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1Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
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(Received 18 April 2017; revised manuscript received 24 April 2019; published 9 July 2019)

During mitosis, microtubules form a spindle, which is responsible for proper segregation of the genetic
material. A common structural element in a mitotic spindle is a parallel bundle, consisting of two or more
microtubules growing from the same origin and held together by cross-linking proteins. An interesting question
is what are the physical principles underlying the formation and stability of such microtubule bundles. Here
we show, by introducing the pivot-and-bond model, that random angular movement of microtubules around the
spindle pole and forces exerted by cross-linking proteins can explain the formation of microtubule bundles as
observed in our experiments. The model predicts that stable parallel bundles can form in the presence of either
passive crosslinkers or plus-end directed motors, but not minus-end directed motors. In the cases where bundles
form, the time needed for their formation depends mainly on the concentration of cross-linking proteins and the
angular diffusion of the microtubule. In conclusion, the angular motion drives the alignment of microtubules,
which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.

DOI: 10.1103/PhysRevE.100.012403

I. INTRODUCTION

During mitosis the cell forms a spindle, a complex self-
organized molecular machine composed of bundles of micro-
tubules (MTs), which segregates the chromosomes into two
daughter cells [1]. MTs are thin stiff filaments that typically
extend in random directions from two spindle poles [2]. MTs
that extend from the same pole can form parallel bundles,
whereas MTs originating from opposite spindle poles form
antiparallel bundles [3–5]. Stability of MT bundles is ensured
by cross-linking proteins, which bind along the MT lattice,
connecting neighboring MTs. Cross-linking occurs only if
the distance between the MTs is comparable with the size
of a cross-linking protein. These proteins can be divided into
two classes: (i) proteins that cross-link MTs without directed
movement along the MT, such as Ase1/PRC1 [6]; (ii) motor
proteins that walk along the MT either toward the plus end of
the MT, such as Cut7/Eg5 [7,8], or toward the minus end, such
as Ncd [9,10].

Spindle self-organization was studied in different biolog-
ical systems and several theoretical models were proposed.
Formation of antiparallel bundles of MTs in somatic cells of
higher eukaryotes was investigated by computer simulations,
which include MTs that grow in random directions from two
spindle poles and motor proteins that link them [11]. Further,
several studies have explored the regulation of the size of the
antiparallel overlaps [12–14]. It was shown that in Drosophila
embryo molecular motors acting on antiparallel MT bundles
and MT dynamics generate forces to separate the spindle
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poles during prophase [15–17]. In the “slide and cluster”
model, which is relevant for spindle formation in Xenopus
eggs, MTs are nucleated near chromosomes, transported away
from the center and clustered together [18,19]. Applications
of the liquid crystal theory show that the spindle organization
is regulated on the local level by cross-linking and steric
interactions [20,21]. In budding yeast, it was suggested that
MTs growing in arbitrary directions from the opposite spin-
dle poles can change their direction due to minus end di-
rected kinesin-14 motors bound to both MTs and get aligned,
forming antiparallel bundles [22]. Recent experiments have
provided direct observation of antiparallel bundle formation
in fission yeast, where MTs meet at an oblique angle and
subsequently rotate into antiparallel alignment [23]. Similarly,
rotation of astral MTs was implicated in spindle positioning
in budding yeast [24]. MT rotational diffusion about a pivot
at the spindle pole was included in the models for yeast
spindle formation including kinetochore capture [23,25–32],
and rotational diffusion was also considered in a model for
MT alignment in vitro [33].

In addition to antiparallel MT bundles, MTs can also be
organized into parallel bundles [1]. The most prominent par-
allel bundles are kinetochore fibers ending at the kinetochore.
Yet, parallel bundles can form also independently of kineto-
chores. During meiosis, parallel bundles generate oscillatory
movement of the nucleus, which promotes meiotic recombi-
nation [5,34,35]. When MTs are not properly bundled, nuclear
oscillations are impaired [36]. Similarly, parallel bundles are
formed in early mitosis, where they can capture kinetochores
[26]. However, a physical model for parallel bundle formation,
as well as direct observation of this process in vivo, is missing.

In this paper, we develop theory to explore the formation of
parallel MT bundles, which is motivated by our experiments.
We introduce the pivot-and-bond model for the formation of
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parallel MT bundles, which includes random angular motion
of MTs around the spindle pole [23,26], along with the
attractive forces exerted by cross-linking proteins. The model
predicts faster bundle formation if MTs diffuse faster and the
density of cross-linking proteins is higher, which we confirm
experimentally. We conclude that the angular motion drives
the alignment of MTs, which in turn allows the cross-linking
proteins to connect the MTs into a stable bundle.

II. RESULTS

A. Experimentally observed bundle formation

The process of MT bundle formation can be observed ex-
perimentally in the fission yeast Schizosaccharomyces pombe
because of a small number of MTs in the spindle. At the onset
of mitosis, two spindle pole bodies nucleate MTs that form the
spindle. To better observe the process of bundle formation,
we increased the distance between spindle pole bodies by
exposing metaphase cells to cold stress [37]. We observed
that once the cold stress is relieved, MTs regrow from the
spindle pole bodies and perform angular motion [26]. Some
MTs growing from one spindle pole come into contact with
an MT growing from the same spindle pole, thereby forming
a parallel bundle (Fig. 1(a), Supplemental Material Movie 1
[38]). An increase of the tubulin-GFP signal intensity in the
bundle after the contact between the two MTs shows that a
stable MT bundle is formed, arguing against the scenario in
which one of the MTs depolymerized [Fig. 1(b)]. MTs can
also form antiparallel bundles, which was studied in our recent
work [26], and MTs growing at an angle with respect to this
antiparallel bundle can eventually join it in a manner similar
to the parallel bundle formation (Fig. 1(c), Supplemental
Material Movie 2 [38]). Such events are also accompanied by
an increase in the tubulin-GFP signal intensity in the spindle,
suggesting an increase in the number of MTs in the spindle
[Fig. 1(d)]. In an independent set of experiments, we used
cells with GFP-labeled Mal3, a protein that binds to the
growing end of the MT [39], and imaged them at a finer time
resolution (Fig. 1(e), Supplemental Material Movie 3 [38]).
As with the tubulin-GFP label, we observed bundling events
and the accompanied increase in the intensity of GFP in the
spindle [Fig. 1(f)]. The bundling process does not depend
on kinetochores, based on our previous observation that such
bundles are found mainly without kinetochores attached to
them (see Additional file 1: Figs. S2e in Ref. [26]). Also, in
our experiments, we did not observe unbundling events after
the bundles were formed. In all these scenarios of MT bundle
formation, MTs performed angular motion around the spindle
pole, which allowed them to approach each other and form a
bundle.

To quantify the bundling process and explore how it de-
pends on MT length, we measured the bundling time as
the total observation time of MTs divided by the number
of observed bundling events, 〈tB〉 = texp/n. We separated the
measurements into groups with MT length (R) greater than
or less than 1 µm and observed that the bundling was slower
for longer MTs (for R < 1 μm, 〈tB〉 = 122 ± 16 min; for
R > 1 μm, 〈tB〉 = 268 ± 45 min; N = 72). Slower bundling
of longer MTs could be the result of smaller angular diffusion

coefficients (for R < 1 μm, D = (46 ± 7) × 10−4 rad2 s−1;
for R > 1 μm, D = (9 ± 1) × 10−4 rad2 s−1; see Appendix B
and Supplemental Material Fig. 1 [38]), which makes the time
it takes for MTs to get into close proximity to each other
longer.

