bessel-Gaussian ansatz.

IV. RESULTS AND DISCUSSION

Here we detail the full set of results for the elliptic and
triangular flow moments and distributions in Au + Au colli-
sions at

√
s

NN
= 200 GeV. We start by detailing the cumulant

results.

A. Cumulants results

First we show in Figs. 6(a) and 6(b) the centrality de-
pendence of v2{2} and v2{4}, respectively. The statistical
uncertainties are shown as vertical lines and the systematic
uncertainty is quoted as a global factor uncertainty. Fig-
ure 6(a) shows a dramatic difference for centrality larger
than 40% between the red points, obtained without requiring
a pseudorapidity gap in the particle pair, and the magenta
points, which have a pseudorapidity gap of |�η| > 2.0. This
is due to the fact that the pseudorapidity gap removes a large
amount of nonflow, especially in the peripheral collisions
where nonflow is combinatorially less suppressed relative to
central collisions. Contrariwise, Fig. 6(b) shows no differ-
ence between the black points (no pseudorapidity gap) and
two different two-subevent cumulants, one where short-range
pairs are allowed (blue points) and one where they are not
(red points). The absence of any effect here indicates that
the four-particle correlation sufficiently suppresses nonflow
combinatorially such that the kinematic separation of particles
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FIG. 6. Centrality dependence of (a) v2{2} and (b) v2{4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points
indicate a pseudorapidity gap of |�η| > 2.0. (b) The black points indicate v2{4} with no pseudorapidity gap, the blue points indicate a two-
subevent method with |�η| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with
|�η| > 2.0 where no short-range pairs are allowed.

provides no additional benefit. Note that this is not necessarily
the case in smaller collision systems—subevent cumulants
have been shown to significantly reduce nonflow in p + p/Pb
collisions at the LHC [31], and are of potential interest in
p/d/3He + Au collisions at RHIC.

Figure 7 shows the centrality dependence of multiparticle
v2, with two, four, six, and eight particles. The four-, six-,
and eight-particle v2 values are consistent with each other, as
expected from the small-variance limit [7]. When accounting
for the η dependence of v2 as measured by PHOBOS [32],
which indicates that v2 at 1 < |η| < 3 is about 1.25 times
lower than it is at |η| < 1, the two-, four-, and six-particle
cumulant v2 are in good agreement with the STAR results
[12].
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FIG. 7. Multiparticle v2 as a function of centrality in Au + Au
collisions at

√
s

NN
= 200 GeV. The magenta open diamonds indicate

the v2{SP }, the blue open squares indicate v2{4}, the black open
circles indicate v2{6}, and the green filled diamonds indicate v2{8}.

Considering that vn{2} =
√

v2
n + σ 2

vn
and that in the small

variance limit vn{4} ≈
√

v2
n − σ 2

vn
[8], one can estimate the

relative fluctuations as

σvn

〈vn〉 ≈
√

(vn{2})2 − (vn{4})2

(vn{2})2 + (vn{4})2
. (26)

Figure 8 shows the centrality dependence of this cumulant es-
timate of σv2/〈v2〉. Despite the difference in the rapidity region
where the data are measured, they are in good agreement with
STAR [12] and PHOBOS [13]. Also shown is a comparison
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FIG. 8. Cumulant method estimate of σv2/〈v2〉 as a function of
centrality in Au + Au collisions at

√
s

NN
= 200 GeV. The data are

shown as black open squares. The same calculation as done in data is
done in AMPT, shown as a solid green line. Calculations of σε2/〈ε2〉
performed in the Monte Carlo Glauber model are shown as blue
lines. The solid blue line is the Monte Carlo Glauber calculation done
using the same estimate as the data, the dashed blue line is the direct
calculation of the moments of the MC Glauber ε2 distribution.
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with AMPT analyzed via cumulants in the same way as the
experimental data. There is good agreement between the two,
indicating that the Monte Carlo Glauber initial conditions in
AMPT and their fluctuations capture the key event-by-event
varying ingredients. We can also calculate the event-by-event
variations in the initial conditions directly via Monte Carlo
Glauber. In this case we utilize the event-by-event spatial ec-
centricity εn distributions. If there is a linear mapping between
initial spatial eccentricity and final momentum anisotropy
(εn ∝ vn), we should expect a good match between σεn

