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Resistivity phase diagram of cuprates revisited
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The phase diagram of the cuprate superconductors has posed a formidable scientific challenge for more than
three decades. This challenge is perhaps best exemplified by the need to understand the normal-state charge
transport as the system evolves from Mott insulator to Fermi-liquid metal with doping. Here we report a
detailed analysis of the temperature (T ) and doping (p) dependence of the planar resistivity of simple-tetragonal
HgBa2CuO4+δ (Hg1201), the single-CuO2-layer cuprate with the highest optimal superconducting transition
temperature, Tc. The data allow us to test a recently proposed phenomenological model for the cuprate phase
diagram that combines a universal transport scattering rate with spatially inhomogeneous (de)localization of the
Mott-localized hole. We find that the model provides a good description of the data. We then extend this analysis
to prior transport results for several other cuprates, including the Hall number in the overdoped part of the phase
diagram, and find little compound-to-compound variation in the (de)localization gap scale. The results point to a
robust, universal structural origin of the inherent gap inhomogeneity that is unrelated to doping-related disorder.
They are inconsistent with the notion that much of the phase diagram is controlled by a quantum-critical point,
and instead indicate that the unusual electronic properties exhibited by the cuprates are fundamentally related to
strong nonlinearities associated with subtle nanoscale inhomogeneity.

DOI: 10.1103/PhysRevB.102.075114

I. INTRODUCTION

The cuprates exhibit multiple electronic ordering tenden-
cies, a partial depletion of states at the Fermi level [a “pseudo-
gap” (PG)], and unusual (“strange-metal”) normal-state trans-
port behavior [1]. One of the most extensively investigated
observables is the planar resistivity, ρ, which features sev-
eral well-established characteristics [2–5]: T-linear behavior
above the doping-dependent PG temperature, T ∗(p), which is
most pronounced near optimal doping, where T ∗ approaches
Tc [3,4], and simple T 2 behavior at very high doping, where
other measurements confirm Fermi-liquid (FL) quasiparticle
behavior associated with a density of 1 + p carriers [2,6,7].
Based on systematic resistivity data for a particular cuprate
compound, the normal-state phase diagram can be obtained by
evaluating the curvature (i.e., the second temperature deriva-
tive) of ρ(T , p) [3]. Resistivity measurements thus provide in-
dispensable information about the cuprates, yet until recently,
a comprehensive understanding of this pivotal observable had
remained elusive.
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In the theory of charge transport, the resistivity is generally
parametrized with a charge-carrier density, effective mass,
and transport scattering rate. In principle, these quantities
may be temperature and doping dependent, and therefore
additional insight is needed. Two common assumptions made
in evaluating the properties of the cuprates are that the tem-
perature dependence of the resistivity is solely determined by
the temperature dependence of the effective scattering rate,
and that the PG opens at the doping-dependent temperature
T ∗(p). The former assumption neglects the depletion of the
density of states due to the opening of the PG, and hence the
possibility that the carrier density depends on temperature,
whereas the latter assumption overlooks the experimental
evidence that local gaps already form at temperatures well
above T ∗ [8,9]. In addition, a number of studies have shown
that the itinerant carriers in the PG regime have FL charac-
ter [5,10–13], with a carrier density p. Below a characteristic
temperature T ∗∗ < T ∗, the sheet resistance follows the simple
scaling ρ = C2T 2/p (that can be associated with the Drude
expression for the resistivity) for a range of cuprates [5]; the
magnetoresistance exhibits Kohler scaling for T < T ∗∗ [10],
a nontrivial characteristic of ordinary single-band metals; the
optical scattering rate follows FL temperature/frequency scal-
ing [11]; the Hall constant for T < T ∗∗ is approximately T
independent and a good measure of the doped carrier density
(RH = 1/(ep), where e is the electron charge) [13,14]; and
the low-energy effective mass is approximately temperature
and doping independent in zero magnetic field [10,11]. Based
on Hall-angle measurements, however, an even stronger state-
ment can be made: An underlying FL-like transport scat-
tering rate prevails throughout the entire accessible doping
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range [13,15], connecting the underdoped, strange-metal, and
overdoped regimes.