To test to what extent the MT cross-linker Ase1 af-
fects the bundling process, we performed the measurements
on mutant cells in which Ase1 was knocked out (denoted
ase1�). Ase1/PRC1/MAP65 are passive MT cross-linkers
known for bundling of antiparallel MTs in vivo and in vitro
[12,13,36,40–43]. In fission yeast, Ase1 also plays a role in
bundling parallel MTs. This was shown in meiotic prophase,
where MTs originate from a single point with the same
orientation [34,35], and bundling of these parallel MTs is
reduced in the absence of Ase1 [36].

Ase1 also exhibits more complex behaviors, such as re-
cruitment of Kinesin 6 during anaphase B, which might
contribute to MT bundling as well [44]. In our experiments
on ase1� cells we observed occasional MT bundling events
(see Supplemental Materials Figs. S2(a) and S2(b), Movie
4, and Table I [38]), but the bundling time was significantly
slower (for R < 1 μm, 〈tB〉 = 218 ± 54 min; for R > 1 μm,
〈tB〉 = 594 ± 198 min; N = 43). Just like in the wild type
cells, the bundling was slower for longer MTs. Thus, the
efficiency of parallel bundle formation depends on several
parameters, including MT length and the presence of MTs
cross-linkers such as Ase1.

B. Theory

To explore the physical principles underlying the formation
and stability of MT bundles, we introduce the pivot-and-
bond model [Fig. 2(a)]. In our model a MT pivots around a
fixed point and eventually approaches the other MT, which
is followed by accumulation of proteins bound to both MTs.
These cross-linking proteins tie the MTs into a firm bundle.

In our model, we describe two MTs as thin rigid rods of
fixed length with one end freely joint at the spindle pole, based
on experimental observations [26,28]. The orientation of the
first MT at time t is described by a unit vector r̂(t ) [Fig. 2(b)].
The orientation of the unit vector changes as

dr̂
dt

= ω × r̂, (1)

ensuring that the magnitude of r̂ does not change. The vector
ω denotes angular velocity of the MT. The other MT has a
fixed orientation along the z-axis in the direction of unit vector
ẑ. In the overdamped limit, the angular friction is balanced by
the torque, T, experienced by the MT:

γω = T. (2)

Here, γ denotes the angular drag coefficient. We calculate
the total torque as T = τ + σ (r̂ × η(t )), where the first and
the second term represent the deterministic and the stochastic
components, respectively. If the noise is caused by thermal
fluctuations, as in fission yeast [26], η = (ηi), i = 1, 2, 3
is a three-dimensional Gaussian white noise where ith and
jth components for times t and t ′ obey 〈ηi(t ), η j (t ′)〉 =
δ(t − t ′)δi, j , with δ(t − t ′) being the Dirac δ function and δi, j

is the Kronecker δ function. The magnitude of the noise is
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FIG. 1. Formation of MT bundles in S. pombe cells. (a) Time-lapse images and the corresponding drawings showing the formation of
a parallel MT bundle at the lower spindle pole body in an S. pombe cell expressing tubulin-GFP and Sid4-GFP. (b) Measurement of the
tubulin-GFP signal intensity of MTs before bundling (green curve in the graph, measured along the green line in the inset) and after bundling
(magenta curve in the graph, measured along the magenta line in the inset). The measurements were done on the first and the last image
in panel (a), respectively. After the contact between two MTs, the intensity of the tubulin-GFP signal increases. (c) Time-lapse images and
the corresponding drawings showing a MT joining the bundle of spindle MTs in an S. pombe cell expressing tubulin-GFP and Sid4-GFP.
(d) Measurements of the tubulin-GFP signal intensity of the spindle and MT before bundling (green curve in the graph, measured along the
green line in the inset) and after bundling (magenta curve in the graph, measured along the magenta line in the inset). The measurements
were done on the first and the last image in panel (c), respectively. After the bundling event, the intensity of the tubulin-GFP signal of the
spindle increases. (e) Time-lapse images and the corresponding drawings showing a MT joining the bundle of spindle MTs in an S. pombe
cell expressing Mal3-GFP and Sid4-GFP. (f) Measurements of the Mal3-GFP signal intensity of the spindle and MT before bundling (green
curve in the graph, measured along the green line in the inset) and after bundling (magenta curve in the graph, measured along the magenta
line in the inset). The measurements were done on the first and the last image in panel (e), respectively. After the bundling event, the intensity
of the tubulin-GFP signal of the spindle increases. Scale bars in (a), (c), and (e) are 1 μm. In the drawings, microtubule orientations from the
previous images are marked with white dashed lines.
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TABLE I. Values of the constant parameters used in this paper.

Parameter Value Source

k Spring stiffness 100 pN/μm Value for Eg5 [14]
ka Attachment rate 0.01 s−1 Value for Ase1 [13]
kd0 Detachment rate 0.1 s−1 Value for Ase1 [13]
f0 Critical force 3 pN Value for kinesin-1 [58]
y0 Passive crosslinker rest length 40 nm Value for PRC1 [42,53]
y0,m Motor rest length 60 nm Value for Kinesin-5 [54]
D0 Passive crosslinker diffusion constant 0.05 μm2 s−1 Value for Ase1 [13,41]
v0 Motor velocity ±0.01 μm/s Value for Cut7 [59]
f0 Motor stall force ±1.5 pN Value for cin8 [60]
D MT diffusion constant 0.003R−3 rad2 s−1 Fitted from Ref. [26]

related to the angular drag coefficient, following the equipar-
tition theorem, as σ = √

2kBT γ , with kBT being the Boltz-
mann constant multiplied by the temperature. We introduce
the angular diffusion coefficient, D = kBT/γ , and Eq. now
reads

ω = D

kBT
τ +

√
2Dr̂ × η(t ). (3)

In our model, the torque τ in Eq. (3) is the consequence of
forces exerted by cross-linking proteins connecting both MTs.
If we denote the positions along the MTs as z = zẑ and r =
rr̂, respectively, the torque contribution from cross-linking
proteins is

dτ(r, z, t ) = r × fdN (r, z, t ), (4)

with dN being the number of cross-linking proteins connect-
ing the MT elements [z, z + dz] and [r, r + dr], while f is
the force exerted by a single cross-linking protein. The elastic
force is calculated as f = −k(y − y0ŷ). Here k is the Hookean
spring constant, y = r − z is the elongation of the protein
linking positions r and z, with magnitude y and direction
ŷ = y/y, and y0 is the relaxation length of the cross-linking
protein. We describe the distribution of cross-linking proteins
along the MTs by introducing the density, ρ, which obeys
dN (r, z, t ) = ρ(r, z, t )drdz. To calculate the total torque
we summed up all the attached cross-linking proteins:

τ = k
∫ R

0
dr

∫ ∞

0
dzρr × z

(
1 − y0

|z − r|
)

, (5)

where we used r × (z − r) = r × z and allowed the fixed MT
to span the entire positive z axis. When the total number of
cross-linking proteins is large we can use the mean field limit
and consider them continually distributed along the MT. In
this limit, the cross-linking protein density is given by

∂ρ

∂t
= −∂ jr

∂r
− ∂ jz

∂z
+ kac0 p(y) − kd (r, z)ρ. (6)

Here, the currents describe the redistribution of cross-linking
proteins along the MTs, jr, z = vr, zρ − Dm∂r, zρ, where the
two terms correspond to the drift and the diffusion of cross-
linking proteins, respectively, with vr, z being the drift velocity
of cross-linking proteins along the respective MTs and Dm

being the variance of those velocities. In our model, the drift
velocity depends only on component of the force parallel to

the respective MT, fr = f · r̂ or fz = f · ẑ, where the func-
tional form differs for motor proteins and passive crosslinkers.

