Recent Experimental Results on the Low-energy K^− Interaction with Nucleons by AMADEUS

(AMADEUS Collaboration) Del Grande, R.; Bazzi, M.; Bragadireanu, A.M.; Bosnar, D.; Cargnelli, M.; Curceanu, C.; De Paolis, L.; Fabbietti, L.; Fiorini, C.; Ghio, F.; ...

Source / Izvornik: **Acta Physica Polonica B, 2020, 51, 121 - 127**

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

<https://doi.org/10.5506/APhysPolB.51.121>

Permanent link / Trajna poveznica: <https://urn.nsk.hr/urn:nbn:hr:217:324863>

Rights / Prava: [Attribution 4.0 International](http://creativecommons.org/licenses/by/4.0/) / [Imenovanje 4.0 međunarodna](http://creativecommons.org/licenses/by/4.0/)

Download date / Datum preuzimanja: **2024-07-16**

Repository / Repozitorij:

[Repository of the Faculty of Science - University o](https://repozitorij.pmf.unizg.hr)f [Zagreb](https://repozitorij.pmf.unizg.hr)

RECENT EXPERIMENTAL RESULTS ON THE LOW-ENERGY K[−] INTERACTION WITH NUCLEONS BY AMADEUS∗

R. DEL GRANDE^{a,b}, M. Bazzi^a, A.M. Bragadireanu^c, D. Bosnar^d M. CARGNELLI^e, C. CURCEANU^a, L. DE PAOLIS^{a,f}, L. FABBIETTI^{g,h} C. FIORINI^{i,j}, F. GHIO^{k, I}, C. GUARALDO^a, R.S. HAYANO^m, M. ILIESCU^a M. IWASAKIⁿ, P. LEVI SANDRI^a, J. MARTON^e, M. MILIUCCI^a P. MOSKAL^o, S. Okadaⁿ, K. Piscicchia^{b,a}, A. Ramos^p, A. Scordo^a M. SILARSKI^o, D.L. SIRGHI^{a,c}, F. SIRGHI^{a,c}, M. SKURZOK^{a,o} A. SPALLONE^a, O. Vazquez Doce^{g,h}, E. Widmann^e, S. Wycech^q J. Zmeskale

a INFN Laboratori Nazionali di Frascati, Frascati, Rome, Italy ^bCENTRO FERMI — Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Roma, Italy ^cHoria Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) Măgurele, Romania ^dDepartment of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia ^eStefan-Meyer-Institut für Subatomare Physik, Wien, Austria ^fUniversità degli Studi di Roma "Tor Vergata", Rome, Italy ^gExcellence "Cluster Origin and Structure of the Universe", Garching, Germany ^hPhysik Department E12, Technische Universität München, Garching, Germany ⁱPolitecnico di Milano, Dip. di Elettronica, Informazione e Bioingegneria Milano, Italy j INFN Sezione di Milano, Milano, Italy k INFN Sezione di Roma I, Rome, Italy l Istituto Superiore di Sanità, Rome, Italy ^mThe University of Tokyo, Tokyo, Japan ⁿRIKEN, The Institute of Physics and Chemical Research, Saitama, Japan o Institute of Physics, Jagiellonian University, Kraków, Poland ^pDepartament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain ^qNational Centre for Nuclear Research, Warszawa, Poland

(Received October 7, 2019)

Recent results obtained by the AMADEUS Collaboration on the experimental investigation of the K^- low-energy interaction with light nuclei

[∗] Presented at the 3 rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, Kraków, Poland, June 23–28, 2019.

are summarised. The step 0 of AMADEUS consists in the analysis of the data collected at the DAΦNE collider with the KLOE detector during the 2004/2005 data taking campaign. The low momentum K^- particles $(p_K \sim 127 \text{ MeV}/c)$ are absorbed in the light nuclei contained in the detector setup $(H, 4\text{He}, 9\text{Be}$ and $12\text{C})$ and hyperon–pion/hyperon–nucleons, emitted in the final state, are reconstructed. From the study of $\Lambda \pi^-$ and Λp correlated production, important information on the $\bar{K}N$ strong interaction in the non-perturbative QCD regime are extracted.

DOI:10.5506/APhysPolB.51.121

1. Introduction

The AMADEUS Collaboration aims at providing experimental information on the low-energy strong interaction between K^- and nucleons with implications ranging from the domain of nuclear physics to astrophysics [\[1\]](#page-6-0).