/〈εn〉
and σvn

/〈vn〉. Also shown in Fig. 8 is the Monte Carlo
Glauber result via the calculation of cumulants (solid blue
line), as well as the direct calculation of the variance and
mean from the full εn distribution (dashed blue line). One
sees that in midcentral 10%–50% collisions, the data and both

theory curves agree reasonably. For more central collisions,
the Monte Carlo Glauber data-style calculation shows the
same trend as the data whereas the Monte Carlo Glauber direct
calculation is significantly lower. This is due to the fact that
the small-variance limit is not a valid approximation in central
collisions. In peripheral collisions, both Monte Carlo Glauber
curves underpredict the data. This has been attributed to the
nonlinear response in hydrodynamics [33].

Now we consider the v3 case. Figure 9 shows v3{2, |�η| >
2} as a function of centrality. The centrality dependence of v3

is much smaller than that of v2, which is expected because
triangular flow is generated dominantly through fluctuations.

Figure 10(a) shows the results for c3{4} as a function of
centrality. The results are always positive within the sys-
tematic uncertainties and shows a trend towards even larger
positive values as one moves away from the most central
collisions. Since v3{4} = (−c3{4})1/4 the v3{4} are complex
valued.

Recently positive valued c2{4} has been observed in p +
Au collisions at RHIC [34] and p + p collisions at the LHC
[31,35] and has been interpreted as arising from short-range
nonflow contributions. The use of subevents, especially when
requiring the particles in the cumulant to be separated in ra-
pidity, significantly reduces nonflow contributions and yields
negative values of c2{4} where standard cumulant analysis
does not [25]. In the Au + Au analysis presented here, due to
the FVTX acceptance, one includes both short-range particle
combinations (some or all particles in a single FVTX arm) and
long-range combinations.

We explore the potential influence of such short-range
nonflow contributions as well as the opposite effect from long-
range decorrelations by changing the FVTX arm requirements
of the particle combinations. The most extreme is requiring all
particles in a single arm, shown in Fig. 10(b), and the result
is an even larger positive c3{4}—i.e., in the direction expected
from increased short-range nonflow and opposite to the expec-
tation of long-range decorrelations causing the positive c3{4}.
We can also consider combinations of two subevents, with
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FIG. 10. Centrality dependence of c3{4} for Au + Au collisions at
√

s
NN

= 200 GeV. (a) Calculations using both arms: c3{4} (black
circles), c3{4}ab|ab (blue diamonds), c3{4}aa|bb (red squares), and comparison to STAR [36] (black stars). (b) Comparison of c3{4} determined
using both arms (open symbols) and a single arm (closed symbols). Note that the open black circles are the same in (a) and (b).
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FIG. 11. Folding results for (a) v2, (b) σv2 , and (c) σv2/〈v2〉. The black lines above and below the points indicate the systematic
uncertainties. The red (green) boxes indicate the statistical uncertainties at the 68.27% (95.45%) confidence level. In the case of 〈v2〉, the
statistical uncertainties at the 68.27% confidence level are too small to be seen, and the uncertainties at the 95.45% confidence level are
visible but noticeably smaller than the marker size. Shown as blue squares are the same quantities as determined using the cumulant based
calculation—these points are slightly offset in the x coordinate to improve visibility.

two particles in each FVTX arm. One case, labeled ab|ab, has
some short-range correlations though fewer than the standard,
whereas the other case, labeled aa|bb, does not allow any. One
sees a consistent behavior emerge: c3{4}aa|bb < c3{4}ab|ab <
c3{4} < c3{4}singlearm. All of these results go in the direction
of a large nonflow influence, which may be exacerbated by
the very small v3 flow signal particularly at forward rapidity.

The STAR experiment has also measured c3{4} in Au + Au
collisions at

√
s

NN
= 200 GeV, though at midrapidity |η| <

1.0 [36]. Their results, also shown in Fig. 10(a), are consistent
with zero and fluctuate between positive and negative c3{4}
values. The difference between the STAR and PHENIX data
points likely stems from the different acceptance in pseudora-
pidity (the STAR points are measured over |η| < 1 while the
PHENIX points are measured over 1 < |η| < 3 as discussed
above). Differences in nonflow, event plane decorrelations,
and the relative contribution from fluctuations as a function
of pseudorapidity may all contribute to these observations.