For passive crosslinkers, the velocities are calculated from
the balance of the projections of the force and the friction of
cross-linking proteins moving along the respective MT,

γ0vr,z = ± fr,z, (7)

where the coefficient of friction, γ0, is related to the variance
of the velocities, Dm, by the fluctuation-dissipation theorem,
γ0 = D0/kBT . In the case of active motors, we use a linear
force-velocity relationship to obtain

vr,z = v0

[
1 ± fr,z

f0

]
. (8)

Here, v0, and f0 denote the velocity of an attached end of a
motor at zero load and the stall force, respectively. The sign
of the velocity at zero load and the stall force depend on the
direction of movement for the motor (they are positive for
plus-end directed motors and negative for minus-end directed
motors).

The other two terms in Eq. (6) represent the cross-linking
protein attachment and detachment. In our model, the at-
tachment rate, ka, is constant, but attachment is only pos-
sible if the elongation of the cross-linking protein is large
enough to bridge the gap between the MTs. As long cross-
linking proteins are in the nucleoplasm, their extension are
in thermodynamic equilibrium with the Boltzmann distribu-
tion, p = √

k/(2πkBT ) exp[−k(y − y0)2/2kBT ]. Finally, we
assume that the linear concentration of crosslinkers, c0, is
constant because their number is significantly greater than
the number of attached ones. The detachment rate depends
on the force experienced by the cross-linking proteins [45],
kd (r, z) = kd0 exp[ky(r, z)/ fc], with fc being the critical
force required for rupturing the MT-protein bond.

C. Angular movement of microtubules for cross-linking
proteins in the adiabatic approximation

Equations (1)–(8) provide a complete description of the
angular movement for the MT in the presence of cross-linking
proteins, where the Eq. (7) applies to the passive crosslinkers,
while Eq. (8) applies to the motor proteins. Because of the
symmetry of the system, the rotation around the z-axis does
not contribute to MT bundling, so we are only interested in
the behavior of the angle between the MTs. Therefore, we
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FIG. 2. Scheme of the model and numerical solutions. (a) Car-
toon representation of the bundling process. Left, a MT (green rod)
pivots around the spindle pole (gray ball). Right, when the MTs come
into close proximity, cross-linking proteins (grey springs) attach and
cause the MTs to from a bundle. (b) Scheme of the model. The
orientations of two MTs are represented by the unit vectors r̂ and
ẑ. Cross-linking proteins attach to and detach from MTs at rates
ka and kd , respectively. The elongation of the attached cross-linking
protein is denoted y and their relaxed length is y0. The angle between
the MTs is denoted θ . (c) Density of passive crosslinkers. The inset
shows the positions (drawn to scale) of crosslinkers that correspond
to the points denoted on the main graph. Angle between the MTs
is θ = 0.3 rad. (d) Effective torque caused by passive crosslinkers
as a function of the angle between the MTs. (e) A sample path for
the starting angle θ = 1 rad, which shows a bundling event (around
the 1 min mark). The crosslinker concentration is c0 = 60 μm−1.
(f) A sample path for the starting angle θ = 0.01 rad, which shows
an unbundling event (around the 1 min mark). (g) A sample of MT

first parameterize the orientation of the MT given by the unit
vector by r̂(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ ), where θ

and φ denote the polar and azimuthal angle, respectively. In
this parameterization, the equation of motion for the polar
angle reads

∂tθ = D

kBT
τθ +

√
2Dη(t ), (9)

where τθ = (r̂ × τ) · θ̂ + kBT cot θ is the effective torque in
which the first term represents the projection of the torque
exerted by the cross-linking proteins in the direction of the
polar angle and the second term, kBT cot θ , is the spurious
drift, which is the result of the coordinate transformation
(derivation given in Appendix A).

To solve Eq. (5) and obtain the equation of motion for
the angle between MTs, we need to calculate the density
of the cross-linking proteins from Eq. (6). To reduce the
complexity of our model, we use the adiabatic approximation,
∂ρ/∂t = 0. In this approximation, the number of attached
cross-linking proteins, N , does not depend explicitly on time.
For larger angles, 2R sin θ

2 > y0, the number of attached cross-
linking proteins changes with the angle between the MTs,
N (θ ) = kac0

kd0
y0

π−θ
sin θ

. For smaller angles the number is roughly

constant, N (0) = kac0
kd0

R, but changes with the MT length. Both
expressions are obtained by integrating the Eq. (6) over the
MTs, which cancels out the cross-linking protein currents (see
Appendix A).

D. Distributions of passive crosslinkers and the resulting torques

For passive crosslinkers, whose velocity along the MTs is
given by Eq. (7), the density is given by

ρ(r, z) = kac0

kd

√
k/(2πkBT ) exp

[
−k(y − y0)2

2kBT

]
. (10)

The density of passive crosslinkers is shown in Fig. 2(c).
Toward the spindle pole, their distribution is focused in the
region in which the extension is close to y0, as the crosslinkers
prefer to arrange themselves so they are in a relaxed state (see
points labeled A and B in Fig. 2(c)). Toward the MT tips, after
the points at which the shortest distance is equal to the relaxed
length of the crosslinkers, y0, they are always extended (see
point labeled C in Fig. 2(c)) and their distribution falls off
rapidly.

Knowing the distributions of the cross-linking proteins
(Eq. (10)), we can calculate how the torque exerted on the
MTs depends on the angle between, by using the equation (5)
to. The effective torque has negative values, which means it
causes MT bundling, in a region where it dominates over the
thermal motion of the MTs. This occurs at small angles where
the MTs are close enough to each other for the crosslinkers to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
angle time series obtained using light microscopy on cells with the
Mal3-GFP label. Green line corresponds to the segment of the
sample path in the shaded area in (e). Unless stated otherwise,
calculations are done with c0 = 10 μm−1, R = 1 μm and other
parameters shown in Table I.
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attach in large numbers far enough from the spindle pole to
generate attractive torques that overcome the thermal motion
of the MTs. For angles at which the distance between the MT
tips is smaller than the length of the cross-linker, 2R sin θ

2 <

y0, all of the attached crosslinkers are compressed, creating
positive effective torque that attempts to spread the MTs apart.
For large angles, the effective torque is close to the value for
free diffusion, τθ ≈ kBT cot θ .

