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[This paper is part of the Focused Collection on Quantitative Methods in PER: A Critical
Examination.] The Rasch model is a probabilistic model which describes the interaction of persons
(test takers or survey respondents) with test or survey items and is governed by two parameters: item
difficulty and person ability. Rasch measurement parallels physical measurement processes by
constructing and using linear person and item measures that are independent of the particular
characteristics of the sample and the test items along a unidimensional construct. The model’s properties
make it especially suitable for test construction and evaluation as well as the development and use of
surveys. The evaluation of item fit with the model can pinpoint problematic items and flag idiosyncratic
respondents. The possibility of determining sample—independent item difficulties makes it possible to
use the Rasch model for linking tests and tracking students’ progression. The use of the Rasch model in
PER is continuously increasing. We provide an overview and examples of its use and benefits, and
also outline common mistakes or misconceptions made by researchers when considering the use of the
Rasch model. We focus in particular on the question of how Rasch modeling can improve some common
practices in PER, such as test construction, test evaluation, and calculation of student gain on PER
diagnostic instruments.

DOI: 10.1103/PhysRevPhysEducRes.15.020111

I. INTRODUCTION

The pursuit of objective measurement lies at the heart of
science, and physics education research (PER) as a science
should also try to bring its measurements closer to the
standards of objective measurement. The Rasch model was
developed by Danish mathematician Georg Rasch with that
particular purpose. The use of the Rasch model for data
analysis is not new to PER practitioners. The Rasch model
has been used in a number of PER studies to date (e.g.,
[1–25]). However, it is likely that the Rasch approach is not
generally well understood and that many researchers do not
understand the rationale and benefits for its use in physics
education research. The intention of this article is to present
the basic ideas of the Rasch model, and the motivation for
using it in PER, but also to present some common
misunderstandings of the model. We will also try to suggest

some ways in which the use of the Rasch model could
improve some common PER practices. These include
construction and evaluation of diagnostic instruments (tests
and surveys), linking of tests, monitoring learning pro-
gression, and measuring learning gain. Since it is not
possible to cover all aspects of the Rasch model and its use
in a single paper, we have chosen to refrain from technical
aspects as much as it is possible and reasonable, to make
the article easier to read and help readers primarily focus on
the main conceptual issues. Readers who are interested in a
more detailed and in-depth presentation of many technical
aspects of Rasch analysis are referred to other sources (e.g.,
[26–30]). An important aspect of the Rasch model is that it
is not just another statistical technique to apply to data,
but it is a perspective as to what is measurement, why
measurement matters, and how to achieve better quality
measurement in an educational setting. After an introduc-
tion to these ideas and the Rasch model itself, we will
outline the process of test construction and test evaluation
with Rasch analysis and also provide some essential
practical advice for novice analysts as how to avoid some
common misunderstandings and pitfalls. In the end, we will
discuss the common practice of using pretesting, posttest-
ing, and normalized gain in PER and discuss them from a
Rasch perspective.
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II. BASIC PRINCIPLES AND PROBLEMS
OF MEASUREMENT

A. Objective measurement

Natural science was built upon striving to achieve as
objective measurements as possible, which means that
objective methods were determined and utilized to trans-
form observation into measurement. In physics, methods
for measuring have been developed which are specific for
the intended measurement and independent of the variation
in the other characteristics of the measured object or the
measuring instrument utilized. To achieve objective meas-
urement, the calibration of measuring instruments must
be independent of the objects used for calibration and the
measurement of an object must be independent of the
instrument that was used [28]. These conditions are
satisfied to a large degree in most physics measurements.
For example, if we want to measure the height of an object,
we can use different measuring instruments, and obtain the
same result with each instrument measuring height, within
the limits of the associated measurement uncertainties of
the different measurement instruments measuring height.
The obtained result will not depend on other objects which
we may have measured with the same instruments.
Therefore, the obtained measure is, in principle, indepen-
dent of the instrument used (one can refer to this as
instrument-free measurement), as well as of other objects
on which measurement was performed (one can name this
sample-free measurement). However, this is in striking
contrast with measurements routinely performed in educa-
tion, which are strongly test and sample dependent. For
example, one student may achieve 90% on one test, and
50% on another (more difficult) test, covering the same
content, or be placed in the 80th or 60th percentile of their
class. Students’ ability estimates, obtained in this way, are
clearly very dependent on both the characteristics of the test
and the performance of other people in the reference group.

B. Unidimensionality

Objective measurement requires creation of unidimen-
sional measurement scales [31]. Unidimensionality means
that we are trying to describe and measure only one
attribute of the phenomenon under observation at a time.
In physics, scientists have succeeded in creating a great
number of such unidimensional scales for the measurement
of many different physics quantities (e.g., length, mass,
temperature, etc.). Unidimensionality is important, since
we can only understand the meaning of the obtained
measure if we have clearly isolated one trait (the dimen-
sion) which is being measured. This may seem almost
impossible to achieve in educational measurement, where
there are so many factors and traits which seem to
complicate each measurement. However, the Rasch per-
spective is that we still must try to measure a single trait.
We know that there will always be noise in educational

measurements, but steps can be taken to limit such noise.
It is important to try to work toward unidimensionality,
bearing in mind that unidimensionality is necessarily
always an approximation, but one that can be empirically
tested. Maximizing the quality of the unidimensional
measure improves the quality and confidence we can have
in the analysis of the collected test data.
When contemplating unidimensionality, it is important

to distinguish between a psychometric dimension, ex-
pressed through persons’ responses, and psychological
dimensions, which may or may not be the same as the
psychometric dimension [32]. For example, physics test
problems presented to students will usually involve several
psychological dimensions, e.g., physics knowledge, math
knowledge, reading, etc. Although psychologically multi-
dimensional, such problems can in many practical cases
define a single empirical psychometric dimension. The
main requirement is that the items work sufficiently
together to define a trait [33]. There are many ways in
Rasch analysis to test the unidimensionality of the dataset
(the methods will be discussed later), to explore the
possible presence of other dimensions, as well as their
size and impact on measurement, and to enable the analyst
to make the decision of whether the test is sufficiently
unidimensional for their purpose, or if it needs further
refinements.