These results seem to indicate that the small-variance limit
is not applicable to v3 in Au + Au collisions at

√
s

NN
=

200 GeV for any centrality. Regardless, the measurement
of these two- and four-particle cumulants is insufficient to
constrain the mean and variance of the triangular flow event-
by-event distribution.

B. Folding results

Now we turn to the results from the event-by-event forward
fold. As detailed in Sec. III B, in the v2 case the Bessel-
Gaussian parameters are well constrained apart from the most
central events. In the v3 case, however, the Bessel-Gaussian
parameters are not well constrained for any centrality class.
However, despite the broad range of possible δv3 and vRP

3
values, these correspond to a rather small range for the real
mean 〈v3〉 and root-mean-square or variance σv3 of the dis-
tributions. This means that despite the lack of constraint on

the parameters, the first (v3) and second (σv3 ) moments of the
distribution are nevertheless well constrained.

We can quantify 〈vn〉 and σvn
by varying the Bessel-

Gaussian parameters within the one and two standard de-
viation statistical constraints. In addition, we determine the
systematic uncertainties on these quantities by varying the z
vertex and analyzing loose and tight cuts (as described for the
cumulants analysis). An additional systematic uncertainty on
the response matrix is estimated by splitting the data sample
into two subsets, one with higher extracted δ and one with
lower, forward folding the two data sets separately, and then
assessing the difference.

Figure 11(a) shows the extracted first moment 〈v2〉,
Fig. 11(b) shows the extracted second moment σv2 , and
Fig. 11(c) shows the relative fluctuations σv2/〈v2〉, each as
determined from the folding method and as a function of
centrality. Likewise, Fig. 12(a) shows the extracted 〈v3〉,
Fig. 12(b) shows the extracted σv3 , and Fig. 12(c) shows the
relative fluctuations σv3/〈v3〉. The colored bands indicate the
statistical uncertainties at the 68.27% confidence level (red)
and the 95.45% confidence level (green) from the χ2 analysis.
The thin black lines indicate the systematic uncertainties.
Also shown in Fig. 11 as blue squares are results from
the cumulant-based calculation as discussed in the previous
section. The 〈v2〉 values are in excellent agreement for all
centralities, and the σv2 and σv2/〈v2〉 are in reasonable agree-
ment for 10%–50% centrality, where the small-variance limit
holds. Figure 9 shows a comparison between the cumulant
result v3{2, |�η| > 2|} and the folding analysis result

√
〈v2

3〉
(calculated from the results in Fig. 12). These results are
consistent within the systematic uncertainties.

We highlight that the σv2/〈v2〉 values agree well with those
determined from the cumulant method as shown in Fig. 8,
except in the most central and peripheral Au + Au events.
The most central 0%–5% events are exactly where the Monte
Carlo Glauber results in Fig. 8 indicate a breakdown in the
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FIG. 12. Folding results for (a) 〈v3〉, (b) σv3 , and (c) σv3/〈v3〉. The black lines above and below the points indicate the systematic
uncertainties. The red (green) boxes indicate the statistical uncertainties at the 68.27% (95.45%) confidence level. The σv3/〈v3〉 values are
all ≈0.52, the apparent limiting value of this quantity for the Bessel-Gaussian distribution.

small-variance approximation. This is a good validation of
the forward-folding procedure and another confirmation that
the event-by-event elliptic flow fluctuations in Au + Au colli-
sions at

√
s

NN
= 200 GeV are dominated by initial geometry

fluctuations.
Intriguingly, whereas the values of σv2/〈v2〉 vary signifi-

cantly as a function of centrality, the values of σv3/〈v3〉 are
almost precisely 0.52 independent of centrality. To understand
this better, we need to consider a rather peculiar feature of the
Bessel-Gaussian function. Figure 13 shows the σvn

/〈vn〉 of the
Bessel-Gaussian as a function of the ratio δ/vRP

n . For values
of δ > vRP

n , the observed σvn
/〈vn〉 saturates at a value of about

0.52. Thus, any Bessel-Gaussian in the large variance limit
will have a σvn

/〈vn〉 of the same value.
This observation can, in fact, help shed light on the ob-

served discrepancy between the CMS [11] and ATLAS [10]
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FIG. 13. The observed ratio of the mean to the standard deviation
(i.e., σvn/〈vn〉) of the Bessel-Gaussian as a function of the ratio of the
two free parameters δvn/v

RP
n . For values of δvn > vRP

n , the observed
σvn/〈vn〉 saturates at 0.52.

data on σv3/〈v3〉. Figure 14 shows σv2/〈v2〉 and σv3/〈v3〉 as
a function of centrality in Pb + Pb collisions at

√
s

NN
=

2.76 TeV from CMS and ATLAS. The CMS results are
obtained using the cumulant method assuming the small-
variance limit. In contrast the ATLAS results are obtained via
an event-by-event unfolding and calculating the exact mean
and variance of the distribution.