The investigation of the antikaon–nucleon $(\bar{K}N)$ interaction is fundamental for the comprehension of the nature of the $\Lambda(1405)$ (isospin $I=0$), which means experimentally measured mass is about 27 MeV below the $\bar{K}N$ threshold [\[2\]](#page-6-1) and has a dynamical origin. In phenomenological poten-tial models [\[3–](#page-6-2)[7\]](#page-6-3), the resonance is interpreted as a pure $\bar{K}N$ bound state, in chiral models $[8-12]$ $[8-12]$, the resonance appears as a superposition of two states coupled respectively to the $\Sigma \pi$ and $\bar{K}N$ channels. The relative position of the two states is determined by the strength of the $\bar{K}N$ interaction potential. The experimental investigation of the $\Lambda(1405)$ properties is also challenging because the resonance line-shape is found to depend on both the production mechanism and the observed decay channel. Moreover, if the $\Lambda(1405)$ is produced in K⁻⁻induced reactions, the non-resonant $\Sigma \pi$ production contribution has to be considered. In Ref. [\[13\]](#page-7-0), the non-resonant hyperon–pion $(Y\pi)$ production in the $I = 1$ channel, where the resonant counterpart due to the $\Sigma(1385)$ formation is well-known, is investigated. In Section [2,](#page-3-0) the results obtained in Ref. [\[13\]](#page-7-0) are summarised.

The strength of the $\bar{K}N$ sub-threshold interaction also influences the formation of bound states of antikaons with more than one nucleon. The experimental search of such exotic bound states in K^- -induced reactions cannot disregard a comprehensive characterisation of the K^- multi-nucleon absorption processes due to the overlap with the K^- bound state formation over a broad range of the phase space $[14, 15]$ $[14, 15]$ $[14, 15]$. The K⁻ multi-nucleon absorption cross sections at low-energy are also crucial for the interpretation of the data in heavy-ion collisions [\[16\]](#page-7-3). The role of the K^- absorption on more than one nucleon has been recently demonstrated to be fundamental in the determination of the K^- -nucleus optical potential [\[17,](#page-7-4) [18\]](#page-7-5). A phenomenological K^- multi-nucleon absorption term, constrained by global absorption

bubble chamber data, was added to the K^- single-nucleon potential, in order to achieve good fits to K^- atoms data along the periodic table [\[17,](#page-7-4) [18\]](#page-7-5). In Ref. [\[19\]](#page-7-6), a complete study of the K^- interactions with two, three and four nucleons $(2NA, 3NA, and 4NA)$ processes has been performed. The details of the data analysis will be given in Section [3.](#page-4-0)

The step 0 of AMADEUS consists in the re-analysis of the data collected by the KLOE Collaboration [\[20\]](#page-7-7) during the 2004/2005 data taking campaign and corresponding to 1.74 fb^{-1} integrated luminosity. The low-momentum K^- ($p_K \sim 127$ MeV/c), produced at the DAΦNE collider [\[21\]](#page-7-8) from the φ-meson decay nearly at-rest, are captured on the nuclei in the materials of the beam pipe setup and of the KLOE detector $(H, {}^{4}He, {}^{9}Be$ and ${}^{12}C)$ used as active target. The analysed data sample allows to investigate both atrest ($p_K \sim 0$ MeV/c) and in-flight K⁻ nuclear captures. Yπ and YN/nuclei pairs produced in the final state of the K^- absorptions are reconstructed.

2. Modulus of the $K^-n \to \Lambda \pi^-$ amplitude below threshold

The experimental investigation of the $\Lambda(1405)$ properties, produced in stopped K^- reactions with light nuclei, is disturbed by two main biases:

- the $\Sigma \pi$ (I = 0) invariant mass line-shape is biased by the energy threshold, shifted from 1432 MeV to lower energies $(1412 \text{ MeV in }^{4}He)$ and 1416 MeV in 12 C) due to the separation energy of the absorbing proton. In in-flight K^- reactions, the energy threshold is shifted upward due to the kinetic energy of the kaon'
- the shape of the non-resonant $K^-p \to (\Sigma \pi)^0$ reactions has to be taken into account.

In Ref. [\[13\]](#page-7-0), the non-resonant $K^-\eta \to \Lambda \pi^-$ process is investigated, considering K^-n single-nucleon absorptions on ⁴He. Since the $\Sigma^-(1385)$ $(I = 1)$ resonance is well-known, the corresponding non-resonant transition amplitude ($|T_{K-n\to\Lambda\pi^-}|$) can be extracted and used to test the theoretical predictions below threshold.