C. Abstract measurement scale

Objective measurement requires that we move from
simple counting to the construction of abstract continuous
measurement scales. Counts are typically not measures. For
example, we can count objects, but the same number of
objects will not always imply the same underlying quantity,
since objects can vary in size. To solve the problem, we
have to resort to an abstract quantity (e.g., mass), and
express its value on an abstract continuous scale with a
measurement unit that has the same meaning on any part of
the scale (e.g., kilogram). Measurement requires the con-
struction of an abstract quantity, expressed in linear abstract
units, whose meaning does not change along the scale
[28,31]. It also requires a well-constructed and calibrated
measurement instrument. In the example of measuring the
mass of objects, such an instrument could be a spring scale.
But, at the core of each instrument, there is a measurement
model, which describes the interaction of the object of
measurement with the instrument.
In educational measurement counts of correct answers

are often used as measures, although they do not possess
the necessary characteristics of measures. Counts or per-
centages of correct answers are not linear in the variable
that they represent [27,28]. There are other related prob-
lems with counts and raw scores. Raw scores are limited to
be between 0% and 100%, whereas linear measures do not
have such bounds, and a score increase of 1% will not
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represent the same increase in ability along the entire
percentage scale.
It is important to stress that any mathematical operations

and statistical analyses performed with nonlinear measures
may produce distorted results. It is important therefore to
switch from nonlinear counts to abstract linear measures if
one wishes to perform such mathematical operations and
statistical analyses (e.g., calculating mean values, con-
ducting t-tests, conducting analysis of variance, etc.).

III. THEORETICAL FOUNDATIONS
OF RASCH MODELING

The construction of measures requires a model which
can describe what happens when a test taker interacts with a
test item (e.g., when a student attempts to answer an item),
and which can produce a method for converting the counts
of correct answers (often called the raw scores) to person
ability measures. It is important to note that the Rasch
meaning of the term “person ability” does not refer to the
general intellectual ability of a person, but instead refers
only to the degree of the latent trait under investigation
(e.g., knowledge of mechanics, understanding of electro-
magnetism, attitude toward physics, etc.) possessed by the
person. The first such model is the Rasch dichotomous
model [34], which was later followed by other extensions
of the Rasch model, such as the rating scale model [35], the
partial credit model [36], and the many faceted model [37].
The requirement of unidimensionality assumes the

existence of an underlying variable (sometimes named a
“latent trait”), which is operationalized with a certain
number of test items, each of which can be characterized
by its difficulty (Di). These items are used to determine
where a person is located on the variable (e.g., are they at a
high level on the variable or a low level on the variable;
see Fig. 1).
Persons are described by a parameter called person

ability (Bn). The measurement model should be probabi-
listic, and not deterministic, since persons of the same
ability may respond differently to the same item, so we can
only predict the outcome in terms of probabilities.
If a test taker of ability Bn answers a test item of

difficulty Di, in the simplest case of a dichotomous item,
they can succeed or fail on the item. The probability of
success will be some function of the difference Bn −Di:
the larger the difference, the higher the probability of
success. Also, the function should be normalized to provide
probability values between 0 and 1. Many functions that
satisfy these conditions can be constructed, but Rasch
showed that the logistic function

PðX ¼ 1jBn;DiÞ ¼ eðBn−DiÞ=ð1þ eðBn−DiÞÞ ð1Þ

is the only one that allows the separation of parameters,
and their independent determination [28]. Equation (1) is
known as the dichotomous Rasch model [34]. Of all

proposed latent trait models, the Rasch model has fewest
parameters: one ability parameter for each person, and one
difficulty parameter for each item [38]. The Rasch model is
most often expressed in terms of the log odds (L):

L ¼ ln½Pni=ð1-PniÞ� ¼ Bn −Di: ð2Þ

From Eq. (2) we can see that both Bn and Di range from
negative infinite to positive infinite. They also have some
additional important properties:

Ln1 −Ln2 ¼ Bn1 −Bn2 ðfor the same itemof difficultyDiÞ;
ð3Þ

Li1 − Li2 ¼ Di2 −Di1 ðfor the same person of abilityBnÞ:
ð4Þ

Equations (3) and (4) demonstrate the mutual independ-
ence, as well as linearity, of person abilities and item
difficulties expressed as log odds. An important aspect of
Eq. (3) to note is that the difference of log odds for the two
persons attempting the same item is determined only by the
difference of the persons’ abilities, and is not influenced by
the item’s difficulty. The same holds for the difference of item
difficulties—item difficulties are independent of the ability of
the person who answered the items. The Rasch model has
therefore item and person invariance properties—unlike the
commonly used “percentage correct” statistics which are
strongly sample dependent and test dependent [30].
Through its mathematical form the Rasch model defines

a general mathematical unit called the logit (log odds unit).

FIG. 1. An example of the Wright map (item-person map),
representing a hypothetical distribution of items (Q1–Q10) and
persons (each person is represented by “x”) along the same
variable. The variable is represented by a straight line in the
middle and increases in upward direction.
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A person’s ability in logits is their log odds of succeeding
on items chosen to define the scale origin; for Di ¼ 0, ln
½Pni=ð1 − PniÞ� ¼ Bn. An item’s difficulty in logits is the
log odds of failure on that item of persons with abilities at
the scale origin; for Bn ¼ 0, ln ½ð1 − PniÞ=Pni� ¼ Di. Since
it is the difference Bn −Di that governs the probability of
the correct answer, it is possible to add the same arbitrary
constant to both Bn and Di without changing the proba-
bility. The origin of the logit scale of the latent variable is
therefore arbitrary. Commonly in analyses, the origin (zero
logits) is set at the average difficulty of the test items. The
size of the logit depends on the way the variable is
operationalized by the items, and is not the same in each
analysis. This is often described as analogous to the
difference of temperature scales, e.g., the Fahrenheit and
Celsius scale. The comparisons of results obtained by
different Rasch analyses will therefore first require the
equating of their logit scales, just as in the case in which
one wishes to utilize both Celsius and Fahrenheit temper-
ature data for a study.
It is important to mention that the measures Bn and Di