The σv2/〈v2〉 values are in very good agreement, which
appears to validate the small variance approximation (as was
also validated in the Au + Au at

√
s

NN
= 200 GeV case in

this analysis). In contrast, there is a large difference in the
σv3/〈v3〉 between the different methods. The ATLAS σv3/〈v3〉
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FIG. 14. The observed ratio of the standard deviation to the mean
(i.e., σvn/〈vn〉) for n = 2 and n = 3 as a function of centrality in
Pb + Pb collisions at

√
s

NN
= 2.76 TeV [10,11]. Also shown are

σε3/ε3 values from Monte Carlo Glauber estimated using the small-
variance limit cumulant technique (shown as the dashed line) and the
direct calculation from the moments (shown as the solid line).
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values are all very close to 0.52, exactly as observed above
in the present Au + Au data and as found to be a limiting
case for the Bessel-Gaussian function. To better understand
the σv3/〈v3〉, we also show σε3/〈ε3〉 as determined from Monte
Carlo Glauber calculations. The dashed red line uses the
small-variance limit estimate with cumulants, as is done for
the CMS data, and the agreement is quite reasonable. The
solid red line is calculated from the moments of the ε3 distri-
bution directly, and shows good agreement with the ATLAS
data. This represents a quantitative confirmation of the event-
by-event fluctuations and the breakdown in the small-variance
approximation. The v3{4} at forward rapidity at RHIC is found
to be complex valued, which may be the result of a very small
flow v3 and significant nonflow contributions.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented measurements of elliptic
and triangular flow in Au + Au collisions at 200 GeV for
charged hadrons at forward rapidity 1 < |η| < 3. In particular,
we compare flow cumulants (v2{2}, v2{4}, v2{6}, v2{8}, and
v3{2}, v3{4}) and the mean and variance of the v2 and v3

event-by-event distributions using a forward-fold procedure
with a Bessel-Gaussian ansatz. These measurements are com-
plementary in terms of sensitivity to initial-state geometry
fluctuations and additional fluctuations from the evolution of
the medium, for example via dissipative hydrodynamics.

In the small-variance limit, where the event-by-event flow
fluctuations are small compared to the average flow value
i.e., σvn

/〈vn〉 < 1, we expect the cumulants extraction and the
forward-fold results to agree. This is the case for elliptic flow
in Au + Au collisions from 10%–50% central and both results
agree with event-by-event fluctuations in the initial geometry
as calculated via Monte Carlo Glauber.

In contrast, we find that the small-variance limit fails for
triangular flow for all centralities at RHIC and the LHC.
For LHC Pb + Pb results, the large-variance result for the
cumulants can be described purely via Monte Carlo Glauber
initial geometry fluctuations. However, for RHIC Au + Au
collisions the complex values of v3{4} indicate that there
may be additional nonflow influences as well as sources of
fluctuations in the translation of initial geometry into final-
state momentum triangular anisotropies. Detailed compar-
isons with event-by-event hydrodynamic calculations should
be elucidating to understand the nature of these fluctuations.
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APPENDIX: TEST CASE FOR FULL UNFOLD

For this test case, the response matrix Â is shown in
Fig. 15(a) and is identical to that for the real data 20%–30%
centrality class. We then attempt to solve the inverse problem
Â �Qtrue

2 = �Qobs
2 , where Qobs

2 has been obtained in the limit
of infinite statistical precision, assuming a truth-level distri-
bution with parameters such that the smearing, as encoded
in Â, yields a distribution similar to that measured in data.
The singular value factorization Â = Û�̂Ŵ T of the matrix is
obtained, where Û and Ŵ are unitary matrices whose column
vectors, ui and wi , are the left- and right-singular vectors of
Â, respectively, and �̂ is a diagonal matrix, whose nonzero
entries σi are its singular values. Figure 15(b) shows a few
selected right-singular vectors wi . Notice that some vectors,
namely those corresponding to the largest singular values,
are harmonic, whereas those corresponding to the smallest
singular values are essentially noise.

