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Transverse momentum (pT) spectra of charged particles at mid-pseudorapidity in Xe–Xe collisions at √
sNN = 5.44 TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The 

kinematic range 0.15 < pT < 50 GeV/c and |η| < 0.8 is covered. Results are presented in nine classes 
of collision centrality in the 0–80% range. For comparison, a pp reference at the collision energy of √

s = 5.44 TeV is obtained by interpolating between existing pp measurements at 
√

s = 5.02 and 7 TeV. 
The nuclear modification factors in central Xe–Xe collisions and Pb–Pb collisions at a similar center-of-
mass energy of √sNN = 5.02 TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle 
multiplicity density 〈dNch/dη〉 show a remarkable similarity at pT > 10 GeV/c. The centrality dependence 
of the ratio of the average transverse momentum 〈pT〉 in Xe–Xe collisions over Pb–Pb collision at √

s = 5.02 TeV is compared to hydrodynamical model calculations.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Transverse momentum (pT) spectra of charged particles carry 
essential information about the high-density deconfined state of 
strongly-interacting matter commonly denoted as quark–gluon 
plasma, that is formed in high-energy nucleus–nucleus (A–A) colli-
sions [1]. Relativistic hydrodynamics is able to model the evolution 
of this medium [2,3].

At low to intermediate pT, typically in the range of up to 
10 GeV/c, charged particle production is governed by the collec-
tive expansion of the system, which is observed in the shapes 
of single-particle transverse-momentum spectra [4,5] and multi-
particle correlations [2]. However, there is presently an intense 
debate as to whether the strikingly similar signatures observed 
in small collision systems (pp and p–A) are also of hydrodynam-
ical origin [6–14]. A key ingredient of calculations in relativistic 
hydrodynamics is the initial energy density [2,15,16]. The num-
ber of produced particles and the volume of the medium are 
approximately proportional to the number of nucleons Npart that 
participate in the collision [17–19]. Thus, the particle density per 
unit volume is roughly independent of Npart. As a consequence, 
particle spectra at small transverse momentum should be similar 
in nucleus–nucleus collisions, independently of the mass number, 
when compared at similar values of Npart [20].

At high pT, typically above 10 GeV/c, particles originate from 
parton fragmentation and are sensitive to the amount of energy 

� E-mail address: alice -publications @cern .ch.

loss that the partons suffer when propagating in the medium. In 
a simplified model, the energy loss depends on the number of 
scattering centers, which is roughly proportional to the energy 
density, and on the path length that the parton propagates in the 
medium [21]. For elastic collisions, the dependence is linear, while 
for medium induced gluon radiation, it is quadratic [22]. A descrip-
tion of experimental data lies in between those two [23].

For hard processes, the production yield NAA in nucleus–
nucleus (A–A) collisions is expected to scale with the average 
nuclear overlap function 〈TAA〉 when compared to the production 
cross section σpp in pp collisions. In the absence of nuclear effects, 
the nuclear modification factor

RAA(pT) = 1

〈TAA〉 · dNAA(pT)/dpT

dσpp(pT)/dpT
(1)

equals unity. The average nuclear overlap function is defined as 
the average number of binary nucleon-nucleon collisions 〈Ncoll〉
per inelastic nucleon-nucleon cross section and is estimated via a 
Glauber model calculation [24]. At the Large Hadron Collider (LHC), 
particle production is observed to be strongly suppressed in Pb–Pb 
collisions by a factor of up to 7–8 around pT = 6–7 GeV/c with 
a linear decrease of the suppression factor at higher pT but still a 
substantial suppression even above 100 GeV/c [5,25].

The LHC produced for the first time collisions of xenon nu-
clei at a center-of-mass energy of 

√
sNN = 5.44 TeV during a pilot 

run with 6 hours of stable beams in October 2017. This allows 
for studying the dependence of particle production on the colli-
sion system size where xenon neatly bridges the gap between data 

https://doi.org/10.1016/j.physletb.2018.10.052
0370-2693/© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Averaged values of 〈dNch/dη〉, 〈Npart〉, 〈Ncoll〉 and 〈TAA〉 for nine centrality classes of Xe–Xe collisions [18,19] at √

sNN = 5.44 TeV, and 〈dNch/dη〉 for Pb–Pb collisions at √sNN = 5.02 TeV [30]. The values for 〈dNch/dη〉 are 
measured in the range |η| < 0.5.

Centrality (%) 〈dNch/dη〉Xe–Xe 〈Npart〉 〈Ncoll〉 〈TAA〉 (mb−1) 〈dNch/dη〉Pb–Pb

0–5 1167 ± 26 236 ± 2 949 ± 53 13.9 ± 0.8 1943 ± 54
5–10 939 ± 24 207 ± 2 737 ± 46 10.8 ± 0.7 1586 ± 46
10–20 706 ± 17 165 ± 2 511 ± 26 7.5 ± 0.5 1180 ± 31
20–30 478 ± 11 118 ± 3 303 ± 28 4.4 ± 0.4 786 ± 20
30–40 315 ± 8 82 ± 3 171 ± 19 2.5 ± 0.3 512 ± 15
40–50 198 ± 5 55 ± 3 92 ± 11 1.3 ± 0.2 318 ± 12
50–60 118 ± 3 34 ± 2 46 ± 6 0.7 ± 0.1 183 ± 8
60–70 65 ± 2 20 ± 2 22 ± 3 0.32 ± 0.04 96 ± 6
70–80 32 ± 1 11 ± 1 10 ± 1 0.14 ± 0.02 45 ± 3
from pp, p–Pb and Pb–Pb collisions. Here, the atomic mass num-
bers are A = 129 for xenon, and A = 208 for lead with half-density 
radii of the nuclear-charge distribution of r = (5.36 ± 0.1) fm 
and (6.62 ± 0.06) fm, respectively [24,26]. The parameters of the 
nuclear-charge density distribution for 129Xe are not yet measured 
but were extrapolated from neighboring isotopes and are thus less 
precisely known than for 208Pb. While 208Pb is a spherical nucleus, 
129Xe has a deformation parameter of β2 = (0.18 ± 0.02).

This article reports transverse momentum spectra of charged 
particles at mid-pseudorapidity in Xe–Xe collisions at 

√
sNN =

5.44 TeV measured with the ALICE apparatus at the LHC in the 
kinematic range 0.15 < pT < 50 GeV/c and |η| < 0.8 for nine 
classes of collision centrality, covering the most central 80% of the 
hadronic cross section. It is organized as follows: Section 2 de-
scribes the experimental setup and data analysis. Systematic uncer-
tainties are discussed in Sect. 3. Results and comparison to model 
calculations are presented in Sect. 4. A summary is given in Sect. 5.