are not counts, and cannot be observed directly, but only
inferred and estimated from the response pattern of
examinees. If the difference between Bn and Di is zero,
the probability of success is exactly 50%. Different values
of probabilities of success for different values of Bn −Di
are displayed in Table I. Figure 2 shows a typical curve that
illustrates the nonlinearity of raw scores which are plotted
against the corresponding Rasch person ability measures
(the raw scores to measures curve, also called the logistic
ogive). The nonlinearity is most strongly expressed at the
high and low ends of the raw score scale [1]. This means
that the low and high performers on tests are particularly
impacted when raw score totals are used as proxies for
“measures.”
The Rasch model enables us to construct measures of

students’ abilities and item difficulties from their response

pattern [in the case of a dichotomous test the patterns of
0 (incorrect) and 1 (correct) answers to each item by a
respondent], with the use of different software packages
for Rasch analysis (commercial software such as e.g.,
WINSTEPS, QUEST/CONQUEST, or RUMM, or free software
such as BIGSTEPS, MINISTEPS, or R). It is important to note
that Rasch software is typically very user friendly, simple to
use, and requires neither the learning of a new program-
ming language nor extensive coding.
According to Wright [31], the measures must be infer-

ences by stochastic approximation, expressed in abstract
units, linear, of unidimensional quantities, and impervious
to extraneous factors. The measures obtained through
Rasch modeling fulfill all those criteria.
Rating scales (e.g., surveys using a Likert scale) are often

used in educational research. Andrich perceived that
categories of a rating scale could be thought of as a series
of dichotomies [32]. The dichotomous Rasch model can be
expressed as

lnðPni1=Pni0Þ ¼ Bn −Di; ð5Þ

where Pni1 and Pni0 stand, respectively, for probabilities of
success and failure of person n on a dichotomous item i. In
a rating scale model each item will have several rating
scale categories. The probability of a person n endorsing
category j over previous category (j − 1), or being
observed in category j of item i, can be expressed in a
Rasch-Andrich rating scale model [35] as

lnðPnij=Pniðj−1ÞÞ ¼ Bn −Di − Fj; ð6Þ

FIG. 2. A typical Rasch raw scores to measures curve for an
example of a test of 20 dichotomous item, each scored 1 point,
plotted from Winsteps [26]. Rasch measures are expressed
in logit.

TABLE I. Probability of a correct answer to dichotomous
questions for different values of Bn −Di.

Difference of person
ability and item difficulty,
Bn −Di (in logit)

Probability of a correct
answer of person

n to item i

5 0.99
4 0.98
3 0.95
2 0.88
1 0.73
0 0.50
−1 0.27
−2 0.12
−3 0.05
−4 0.02
−5 0.01
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where Fj is the Rasch-Andrich threshold (step calibration),
or the point on the latent variable where the probability of
person n being observed in category j of item i equals the
probability of the same person being observed in category
(j − 1). Fj is estimated from the category frequency, and
the difficulty of the item is now located at the point where
the highest and the lowest categories are equally probable.
In a rating scale model each item has the same thresholds

for the rating scale categories. This means that one can
compute the rating scale steps from category to category,
for example from SA to A, from A to D, from D to SD, with
no assumption made as to the distance of a step. But,
importantly, with this model, the rating scale structure
which is determined is treated as if the structure is the same
for each item.
A version of the rating scale model, where the rating

scale is specific to each item (thresholds are different for
different items), is called the Rasch-Masters partial credit
model [36]. This model is described mathematically as

lnðPnij=Pniðj−1ÞÞ ¼ Bn −Di − Fij: ð7Þ

In this model Fij stands for the threshold between
categories j and j − 1 on item i. In contrast to the rating
scale model, in the partial credit model the items of the
same raw score can have different values of Rasch
difficulties if the pattern of category usage on those items
is different. The partial credit model is suitable for analysis
of items which do not share the same category structure. It
is possible to evaluate, for example, a set of rating scale
data (e.g., using a Likert scale SA, A, D, SD), but not assert
that rating scale steps have the same structure for each item.
A further extension of the Rasch model is the Rasch-

Linacre many faceted model [37], which was developed for
situations where the performance of a person on a specific
task is judged by several raters:

lnðPnijk=Pniðj−1ÞkÞ ¼ Bn −Dgi − Ck − Fgj: ð8Þ

Ck represents the severity (or leniency) of rater (judge) k,
who awards the ratings j to person n on item i in group g.
Unlike the previous three models, this model has been
rarely used in physics education research, but we feel that
in cases when a variety of judges are used to evaluate
student performance, using items, this model should be
considered for use.

IV. TEST CONSTRUCTION AND EVALUATION
USING THE RASCH MODEL

One of the most important uses of the Rasch model in
PER is to help guide test and survey construction and
evaluate their functioning. In this section we outline the
general process and the most important aspects of test
construction and evaluation with the Rasch model in order
to facilitate this process for PER researchers. To provide

readers with guidance we find the suggestions of Liu [39] to
be helpful. Construction of a measurement instrument with
the Rasch model is according to Liu [39] “a systematic
process in which items are purposefully constructed
according to a theory and empirically tested through
Rasch models in order to produce a set of items that define
a linear measurement scale.” Liu includes the following
steps (also summarized in Table II):

1. Define the construct that can be characterized by a
linear attribute.

2. Identify the behaviors corresponding to different
levels of the defined construct.

3. Define the outcome space of behaviors (item pool).
4. Field test with a representative sample of the target

population.
5. Conduct Rasch modeling.
6. Review item fit statistics and revise items if nec-