The sample paths for the polar angle in the presence
of passive crosslinkers are obtained by numerically solving
equation (9). We find that the MT performs random movement
that spans a large space (Fig. 2(e)). However, the movement
can become abruptly constrained in the vicinity of angle
zero and these small angles correspond to a bundled state.
The constrained movement near angle zero is a consequence
of short range attractive forces exerted by the crosslinkers
that accumulate in larger numbers when MTs are in close
proximity (Fig. 2(e), inset). Our numerical solutions also show
that, if the crosslinker concentration is sufficiently small, the
constrained MT movement in the vicinity of angle zero can
suddenly switch back to free random movement (Fig. 2(f)).
Through numerical simulations, we find that thermally driven
MT pivoting and elastic forces are sufficient to generate
sample paths that qualitatively resemble formation of parallel
bundles observed in the experiments (Fig. 2(g)).

E. Bundle stability and bundling time in the presence
of passive crosslinkers

To explore the macroscopic properties of the bundling
process, we will use the stationary distribution of the polar

angles, pθ = p0e− U (θ )
kBT , where U (θ ) = − ∫

τθdθ is the MT-

MT interaction potential and p0 = 1/
∫ π

0 e− U (θ )
kBT dθ is the nor-

malization constant. For the case in which the interaction
is mediated by passive crosslinkers, the potential can be
calculated analytically (see Appendix A) and has the form
U (θ ) = −kBT (θmax( (θ−θmin )

θ
+ (θmin−θ )

θmin
) + ln(sin θ )), where

θmin = y0

R is the local minimum representing the angle at
which the distance between the MT tips is exactly equal the
relaxed length of the crosslinker, and θmax = kac0

kd0
y0π is the lo-

cal maximum of the potential, which is proportional to the
conentrations of the crosslinkers. The potential has a well at
small angles (Fig. 3(a)), but at large angles it the same as
the potential for a freely diffusing MT, U = −kBT ln(sin θ )
(Fig. 3(a), inset). The depth of the potential well in our model,
and therefore the strength of the MT-MT interaction, depends
on the attachment and detachment rates of crosslinkers, their
concentration, as well as the relaxation length of the crosslink-
ers. The length of the MT determines the interaction range,
but not the depth of the potential well. Note that the MT-MT
interaction potential does not depend on the stiffness of the
passive crosslinkers, even though the distribution does.

Next, we explored the stability of the bundles. Because
MT bundles can be assembled and disassembled, as shown in
Figs. 2(e) and 2(f), we treat the MT as a two state system. The
position of the maximum of the normalized potential defines
two regions, B ≡ [0, θmax] and U ≡ [θmax, π ], which we
term as the bundled and unbundled state, respectively. We
define bundles as stable if the probability of finding the MT in
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FIG. 3. Solutions of the model in the adiabatic approximation.
(a) The effective potential as a function of the polar angle, for angles
between 0 rad and 0.4 rad. The inset shows the potential for all
angles. Dashed square in the inset represents the region plotted in
the large image. Values of the parameters used are given in the
legend. (b) Stability diagram for plus-end directed motors. The gray
area represents the region where bundles are stable, i.e., bundling is
more probable than unbundling. (c) Logarithmic plot of the bundling
(black) and unbundling (green) times as functions of MT length. The
crosslinker concentration is c0 = 30 μm−1. (d) Bundling (black) and
unbundling (green) times as functions of crosslinker concentration.
The MT length is R = 1 μm. Arrow represents the parameter values
shown with arrows in (b). All calculations done with parameter
values from Table I.

the bundled state, PB, is greater than the probability of finding
it in the unbundled state, PU,

PB > PU. (11)

The region in the parameter space where bundles are stable
is shown in Fig. 3(c). We find that the bundles are unstable
if MTs are too short or if there are not enough cross-linking
proteins in the nucleoplasm.

Finally, we calculate how the MT bundling time depends
on the parameters of the system. In the case of an isotropic
distribution of initial MT orientations, the bundling time
is calculated as 〈tB〉 = 1

2

∫ π

θmin
〈t〉θ,θmin sin θdθ , where 〈t〉θ,θmin

is the first passage time from some initial angle θ to the
angle θmin (ref. [46]). After solving these integrals numeri-
cally, we found that the bundling time, 〈tB〉, increases with
MT length (green line in Fig. 3(c)). Note that the bundling
time, 〈tB〉, is inversely proportional to D, which decreases
with MT length [26], thus we expect that the bundling time
increases with MT length. Additionally, the bundling time
decreases as the cross-linker concentration increases (green
line in Fig. 3(d)). We also calculate the unbundling time
as 〈tU〉 = 1

2

∫ π

θmin
dθ sin θ〈t〉θmin,θ , where 〈t〉θmin,θ is the first
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passage time from θmin to θ . Unbundling time becomes longer
than bundling time if the condition for bundle stability in
equation (11) is fulfilled. Once this condition is satisfied, the
bundling time greatly increases (black lines in Figs. 3(c) and
3(d)). For example, for a concentration that is only twice
as large as the concentration for which stability is achieved,
the bundling time increases 1000 times. Thus, it is unlikely
that unbundling events would be observed in our biological
system.

F. Bundling in the presence of plus- and
minus-end directed motors

To explore the bundling process in the case when the inter-
action between MTs is mediated by plus-end directed motors,
we change the force-velocity relationship for cross-linking
proteins. For motor proteins, the force-velocity relationship
is given by equation (8), which together with the equation
(6) describes their distribution along the MTs. In the limit
where the time scale of the motor movement is shorter than
the time scale of motor detachment, kv0/ f0 
 koff , we write
the density of the motors as the number of attached motors
multiplied by their stationary probability distribution,

ρ(r, z) = N (θ )
exp

[
v0
Dv

(
r + z − k

2 f0
(y − y0)2

)]
∫ R

0 dr
∫ ∞

0 dz exp
[

v0
Dv

(
r + z − k

2 f0
(y − y0)2

)]
(12)

The plus-end directed motors walk toward the MT tips, so
their distribution (Fig. 4(a)) is a Gaussian around the point
of stall, which is the same on both MTs, (r, z) = (u0, u0),
with the stall point being u0 = (y0 + �y)/2 sin θ

2 [see point
labeled A in Fig. 4(a)], and �y = f0/k sin θ

2 . Moving away
from this point toward either end of the MT [see point labeled
B in Fig. 4(a)], or any tilting [see point labeled C in Fig. 4(a)]
has lower probability of finding a motor in that configuration.

The plus-end directed motors generate strong bundling
torque. Their torque is two orders of magnitude greater than
the torque generated by the passive crosslinkers, for the same
number of proteins [Fig. 4(b)]. This difference arises because
the average motor is extended by �y, whereas the average
passive crosslinker is in a relaxed state. The potential has a
similar shape to the one that occurs in the case of passive
crosslinkers [Fig. 4(b), inset], but the well is much deeper
and wider. The local maximum occurs only in the case of
small motor concentrations, c0 < 1 μm−1 for R > 0.3 μm
and other parameters taken from Table I, while it vanishes for
higher concentrations, which corresponds to the case when the
effective torque is attractive for all angles.

Next we explore the stability of the bundles caused by plus-
end directed motors, in the same way as we did for passive
crosslinkers, by evaluating the condition given in Eq. (11), but
with the motor distribution given in Eq. (12). In the presence
of plus-end directed motors, bundle stability is achieved for
most of the points in the parameter space, except for very
short MTs and very low concentrations of motors [Fig. 4(e)].
For example, with the concentration being only c0 = 1 μm−1,
bundles are stable for all MTs with R > 0.1 μm.