These observations reveal a great degree of underlying
simplicity, yet it is important to recognize that the cuprates
are not ordinary Fermi liquids. In particular, photoemission re-
sults show an effectively disconnected Fermi surface (“arcs”)
in underdoped compounds at low temperatures [16], NMR
experiments [17] imply the existence of two local magnetic
components—one associated with the PG, and the other with
the FL, and specific-heat results are consistent with this sce-
nario [18]. The strong temperature dependence of the effective
carrier density, as evidenced by Hall coefficient and Hall-
angle measurements [13,14], is also highly unusual. More-
over, numerous experiments, such as tunneling [8,19], mag-
netic resonance [20–22], and x-ray [23] and neutron [24,25]
scattering show that the cuprates are inhomogeneous, both
structurally and electronically. In a recent development, a
phenomenological model was found to successfully describe
both the charge transport and the superfluid density of the
cuprates [26]. The model is rooted in two basic experimental
facts: an underlying universal transport scattering rate for the
itinerant carriers, and a temperature-dependent proliferation
of spatially inhomogeneous PGs that commences at tempera-
tures well above T ∗.

In the present work, our goal is threefold: (i) to present
a detailed resistivity phase diagram of the model cuprate
Hg1201; (ii) to test if the data can be quantitatively described
by the model of Ref. [26], and thereby extend the analysis
presented there; and (iii) to investigate how the model captures
the similarities and differences among cuprate families, using
published charge transport data. Hg1201 is a remarkable
cuprate [27]: It is structurally simple, with global tetrago-
nal symmetry, and no known structural phase transitions; it
can be doped with holes over a wide range via control of
oxygen nonstoichiometry; and it features the highest optimal
Tc of any single-CuO2-layer cuprate. Furthermore, the effect
of doping-induced point disorder on many observables is
weak, similar to the structurally more complex compound
YBa2Cu2O6+δ (YBCO), and relatively mild in comparison
to, e.g., La2−xSrxCuO4 (LSCO) and the Bi-based cuprates.
This is evidenced by a nearly zero residual resistivity [5,13],
the observations of quantum oscillations [28,29] and Kohler
scaling [12], the low level of superconducting vortex pin-
ning [5,27], and the clear observation of a vortex lattice in
small-angle neutron scattering measurements [30]. Finally,
photoemission measurements indicate that the (underlying)
Fermi surface is simple near optimal doping [31], in contrast
to, e.g., LSCO [32] and YBCO [33]. These properties render
Hg1201 a model cuprate system. We find that the temperature-
doping resistivity phase diagram of Hg1201 can be com-
prehensively reproduced by the phenomenological model of
Ref. [26]. Furthermore, by allowing for small parameter vari-
ations, we show that the model provides a description of the
resistivity phase diagrams and doping dependence of the Hall
number of other cuprate families. These findings highlight
both underlying universal behavior (e.g., sheet resistance)
and expected compound-specific features (e.g., difference in
doping dependences of T ∗). Moreover, they point to a uni-
versal structural origin of the inherent gap inhomogeneity
that is at best weakly related to doping-induced chemical

disorder. It has long been argued that the cuprates are prone
to nanoscale structural inhomogeneity, as a means to relax
the stresses intrinsic to the perovskite-based structure [34,35].
The role of strong disorder in creating pseudogaps has also
been emphasized and related to a broader class of glassy
materials [36]. Our results add a fresh emphasis on the need
to understand the local structure of the cuprates and its role in
determining their unique electronic properties.

This paper is structured as follows: In Sec. II, we present
the experimental resistivity phase diagram of Hg1201 and
compare the data to the model of Ref. [26]; in Sec. III, we
analyze published resistivity phase diagrams and recent Hall
number data for other cuprate families; in Sec. IV, we discuss
the assumptions and implications of the model and analysis.
We summarize our findings in Sec. V.

II. RESISTIVITY PHASE DIAGRAM OF Hg1201

We analyze resistivity measurements on 12 Hg1201 single-
crystal samples, ranging from strongly underdoped to slightly
overdoped [Fig. 1(a)]. The dataset is that of Ref. [13] with
added new measurements for two samples (UD74 and OD90)
and a slightly improved estimate of effective sample sizes.
The Hg1201 samples were grown and characterized according
to established procedures [27,37]. Briefly, the single crystals
were grown using an encapsulation method, and annealed in
vacuum or oxygen to obtain the desired hole doping level.
The doping level is determined from the value of Tc as ob-
tained from Meissner-Ochsenfeld effect measurements [38].
Resistivity is measured with a standard four-contact technique
in a Quantum Design, Inc., Physical Property Measurement
System (PPMS) using a direct current (with current reversal)
and silver-painted contacts to sputtered gold pads on the
samples. The contact resistance in all studied samples was on
the order of a few ohms.