essary.
7. Review the Wright map and add or delete items if

necessary.
8. Repeat (4) to (7) until a set of items fit the Rasch

model and define a scale.
9. Establish validity and reliability claims for the

measurement instrument.
10. Develop documentation for the measurement in-

strument.
The starting point, from the Rasch measurement per-

spective, for the development of an instrument is the use of
theory. The focus on theory ensures that the constructed
instrument will have high construct validity [39]. The
construct which is to be measured must be defined in step
1 in terms of a unidimensional progression in student
knowledge or attitudes, from a lower to a higher level. This
progression needs to be based on the respective theory of
the investigated topic. In step 2, the types of items which
can be used to obtain adequate information from examinees
about the topic are specified. Of importance is that the items
are constructed in a way to ensure that different levels of the
construct require different levels of cognitive reasoning.
This means that to define items along a construct, for
example for a test, one needs to include items of varied
difficulty. In step 3, an initial item pool and item scoring
keys or rubrics will be developed. In this step some
qualitative testing of items can be of great help (e.g.,
conducting interviews with selected representative partic-
ipants, using “think aloud” protocols). In step 4, a draft of
the instrument is tested with a representative sample of the
target population with an adequate spread of abilities (for a
test there should be, when possible, lower ability, middle
ability, and high ability respondents). The obtained data
should then be analyzed with Rasch software in step 5, and
the fit of data with the model is examined in step 6. Fit can
be understood as the calculation and comparison of the
differences between the theoretical and experimental values
(residuals) for both persons (respondents) and items. There
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are a number of fit statistics commonly considered. Outfit
MNSQ (mean squares) statistics is the arithmetic mean of
simple squared residuals, whereas infit MNSQ is a
weighted mean of squared residuals [27]. Outfit is more
sensitive to outliers, and infit to respondents’ responses to
items whose difficulties are close to respondents’ abilities.
Outfit and infit can be based alternatively on ZSTD values,
where ZSTD is a normalized Z score of the residual. It is
generally accepted that the items with infit and outfit
MNSQ values between 0.7 and 1.3 and infit and outfit
ZSTD values between -2 and 2 have good model fit [39],
and all items with infit and outfit MNSQ values between
0.5 and 1.5 can be regarded as productive for measurement
[26]. Item functioning can be evaluated with the help of fit
statistics and point-measure correlations which indicate
how a specific item contributes to the whole person or item
measure. A bubble chart [27] is one way of visualizing the

overall functioning of test and the fit of its items. It is a
graph of item difficulty vs item outfit MNSQ-infit MNSQ-
outfit ZSTD-infit ZSTD. Each item is represented by a
circle, whose size is proportional to its standard error of the
calibration. No matter the means of plotting the interplay of
fit and items as well as fit and persons, ideally items should
be as close as possible to a modeled value of 1 for outfit
MNSQ and infit MNSQ, or 0 for outfit ZSTD and infit
ZSTD (Fig. 3).
Poor fit of some items may indicate problems with those

items’ structure (e.g., partial credit, multiple choice, etc.),
wording, scoring, or content. The fit of persons should also
be examined, because sometimes person misfit can be the
cause of the item misfit. Analysis of the answer patterns of
misfiting persons can reveal problems with person behav-
ior, such as guessing, and these persons should be elim-
inated from an analysis. It is important to emphasize that

TABLE II. Short description of the steps in the construction of a measurement instrument.

Step in the construction of a measurement instrument Description of the step

1. Definition of the construct The construct which is to be measured has to be characterized by a
linear attribute and based on the respective theory of the investigated
topic. The defined construct should be unidimensional and show
progression of student knowledge or attitudes.

2. Identification of different levels of the defined
construct

Different levels of the construct should correspond to different levels
of cognitive reasoning or attitude. The items corresponding to these
levels are developed and tested in the subsequent steps.

3. Delineation of the construct into items The initial set of items is developed based on the previous research or a
qualitative study (e.g., interviews).

4. Field testing with a representative sample of the target
population

The initial version of the instrument is tested on a representative
sample with respondents of different abilities or attitudes.

5. Rasch modeling The Rasch analysis is conducted by using Rasch software.
6. Evaluation of the item fit statistics and revision of items The fit of data to the model is evaluated by comparison of the

theoretical probabilities for the success of each person on each item
with the observed values. The fit statistics and the point-measure
correlations are inspected. Poorly fitted items should be reviewed or
removed from the instrument.

7. Evaluation of the Wright map and adding/deleting of
items

The Wright map helps with evaluating the targeting of the test to the
sample and the structure of the test. If large gaps between items are
detected, new items of appropriate difficulty should be added. If too
many test items of the same difficulty are found, some of them can
be removed.

8. Iteration of steps 4–7 until a set of items fit the Rasch
model and define a scale

Steps 4–7 are repeated until a set of items obtains the characteristics of
a measurement instrument. The invariance properties of the
constructed instrument should also be evaluated. If an item behaves
very differently for the two subgroups of examinees (e.g., female
and male examinees), it should be revised or removed from the test.

9. Validation of the measurement instrument The theoretical construct validity should be present in the initial steps
of defining the construct, whereas empirical construct validity is
evaluated through Rasch analysis (fit statistics, item correlations,
and instrument unidimensionality). The reproducibility of measures
is estimated by calculating person and item reliability.

10. Developing documentation for the measurement
instrument

The instrument documentation includes the description of the
instrument development and pilot testing and guidelines for users of
the instrument. A conversion scale of Rasch measures to raw scores
can also be included.
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the specific logic of Rasch modeling is not to fit the model
to the data, but to construct the instrument which is in good
agreement with the theory and basic requirements of
objective measurement. That leads to the necessity of
discarding some of the data when there is significant misfit
present, for those cases when, for example, items do not
seem to define the trait, and persons seem not to be
concentrating as they respond to items.
In step 7 the structure of the test is examined with the use

of a Wright map. AWright map (also known as item-person
map) presents both item difficulties and person abilities
arranged along the same logit scale (Fig. 1). Through the
use of a Wright map one can visualize the targeting of the
test to the sample, as well as the targeting of individual
items to persons. A well-constructed instrument should
match the width of the target population ability distribution
with the width of the distribution of test items. The presence
of large gaps between the item difficulties in the test means
that persons within those gaps cannot be measured pre-
cisely enough because of the lack of close items near their
ability level. This is akin to a meter stick that is missing
some marks and attempting to measure an object whose
length falls within the gaps between marks. A person of
ability Bn is best measured with the items of difficulties
within �1 logit from Bn. To fix such gaps in a test, new
items of appropriate difficulty should be added to the test. It
is also important to note that too many test items of the
same difficulty are not necessary (especially at the high and
low ends of the test), and if such situation is detected, some
of them can be removed to shorten the test. The unidi-
mensionality, an essential requirement of the Rasch model,
should also be inspected when the functioning of the test is
evaluated. One way to evaluate dimensionality is through

the analysis of point-measure correlations and item fit
(misfit of items can sometimes be a sign of the presence of
another dimension in the test, different from the one that
was intended for measurement). Another way is to examine
the dimensionality of Rasch residuals through the principal
component analysis of residuals. If strong correlations
are found among residuals, which should in principle
be uncorrelated if the test is unidimensional, it is possible
that there are one or more additional dimensions in the test.
Rasch software (e.g., Winsteps [26]) performs this analysis
and identifies items which might belong to a different
dimension.
In step 8, when problematic items are identified, they are