2. Experiment and data analysis

Collisions of xenon nuclei were recorded at an average instan-
taneous luminosity of about 2 · 10−25 cm−2 s−1 and a hadronic 
interaction rate of 80–150 s−1. A detailed description of the AL-
ICE experimental apparatus can be found elsewhere [27].

2.1. Trigger and event selection

A minimum-bias interaction trigger was optimized for high effi-
ciency on hadronic collisions. It required signals from both forward 
scintillator arrays covering 2.8 < η < 5.1 (V0A) and −3.7 < η <

−1.7 (V0C). Additionally, coincidence with signals from two neu-
tron Zero-Degree Calorimeters (ZDC), ZNA and ZNC, at |η| > 8.7
was required in order to remove contamination from electromag-
netic processes. Here A and C denote opposite sides of the ex-
periment along the beamline. The offline event selection was op-
timized to reject beam-induced background. Background events 
were efficiently rejected by exploiting the timing signals in the 
two V0 detectors. Parasitic collisions are removed by using the 
correlation between the sum and the difference in arrival times as 
measured in each of the neutron ZDCs. In total, 1.1 ·106 minimum-
bias collisions pass the event selection and were further analyzed.

This analysis is based on tracking information from the In-
ner Tracking System (ITS) [28] and the Time Projection Cham-
ber (TPC) [29] which are located in the central barrel of ALICE. 
A solenoidal magnet provides momentum dispersion in the direc-
tion transverse to the beam axis. The nominal field strength in the 
ALICE central barrel is 0.5 T. However, in order to extend particle 
tracking and identification to the lowest possible momenta, it was 
reduced to 0.2 T in Xe–Xe collisions.

The ITS is comprised of six cylindrical layers of silicon detec-
tors with radii between 3.9 and 43.0 cm. The two innermost layers, 

with average radii of 3.9 cm and 7.6 cm, are equipped with Silicon 
Pixel Detectors (SPD); the two intermediate layers, with average 
radii of 15.0 cm and 23.9 cm, are equipped with Silicon Drift De-
tectors (SDD) and the two outermost layers, with average radii 
of 38.0 cm and 43.0 cm, are equipped with double-sided Silicon 
Strip Detectors (SSD). The large cylindrical TPC has an active ra-
dial range from about 85 to 250 cm and an overall length along 
the beam direction of 500 cm. It covers the full azimuth in the 
pseudo-rapidity range |η| < 0.9 and provides track reconstruction 
with up to 159 points along the trajectory of a charged particle 
as well as particle identification via the measurement of specific 
energy loss dE/dx.

The collision vertex is determined using reconstructed parti-
cle trajectories in the TPC including hits in the ITS. All collisions 
with a reconstructed vertex position within ±10 cm along the 
beam direction from the nominal interaction point are accepted. 
The collision centrality is defined as the percentile of the hadronic 
cross section corresponding to the measured charged particle mul-
tiplicity. The centrality determination is based on the sum of the 
amplitudes of the V0A and V0C signals [18,19]. Averaged quantities 
characterizing a centrality class such as the number of partici-
pants Npart, the number of binary collisions Ncoll, and the nuclear 
overlap function TAA are calculated as the average over all events 
in this class by fitting the experimental distribution with a Glauber 
Monte Carlo model that employs negative binomial distributions to 
model multiplicity production [18,19] (see Table 1). The analysis is 
restricted to the 0–80% centrality range in order to ensure that ef-
fects of trigger inefficiency and contamination by electromagnetic 
processes are negligible.

2.2. Track selection

Primary charged particles within the kinematic range |η| < 0.8
and 0.15 < pT < 50 GeV/c are measured. Here, primaries are de-
fined as all charged particles with a proper lifetime τ larger than 
1 cm/c that are either produced directly in the primary beam-
beam interaction, or from decays of particles with τ smaller than 
1 cm/c, excluding particles produced in interactions with the de-
tector material [31]. The track selection is optimized for best track 
quality and minimum contamination from secondary particles. The 
selection criteria are identical to those of the previous analysis 
of Pb–Pb collisions at 

√
sNN = 5.02 TeV [5] except for the follow-

ing changes in the parameterization on the transverse momentum 
dependence. The geometrical track length in the TPC fiducial vol-
ume [29] is L/(1 cm) > 130 − (pT/(1 GeV/c))−0.7, and the distance 
of closest approach to the primary vertex in the transverse plane is 
|DCAxy|/(1 cm) < 0.0119 + 0.049 (pT/(1 GeV/c))−1. These changes 
reflect differences in particle tracking due to the reduced magnetic 
field. In order to reject fake tracks that contaminate the spectrum, 
especially at high pT, another selection is introduced: the uncer-
tainty in the reconstructed pT as estimated from the covariance 
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matrix of the track fit must be less than ten times the standard 
deviation, when averaged over all tracks at that momentum.

2.3. Corrections

The doubly-differential transverse momentum spectra in Xe–Xe 
collisions are normalized by the number of events Nev in each cen-
trality class, and are given by

1

Nev

d2Nch

dηdpT
≡ Nrec

ch (�η,�pT)

Nev · �η�pT
· δpT(�pT)

α(�pT) · ε(�pT)
, (2)

where Nrec
ch is the raw yield of reconstructed primary charged par-

ticles in each interval of pseudo-rapidity and transverse momen-
tum (�η, �pT). The symbols α(�pT) and ε(�pT) are the cor-
rection factors for detector acceptance and tracking efficiency, re-
spectively. The correction due to the finite transverse-momentum 
resolution in the reconstruction of primary charged particles is 
denoted by δpT (�pT). The efficiencies for trigger, event vertex re-
construction and tracking are estimated using Monte Carlo simu-
lations with HIJING [32] as the event generator and GEANT3 [33]
for particle propagation and simulation of the detector response. 
The trigger and vertex selections are fully efficient for the whole 
centrality range used in the analysis.

Contamination from secondary charged particles, i.e. from weak 
decays and interactions in the detector material, is subtracted from 
the raw spectrum by employing a data driven method [5]. Re-
constructed trajectories of primary charged particles point to the 
collision vertex, while charged particles from weak decays and par-
ticles generated in the detector material preferentially point away 
from it. In order to distinguish between primary and secondary 
particles, the distance of closest approach to the collision vertex 
in radial direction, DCAxy, is used. A multi-template function that 
consists of templates for primary particles, secondary particles pro-
duced from weak decays and secondary particles from interactions 
in the detector material is fitted to the DCAxy distributions in each 
pT interval.