Finally, the distribution of minus-end directed motors is
obtained by using a negative velocity in Eq. (12). It has two

50

25

0

(a) (d)

Position along MT, r (μm)

P
os

iti
on

 a
lo

ng
 M

T,
 z

 (μ
m

)

0 10

1

0.5

0.5

Polar angle, θ (rad)
0 π-20

10

-10

20

0

π/2

E
ffe

ct
iv

e 
to

rq
ue

 (k
T)

D
en

si
ty

 (μ
m

)

250

125

0

(b) (e)
Position along MT, r (μm)

P
os

iti
on

 a
lo

ng
 M

T,
 z

 (μ
m

)

0 0.40

0.4

0.2

0.2

Polar angle, θ (rad)
0 π-2000

1000

-1000

2000

0

π/2

E
ffe

ct
iv

e 
to

rq
ue

 (k
T)

(c)

MT length, R (μm)

C
ro

ss
-li

nk
er

 c
on

c.
, c

 (μ
m

)

0 0.5 10

20

10
STABLE
BUNDLE 
p  > 0.5

π/20 π-500

500

0

U
 (k

T)

C

C

A

A

B

B

A

A

B

B

D
en

si
ty

 (μ
m

)

π/20 π-6

6

0

U
 (k

T)

FIG. 4. Solutions of the model for motors. (a) Density of plus-
end directed motors. The inset shows the positions (drawn to scale)
of motors that correspond to the points denoted on the main graph.
Angle between the MTs is θ = 0.3 rad. (b) Effective torque caused
by plus-end directed motors as a function of the angle between
the MTs. The inset shows the potential. (c) Stability diagram for
plus-end directed motors. The gray area represents the region where
bundles are stable, i.e., bundling is more probable than unbundling.
(d) Density of minus-end directed motors. The inset shows the
positions (drawn to scale) of motors that correspond to the points
denoted on the main graph. Angle between the MTs is θ = 0.3 rad.
(e) Effective torque caused by minus-end directed motors as a
function of the angle between the MTs. The inset shows the potential.
All calculations are done with c0 = 10 μm−1, R = 1 μm and other
parameters shown in Table I.

peaks near the spindle pole, at points (r, z) = (y0 − �y, 0)
[Fig. 4(d), point labeled A] and (r, z) = (0, y0 − �y) (point
labeled B). This is because one of their ends moves all the way
to the spindle pole, with the other one is being compressed by
�y along the MT due to its walking. The minus-end directed
motors produce negligible torques [Fig. 4(e)], because they
mostly accumulate so they are parallel to the MTs. Thus, we
do not expect any bundles to form in this case.

III. DISCUSSION

In conclusion, the pivot-and-bond model implies that pas-
sive processes, thermally driven motion of the MTs and
passive crosslinkers, are sufficient to describe the formation
of parallel MT bundles. As expected, the stability of formed
bundles increases and the time it takes for them to form de-
creases as the concentration of passive crosslinkers increases.
The bundling time is longer for longer MTs, as their angular
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PRELOGOVIĆ, WINTERS, MILAS, TOLIĆ, AND PAVIN PHYSICAL REVIEW E 100, 012403 (2019)

diffusion become slower and it takes them longer to find their
pair, but the bundles formed by longer MTs are more stable
due to the larger total number of crosslinkers being attached.
Thus, the model provides a plausible mechanism for MT
bundling observed in our experiments.

Along with passive crosslinkers, we modeled active motors
and their effects on MT bundling. Our theory predicts that
the plus-end motors exert much larger attractive torques than
passive crosslinkers because they accumulate closer to the
MT tips and are always extended. Even for very short MTs
and only a couple of plus-end motors attached, the MTs will
form stable bundles. This result opens up interesting questions
of whether, in addition to passive crosslinkers, the plus-end
directed motors contribute to formation of parallel bundles.

Using the minimal model approach, we gain a deeper
understanding of the mesoscopic properties of the bundling
process, such as bundle stability and average bundling time,
as well as predict their behavior for a wide range of parameter
values. This approach is complementary to more exhaustive
and detailed methods such as large-scale numerical simula-
tions (for example, Refs. [25,47]).

Although the pivot-and-bond model applies to fission
yeast, the approach used here could also be applied to other bi-
ological systems. In higher eukaryotes, where a large fraction
of MTs is nucleated at the centrosome, short MTs growing
from the centrosome may perform substantial angular motion
and create parallel bundles upon contact. In addition, MTs
can be nucleated at sites positioned along the pre-existing
mother MT [48–50]. In meiotic Xenopus egg extracts, these
new MTs grow at small angles and with the same polarity
as the mother MT, which makes them suitable to generate
parallel MT bundles such as k-fibers [51]. Quantification of
the angular movement of these MTs will show to which extent
it contributes to the formation of bundles.

The number of MT bundles depends on the cell type. The
pivot-and-bond mechanism presented in this work is relevant
for the formation of a single bundle and thus can be directly
applied to simple rod-like spindles such as a yeast spindle.
In higher eukaryotes, however, the mitotic spindle is com-
prised of multiple parallel and antiparallel MT bundles that
remain separated during mitosis. Future work will uncover
the mechanisms underlying the formation and maintenance of
such complex MT-based structures.
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APPENDIX A: THEORY

1. Equation of motion in spherical coordinates

Equation (1), for the angular velocity given by Eq. (3),
reads

d r̂
dt

=
(

D

kBT
τ +

√
2Dr̂ × η(t )

)
× r̂. (A1)

Here η = (ηi ) is a three-dimensional Gaussian white noise
in some Euclidian coordinates i, j = x, y, z, where ith and
jth components for times t and t ′ obey 〈ηi(t ), η j (t ′)〉 =
δ(t − t ′)δi, j . In Cartesian coordinates, Eq. (A1) can be written
componentwise as⎡
⎣ ˙̂rx

˙̂ry
˙̂rz

⎤
⎦ = D

kBT

⎡
⎣ 0 −r̂z r̂y

r̂z 0 −r̂x

−r̂y r̂x 0

⎤
⎦

T⎡
⎣τx

τy

τz

⎤
⎦

+
√

2D

⎡
⎣ 0 −r̂z r̂y

r̂z 0 −r̂x

−r̂y r̂x 0

⎤
⎦

⎡
⎣ 0 −r̂z r̂y

r̂z 0 −r̂x

−r̂y r̂x 0

⎤
⎦

T

×
⎡
⎣ηx

ηy

ηz

⎤
⎦ (A2)

where a cross-product is expressed as the product of a skew-
symmetric matrix (shorter notations [r̂×]C and [r̂×]T

C, index
C denotes the Cartesian coordinates) and a vector. The dot
represents derivation over time. Since we are interested in the
angle between microtubules, we parameterize the orientation
of the MT by using the polar angle θ and the azimuthal an-
gle, r̂C(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ ). The Cartesian
components of the unit vector and its differentials can be
written in terms of angles as⎡

⎣r̂x

r̂y

r̂z

⎤
⎦ =

⎡
⎣sin θ cos φ

sin θ sin φ

cos θ

⎤
⎦,

⎡
⎣ ˙̂rx

˙̂ry
˙̂rz

⎤
⎦

=
⎡
⎣cos θ cos φθ̇ − sin θ sin φϕ̇

cos θ sin φθ̇ + sin θ cos φϕ̇

− sin θ θ̇

⎤
⎦. (A3)