reviewed, and consequently corrected or removed from the
test. Some new items may also be added, and a new cycle of
steps 4–7 begins, until a satisfactory set of items is
established, and the instrument obtains the properties which
suggest a test functioning as is required for measurement
instruments. At this point it is time to examine the
invariance properties of both the person and item measures.
This is usually done through scatter plots of item measures
of different subgroups of examinees (e.g., plots in which
item measures obtained from two subgroups are plotted one
against the other to see how they compare), or of person
measures obtained from two tests which measure the same
construct (e.g., plots in which measures of ability of the
same persons tested by two tests are plotted against each
other). If there is good fit of the data collected with the
instrument and the model, it should be expected to find
essentially the same measures in those comparisons (e.g., in
a plot of item measures obtained from analysis of female
examinees vs those obtained from male examinees for the
same items, one should find that all obtained points are

FIG. 3. An example of a bubble chart for 14 test items, plotted from Winsteps [26]. Each bubble represents an item, whose size is
proportional to the standard error of item difficulty calibration. Well-fitting items are close to the central vertical line. Item 11 is outside
the acceptable range of misfit (infit ZSTD greater than 2).
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close to the identity line), within the limits of their standard
errors. A point in such a plot that departs very much from
the identity line would suggest that the item represented by
that point behaves differently for the two groups of
examinees [this is called differential item functioning
(DIF)], and the item in question should be further exam-
ined, revised, or possibly removed from the test.
In step 9, the validity and reliability of the constructed

instrument are evaluated. Often validity has been consid-
ered to be of various types (e.g., criterion related, content,
and construct validity). The current view is that validity is
unitary [39], and might simply be called construct validity.
It relies on two foundations: theoretical and empirical.
Since the construction of a test using Rasch theory is based
on what it means to measure, and begins from the
theoretical considerations of the investigated latent trait,
and the hierarchical organization of the trait (e.g., what
skills should be exhibited at the lower end of the trait and
what skills exhibited at the higher, more advanced, end of
the trait), the theoretical validity should already be present
through the construction process requiring a definition of
the variable. The theoretical construct is operationalized
through the choice of items, which define the construct.
The face validity of items needs to be investigated by
experts in the field. How well the chosen items have
empirically succeeded in defining a sufficiently unidimen-
sional and consistent construct (construct validity) can be
investigated through Rasch analysis, namely the earlier
described analysis of item fit, item correlations, and test
unidimensionality. The predicted order of item difficulty
can be compared to the pattern observed on the Wright
map.
Test reliability can be viewed as the reproducibility of

measures. A current view on the issue of reliability
concerns a systematic analysis of various sources of errors
associated with items, but also with other facets of
measurement, such as raters or testing setting [39].
Rasch analysis reports person reliability, which is analo-
gous to the test reliability of classical test theory (Cronbach
alpha), and item reliability, which has no analog in classical
test theory. A reliability of 0.5 is considered to be the
minimum meaningful reliability, whereas 0.8 is the lowest
person reliability for any decision making involving stu-
dents’ abilities [26]. It is important to emphasize that high
reliability does not necessarily imply good quality of the
test. High reliability simply means that the test scores are
reproducible, but the meaning of the scores is a different
matter. The quality of the test depends also on the quality of
its items and the degree to which they define a meaningful
construct.
One technique utilized in Rasch measurement concerns

the computation of the person separation index. The person
separation index G refers to the precision of measurement
and indicates how well one can differentiate examinees’
abilities with a test. The number of ability strata which can

be resolved is provided by the formula ð4Gþ 1Þ=3with the
assumption that different ability levels are 3 standard errors
apart [27]. For example, a person separation index of 2
implies three distinct ability levels which the test can
differentiate whereas a person separation index of 3 implies
four distinct ability levels.
In step 10 the documentation which will make the use of

the instrument easier is developed. It often includes the
description of the process of instrument construction and
pilot testing and guidelines for users of the instrument.
A conversion scale of Rasch measures to raw scores is often
included.
Until recently, Rasch analysiswasmostly used to evaluate

the functioning of the previously developed PER diagnostic
tests [4,5,16,21,25]. Planinic [4] evaluated the functioning
of the Conceptual survey of electricity and magnetism and
Ding [16] reevaluated the widely used Brief Electricity and
Magnetism Assessment with Rasch analysis. Similarly, the
most famous and widely used PER instrument, the Force
Concept Inventory (FCI), was analyzed using the Rasch
model to examine its structure and functioning on two
different samples of students (non-Newtonian and predomi-
nantly Newtonian), detect possible problems, and suggest
further improvements [5]. Taasoobshirazi et al. [21]
performed the Rasch analysis of Physics Metacognition
Inventory to assess its construct validity. The Test of
Understanding of Vectors was also analyzed using the
Rasch model [25].
More recently, PER researchers started to follow the

procedure described above for test construction and use the
Rasch model in the process of test development. Based on
the initial learning progression, Neumann et al. [11] con-
structed a measurement instrument, the Energy Concept
Assessment. Testa et al. [19] developed and validated a two-
tier multiple-choice questionnaire about the change of
seasons, solar and lunar eclipses, and moon phases. Hofer
et al. [24] constructed and evaluated the test of basic
Mechanics Conceptual Understanding that is adapted for
secondary school students. Planinic et al. [14] developed
and evaluated a test on graphs in different contexts. Ene and
Ackerson [18] developed the Physics of Semiconductors
Concept Inventory using Rasch analysis on a relatively
small sample of students enrolled in the course Introduction
to Physics of Semiconductors. Aslanides and Savage [12]
developed and calibrated similarly their Relativity Concept
Inventory.
The Rasch model is especially suitable for linking

tests and tracking students’ progression, which are both
very important for PER. “Learning progressions” are most
often built using Rasch model calculations; see e.g.,
[11,13,17,19,20,40,41]. Fulmer et al. [17] used the
Rasch model and the Force Concept Inventory to explore
a proposed force and motion learning progression on a
sample of high school and university students. In a recent
large-scale study on learning progression for energy ideas
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from upper elementary through high school, the authors
also used Rasch analysis [40]. Paik et al. [41] developed a
four-level learning progression and assessment for the
concept of buoyancy.
Because Rasch item difficulties are sample independent

(within their statistical limits), the Rasch model can be used
to build item banks, which can make test construction much
easier [42].