Following previous work on other cuprate families [3],
we plot the second temperature derivative of the resistivity,
i.e., the resistivity curvature, in dependence on temperature
and doping in Fig. 1(b). The resultant phase diagram shows
all the characteristic features present in other cuprates: two
temperature scales in the underdoped region of the phase
diagram, T ∗ and T ∗∗ [5], that correspond to a deviation
from high-temperature linear behavior and low-temperature
quadratic behavior, respectively [39]; an extended region of
approximately T -linear resistivity around optimal doping; and
a slight positive curvature on the overdoped side of the phase
diagram.

All these features can be understood within the phe-
nomenological model of Ref. [26]. We briefly describe the
model here for completeness (for details, see Ref. [26]).
The model is based on three premises. First, it uses the es-
sentially universal, Fermi-liquid-like transport scattering rate
observed in multiple cuprates [13]. The temperature depen-
dence of the transport scattering rate, as determined from the
cotangent of the Hall angle (i.e., the inverse Hall mobility,
μ−1), is cot(�H ) = ρ/ρxy = C2T 2, with a universal coeffi-
cient C2 throughout the PG, strange-metal, and overdoped
regimes [13,15]. This strongly suggests that the size and shape
of the underlying Fermi surface are fundamentally similar
across the phase diagram (in agreement with angle-resolved
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FIG. 1. Resistivity phase diagram of Hg1201. (a) Raw planar resistivity data for 12 single-crystal samples of Hg1201, marked by their
Tc values; UD, OP, and OV represent underdoped, optimally doped, and overdoped samples, respectively. The band around the UD45 curve
indicates the typical (relative) uncertainty of the absolute resistivity value due to crystal dimensions and contact distance. Data for UD45–UD71
and UD78–OP95 are from Ref. [13], and the data for UD74 and OV90 are new. (b) Experimental and (c) calculated contour plot of the
second temperature derivative (curvature) of the resistivity. The experimental plot is obtained from the data in (a). The resistivity curvature
is normalized by the hole doping p, which is obtained from Tc values [38], and the color scale is the same for (b,c). The symbols in (b)
are the characteristic temperatures T ∗ and T ∗∗ obtained from the data: T ∗ is the temperature below which the resistivity curves depart from
high-temperature linear behavior, whereas T ∗∗ indicates the departure from low-temperature quadratic behavior. The model parameters used
to obtain (c) are listed in Table I.

photoemission spectroscopy (ARPES) data [40]), and that the
scattering process is conventional umklapp electron-electron
scattering that does not considerably change as the insulating
behavior at zero doping is approached. This experimental fact
of a nearly universal scattering rate is a crucial starting point
of the model. The second key ingredient of the model is a
PG-induced change of the itinerant carrier concentration, with
both temperature and doping. Here the main challenge is to
connect the underdoped regime, where the low-temperature
carrier concentration equals the nominal hole doping level
p [13,14], to the overdoped regime, which is known to have
a large Fermi surface with 1 + p carriers per planar CuO2

unit [6,7]. To make this connection, the model assumes the
following. Each CuO2 unit is associated with 1 + p holes, with
p holes always mobile and one hole separated from the Fermi
level by a (doping-dependent) gap �. Essentially, this real-
space gap corresponds to the k-space PG of the underlying
large Fermi surface. The third and final premise is that the gap
is taken to be inhomogeneous in real-space, i.e., to vary from
one CuO2 unit to the next. This is quantified through a gap
distribution function G(�), and the effective density of itiner-
ant carriers peff is obtained in a straightforward manner as the
sum of the density p of doped carriers and a temperature- and
doping-dependent density of delocalized carriers:

peff (p, T ) = p +
∫ ∞

−∞
G(�)e−�/2kT d�, (1)

where k is Boltzmann’s constant. Physically, the localized
states lie below the Fermi level, but we use � with the
opposite sign, i.e., it is positive for states below, and negative
for states above the Fermi level (to avoid the sign inconsis-
tency between the equations and Fig. 1 in Ref. [26]). This
convention makes it easier to keep track of the activation term.
For a calculation of peff (and of all transport coefficients), the
distribution function and its doping dependence need to be
specified. The simplest possible assumption, consistent with
the approximately linear doping dependence of the PG [41],

is that each of the local gaps � decreases linearly with doping
and closes eventually. At that point, the hole is no longer
localized and joins the Fermi sea at T = 0. The function
G(�) will thus contain two parts: a contribution for positive
�, and a delta-function contribution with a weight equal to
the number of unit cells where � = 0 at a given doping
level. To parametrize the gap distribution, we use a skewed
Gaussian of the form g(�) = 2�(α�̃)ϕ(�̃), where ϕ is a
normalized Gaussian distribution, � its cumulative (i.e., the
error function), α the skew parameter, and �̃ = (� − �m)/δ,
with �m the Gaussian mean gap and δ the Gaussian width.
This phenomenological parametrization allows a systematic
investigation of the influence of distribution width and shape.
Using the function g, the gap distribution in (1) becomes