In this work, the experimentally extracted $\Lambda \pi^-$ invariant mass, momentum, and angular distributions were simultaneously fitted by using dedicated MC simulations. All the contributing reactions were taken into account: non-resonant processes, resonant processes and the primary production of Σ followed by the $\Sigma N \to \Lambda N'$ conversion process. The simulations of nonresonant/resonant processes were based on the results of [\[22\]](#page-7-9). The analysis allowed the extraction of the non-resonant transition amplitude modulus ahowed the extraction of the non-resonant transition amplitude modulus $|T_{K^-\pi\to\Lambda\pi^-}|$ at $\sqrt{s} = (33\pm6)$ MeV below the $\bar{K}N$ threshold, which is found to be

$$
|T_{K^{-}n \to A\pi^{-}}| = \left(0.334 \pm 0.018 \text{ (stat.)}^{+0.034}_{-0.058} \text{ (syst.)}\right) \text{ fm.}
$$
 (1)

The result of this analysis (with combined statistical and systematic errors) is shown in Fig. [1](#page-4-1) and compared with the theoretical predictions (see Refs.: Ramos–Magas–Feijoo [\[23\]](#page-7-10), Ikeda–Hyodo–Weise [\[24\]](#page-7-11), Cieplý–Smejkal [\[25\]](#page-7-12), Guo–Oller 1 and 2 [\[26\]](#page-7-13), Mai–Meissner 2 and 4 [\[27\]](#page-7-14)). This measurement can be used to test and constrain the S-wave $K^-\eta \to \Lambda \pi^-$ transition amplitude calculations.

Fig. 1. Modulus of the non-resonant amplitude for the $K^-\prime n \rightarrow \Lambda \pi^-$ process at 33 MeV below the $\bar{K}N$ threshold obtained by AMADEUS, compared with theoretical predictions: Ramos–Magas–Feijoo [\[23\]](#page-7-10), Ikeda–Hyodo–Weise [\[24\]](#page-7-11), Cieplý– Smejkal [\[25\]](#page-7-12), Guo–Oller 1 and 2 [\[26\]](#page-7-13), Mai–Meissner 2 and 4 [\[27\]](#page-7-14). The plot was adapted from Ref. [\[28\]](#page-7-15).

3. K^- multi-nucleon absorption branching ratios and cross sections

The absorption of the K^- on two, three or more nucleons is investigated by the AMADEUS Collaboration in Refs. [\[15,](#page-7-2) [19\]](#page-7-6), by reconstructing Ap and $\Sigma^{0}p$ pairs emitted in K⁻ hadronic interactions with ¹²C nuclei.

In Ref. [\[19\]](#page-7-6), Branching Ratios (BRs) and cross sections of the K^- 2NA, $3NA$ and $4NA$ were obtained by means of a simultaneous fit of the Ap invariant mass, Λp angular correlation, Λ and proton momenta using the simulated distributions for both direct Λ production and Σ^0 production followed by $\Sigma^0 \to \Lambda \gamma$ decay. The K⁻ nuclear capture was calculated for both atrest and in-flight interactions, based on the K^- absorption model described in Refs. $[22, 29]$ $[22, 29]$ $[22, 29]$. In the first case, the absorption from atomic $2p$ state is assumed. Fragmentations of the residual nucleus following the hadronic interaction were also considered. For the $2NA$, the important contributions of both final-state interactions (FSI) of the Λ and the proton were taken into account, as well as the conversion of primary produced sigma particles $(\Sigma N \to \Lambda N')$; this allows to disentangle the quasi-free (QF) production. The global BR for the K⁻ multi-nucleon absorption in ¹²C (with $\Lambda(\Sigma^0)p$ final states) is found to be compatible with bubble chamber results. The measured BRs and low-energy cross sections of the distinct K^- 2NA, 3NA and 4NA, reported in Table I, will be useful for the improvement of microscopical models of the K^-NN absorption and for a future generalisation to K^- absorption reaction calculations involving even more than two nucleons.

TABLE I

Branching ratios (for the K⁻ absorbed at-rest) and cross sections (for the K⁻ absorbed in-flight) of the K^- multi-nucleon absorption processes. The K^- momentum is evaluated in the centre-of-mass reference frame of the absorbing nucleons, thus it differs for the 2NA and 3NA processes. The statistical and systematic errors are also given.