V. COMMONLY ENCOUNTERED
MISUNDERSTANDINGS WHEN CONDUCTING

A RASCH ANALYSIS

When Rasch analysis is attempted in PER, there are
often misunderstandings encountered, some of which are
quite common. It is our goal in this section of the paper to
briefly address some of these misunderstandings and help
analysts (especially novices) to avoid such pitfalls.

A. Rasch analysis is not only number crunching

It is important to understand that Rasch analysis is not
just number crunching, but that it is about the conceptu-
alization of a variable. When utilizing Rasch analysis, we
think about what we want to measure, and we make
predictions of what it means to measure. By doing so
we are guided as to what questions we want to ask, to help
us locate a respondent on a trait. Thinking about what we
want to measure also helps us think about what it means to
go up and down the measurement scale (what skills, for
example, does one student have with a higher measure as
opposed to a student with a lower measure).
In Rasch analysis we evaluate data quality, and if the data

is of low quality, we might remove the data. For example,
through the analysis of each person’s response pattern we
can identify respondents who are behaving in a manner that
is quite unexpected, often in a manner that suggests they
might be wildly guessing on an exam. On the other hand,
there may also be items which perform poorly and do not
contribute to the intended test construct. With Rasch we do
not view data as sacred; rather we view data which does not
match the requirements of fundamental measurement as
data we might not use for item calibration (determining
where items fall on the trait) and the computation of person
measures (determining where persons fall on the trait).
Rasch analysis provides the means for a strong quality
control of the instrument used and the data obtained. No
statistical model can save bad data, and bad data is not even
worth saving. Therefore, instead of looking for how to
change the model to fit the data, with Rasch we try to
construct quality instruments and perform with these
instruments high quality measurements. In that process,
we sometimes have to discard some data which do not
conform to the requirements of the measurement model.
The Rasch model is viewed as a definition of measure-

ment and what it means to measure, so the model is not

altered to fit the data. Rasch measurement theorists prefer to
view the assumptions of the model as requirements for
objective measurement [33], which must not be altered if
one wishes to perform such measurements. This is the
philosophical point that distinguishes Rasch fundamentally
from other modeling approaches, e.g., Item Response
Theory (IRT), although the math of some of the IRT
models may look similar to that of the Rasch model.

B. Rasch analysis does not necessarily
require large data sets

A possible misunderstanding of those first using Rasch is
that one needs large datasets to conduct a Rasch analysis.
This is most likely the result of many large-scale assess-
ments using Rasch. However, Rasch analysis can be
conducted with small datasets; see e.g., Refs. [12,18].
An example is the Relativity Concept Inventory (RCI)
development: the pretest sample was 70 students, and the
posttest sample was 63 students, of which 53 matched both
measures [12]. Linacre suggests [43] that for obtaining
stability of item calibrations within one logit, for dichoto-
mous items, already 50 well-targeted examinees can be
enough. He also provides guidelines for optimal sample
sizes for different testing purposes and different intended
precisions of item calibrations [43]. One should be aware
that for rating scale analysis of a survey with N items, in
which each item stems from e.g., five categories, the Likert
scale is treated as a separate item (5N items), proportionally
larger samples will be needed than for the analysis of tests
with N dichotomous items, to obtain the same density of
data in both cases [27].
Another misunderstanding may be that there is a set

number of test items which are needed for an instrument. In
fact, the number of items needed depends upon how well
items are distributed along the trait, what one wishes to
measure, with what precision, where respondents are along
the trait, and what sort of decision one will be making with
the results.

C. Logit may have different sizes

The measurement scale of Rasch is in logit. These are the
units used to express both person ability (in the case of a
test) and item difficulty. A common error is assuming that a
logit person measure on one scale means the same as a logit
person measure on another scale. For example, a 25-item
mechanics physics test is developed, and person and item
measures are computed. Now let us imagine a different 30-
item mechanics test which was developed. Also, item and
person measures are computed. The person measures are all
expressed in logits, but the meaning of the logit numbers is
based upon the scale defined by the items and the location
of the origin (the value of “zero logits” is commonly set at
the average item difficulty value). To compare the measures
from two different logit scales, the scales first need to be
equated, either through anchoring of common items,
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anchoring of common persons or by other methods (for
more detail see, for example, Ref. [26]). It is even possible,
in certain situations, to equate the scales of two tests which
do not share either items or persons, by the procedure of
virtual test equating [10,26].

D. Measurement errors should not be ignored

Rasch analysis, unlike other methods, provides, along
with measures, estimates of person measure error and
estimates of item measure error. Sometimes researchers
compute person and item raw scores in the form of
percentages or total number of points, and treat those scores
as being infinitely precisemeasures of student ability or item
difficulty. Nomeasurement error is reported or considered in
the analysis. On the other hand, some researchers may even
compute Rasch person and item measures, and still ignore
the standard errors of those measures in further analysis.
Taking into account the measure together with its error is an
important part of Rasch measurement, just as it is important
in physics measurements. It is possible to compute person
measures for a very short test, for example, a 4-item test. The
values for each person might look precise (e.g., 2.03 logit),
but onemust look at the measurement error term, which will
be quite large in that case, at least of the order of 1 logit. That
will mean that the mentioned person calibration is not 2.03
logit, but somewhere between 1 and 3 logits approximately.
Standard errors determine the precision of the estimated
measures of item difficulty and person ability, and they have
to be taken into account when making any further con-
clusions or when conducting statistical analyses with those
measures. The size of the standard error of item difficulties is
mostly influenced by the sample size Ns (SE ∼ 1=

ffiffiffiffiffiffi

Ns
p

),
whereas the size of the standard error of person calibrations
is mostly influenced by the number of the items in the testNi

(SE ∼ 1=
ffiffiffiffiffi

Ni
p

). However, poor targeting can also increase
standard errors. That is the reason that items and persons at
the high and low end of the scale will tend to have higher
standard errors than items and persons in the middle of
the scale.