The primary charged particle reconstruction efficiency is ob-
tained from the Monte Carlo simulation. As discussed in detail 
in [5], this efficiency depends on the relative abundances of the 
various primary particles species. These relative abundances are 
adjusted in the simulation using a data-driven re-weighting pro-
cedure. The particle composition in Xe–Xe collisions is not yet 
known. However, bulk particle production scales with the average 
charged particle multiplicity density, 〈dNch/dη〉, independently of 
the collision system [34]. In Xe–Xe collisions, the weights from 
existing analyses [35–37,4,5] with Pb–Pb collisions at 

√
sNN =

2.76 TeV at equivalent values in 〈dNch/dη〉 are applied.
The acceptance times tracking efficiency for charged pions, 

charged kaons and (anti-)protons for 5% most central Xe–Xe col-
lisions is shown in Fig. 1 as a function of the particle transverse 
momentum and compared to 10–20% Pb–Pb collisions at 

√
sNN =

5.02 TeV. The two centrality classes have similar multiplicity den-
sities. The particular shape with a dip at pT ∼ 0.4 GeV/c arises 
from the geometrical length selection that is especially visible for 
pions. This dip corresponds to particles that cross the TPC sector 
boundaries under small angles. The decrease at low values of pT
is due to curling trajectories in the magnetic field which do not 
reach the required minimum track length in the TPC and due to 
energy loss and absorption in the detector material. In Pb–Pb colli-
sions, the magnetic field was set to B = 0.5 T, which results in the 
dip being positioned around 1 GeV/c. At large pT, above 7 GeV/c, 
the tracking efficiency is reduced by an increased local track den-
sity, i.e. high pT particles are preferentially produced within jets, 
leading to a slight decrease in the track finding performance.

Fig. 1. Transverse momentum dependence of the acceptance times tracking effi-
ciency for the 5% most central Xe–Xe collisions and comparison to the 10–20% 
centrality class for Pb–Pb collisions. The two centrality classes have similar mul-
tiplicity densities.

The transverse momentum of primary charged particles is re-
constructed from the track curvature as measured by the ITS and 
the TPC [38]. The finite momentum resolution modifies the recon-
structed charged-particle spectrum and is estimated by the corre-
sponding covariance matrix element of the Kalman fit. The relative 
pT resolution, σ(pT)/pT, depends on the momentum and amounts 
to approximately 4.5% at pT = 0.15 GeV/c, it shows a minimum of 
1.5% around pT = 1.0 GeV/c, and increases linearly for larger pT, 
approaching 9.3% at 50 GeV/c. The centrality dependence of the 
relative pT resolution is negligible. To account for the finite pT res-
olution, correction factors to the spectra are determined from an 
unfolding procedure as described in [5], using Bayesian unfolding 
at low pT and a bin-by-bin correction at large pT. The pT depen-
dent correction factors are applied to the measured pT spectrum 
and depend slightly on collision centrality because of the change 
in the slope of the spectrum at high pT. At transverse momenta 
below 10 GeV/c, δpT deviates significantly from unity only at the 
lowest momentum interval of 0.15 ≤ pT < 0.2 GeV/c where it 
amounts to 0.5% for all centrality classes, and by up to 3% (4%) 
in 0–5% (70–80%) central collisions above 10 GeV/c.

The statistical uncertainty of the spectra is dominated by the 
statistical uncertainty in the raw data. It is largest at the highest 
momentum interval of 40–50 GeV/c and amounts to 28% (38%) for 
the 0–5% (30–40%) centrality class while the contribution from the 
Monte Carlo efficiency is 2% (4%) or less.

2.4. pp reference at 
√

s = 5.44 TeV

The pT-differential inelastic cross section in pp collisions at √
s = 5.44 TeV is needed to measure the corresponding nuclear 

modification factor. As there are no measurements of pp collisions 
at this energy, a reference is obtained by interpolating pp refer-
ences as measured at 

√
s = 5.02 TeV and 

√
s = 7 TeV assuming 

a power-law dependence in each pT interval, dσ/dpT(
√

s) ∝ √
s

n . 
The value of the free parameter n varies between 0.35 and 1.75, 
depending on pT. This approach is a combination of the interpo-
lation method that was used over the full pT range in [6] and for 



ALICE Collaboration / Physics Letters B 788 (2019) 166–179 169

Fig. 2. Ratio of pT-differential inelastic cross sections in pp collisions at √
s =

5.44 TeV over 5.02 TeV using a power law interpolation and the event generator 
PYTHIA 8.

pT < 5 GeV/c as used in [39]. The statistical uncertainty of the pp 
reference is interpolated between the references at 

√
s = 5.02 TeV

and 7 TeV assuming also a power-law dependence and is assigned 
to the interpolated reference. It amounts to 7.8% at the momentum 
interval of 30–50 GeV/c.

As an alternative approach, the scaling of the measured cross 
section at 

√
s = 5.02 TeV to 

√
s = 5.44 TeV by using the ratio of 

spectra at those two energies obtained with the PYTHIA 8 (Monash 
tune) event generator [40] is studied. The ratio of the pp refer-
ences at 

√
s = 5.44 TeV from the power-law interpolation and at √

s = 5.02 TeV is shown in Fig. 2 together with results obtained 
with the alternative method. The spectrum is harder at higher col-
lision energy, with a small change in the total cross section of 4% 
below 1 GeV/c and an increase of about 10% at transverse mo-
menta above 10 GeV/c.

3. Systematic uncertainties

For the total systematic uncertainty, all contributions are added 
in quadrature and are summarized in Table 2.

The effect of the selection of events based on the vertex po-
sition is studied by comparing the fully corrected pT spectra ob-
tained with alternative vertex selections corresponding to ±5 cm, 

and ±20 cm. The difference in the fully corrected pT spectra is 
less than 0.3% for central collisions and less than 0.5% for periph-
eral collisions.

In order to test the description of the detector response and 
the track reconstruction in the simulation, all criteria for track se-
lection are varied within the ranges as described in the previous 
publication [5]. A full analysis is performed by varying one selec-
tion criterion at a time. The maximum change in the corrected pT
spectrum is then considered as systematic uncertainty. The over-
all systematic uncertainty related to track selection is obtained 
from summing up all individual contributions quadratically and it 
amounts to 0.6–3.0%, depending on pT and centrality.

The systematic uncertainty on the secondary-particle contami-
nation is estimated by varying the fit model using two templates, 
i.e. for primaries and secondaries, or three templates, i.e. primaries, 
secondaries from interactions in the detector material and sec-
ondaries from weak decays of K0

s and �, as well as varying the 
fit ranges. The maximum difference between data and the two-
component-template fit is summed in quadrature together with 
the difference between results obtained from the two- and three-
component-template fits. The systematic uncertainty due to the 
contamination from secondaries is decreasing with increasing pT. 
It dominates at low pT with values up to 4% and is negligible above 
2 GeV/c.

The systematic uncertainty on the primary particle composition 
is taken from [5]. An additional uncertainty is estimated by assum-
ing the particle composition from a neighboring 〈dNch/dη〉 range 
to the matched one in the Pb–Pb analysis and is added quadrati-
cally. The sum peaks around 3 GeV/c with a maximum of 5% (less 
than 2%) for the 0–5% (70–80%) centrality class.