Because the response matrix is singular, we use the SVD
decomposition to construct the solution of the inverse prob-
lem as a linear combination of all right-singular vectors, as
follows:

�Q2 =
Dim(A)∑

i=1

ϕi

(
�uT

i · �Qobs
2

σi

)
�wi. (A1)

The damping factors ϕi = σ 2
i /(σ 2

i + λ2), for some λ ∈ R, are
introduced to attenuate the contribution of the noisy singular
vectors to the sum. It is important to point out that in most
implementations of SVD used in high-energy physics, includ-
ing ROOUNFOLD, the above sum is simply truncated to include
only a subset of the harmonic singular vectors, potentially
leading to loss of information.
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FIG. 15. (a) Response matrix for test unfolding problem; (b) Selected right-singular values of the response matrix; (c) Picard plot for
inverse problem Â �Qtrue

2 = �Qobs
2 , see text for details; (d) True, smeared, and unfolded Q2 as determined using SVD with attenuation factors.

To determine which singular vectors contribute to the
solution in a meaningful manner, it is useful to examine the
Picard plot [37] for the problem at hand, shown in Fig. 15(c),
which displays the singular values σi of Â, as well as the

projection of �Qobs
2 onto the singular vectors �uT

i · �Qobs
2 , and

the solution coefficients �uT
i · �Qobs

2 /σi . Notice that the singular
values and the Fourier coefficients drop sharply many orders
of magnitude before leveling off, yet in such a way that their
ratio is roughly constant. The implication is then that all
singular vectors appear to contribute equally to the solution,
which is clearly problematic given the noisy nature of most
of them. In general, it is desirable for Fourier coefficients to
drop off faster than the singular values (to fulfill the so-called

discrete Picard condition), such that the Picard plot will reveal
the appropriate set of terms to include in the solution, as
identified by a sharp drop in the solution coefficients.

Given that our problem does not satisfy the Picard con-
dition, we introduce the attenuation factors ϕi in Eq. (A1).
The resulting unfolded Q2 is shown in Fig. 15(d), along
with the true Qtrue

2 , and smeared Qobs
2 . We observe that the

unfolding works well, yielding a good description of the true
distribution shape, with uncertainties associated with varying
the regularization parameter λ.

However, in this case the unfolding procedure constitutes
an ill-posed inverse problem, such that small perturbations
in the input vector—that is, Qobs

2 —translate to very large
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FIG. 16. (a) Data distribution for Qmeas
2 in Au + Au collisions at

√
s

NN
= 200 GeV in the 20%–30% centrality class. Also shown is an

assumed Bessel-Gaussian truth distribution and its resolution smeared result. (b) Data divided by the resolution smeared solution showing a
good agreement within statistical uncertainties. (c) Picard plot for inverse problem with data Â �Qtrue

2 = �Qobs
2 , see text for details;

errors in the solution, compounded by the fact that the Picard
condition is violated. In particular, we have verified with our
test problem that the statistical fluctuations in Qobs

2 when sam-
pling a finite number of events, comparable to those recorded
in data, indeed limit the number of available harmonic sin-
gular vectors, thus causing the solution to be dominated by
noise.

We now examine the application of the above unfolding
method to data. Figure 16(a) shows an ansatz for Qtrue

2 assum-
ing a Bessel-Gaussian form, and the corresponding refolded
smeared distribution. It compares very well to the data, as
shown in the ratio plot in Fig. 16(b). In principle, given

the good quality of the fit, one would expect the unfolding
procedure to work with the data as input. However, the
statistical fluctuations apparent in the ratio plot perturb the
solution in such a way that the noisy nonharmonic singular
vectors are enhanced even more than in the test problem, as
shown in Fig. 16(c). As a result, the number of available
harmonic singular vectors is reduced, and the problem has
no satisfactory solution, even when regularization is applied.
Thus, to be explicit, the unfolding procedure fails. We note
that if we apply our test example with a significantly better
resolution, i.e., as in the ATLAS Pb + Pb case, the method
does converge as expected.
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