E. Rasch is not just for instrument development
but also for computing person measures

A common error is to not remember that Rasch is used
not only to develop and improve instruments but also for
the computation of person measures (these are the measures
of respondents on a linear scale). Sometimes beginners use
Rasch to develop their instruments, but they forget that they
must also compute and evaluate person measures using the
logit scale. They may also not know how to evaluate those
person measures, and the measures should be, at least
initially, evaluated with parametric statistics.
The Rasch person measures may be used for statistical

tests. For example, if one wishes to examine the perfor-
mance of boys and girls with a physics test one must

compute the girl and boy person measures on the logit
scale, and then make a statistical comparison, for example a
t-test, of the boys and the girls, using those logit person
measures. Many other statistical tests and analyses can also
be conducted using Rasch measures.

F. Construct validity should be evaluated
before reporting measures

Novice analysts are sometimes focused too much on
obtaining person and item measures through Rasch analysis
of test data, and forget to first evaluate the validity of the
construct underlying the test. The Wright map (e.g., for a
multiple-choice test) which provides a plot with persons on
one side of the map and items on the other side of the map
(Fig. 1), and the bubble chart of item difficulties vs their
outfit or infit values (Fig. 3) can help in construct
evaluation. An error of some novice researchers may be
to overlook the need to evaluate the construct validity of
their instrument. The Wright map and the bubble chart can
facilitate a review of the ordering and spacing of test items
as a function of difficulty. The bubble chart can allow one to
evaluate the level of item misfit with the model. If the
ordering of items matches theory, that is evidence support-
ing the construct validity of an instrument. If the ordering of
items does not match theory, or there is too much misfit in
the data, that is evidence of the instrument having suspect
construct validity. Unless there is reasonable construct
validity of the test and reasonable fit of data with the
Rasch model, there is not much sense in reporting the
measures obtained through Rasch analysis.
However, some researchers may make the opposite error

and place too much confidence in the good numbers and
charts obtained by Rasch analysis, forgetting that these are
not enough by themselves to conclude that the instrument is
valid. The face validity and overall quality of test items
should also be closely inspected (in addition to performing
numerical analysis) before such a conclusion can be
reached.
The Rasch model allows us to see if items conform to our

idea of what it means to measure one trait. If an item does
not conform, it might show misfit, and if we run the model
separately for two subgroups, e.g., men and women in the
sample (and then cross plot the obtained separate item
difficulties) we might see possible differential item func-
tioning, in that for some items the item difficulty for men is
very different than for women (if a consistent difference is
found on all items, e.g., all items are more difficult for men
than for women, that is not a sign of DIF, but of different
abilities of the two groups). When we do see DIF, we need
to analyze the items showing DIF and then decide about the
steps we need to take, taking into account the size of DIF.
Small size DIF can sometimes be ignored, but if an item is
strongly biased against one or the other group, then that
item should be excluded from the test. It is important to
stress that we can come close to objective measurement
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only with the use of quality and unbiased instruments. It is
therefore always the first step in Rasch analysis to inspect
the functioning and structure of the instrument. Only if the
instrument is found to be well constructed, the measures it
produces can be taken as meaningful and reliable.

G. Problems related to rating scale analysis

Sometimes researchers do not understand how an atti-
tude can be marked on a trait. Researchers, generally, do
not have a difficult time understanding how dichotomous
items can be used to mark a trait. But it may be difficult for
some researchers to understand how an attitude trait can be
marked by survey items. For example, a survey may
provide a number of attitudinal items, and some of those
items will be harder to agree with than the other items. In
the context of the rating scale analysis, items that are harder
to agree with are the more “difficult” items, and this
difference in the agreeability of items can define a scale
for the investigated trait. Bond and Fox [27] give an
example of two statements in a survey on computer anxiety,
which are clearly of different difficulty (agreeability): 1. I
am so afraid of computers I avoid using them; 2. I am afraid
that I will make mistakes when I use my computer. It takes
a higher level of computer anxiety to strongly agree with
the first statement than with the second, but in a classical
survey analysis both answers would carry the same number
of points. Similarly as for dichotomous items, the Rasch
model will determine the difficulty of each item stem, based
on the answer pattern of the examinees. From this pattern of
responses, a rating scale structure for the survey will be
determined. The distances between different Likert scale
categories most often do not turn out to be the same,
whereas in a classical survey analysis these distances will
be automatically assumed to be the same. Two models can
be used for analyzing rating scales, the rating scale model
or the partial credit model. Depending on the details of the
study or the type of the data, one or the other may show to
be a better choice [8]. The rating scale model produces the
same rating scale structure for all items, whereas the partial
credit model allows different structure for different items.
Another important feature of rating scale analysis is the

analysis of the functioning of Likert scale categories in a
survey, which novice analysts sometimes forget to inves-
tigate. The Rasch analysis may show that some categories
of the rating scale do not function optimally and that it is
better to use a smaller number of categories (collapsing
some categories) [32]. Analyzing category probability
curves that can be produced by some Rasch software
can help determine when collapsing of categories is
advisable [32].
It is important to mention that the Rasch model can also

be used to evaluate partial credit tests, as well as tests which
have several types of items (e.g., 20 dichotomous items, 2
items worth between 0 and 3 points and one item worth
between 0 and 5 points).

VI. PROBLEMS WITH PRETESTING,
POSTTESTING, AND NORMALIZED GAIN

It is a common practice in PER to evaluate students’
“learning gain,” or to evaluate the effectiveness of instruc-
tion, through pretesting and posttesting students with the
same diagnostic instrument. We have already touched on
this issue in one of our previous studies related to the Force
Concept Inventory [5] and suggested that several problems
may exist with pretesting and posttesting with the same
instrument. In that study we have shown that the FCI
had poor targeting and width on a typical pretest (pre-
Newtonian) and posttest (predominantly Newtonian) stu-
dent populations, suggesting that the FCI is not very well
suited formeasuring either one of these populations [5]. This
is not surprising, since it is difficult, if not impossible, to
construct a single test of reasonable length that will precisely
measure both populations’ ability spans. We have also
shown in previous work that the construct defined by the
FCI may have changed from pretest to posttest (manifested
by a different order of item difficulties), making it prob-
lematic to compare the obtained scores [5]. A significant
change in item ordering means, in effect, that the measure-
ment instrument has changed. Some other studies have
suggested that some of the FCI items may be gender biased;
see, e.g., Ref. [44]. This may also be inspected with Rasch
analysis by analyzing items for possible differential item
functioning, as described in the previous section.
The typical way of evaluating student progress with