In order to estimate the systematic uncertainty due to the 
tracking efficiency, the track matching between the TPC and the 
ITS information in data and Monte Carlo is compared after scal-
ing the fraction of secondary particles obtained from the fits to 
the DCAxy distributions [5]. The difference in the TPC-ITS track-
matching efficiency between data and simulation is assigned to the 
corresponding systematic uncertainty (see Table 2). It amounts to 
2% in central collisions, and up to 3.5% in peripheral collisions.

The material budget in ALICE at η ≈ 0 amounts to (11.4 ± 0.5)%
in radiation lengths for primary charged particles that have suffi-
cient track length in the TPC [38]. A difference in the amount of 
detector material leads to different amounts of secondary particles 
that are produced. After the subtraction of the contribution due to 
secondaries using the three-component DCAxy fits, the differences 
on the secondary correction factor is negligible. A variation of the 
material budget within above limits leads to a pT dependent sys-
tematic uncertainty on the tracking efficiency of 0.1–0.3%.

The uncertainty due to the finite pT resolution at high pT is es-
timated using the azimuthal dependence of the 1/pT spectra for 
Table 2
Contributions to the systematic uncertainty in units of percent for the 0–5%, 30–40%, and 70–80% centrality classes in Xe–
Xe collisions. The numbers are averaged in the pT intervals from 0.2–0.5 GeV/c (left), 1–2 GeV/c (middle) and 40–50 GeV/c
(right). For the pT-dependent sum, contributions are added in quadrature.

Centrality (%) 0–5 (%) 30–40 (%) 70–80 (%)
pT range (GeV/c) 0.2–0.5/1–2/40–50 0.2–0.5/1–2/40–50 0.2–0.5/1–2/40–50

Source
Vertex selection 0.2/0.2/0.2 0.8/0.8/0.8 0.8/0.8/0.8
Track selection 1.6/0.9/1.2 0.9/0.6/0.8 0.9/0.5/1.0
Secondary particles 1.4/0.2/negl. 0.8/0.2/negl. 0.6/0.2/negl.
Particle composition 0.3/1.7/0.7 0.4/1.9/1.0 0.7/0.6/0.6
Tracking efficiency 1.9/1.2/0.4 2.2/1.2/0.4 2.2/1.4/0.6
Material budget 0.3/0.3/0.1 0.3/0.3/0.1 0.3/0.3/0.1
pT resolution negl./negl./0.5 negl./negl./0.7 negl./negl./0.9

Sum, pT dependent: 3.1/2.4/1.5 2.8/2.5/1.8 2.8/1.9/2.1

Centrality selection 0.1 0.8 3.2
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positively and negatively charged particles. The relative shift of the 
spectra for oppositely charged particles along 1/pT determines the 
size of uncertainty for a given angle. The RMS of the 1/pT shift 
as distributed over the full azimuth is used as an additional in-
crease of the pT resolution. For the lowest pT bin the uncertainty 
is estimated from the unfolding procedure applied to Monte Carlo 
simulations. The uncertainty due to the finite pT resolution is sig-
nificant only at the lowest and highest momenta bins and amounts 
to 0.5% at the lowst pT bin for all centralities and 0.5% (0.9%) for 
the 0–5% (70–80%) centrality class.

The uncertainty due to the centrality determination is esti-
mated by changing the fraction of the visible cross section (90.0 ±
0.5)%. The uncertainty is estimated from the variation of the re-
sulting pT spectra and amounts to ∼0.1% and ∼3.2% for central 
(0–5%) and peripheral (70–80%) collisions, respectively.

The systematic uncertainty of the pp reference at 
√

s = 5.44 TeV
has two contributions, which are added quadratically. For each 
pT interval, the systematic uncertainty of the pp references at √

s = 5.02 TeV and 
√

s = 7 TeV are interpolated to 
√

s = 5.44 TeV
by using a power-law. This corresponds to interpolating between 
the upper and lower boundaries of the experimental data points as 
given by their systematic uncertainties. It assumes full correlation 
of systematic uncertainties at both energies.

The difference between the interpolated reference and the one 
using the PYTHIA 8 event generator is assigned as the other con-
tribution to the systematic uncertainty in the pp reference, in each 
pT interval. The systematic uncertainty in the pp reference has a 
minimum of 2.2% around 1 GeV/c and reaches its maximum of 
7.7% at the highest momentum bin.

4. Results

The transverse momentum spectra of charged particles in Xe–
Xe collisions are shown in the top panel of Fig. 3 for nine cen-
trality classes together with the interpolated pp reference spec-
trum at 

√
s = 5.44 TeV. The latter is obtained from the interpo-

lated pT-differential cross section by dividing it by the interpo-
lated inelastic nucleon-nucleon cross section of (68.4 ± 0.5) mb 
at 

√
s = 5.44 TeV [24]. In the most-peripheral collisions, the pT

spectrum is similar to that of pp collisions and exhibits a power 
law behavior that is characteristic of hard-parton scattering and 
vacuum fragmentation. With increasing collision centrality, the pT
differential cross section is progressively depleted above 5 GeV/c.

Systematic uncertainties are shown in the bottom panel. At 
momenta between 0.4 and 10 GeV/c, the systematic uncertainty 
is dominated by the contribution from tracking and amounts to 
about 2–3%. It is almost independent of pT above 10 GeV/c with a 
value of 1.4% (2.1%) for the 0–5% (70–80%) centrality class.

In order to determine the nuclear modification factor RAA, the 
interpolated pT-differential pp cross section is scaled by the av-
erage nuclear overlap function 〈TAA〉. The resulting nuclear mod-
ification factor as a function of transverse momentum is shown 
in Fig. 4 for nine centrality classes and compared to results from 
Pb–Pb collisions [5]. The overall normalization uncertainties for 
RAA are indicated by vertical bars around unity. The uncertain-
ties of the pp reference and the centrality determination are added 
in quadrature. The latter is larger for Xe–Xe collisions than for 
Pb–Pb because of the less precisely known nuclear-charge-density 
distribution of the deformed 129Xe and the resulting larger rela-
tive uncertainty in 〈TAA〉 [18,19]. The nuclear modification factor 
exhibits a strong centrality dependence with a minimum around 
pT = 6–7 GeV/c and an almost linear rise above. In particular, in 
the 5% most central Xe–Xe collisions, at the minimum, the yield 
is suppressed by a factor of about 6 with respect to the scaled 
pp reference. The nuclear modification factor reaches a value of 

Fig. 3. Transverse momentum spectra of charged particles in Xe–Xe collisions at √
sNN = 5.44 TeV in nine centrality classes together with the interpolated pp refer-

ence spectrum at √s = 5.44 TeV (top panel) and systematic uncertainties (bottom 
panel).