Next, we introduce spherical unit vectors, êμ, with indices
μ = r, θ, φ. Transformation of Cartesian to spherical coor-
dinates is given by êμ = Rμiêi, where êi are Cartesian unit
vectors. The transformation matrix reads

R =
⎡
⎣sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎤
⎦. (A4)
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Vectors and tensors transform as ˙̂rS = R˙̂rC and [r̂×]S =
R[r̂×]CR

T, respectively, where index S denotes spherical
coordinates. Applying the transformation to all the terms in
Eq. (A2), we write

˙̂rS = [r̂×]T
S τS +

√
2D[r̂×]S[r̂×]T

S ηS, (A5)

where we used RT = R−1. After using the parameterization
in Eq. (A3) and doing simple algebra, Eq. (A5) can be
written as[

θ̇

φ̇

]
= D

kBT

[
τ

0

]

+
√

2D

[
cos θ cos φ cos θ sin φ − sin θ

− sin φ

sin θ

cos φ

sin θ
0

]
◦

⎡
⎣ηx

ηy

ηz

⎤
⎦.

(A6)

Since we used standard algebra to obtain Eq. (A6), it should
be interpreted in the Stratonovich sense (denoted by ◦). To
obtain the equivalent Itō equation, we start by re-writing the
noise term as

∑
i=x,y,z VidWi, with vectors Vi being

Vx =
√

2D

[
cos θ cos φ

− sin φ

sin θ

]
, Vy =

√
2D

[
cos θ sin φ

cos φ

sin θ

]
,

Vz =
√

2D

[− sin θ

0

]
. (A7)

We then use the Itō-Stratonovich transformation formula to
calculate the spurious drift term in the Itō interpretation as
(1/2)

∑
i=x,y,z ∇Vi Vi, with ∇Vi Vi being the directional deriva-

tive of Vi along itself [52]. We use the independence of the
components of the noise vector along different Cartesian axes
ηi to write their linear combinations that correspond to the
noise vector components along the radial coordinates:

ηθ = cos θ cos ϕηx + cos θ sin ϕηy − sin θηz,

ηφ = − sin ϕηx + cos ϕηy. (A8)

It is easy to show that ηθ and ηϕ have the properties 〈ηi〉 = 0
and 〈ηi, η j〉 = δi, j for i, j ∈ {θ, ϕ}, i.e., they are Gaussian
white noises with unit variance. Finally, we obtain the equa-
tion of motion for the unit vector in spherical coordinates:[

θ̇

φ̇

]
= D

[
τ/kBT

0

]
+ D

[
cot θ

0

]
+

√
2D

[
ηθ

ηφ/ sin θ

]
. (A9)

The first term on the right-hand side is the contribution
from crosslinkers, the second one is the spurious drift term
calculated using directional derivatives of vectors in Eq. (A7),
and the last one is the noise term for angular variables. The
first component in Eq. (A9) is the equation of motion for the
polar angle θ given in Eq. (7).

2. Density of cross-linking proteins

Equation (6) describes the attachment and detachment of
crosslinkers, as well as their movement along the MTs. This
equation does not have an analytical solution because the
density depends on the polar angle, which is stochastic in
nature. To solve this problem, we use the adiabatic approxi-
mation, ∂ρ/∂t = 0, which holds if the change in cross-linker
distribution is faster than the movement of MTs. In this

approximation Eq. (6) becomes

−∂ jr (r, z)

∂r
− ∂ jz(r, z)

∂z

+ kac0

√
k

2πkBT
exp

[−k(y − y0)2

2kBT

]

− kd0 exp

[
k(y − y0)

fc

]
ρ = 0, (A10)

where y(r, z) = √
r2 + z2 − 2rz cos θ is the value of the

cross-linker elongation. The currents written explicitly are

jr = −Dm

[
k

kBT
(r − z cos θ )

(
1 − y0

y

)
+ ∂

∂r

]
ρ

jz = −Dm

[
k

kBT
(z − r cos θ )

(
1 − y0

y

)
+ ∂

∂z

]
ρ (A11)

In the r and z coordinate system, the currents jr and jz depend
on both coordinates, so it is useful to transform the coordi-
nates into a coordinate system in which coupling in the term
z − r cos θ disappears. Thus, we introduce coordinates u =
(r + z)/2 and w = (r − z)/2. These coordinates also have a
physical interpretation, the first one describes the position of
the cross-linker’s center of mass and the second one describes
the “tilt” of the cross-linker. In these coordinates, Eq. (A10)
becomes

−
(

∂ ju
∂u

+ ∂ jw
∂w

)
+ kac0

√
k

2πkBT
exp

⎡
⎣−ky2

0

( y
y0

− 1
)2

2kBT

⎤
⎦

− kd0 exp

[
k(y − y0)

fc

]
ρ(u,w) = 0, (A12)

where y(u,w) =
√

4sin2 θ
2 u2 + 4cos2 θ

2 w2 is the value of the
cross-linker elongation in the new coordinates. The term√

k/(2πkBT ) comes from integrating the Boltzmann factor
over all possible cross-linker elongations. The currents are
now

ju = Dm

2

[
4k

kBT
sin2 θ

2
u

(
1 − y0

y

)
− ∂

∂u

]
ρ,

jw = Dm

2

[
4k

kBT
cos2 θ

2
w

(
1 − y0

y

)
− ∂

∂w

]
ρ (A13)

Equations (A12) and (A13) provide an implicit definition
of cross-linker density required for calculating the effective
torque in Eq. (5), which in the u and w coordinates reads

τθ = −2k sin θ

[∫ R
2

0
du

∫ u

−u
dwρ(u,w)(u2 − w2)

(
1 − y0

y

)

+
∫ ∞

R
2

du
∫ u

u−R
dwρ(u,w)(u2 − w2)

(
1 − y0

y

)]

+ kBT cot θ. (A14)

Hence, our goal is to calculate the torque in Eq. (A14) by
finding a suitable approximation for the cross-linker density.
In the limit of a large MT, the second term in Eq. (A14) can
be neglected. Next, to simplify our calculations, we consider
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the homogeneous part of Eq. (A12) only. We also employ
symmetries of our system. By applying the finite integral∫ u
−u dw we integrate the homogeneous part of Eq. (A12). The

density ρ(u, w) is an even function in w because the system is
invariant to switching the MTs. Thus, jw is an odd function in
w and

∫ u
−u jwdw will vanish. We expand the term (1 − y0/y)

around the point (u,w) = (y0/(2 sin θ
2 ), 0). Because we are

interested in finding the dominant contribution, we calculate
the first order terms only. The integral reads

−Dm
∂

∂u

[
k

4kBT
sin2 θ

2

(
u − y0

2 sin θ
2

)
− ∂

∂u

] ∫ u

−u
ρdw

−
∫ u

−u
kd (u, w)ρdw = 0. (A15)

To be consistent, we also expand the detachment term into
a series up to the first order: kd (u, w) = kd0 + kuu + kww +
O2(u, w). We now introduce a function Q(u) = ∫ u

−u ρdw and
obtain an ordinary differential equation for Q(u):