diagnostic instruments usually includes computing of the
Hake’s normalized gain g [45] from posttest and pretest
individual or class means in percentages as

g ¼ ðposttest − pretestÞ=ð100-pretestÞ: ð9Þ
Hake introduced g as a measure of student gain on

conceptual inventories because it seemed not to be corre-
latedwith the pretest classmeans and therefore seemed to be
a suitable measure for comparison of diverse populations of
students [45]. Hake’s normalized gain soon became awidely
used measure of student success and/or instruction effec-
tiveness. However, g was also criticized by some research-
ers. Coletta and Philipps found that g was correlated with
class pretest means [46]. Bao [47], as well as Marx and
Cummings [48], pointed to the pretest bias of Hake’s g and
Bao showed that different ways of calculating g (with class
pretest and posttest means or as a mean of individual student
gains) led to different results [47]. Willoughby and Metz
[49] found in their study that different ways of defining gain
influenced whether performance of male and female stu-
dents on conceptual tests in astronomy and biology appeared
different or not, with Hake’s g being the only measure that
suggested gender inequities in contrast to several other
measures which indicated statistically equal performance of
both genders on the conceptual tests [49].
Although the normalized gain has played a major role in

the development of PER, and is widely used in the PER
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community, we have to consider that it is computed from
raw scores, which are nonlinear. The normalized gain can
therefore also suffer from nonlinearity issues. This was
suggested by Planinic, Ivanjek, and Susac [5], and further
analyzed by Wallace and Bailey [6] and Ene and Ackerson
[18]. Wallace and Bailey state that Hake’s normalized gain,
being constructed from ordinal data, may be at most an
ordinal measure of learning gain [6]. When using Rasch
analysis or IRT, it was suggested by Embretson and Reise
[50] to compute learning gain as the difference in students’
abilities obtained from the analyses of their pretest and
posttest data with equated logit scales. Wallace and Bailey
have analyzed the Star Properties Concept Inventory results
with the Rasch model, and computed Rasch gains in the
way suggested by Embretson and Reise. When they
compared the obtained Rasch student gains with the
normalized gains computed from raw scores, they did
not find a one-to-one correspondence between them.
Instead, for any value of Hake’s normalized gain multiple
Rasch gains were found [6]. Since normalized gain favors
students with high pretest results (for the same absolute
gain, a student with a higher pretest result will have a larger
normalized gain), it was shown to be even possible that a
student with a smaller increase in Rasch ability achieves a
larger normalized gain than another student with a much
larger increase in ability [6]. Ene and Ackerson also suggest
the use of Rasch gain instead of the Hake’s gain [18]. They
warn that the same Rasch gain could respond to different
Hake’s gains. They give a simulated example in which they
show that the same Rasch class gain of þ0.8 logit may
correspond to a g of 7.5% for a class with the pretest value
of 20%, and a g of 35% for a class with the pretest value of
43% [18]. Lasry, Guillemette, and Mazur have also found
(when analyzing more than 13 000 FCI student answers)
that Hake’s gain favors students with higher pretest results
[51]. Pentecost and Barbera problematized the issue of
normalized gain and its nonlinearity and suggested the use
of Rasch gain instead [15]. It is obvious from these analyses
that the normalized gain should be used with extreme
caution. In addition to Rasch gain, other alternative
measures have also been proposed. In a recent study
Nissen et al. suggested the use of Cohen’s d instead of
Hake’s g [52]. Marx and Cummings suggested a new
measure c, called normalized change, to replace g [48].
However, since both Cohen’s d and normalized change c
are computed from raw scores, they may also suffer from
the issues of nonlinearity, leaving Rasch gain as the only
solution for this problem for now.
To improve measurement in PER, we also suggest that

instead of using the same diagnostic instrument for pretest
and posttest, two instruments are constructed for the same
topic sharing several common items, which would serve to
link the two tests and enable comparisons of the obtained
student abilities on the same logit scale. It is an important
advantage of Rasch modeling over standard approaches

that we do not have to use exactly the same instrument to be
able to compare student abilities or monitor learning
progress. With two tests instead of one, better targeting
for both pretest and posttest populations could be obtained,
the width of the tests could be better adjusted, and there
would be less risk of students remembering items from the
first administration or being bored by taking the same test
twice. Better targeting would ensure smaller calibration
errors and therefore more precise measurement, without
floor and ceiling effects. Normalized gain could simply be
replaced by the difference of students’ abilities on posttest
and pretest (Rasch gain), and class means, as well as other
statistical measures, could be computed with linear mea-
sures, which are on an interval scale, avoiding completely
the possible nonlinearity issues.

VII. CONCLUSIONS

The development of many quantitative assessment
instruments in PER starting from the 1990s has greatly
influenced the way that physicists and physics teachers
viewed teaching and learning of physics at both the high
school and university levels. This happened because the
results obtained with those instruments were often repeat-
able, and showed that they had some general meaning, that
was not only limited to a specific group of students that was
tested. The introduction of measurement in physics edu-
cation research was of great importance and greatly
impacted the whole paradigm of educational research in
physics. However, the standards of measurement in PER
are still not unified, and measurements are of very differing
quality. One of the main concerns for PER researchers
should be how to bring the standards of educational
measurement closer to the standards of objective measure-
ment, like those found in physics. We believe that Rasch
modeling is an important step in that direction. It allows us
to depart from counts and observations and construct
abstract linear measures whose meaning can transcend
the testing occasion. It also enables the careful construction
of diagnostic assessment instruments and their quality
control. It can lead to construction of item banks and
enable comparisons and longitudinal studies of develop-
ment. Common criticism toward the Rasch model is that its
assumptions are too rigid, especially the assumption of
unidimensionality. However, we hope that we have man-
aged to show that this assumption is necessary for any
measurement and that in reality unidimensionality is
always an approximation, which should be checked empir-
ically. The use of the Rasch model in PER is constantly
increasing, but its values and possibilities are still not
widely known and appreciated. In this article we have tried
to show some of the benefits of using the Rasch model in
research and to point to some common difficulties and
misunderstanding of it. We hope that it may contribute to
improving measurement quality in PER.
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