0.6 at the highest measured transverse-momentum interval of 
30–50 GeV/c. For comparison, the nuclear modification factor RAA
in Pb–Pb collisions at 

√
sNN = 5.02 TeV is shown in Fig. 4 as open 

circles for the same centrality classes as Xe–Xe. In both collision 
systems, a similar characteristic pT dependence of RAA is observed. 
In Pb–Pb collisions, the suppression of high-momentum particles is 
apparently stronger for the same centrality class but still in agree-
ment with Xe–Xe collisions within uncertainties.

Nuclear modification factors from Xe–Xe and Pb–Pb collisions 
and their ratios at similar ranges of 〈dNch/dη〉 are shown in Fig. 5. 
In 5% most central Xe–Xe collisions, the nuclear modification fac-
tor is remarkably well matched by 10–20% central Pb–Pb colli-
sions over the entire pT range. ln the 30–40% Xe–Xe (40–50% 
Pb–Pb) centrality class, again agreement is found within uncer-
tainties.These findings of matching nuclear modification factors at 
similar ranges of 〈dNch/dη〉 are in agreement with results from the 
study of fractional momentum loss of high-pT partons at RHIC and 
LHC energies [41].

A comparison of the nuclear modification factors as a func-
tion of 〈dNch/dη〉 in Xe–Xe and Pb–Pb collisions for three dif-
ferent regions of pT (low, medium, and high) is shown in Fig. 6. 
A remarkable similarity in RAA is observed between Xe–Xe col-
lision at 

√
sNN = 5.44 TeV and Pb–Pb collisions at 

√
sNN = 5.02

and 2.76 TeV when compared at identical ranges in 〈dNch/dη〉, 
for 〈dNch/dη〉 > 400. This holds both at low momentum where 
the hydrodynamical expansion of the medium dominates the spec-
trum and at high momentum, where parton energy loss inside the 
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Fig. 4. Nuclear modification factor in Xe–Xe at √sNN = 5.44 TeV (filled circles) and Pb–Pb collisions [5] at √sNN = 5.02 TeV (open circles) for nine centrality classes. The 
vertical lines (brackets) represent the statistical (systematic) uncertainties. The overall normalization uncertainty is shown as a filled box around unity.
Fig. 5. Comparison of nuclear modification factors in Xe–Xe collisions (filled circles) 
and Pb–Pb collisions (open circles) for similar ranges in 〈dNch/dη〉 for the 0–5% 
(left) and 30–40% (right) Xe–Xe centrality classes. The vertical lines (brackets) rep-
resent the statistical (systematic) uncertainties.

medium drives the spectral shape. At 〈dNch/dη〉 < 400, the val-
ues of RAA still agree within rather large uncertainties although 

no definitive conclusion can be drawn because, in particular, event 
selection and geometry biases could affect the spectrum in periph-
eral A–A collisions [42].

In a simplified radiative energy loss scenario when assum-
ing identical thermalization times [43,44], the average energy loss 
〈�E〉 is proportional to the density of scattering centers in the 
medium, which in turn is proportional to the energy density ε, and 
to the square of the path length L of the parton in the medium, 
〈�E〉 ∝ ε · L2 [22]. The energy density can be estimated from the 
average charged-particle multiplicity density [45] per transverse 
area, ε ∝ 〈dNch/dη〉/AT. In central collisions, the initial trans-
verse area AT is related to the radius r of the colliding nuclei, 
AT = π · r2 [22]. Therefore, the comparison of the measured RAA
values in the two colliding systems could enable a test of the path 
length dependence of medium-induced parton energy loss [46].

To further address bulk production, the average transverse mo-
mentum 〈pT〉 in the range from 0–10 GeV/c is derived. The spec-
tra are extrapolated down to pT = 0 by fitting a Hagedorn func-
tion [47] in the range 0.15 GeV/c < pT < 1 GeV/c. The relative 
fraction of the extrapolated particle yield amounts to 8% (11%) for 
the 0–5% (70–80%) centrality class. Statistical uncertainties in 〈pT〉
are negligible. Systematic uncertainties are estimated by varying 
each source of systematic uncertainty in the spectra at a time, 
by varying the fit range to 0.15 GeV/c < pT < 0.5 GeV/c, and by 
changing the interpolation range to 0–0.2 GeV/c. All contributions 
are then added quadratically. The relative systematic uncertainty is 
1.8% (1.3%) for the 0–5% (70–80%) centrality class.

The average transverse momentum is presented in the top 
panel of Fig. 7 for Xe–Xe collisions at 

√
s = 5.44 TeV (squares) and 

Pb–Pb collisions at 
√

s = 5.02 TeV (diamonds) for nine centrality 
classes. An increase of 〈pT〉 with centrality is visible in both col-
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Fig. 6. Comparison of the nuclear modification factor in Xe–Xe and Pb–Pb colli-
sions integrated over identical regions in pT as a function of 〈dNch/dη〉. The vertical 
brackets indicate the quadratic sum of the total systematic uncertainty in the mea-
surement and the overall normalization uncertainty in 〈TAA〉. The horizontal bars 
reflect the RMS of the distribution in each bin. The dashed lines show results from 
power-law fits to the data and are drawn to guide the eye.

lision systems and is attributed to the increasing transverse radial 
flow. The bottom panel of Fig. 7 shows the ratios of 〈pT〉 in both 
collision systems. The ratio is flat within uncertainties but allows 
for relative variations of up to two percent. Comparison to results 
from hydrodynamical calculations [43] are shown by the hashed 
areas for pions, kaons and protons. While the calculations are not 
able to predict absolute particle spectra, predictions are made for 
the relative difference in 〈pT〉 between both collision systems in 
order to study the system size dependence. The predicted trend of 
a larger 〈pT〉 in 5% most central Xe–Xe collision and continuously 
lower values towards the 40–50% centrality class are consistent 
with the data.

5. Summary

Transverse momentum spectra and nuclear modification fac-
tors of charged particles in Xe–Xe collisions at 

√
sNN = 5.44 TeV

in the kinematic range 0.15 < pT < 50 GeV/c and |η| < 0.8 are 
reported for nine centrality classes, in the 0–80% range. A pp ref-
erence at 

√
s = 5.44 TeV is obtained by the interpolation of the 

existing spectra at 
√

s = 5.02 and 7 TeV. When comparing nuclear 
modification factors at similar ranges of averaged charged parti-
cle multiplicity densities, a remarkable similarity between cen-
tral Xe–Xe collisions and Pb–Pb collisions at a similar center-of-
mass energy of 

√
sNN = 5.02 TeV and at 2.76 TeV is observed for 

Fig. 7. Average transverse momentum in the pT-range 0–10 GeV/c for Xe–Xe colli-
sions at √s = 5.44 TeV (squares) and Pb–Pb collisions at √s = 5.02 TeV (diamonds) 
for nine centrality classes (top) and their ratios (bottom). The vertical brackets indi-
cate systematic uncertainties. The hashed areas show results from hydrodynamical 
calculations by Giacalone et al. [43].