Process	Branching ratio [%]	σ [mb]	$^{\circ}$	p_K [MeV/c]
$2NA$ -QF Ap	$0.25\pm0.02(\text{stat.})^{+0.01}_{-0.02}(\text{syst.})$ $2.8\pm0.3(\text{stat.})^{+0.1}_{-0.2}(\text{syst.})$		$^{\circ}$	$128 + 29$
$2NA$ -FSI Ap	$6.2 \pm 1.4 \text{(stat.)}^{+0.5}_{-0.6} \text{(syst.)}$	$69\pm15(stat.)\pm6(syst.)$	$^{\circ}$	$128 + 29$
$2NA$ -QF $\Sigma^{0}p$	$0.35\pm0.09(\text{stat.})\substack{+0.13\\-0.06}(\text{syst.})$	$3.9\pm1.0(\text{stat.})\frac{+1.4}{0.7}(\text{syst.})$	$^{\circ}$	$128 + 29$
2NA-FSI $\Sigma^0 p$	7.2 \pm 2.2(stat.) $^{+4.2}_{-5.4}$ (syst.)	$80\pm25(\text{stat.})^{+46}_{-60}(\text{syst.})$	\circledcirc	$128 + 29$
$2NA$ -CONV Σ/Λ	$2.1 \pm 1.2 \text{(stat.)} ^{+0.9}_{-0.5} \text{(syst.)}$			
$3NA$ Apn	$1.4\pm0.2(\text{stat.})\substack{+0.1\\-0.2}(\text{syst.})$	$15\pm2(stat.)\pm2(syst.)$	$^{\circ}$	$117 + 23$
$3NA \Sigma^0 pn$	$3.7\pm0.4(\text{stat.})\substack{+0.2\\-0.4}(\text{syst.})$	$41\pm4(\text{stat.})^{+2}_{-5}(\text{syst.})$	ω	$117 + 23$
$4NA$ Apnn	$0.13\pm0.09(\text{stat.})\substack{+0.08\\-0.07}(\text{syst.})$			
Global $\Lambda(\Sigma^0)p$	$21\pm3(stat.)^{+5}_{-6}(syst.)$			

The Ap direct production in $2NA-QF$ is phase space favoured with respect to the corresponding $\Sigma^0 p$ final state, the ratio between the final-state phase spaces for the two processes is $\mathcal{R}' \simeq 1.22$. From the BRs in Table I, we measure

$$
\mathcal{R} = \frac{\text{BR}(K^-pp \to Ap)}{\text{BR}(K^-pp \to \Sigma^0p)} = 0.7 \pm 0.2(\text{stat.})^{+0.2}_{-0.3}(\text{syst.})\,. \tag{2}
$$

The dominance of the $\Sigma^{0}p$ channel is then evidence of the important dynamical effects involved in the measured processes; hence the ratio in Eq. [\(2\)](#page-5-0) gives important information on the KN dynamics below the threshold [\[30\]](#page-7-17).

The possible contribution of a K^-pp bound state, decaying into a Λp pair, was also investigated. The $2NA$ -QF is found to completely overlap with the K^-pp , except for small, unphysical, values of the bound state width of the order of 15 MeV/ c^2 or less. A further selection of back-toback Λp production was performed by selecting $\cos \theta_{\Lambda p} < -0.8$ in order to make a direct comparison with the corresponding FINUDA measurement. The invariant-mass distribution is compatible with the shape presented in Ref. [\[31\]](#page-7-18). The obtained spectra are completely described in terms of $K^$ multi-nucleon absorption processes, with no need of a K^-pp component in the fit, and the extracted BRs are in agreement with those obtained from the fit of the full data sample.

We acknowledge the KLOE/KLOE-2 Collaboration for their support and for having provided us the data and the tools to perform the analysis presented in this paper. We acknowledge the CENTRO FERMI — Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi" for the project PAMQ. Part of this work was supported by the Austrian Science Fund (FWF): [P24756-N20]; the Austrian Federal Ministry of Science and Research BMBWK 650962/0001VI/2/2009; the Croatian Science Foundation, under project 8570; Minstero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese (MAECI), Strange Matter project; the National Science Centre, Poland (NCN) through grant No. UMO-2016/21/D/ST2/01155; EU STRONG-2020 (grant agreement 824093).