−Dm
∂

∂u

[
k

4kBT
sin2 θ

2

(
−u + 2u2 sin θ

2

y0

)
Q − ∂Q

∂u

]

− kd0Q − kuuQ = 0. (A16)

The term kw

∫ u
−u wρdw vanished for the odd function

wρ(u, w). We use the expansion Q = Q1u + Q2u2 + Q3u3 +
O4(u) and group the terms associated with u0 and u1. The
recursion relations for the coefficients of the expansion are

Q2 = 0,

Dm
k

2kBT
sin2 θ

2
Q1 + 6DmQ3 − kd0Q1 = 0. (A17)

In Eq. (A17), contributions from diffusion and detachment
appear in a direct competition because they are both multi-
plying the same recursion term. We obtain that the diffusion
term is dominant in the case (kDm/kBT )(1 − cos θ ) 
 kd0.
This condition holds for all angles θ 
 10−3 if we use the
parameters values from the Table I. Therefore, we use the
approximation kd (r, z) = kd0. In that case Eq. (A13) has an
analytical solution:

ρ(u,w) = kac0

kd0

√
k

2πkBT
exp

[
− k

2kBT
(y(u,w) − y0)2

]
.

(A18)

To solve the inner integrals in Eq. (A14), we make an-
other coordinate transformation (u,w) → (y, α), where y is
the elongation defined as before of the crosslinker and α

is an angular variable, so that u = y cos α/2 sin θ
2 and w =

y sin α/2 cos θ
2 . The integration region in Eq. (A14) can be

approximated as a circular sector of radius R/2 sin θ
2 and angle

in range ±tan−1(cot θ
2 ) = ±(π − θ )/2. This approximation

holds unless the angle is small enough that the distance
between the MT tips is less than the length of the crosslinker,
y0 < R/2 sin θ

2 , and in this case we assume that no crosslink-
ers attach and no torque is exerted. For convenience, we will

use the fact that the torque is significant only for small angles
θ � 1, so R/2 sin θ

2 → ∞. Equation (A14) now reads

τθ = −k

2


(
sin

θ

2
− y0

2R

)∫ ∞

0
exp

[
− k

2kBT
(y − y0)2

]

× y2(y − y0)dy
∫ π−θ

2

− π−θ
2

⎡
⎣(

cos α

sin θ
2

)2

−
(

sin α

cos θ
2

)2
⎤
⎦dα

+ kBT cot θ. (A19)

Both integrals can be solved analytically, yielding the torque

τθ = −kac0

kd0
y0

1 − (θ − π ) sin θ

sin θ


(
sin

θ

2
− y0

2R

)
+ kBT cot θ. (A20)

Integrating the torque with respect to θ and taking the negative
value yields the effective MT-MT interaction potential, which
is then simplified using the small angle approximation,

U (θ ) = −kac0

kd0
y0π

[


(
θ − y0

R

)
θ

+ 
( y0

R − θ
)

y0

R

]
− ln (sin θ ).

(A21)

The local extremes of this potential are θmax = kac0
kd0

y0π and
θmin = y0

R , as discussed in the main text. The generalized
potential can be used to map macroscopic values such as
bundling probability and bundling time onto the parameter
space.

In the case where the cross-linking proteins are plus-
end directed motors, whose velocity is given by Eq. (8),
we can use the same coordinate transformation as for pas-
sive crosslinkers. Furthermore, the distribution is close to a
Gaussian centered at the point (u,w) = (u0, 0), with u0 =
(y0 + f0

k sin θ
2

)/2 sin θ
2 and very narrow along the w coordinate

[Fig. 4(a)]. This allows us to roughly approximate the density
of the plus-end directed motors given in Eq. (12) as

ρ(u,w) = N (θ )
exp

[− kv0
f0Dv

sin θ
2 (u − u0)2

]
δ(w)∫ R

0 du exp
[− kv0

f0Dv
sin θ

2 (u − u0)2
] . (A22)

However, this approximation stops being valid when the angle
becomes small enough that u0 > R. This means that the
torque and the potential [Fig. 4(b)] still have to be evaluated
numerically.

3. Bundle stability

The bundling and unbundling probabilities are related to
the generalized potential as PB,U = N

∫
B,U

e−U (θ )dθ , where

the normalization factor reads N = 1/
∫ π

0 eU (θ )dθ . For angles
θ > θmax, the potential contribution from cross-linking pro-
teins is negligible, so we can write

PU = N

∫ π

θmax

sin θdθ. (A23)
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Note that if the interaction between the MTs is attractive
for all angles and the potential barrier between bundled and
unbundled state does not exist, we automatically consider the
bundles stable. The bundling probability is calculated using
the small angle approximation:

PB = N

[
exp

(
θmax

θmin

) ∫ θmin

0
θ dθ +

∫ θmax

θmin

exp

(
θmax

θ

)
θ dθ

]
.

(A24)

The integrals in Eqs. (A23) and (A24) can be evaluated
analytically for R 
 y0, and after using the definitions for θmax

and θmin, we obtain

PB = 1 − 1

1 + ( y0

2R

)2
exp

( kac0
kd0

y0π
) . (A25)

The stability condition, Eq. (11), can be written explicitly as( y0

2R

)2
exp

(
kac0

kd0
y0π

)
> 1. (A26)

For plus-end directed motors, we use the approximation in
Eq. (A22) to numerically determine the region of stability.

To calculate the average bundling time, we start by writing
the equation for the average first passage time from some
angle θ to the minimum of the potential, θmin [46]:

〈t〉θ,θmin
= 1

D

∫ θ

θmin

dθ ′
∫ θ ′

0

∫ π

θ ′ pθ (θ ′′)dθ ′′

pθ (θ ′)
. (A27)

We assume that MTs are “introduced into the system” at a
random, isotropically distributed starting angle in the region
U , so the average bundling time is obtained by taking
the average of the first passage time over all initial angles,
〈tB〉 = 1

2

∫ π

θmin
〈t〉θ,θmin sin θdθ . The average unbundling time is

calculated as 〈tU〉 = 1
2

∫ π

θmin
dθ sin θ〈t〉θmin,θ , where the first

passage time from θmin to θ , 〈t〉θmin,θ , is calculated analogously
to Eq. (A27). The evaluation of the triple integrals required for
obtaining the average bundling and unbundling time is done
numerically.

4. Numerical simulations of θ(t )

The equation of motion for θ (t ) is given explicitly in
Eq. (9), which is a first-order stochastic differential equation.
To produce the time courses shown in Fig. 2, we opted for an
Euler-Maruyama scheme with an adaptive time-step, which
is constant for all angles larger than some limit angle and is
inversely proportional to the angle when it is smaller. This is
because the value of the deterministic term changes rapidly
between time steps when the angles are close to zero, but
varies slowly at larger angles, so using a higher order conver-
gence scheme would be computationally inefficient. Finally,
to ensure numerical stability, we also imposed a reflective
boundary condition at θ = 0. Full Matlab code is available
on request.