〈dNch/dη〉 > 400. The centrality dependence of the ratio of the av-
erage transverse momentum 〈pT〉 in Xe–Xe collisions over Pb–Pb 
collisions is flat within uncertainties but allows for relative varia-
tions of up to two percent. Predictions from hydrodynamical calcu-
lations that take into account the significantly different geometries 
of both collision systems are consistent with the data.

Acknowledgements

The ALICE collaboration would like to thank G. Giacalone, J. 
Noronha-Hostler, M. Luzum, and J.-Y. Ollitrault for providing the 
results of their hydrodynamical calculations prior to publication.

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the out-
standing performance of the LHC complex. The ALICE Collaboration 
gratefully acknowledges the resources and support provided by 
all Grid centres and the Worldwide LHC Computing Grid (WLCG) 
collaboration. The ALICE Collaboration acknowledges the follow-
ing funding agencies for their support in building and running the 
ALICE detector: A. I. Alikhanyan National Science Laboratory (Yere-
van Physics Institute) Foundation (ANSL), State Committee of Sci-
ence and World Federation of Scientists (WFS), Armenia; Austrian 
Academy of Sciences and Nationalstiftung für Forschung, Technolo-
gie und Entwicklung, Austria; Ministry of Communications and 
High Technologies, National Nuclear Research Center, Azerbaijan; 
Conselho Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Fi-
nanciadora de Estudos e Projetos (Finep) and Fundação de Amparo 
à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of 
Science & Technology of China (MSTC), National Natural Science 
Foundation of China (NSFC) and Ministry of Education of China 
(MOEC), China; Ministry of Science and Education, Croatia; Min-
istry of Education, Youth and Sports of the Czech Republic, Czech 
Republic; The Danish Council for Independent Research | Natu-
ral Sciences, the Carlsberg Foundation and Danish National Re-
search Foundation (DNRF), Denmark; Helsinki Institute of Physics 



ALICE Collaboration / Physics Letters B 788 (2019) 166–179 173

(HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Insti-
tut National de Physique Nucléaire et de Physique des Particules 
(IN2P3) and Centre National de la Recherche Scientifique (CNRS), 
France; Bundesministerium für Bildung, Wissenschaft, Forschung 
und Technologie (BMBF) and GSI Helmholtzzentrum für Schw-
erionenforschung GmbH, Germany; General Secretariat for Re-
search and Technology, Ministry of Education, Research and Reli-
gions, Greece; National Research, Development and Innovation Of-
fice, Hungary; Department of Atomic Energy, Government of India
(DAE), Department of Science and Technology, Government of India 
(DST), University Grants Commission, Government of India (UGC) 
and Council of Scientific and Industrial Research (CSIR), India; In-
donesian Institute of Science, Indonesia; Centro Fermi - Museo 
Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Isti-
tuto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innova-
tive Science and Technology, Nagasaki Institute of Applied Science 
(IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI 
and Japanese Ministry of Education, Culture, Sports, Science and 
Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONA-
CYT) y Tecnología, through Fondo de Cooperación Internacional en 
Ciencia y Tecnología (FONCICYT) and Dirección General de Asun-
tos del Personal Academico (DGAPA), Mexico; Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The 
Research Council of Norway, Norway; Commission on Science and 
Technology for Sustainable Development in the South (COMSATS), 
Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of 
Science and Higher Education and National Science Centre, Poland; 
Korea Institute of Science and Technology Information and National 
Research Foundation of Korea (NRF), Republic of Korea; Ministry of 
Education and Scientific Research, Institute of Atomic Physics and 
Romanian National Agency for Science, Technology and Innovation, 
Romania; Joint Institute for Nuclear Research (JINR), Ministry of 
Education and Science of the Russian Federation and National Re-
search Centre Kurchatov Institute, Russia; Ministry of Education, 
Science, Research and Sport of the Slovak Republic, Slovakia; Na-
tional Research Foundation of South Africa, South Africa; Centro de 
Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaen-
ergía, Cuba and Centro de Investigaciones Energéticas, Medioambi-
entales y Tecnológicas (CIEMAT), Spain; Swedish Research Council 
(VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; Eu-
ropean Organization for Nuclear Research, Switzerland; National 
Science and Technology Development Agency (NSDTA), Suranaree 
University of Technology (SUT) and Office of the Higher Educa-
tion Commission under NRU project of Thailand, Thailand; Turkish 
Atomic Energy Agency (TAEK), Turkey; National Academy of Sci-
ences of Ukraine, Ukraine; Science and Technology Facilities Coun-
cil (STFC), United Kingdom; National Science Foundation of the 
United States of America (NSF) and U.S. Department of Energy, Of-
fice of Nuclear Physics (DOE NP), United States of America.

References

[1] B. Muller, J. Schukraft, B. Wyslouch, First results from Pb + Pb collisions at the 
LHC, Annu. Rev. Nucl. Part. Sci. 62 (2012) 361–386, arXiv:1202 .3233 [hep -ex].

[2] U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion 
collisions, Annu. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826
[nucl -th].

[3] J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu, U. Heinz, Applying Bayesian pa-
rameter estimation to relativistic heavy-ion collisions: simultaneous character-
ization of the initial state and quark–gluon plasma medium, Phys. Rev. C 94 (2) 
(2016) 024907, arXiv:1605 .03954 [nucl -th].

[4] ALICE Collaboration, J. Adam, et al., Centrality dependence of the nuclear mod-
ification factor of charged pions, kaons, and protons in Pb–Pb collisions at √

sNN = 2.76 TeV, Phys. Rev. C 93 (2016) 034913, arXiv:1506 .07287 [nucl -ex].
[5] ALICE Collaboration, S. Acharya, et al., Transverse momentum spectra and nu-

clear modification factors of charged particles in pp, p–Pb and Pb–Pb collisions 
at the LHC, arXiv:1802 .09145 [nucl -ex].

[6] ALICE Collaboration, J. Adam, et al., Multiplicity dependence of charged pion, 
kaon, and (anti)proton production at large transverse momentum in p–Pb col-
lisions at √sNN = 5.02 TeV, Phys. Lett. B 760 (2016) 720–735, arXiv:1601.03658
[nucl -ex].

[7] A. Ortiz, P. Christiansen, E. Cuautle, I. Maldonado, G. Paic, Color reconnection 
and flow-like patterns in pp collisions, Phys. Rev. Lett. 111 (4) (2013) 042001, 
arXiv:1303 .6326 [hep -ph].

[8] ALICE Collaboration, B.B. Abelev, et al., Long-range angular correlations of pi, K 
and p in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 726 (2013) 164–177, 
arXiv:1307.3237 [nucl -ex].