REFERENCES

- [1] C. Curceanu et al. [AMADEUS Collaboration], [Acta Phys. Pol. B](http://dx.doi.org/10.5506/APhysPolB.46.203) 46, 203 [\(2015\).](http://dx.doi.org/10.5506/APhysPolB.46.203)
- [2] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98[, 030001 \(2018\).](http://dx.doi.org/10.1103/PhysRevD.98.030001)
- [3] Y. Akaishi, T. Yamazaki, Phys. Rev. C 65[, 044005 \(2002\).](http://dx.doi.org/10.1103/PhysRevC.65.044005)
- [4] Y. Ikeda, T. Sato, Phys. Rev. C 76[, 035203 \(2007\).](http://dx.doi.org/10.1103/PhysRevC.76.035203)
- [5] S. Wycech, A.M. Green, *Phys. Rev. C* **79**[, 014001 \(2009\).](http://dx.doi.org/10.1103/PhysRevC.79.014001)
- [6] J. Revai, N.V. Shevchenko, *Phys. Rev. C* **90**[, 034004 \(2014\).](http://dx.doi.org/10.1103/PhysRevC.90.034004)
- [7] S. Maeda, Y. Akaishi, T. Yamazaki, [Proc. Jpn. Acad. B](http://dx.doi.org/10.2183/pjab.89.418) 89, 418 (2013).
- [8] A. Dote, T. Hyodo, W. Weise, Phys. Rev. C 79[, 014003 \(2009\).](http://dx.doi.org/10.1103/PhysRevC.79.014003)
- [9] N. Barnea, A. Gal, E.Z. Liverts, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2012.04.055) 712, 132 (2012).
- [10] Y. Ikeda, H. Kamano, T. Sato, *[Prog. Theor. Phys.](http://dx.doi.org/10.1143/PTP.124.533)* **124**, 533 (2010).
- [11] P. Bicudo, *Phys. Rev. D* **76**[, 031502 \(2007\).](http://dx.doi.org/10.1103/PhysRevD.76.031502)
- [12] M. Bayar, E. Oset, *[Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2013.02.005)* **914**, 349 (2013).
- [13] K. Piscicchia et al., *[Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2018.05.025)* **782**, 339 (2018).
- [14] T. Suzuki et al., [Mod. Phys. Lett. A](http://dx.doi.org/10.1142/S021773230802971X) 23, 2520 (2008); V.K. Magas, E. Oset, A. Ramos, H. Toki, Phys. Rev. C 74[, 025206 \(2006\);](http://dx.doi.org/10.1103/PhysRevC.74.025206) V.K. Magas, E. Oset, A. Ramos, Phys. Rev. C 77[, 065210 \(2008\).](http://dx.doi.org/10.1103/PhysRevC.77.065210)
- [15] O. Vazques Doce *et al., [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2016.05.001)* **758**, 134 (2016).
- [16] V. Metag, M. Nanova, E.Ya. Paryev, [Prog. Part. Nucl. Phys.](http://dx.doi.org/10.1016/j.ppnp.2017.08.002) 97, 199 (2017).
- [17] E. Friedman, A. Gal, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2016.12.009) 959, 66 (2017).
- [18] J. Hrtánková, J. Mareš, Phys. Rev. C 96[, 015205 \(2017\).](http://dx.doi.org/10.1103/PhysRevC.96.015205)
- [19] R. Del Grande et al., [Eur. Phys. J. C](http://dx.doi.org/10.1140/epjc/s10052-019-6694-7) 79, 190 (2019).
- [20] F. Bossi et al., [Riv. Nuovo Cim.](http://dx.doi.org/10.1393/ncr/i2008-10037-9) 31, 531 (2008).
- [21] A. Gallo et al., Conf. Proc. **C060626**, 604 (2006).
- [22] K. Piscicchia, S. Wycech, C. Curceanu, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2016.05.007) 954, 75 (2016).
- [23] A. Feijoo, V. Magas, A. Ramos, Phys. Rev. C 99[, 035211 \(2019\).](http://dx.doi.org/10.1103/PhysRevC.99.035211)
- [24] Y. Ikeda, T. Hyodo, W. Weise, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2012.01.029) 881, 98 (2012).
- [25] A. Cieplý, J. Smejkal, *[Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2012.01.028)* **881**, 115 (2012).
- [26] Z.H. Guo, J.A. Oller, *Phys. Rev. C* 87[, 035202 \(2013\).](http://dx.doi.org/10.1103/PhysRevC.87.035202)
- [27] M. Mai, U.-G. Meißner, [Eur. Phys. J. A](http://dx.doi.org/10.1140/epja/i2015-15030-3) 51, 30 (2015).
- [28] A. Feijoo, V.K. Magas, A. Ramos, [AIP Conf. Proc.](http://dx.doi.org/10.1063/1.5118410) 2130, 040013 (2019).
- [29] R. Del Grande, K. Piscicchia, S. Wycech, [Acta Phys. Pol. B](http://dx.doi.org/10.5506/APhysPolB.48.1881) 48, 1881 (2017).
- [30] J. Hrtánková, À. Ramos, arXiv:1910.01336 [nucl-th], submitted to Phys. Rev. C.
- [31] M. Agnello *et al., [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.94.212303)* **94**, 212303 (2005).