5. Choice of parameter values

Our model has 10 constant parameters, which are esti-
mated based on previous measurements (see Table I). The

rest lengths of passive crosslinkers, y0 = 40 nm, and mo-
tors, y0,m = 60 nm, are estimated from EM data for PRC1
[42,53] and Kinesin-5 [54], respectively. The spring stiff-
ness of both passive crosslinkers and motors is taken to be
k = 100 pN/μm, which corresponds to the value for Eg5
measured in Ref. [55] and used in Ref. [14], while being three
times lower than the value measured in Ref. [56]. Note that the
stiffness of PRC1/Ase1 is not measured, but it is presumably
higher than the stiffness of Eg5 due to the difference in
length. The values for attachment and detachment rates, kon =
0.01 s−1 and koff = 0.1 s−1, are taken from measurements
on Ase1 [13], and the detachment rate is similar to the one
estimated from the dwell time of Cin8 [57]. Detachment is
additionally described by the critical force required to rupture
the bond between the cross-linking protein and the MT, fc,
for which we used the value measured for kinesin-1 [58].
Passive crosslinkers perform Brownian motion along the MTs
with the diffusion constant D0, whose value is taken from
measurements for Ase1 [13,41]. The movement of motors is
described by their velocity at zero load, v0, which is estimated
in vitro motility assays for Cut7 [59], with the stall force,
f0, for which we used the value measured for Cin8 from
budding yeast [60], consistent with the stall force estimated
for Xenopus kinesin-5 [61]. Finally, the MTs are characterized
by their diffusion constant, D, which is calculated, according
to the theory for angular diffusion of rigid rods [62] as D ∝
R−3, using fitting results from [26], which are consistent with
our own measurements for two different values of MT length.

APPENDIX B: EXPERIMENTAL METHODS

1. Strains and media

Fission yeast strains used in this study are listed in Supple-
mental Material Table I [38]. The KI061 (cdc25-22 ndc80-
nmtP41-tdTomato-kanMX6 kanr-nmtP3-GFP-atb2+ sid4-
GFP-kanr, created by Iana Kalinina, Tolić lab, Max Planck
Institute of Molecular Cell Biology and Genetics, Dres-
den) was used as the parent strain for deletion strains. The
strains were obtained by crossing and random spore analysis
[63]. The ase1::hygR ura4-D18 leu1-32 strain, used to create
LW050, was a kind gift from Prof. Jonathan Millar [64]. All
the strains were grown on Yeast Extract (YE) medium agar
plates with appropriate supplements (ade, leu, ura, his, lys)
and 2 μM thiamine in incubator (Heraeus B6) at 25 °C.

2. Culture dish customization

Culture dish (MatTek Corporation, 35 mm) wall was cut
to 2 mm height. Original cover slip was removed from the
dish bottom and the remaining culture dish was soaked in
70% ethanol. Cover slips (Sigma-Aldrich, Corning, 22 mm ×
22 mm) were washed in 2-propanol and attached to the pre-
washed culture dish with nail polish. Prepared dishes were
used for microscopy.

3. Sample preparation

The strains were grown on Yeast Extract medium agar
plates with appropriate supplements (YES) and 2 μM
thiamine in incubator (Heraeus B6) at 25 °C overnight. A

012403-11
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loopful of grown cells was cultured in liquid YES with
thiamine in a shaking incubator (ISF-1-W, Kuhner Shaker)
at 25 °C for 2–3 hours to induce mitosis. Prepared dish was
coated with lectin (Sigma-Aldrich) 30 min prior to usage to
ensure strong attachment of cells. 200 μl of liquid culture was
placed on pretreated culture dish for 25 min for sedimentation.
The cells were washed two times with 200 μl of YES with
thiamine, followed by final 200 μl of YES with thiamine and
closing the dish on top with a cover slip (Corning) to keep the
cells from drying out.

4. Microtubule depolymerization by cold treatment

Custom-made fast thermoelectric device that can be cou-
pled to the microscope was used to depolymerize and re-
polymerize microtubules by shifting the temperature. To in-
duce depolymerization, temperature was kept at 0 °C for
15 min to ensure that all the microtubules from mitotic spin-
dles were disassembled. Subsequent re-polymerization was
induced by raising the temperature to 24 °C.

5. Time-lapse live-cell imaging

Live-cell imaging was preformed using an Andor Revolu-
tion Spinning Disk System (Andor Technology), consisting
of a Yokogawa CSU-X1 (10.000 rpm) spinning-disc scan
head (Yokogawa Electric Corporation) with a 405/488/561 nm
Yokogawa dichroic beam splitter (Semrock). The scan head
was connected to an Olympus IX71 microscope (Olympus)
with an inverted stand, equipped with a fast piezo objective z-
positioner (PIFOC, Physik Instrumente GmbH & K.G.), Prior
ProScanIII xy scanning stage and an Olympus UPlanSApo ×
100/1.4 NA oil objective (Olympus). For excitation, a sap-
phire 488 nm solid-state laser (75 mW, Coherent) was used
with the laser intensity set to 6% using the acousto-optic tun-
able filter (ALC, Andor Technology). Emission wavelength
was selected using the respective emission filter 525/30.
Andor iXon EM+ DU-897 BV back illuminated EMCCD
with pixel size of EMCCD chip 16 μm (Andor Technol-
ogy), cooled to −80 °C, electron multiplication gain 300
was used for acquisition. Three-dimensional time-lapse stacks

comprising 13 optical sections at 0.5 μm z-spacing were taken
every 2 s with exposure times 0.08 and 0.06 s. The x-y pixel
size in the images was 168 nm. Andor iQ software version 2.9
(Andor Technology) was used to control the system.

Cells expressing Mal3–GFP and Sid4-GFP were imaged
using Bruker Opterra Multipoint Scanning Confocal Micro-
scope (Bruker Nano Surfaces, Middleton, WI). The system
was mounted on a Nikon Ti-E inverted microscope equipped
with a Nikon CFI Plan Apo VC 100x/1.4 numerical aperture
oil objective (Nikon, Tokyo, Japan). During imaging, cells
were maintained at 25 °C in Okolab Cage Incubator (Okolab,
Pozzuoli, NA, Italy). For excitation of GFP fluorescence,
a 488 nm diode laser line was used. The excitation light
was separated from the emitted fluorescence using Opterra
Dichroic and Barrier Filter Set 405/488/561/640. Images were
captured with an Evolve 512 Delta EMCCD Camera (Photo-
metrics, Tucson, AZ) using 50 ms exposure times. To bring
the xy-pixel size in the image down to 83 nm, a 2x relay lens
was placed in front of the camera. Z-stacks were acquired
comprising five focal planes at a 0.5 µm z-spacing. Image
acquisition was performed for 300 time frames at 0.75 s
intervals. The system was controlled with the Prairie View
Imaging Software (Bruker).

6. Image analysis

Image processing was performed in ImageJ (National Insti-
tutes of Health, Bethesda, MD). Quantification and statistical
analysis were done in MatLab (MathWorks, Natick, MA).
Spindle poles and plus ends of MTs in cells expressing
tubulin-GFP were tracked manually in ImageJ. Tracking in
cells expressing Mal3-GFP and Sid4-GFP was preformed
automatically using Low Light Tracking Tool, an ImageJ
plugin [65]. Tracking was performed on maximum-intensity
projections of the z-stacks. Bundling events were confirmed
by the increase in the signal intensity of a cross-section of
the spindle. The signal intensity was measured in ImageJ
by drawing 3-pixel-thick line perpendicular to the spindle.
Bundling time was calculated as the total observation time of
MTs divided by the number of bundling events in which MT
bundled into the spindle.
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