[9] CMS Collaboration, V. Khachatryan, et al., Long-range two-particle correlations 
of strange hadrons with charged particles in p–Pb and Pb–Pb collisions at LHC 
energies, Phys. Lett. B 742 (2015) 200–224, arXiv:1409 .3392 [nucl -ex].

[10] CMS Collaboration, S. Chatrchyan, et al., Multiplicity and transverse-momentum 
dependence of two- and four-particle correlations in p–Pb and Pb–Pb colli-
sions, Phys. Lett. B 724 (2013) 213–240, arXiv:1305 .0609 [nucl -ex].

[11] CMS Collaboration, V. Khachatryan, et al., Evidence for collective multiparticle 
correlations in p–Pb collisions, Phys. Rev. Lett. 115 (1) (2015) 012301, arXiv:
1502 .05382 [nucl -ex].

[12] ATLAS Collaboration, G. Aad, et al., Measurement with the ATLAS detector of 
multi-particle azimuthal correlations in p + Pb collisions at √sNN = 5.02 TeV, 
Phys. Lett. B 725 (2013) 60–78, arXiv:1303 .2084 [hep -ex].

[13] K. Dusling, R. Venugopalan, Comparison of the color glass condensate to di-
hadron correlations in proton–proton and proton–nucleus collisions, Phys. Rev. 
D 87 (2013) 094034, arXiv:1302 .7018 [hep -ph].

[14] B. Blok, C.D. Jakel, M. Strikman, U.A. Wiedemann, Collectivity from interference, 
J. High Energy Phys. 12 (2017) 074, arXiv:1708 .08241 [hep -ph].

[15] PHENIX Collaboration, A. Adare, et al., Transverse energy production and 
charged-particle multiplicity at midrapidity in various systems from √sN N =
7.7 to 200 GeV, Phys. Rev. C 93 (2) (2016) 024901, arXiv:1509 .06727 [nucl -ex].

[16] ALICE Collaboration, J. Adam, et al., Measurement of transverse energy at 
midrapidity in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 94 (3) (2016) 
034903, arXiv:1603 .04775 [nucl -ex].

[17] ALICE Collaboration, J. Adam, et al., Centrality dependence of pion freeze-out 
radii in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 93 (2) (2016) 024905, 
arXiv:1507.06842 [nucl -ex].

[18] ALICE Collaboration Collaboration, Centrality determination using the Glauber 
model in Xe–Xe collisions at √

sNN = 5.44 TeV, https://cds .cern .ch /record /
2315401.

[19] ALICE Collaboration, S. Acharya, et al., Centrality and pseudorapidity de-
pendence of the charged-particle multiplicity density in Xe–Xe collisions at √

sNN = 5.44 TeV, arXiv:1805 .04432 [nucl -ex].
[20] PHOBOS Collaboration, B. Alver, et al., System size and centrality dependence 

of charged hadron transverse momentum spectra in Au + Au and Cu + Cu 
collisions at s(N N) ∗∗(1/2) = 62.4-GeV and 200-GeV, Phys. Rev. Lett. 96 (2006) 
212301, arXiv:nucl -ex /0512016 [nucl -ex].

[21] J. Bjorken, Energy Loss of Energetic Partons in Quark–Gluon Plasma: Pos-
sible Extinction of High pT Jets in Hadron–Hadron Collisions, Tech. Rep. 
FERMILAB-PUB-82-059-T, Fermilab, 1982, http://lss .fnal .gov /archive /preprint /
fermilab -pub -82 -059 -t .shtml.

[22] D. d’Enterria, Jet quenching, Landolt–Börnstein I/23, arXiv:0902 .2011 [nucl -ex], 
2010.

[23] A. Ortiz, O. Vázquez, Energy density and path-length dependence of the frac-
tional momentum loss in heavy-ion collisions at √sNN from 62.4 to 5020 GeV, 
Phys. Rev. C 97 (1) (2018) 014910, arXiv:1708 .07571 [hep -ph].

[24] C. Loizides, J. Kamin, D. d’Enterria, Precision Monte Carlo Glauber predictions 
at present and future nuclear colliders, arXiv:1710 .07098 [nucl -ex].

[25] CMS Collaboration, V. Khachatryan, et al., Charged-particle nuclear modification 
factors in PbPb and pPb collisions at √sNN = 5.02 TeV, J. High Energy Phys. 04 
(2017) 039, arXiv:1611.01664 [nucl -ex].

[26] H.D. Vries, C.D. Jager, C.D. Vries, Nuclear charge-density-distribution parameters 
from elastic electron scattering, At. Data Nucl. Data Tables 36 (1987) 495–536, 
http://www.sciencedirect .com /science /article /pii /0092640X87900131.

[27] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, 
J. Instrum. 3 (2008) S08002.

[28] ALICE Collaboration, K. Aamodt, et al., Alignment of the ALICE inner tracking 
system with cosmic-ray tracks, J. Instrum. 5 (2010) P03003, arXiv:1001.0502
[physics .ins -det].

[29] J. Alme, et al., The ALICE TPC, a large 3-dimensional tracking device with fast 
readout for ultra-high multiplicity events, Nucl. Instrum. Methods A 622 (2010) 
316–367, arXiv:1001.1950 [physics .ins -det].

[30] ALICE Collaboration, J. Adam, et al., Centrality dependence of the charged-
particle multiplicity density at midrapidity in Pb–Pb collisions at √

sNN =
5.02 TeV, Phys. Rev. Lett. 116 (2016) 222302, arXiv:1512 .06104 [nucl -ex].

[31] ALICE Collaboration, S. Acharya, et al., The ALICE Definition of Primary Par-
ticles, Public Note ALICE-PUBLIC-2017-005, CERN, 2017, https://cds .cern .ch /
record /2270008.

[32] X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet produc-
tion in p–p, p–A and A–A collisions, Phys. Rev. D 44 (1991) 3501–3516.

http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4D756C6C65723A323031327A71s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4D756C6C65723A323031327A71s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4865696E7A3A323031337468s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4865696E7A3A323031337468s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4865696E7A3A323031337468s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4265726E686172643A32303136746E64s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4265726E686172643A32303136746E64s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4265726E686172643A32303136746E64s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4265726E686172643A32303136746E64s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136747265s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136747265s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416368617279613A32303138717368s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416368617279613A32303138717368s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416368617279613A32303138717368s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4F7274697A3A32303133797861s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4F7274697A3A32303133797861s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4F7274697A3A32303133797861s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4142454C45563A32303133777361s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4142454C45563A32303133777361s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4142454C45563A32303133777361s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A323031346A7261s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A323031346A7261s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A323031346A7261s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4368617472636879616E3A323031336E6B61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4368617472636879616E3A323031336E6B61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4368617472636879616E3A323031336E6B61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A32303135776161s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A32303135776161s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A32303135776161s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4161643A32303133666A61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4161643A32303133666A61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4161643A32303133666A61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4475736C696E673A323031336F6961s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4475736C696E673A323031336F6961s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4475736C696E673A323031336F6961s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib426C6F6B3A32303137707569s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib426C6F6B3A32303137707569s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41646172653A32303135627561s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41646172653A32303135627561s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41646172653A32303135627561s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136746876s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136746876s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136746876s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303135766E61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303135766E61s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303135766E61s1
https://cds.cern.ch/record/2315401
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib786578652D63656E74s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib786578652D63656E74s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416C7665723A323030356E62s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416C7665723A323030356E62s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416C7665723A323030356E62s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416C7665723A323030356E62s1
http://lss.fnal.gov/archive/preprint/fermilab-pub-82-059-t.shtml
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib6427456E7465727269613A32303039616Ds1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib6427456E7465727269613A32303039616Ds1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4F7274697A3A3230313763756Cs1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4F7274697A3A3230313763756Cs1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4F7274697A3A3230313763756Cs1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4C6F697A696465733A3230313761636Bs1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4C6F697A696465733A3230313761636Bs1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A323031366F646Es1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A323031366F646Es1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4B6861636861747279616E3A323031366F646Es1
http://www.sciencedirect.com/science/article/pii/0092640X87900131
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41616D6F64743A323030387A7As1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41616D6F64743A323030387A7As1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41616D6F64743A323031306161s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41616D6F64743A323031306161s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib41616D6F64743A323031306161s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416C6D653A323031306B65s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416C6D653A323031306B65s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib416C6D653A323031306B65s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303135707474s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303135707474s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303135707474s1
https://cds.cern.ch/record/2270008
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib57616E673A31393931687461s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib57616E673A31393931687461s1
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib4164616D3A32303136747265s1
https://cds.cern.ch/record/2315401
http://refhub.elsevier.com/S0370-2693(18)30823-2/bib786578652D63656E74s1
http://lss.fnal.gov/archive/preprint/fermilab-pub-82-059-t.shtml
https://cds.cern.ch/record/2270008


174 ALICE Collaboration / Physics Letters B 788 (2019) 166–179

[33] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, 
L. Urban, GEANT: Detector Description and Simulation Tool; Oct. 1994, CERN 
Program Library, Long Writeup W5013, CERN, Geneva, 1993, https://cds .cern .
ch /record /1082634.

[34] ALICE Collaboration, J. Adam, et al., Enhanced production of multi-strange 
hadrons in high-multiplicity proton–proton collisions, Nat. Phys. 13 (2017) 
535–539, arXiv:1606 .07424 [nucl -ex].

[35] ALICE Collaboration, B. Abelev, et al., Centrality dependence of π , K, p produc-
tion in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 88 (2013) 044910, 
arXiv:1303 .0737 [hep -ex].

[36] ALICE Collaboration, B. Abelev, et al., K 0
S and � production in Pb–Pb collisions 

at √sNN = 2.76 TeV, Phys. Rev. Lett. 111 (2013) 222301, arXiv:1307.5530 [nucl -
ex].

[37] ALICE Collaboration, B. Abelev, et al., Production of charged pions, kaons and 
protons at large transverse momenta in pp and Pb–Pb collisions at √sNN =
2.76 TeV, Phys. Lett. B 736 (2014) 196–207, arXiv:1401.1250 [nucl -ex].

[38] ALICE Collaboration, B.B. Abelev, et al., Performance of the ALICE experiment at 
the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402 .4476 [nucl -
ex].

[39] ALICE Collaboration, B. Abelev, et al., Energy dependence of the transverse mo-
mentum distributions of charged particles in pp collisions measured by ALICE, 
Eur. Phys. J. C 73 (2013) 2662, arXiv:1307.1093 [nucl -ex].

[40] P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. 
Phys. J. C 74 (2014) 3024, arXiv:1404 .5630 [hep -ph].

[41] PHENIX Collaboration, A. Adare, et al., Scaling properties of fractional mo-
mentum loss of high-pT hadrons in nucleus–nucleus collisions at √sN N from 
62.4 GeV to 2.76 TeV, Phys. Rev. C 93 (2) (2016) 024911, arXiv:1509 .06735
[nucl -ex].

[42] C. Loizides, A. Morsch, Absence of jet quenching in peripheral nucleus–nucleus 
collisions, Phys. Lett. B 773 (2017) 408–411, arXiv:1705 .08856 [nucl -ex].

[43] G. Giacalone, J. Noronha-Hostler, M. Luzum, J.-Y. Ollitrault, Hydrodynamic pre-
dictions for 5.44 TeV Xe + Xe collisions, Phys. Rev. C 97 (3) (2018) 034904, 
arXiv:1711.08499 [nucl -th].

[44] P.F. Kolb, P. Huovinen, U.W. Heinz, H. Heiselberg, Elliptic flow at SPS and RHIC: 
from kinetic transport to hydrodynamics, Phys. Lett. B 500 (2001) 232–240, 
arXiv:hep -ph /0012137 [hep -ph].

[45] CMS Collaboration, S. Chatrchyan, et al., Measurement of the pseudorapidity 
and centrality dependence of the transverse energy density in Pb–Pb collisions 
at √sNN = 2.76 TeV, Phys. Rev. Lett. 109 (Oct 2012) 152303, https://link.aps .
org /doi /10 .1103 /PhysRevLett .109 .152303.

[46] M. Djordjevic, D. Zigic, M. Djordjevic, J. Auvinen, How to test path-length de-
pendence in energy loss mechanisms: analysis leading to a new observable, 
arXiv:1805 .04030 [nucl -th], 2018.

[47] R. Hagedorn, Multiplicities, pT distributions and the expected hadron →
quark–gluon phase transition, Riv. Nuovo Cimento 6 (1983) 1–50.

ALICE Collaboration

S. Acharya 138, F.T.-. Acosta 22, D. Adamová 94, J. Adolfsson 81, M.M. Aggarwal 98, G. Aglieri Rinella 36, 
M. Agnello 33, N. Agrawal 49, Z. Ahammed 138, S.U. Ahn 77, S. Aiola 143, A. Akindinov 65, M. Al-Turany 104, 
S.N. Alam 138, D.S.D. Albuquerque 120, D. Aleksandrov 88, B. Alessandro 59, R. Alfaro Molina 73, Y. Ali 16, 
A. Alici 11,54,29, A. Alkin 3, J. Alme 24, T. Alt 70, L. Altenkamper 24, I. Altsybeev 137, C. Andrei 48, 
D. Andreou 36, H.A. Andrews 108, A. Andronic 141,104, M. Angeletti 36, V. Anguelov 102, C. Anson 17, 
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