G(�) = g(�)θ (�) + δ(�)
∫ 0

−∞
g(�′)d�′, (2)

where θ (�) is the Heaviside (step) function and δ(�) the
Dirac delta function. The first term represents the planar CuO2

units with localized holes, while the second term describes
those units whose gaps have closed, with the corresponding
holes contributing to the Fermi sea at all temperatures. Fur-
thermore, as noted, we assume that the mean gap depends lin-
early on doping, as �m = �0(1 − p/pc), with �0 the extrap-
olated mean gap at zero doping, and pc the crossover doping
level where the mean gap is zero. As the simplest possibility,
we take the width δ to be doping independent. Therefore,
four parameters uniquely determine the gap distribution and
its doping dependence: �0, pc, δ, and the skew parameter
α. Importantly, three of the parameters are constrained by
various experimental results, as discussed in [26]: �0 is com-
parable to the charge-transfer gap in the undoped compounds,
δ can be inferred from scanning tunneling microscopy (STM)
measurements of local gap distributions, and pc is the doping
level where various spectroscopic probes detect the closing of
the average pseudogap. In addition, the midinfrared peak in
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FIG. 2. Modeling of planar resistivity. Gap distribution func-
tions, resistivity curvature phase diagrams, and representative resis-
tivity curves for three different values of the distribution skew param-
eter: (a–c) α = 0 (pure Gaussian distribution); (d–f) α = 2 (typically
used for comparison with experiment); (g–i) α = 10 (strong skew).
The distributions are shown for p = pc. The crossover doping levels
were adjusted for each distribution to yield the most similar curves
at p = 0.16, and were pc = 0.22 in (a–c), pc = 0.195 in (d–f), and
pc = 0.18 in (g–i). In all panels, the gap distribution width is δ =
700 K and �0 = 4000 K.

the optical conductivity follows the mean gap � with doping
and has a width comparable to δ. For a Fermi liquid, the
(dimensionless) resistivity is simply

ρ(p, T ) = C2

peff (p, T )
T 2. (3)

To obtain resistivity values, we use the universal value
C2 = 0.0175 K−2 from experiment [13,15] and multiply with
the constant H /e (with H the magnetic field used to obtain C2,
which was 9 T for the measurements of Hg1201 Hall mobil-
ity). Notably, the value of C2 is consistent with conventional
electron-electron umklapp scattering estimates for the large
underlying Fermi surface that encloses 1 + p carriers [42,43].
The Fermi surface is partially smeared out by the spatially
inhomogeneous gaps, yet its remnants are still observed in
photoemission experiments at energies below the Fermi level
that correspond to the mean gap scale [40].

Figure 1(c) demonstrates that the model captures the
normal-state phase diagram of Hg1201 up to the highest
measured temperature of 400 K. On the underdoped side,
the gap distribution is far from the Fermi level, so that
at temperatures below T ∗∗, peff = p, and the resistivity is
quadratic in temperature. The roughly T -linear resistivity
regime appears when the gap distribution is close to the Fermi
level, and holes are continuously excited across the local gaps
with increasing temperature. Beyond optimal doping, all the
local gaps eventually close, and the full 1 + p Fermi surface
is established. Yet this does not occur abruptly, due to the

FIG. 3. Resistivity coefficients of Hg1201. Resistivity of the
UD71 sample on (a) linear and (b) quadratic temperature scales,
with characteristic temperatures T ∗ and T ∗∗ and linear and quadratic
slopes (coefficients) A1 and A2. (c) Linear (squares) and quadratic
(circles) resistivity coefficients of Hg1201, obtained by fitting the
data above T ∗ and below T ∗∗, respectively, as in (a,b). The lines are
obtained from the model, with the same parameters as in Fig. 1(c).
The quadratic coefficient is consistent with A2 ∼ 1/p up to about
optimal doping. Note that, in the model, A2 ∼ 1/peff (p, 0), since
the low-temperature asymptotic behavior is always quadratic in
temperature. The model yields A1 without free parameters once A2

is given, and thus correctly captures the absolute value of the ratio
A1/A2. The inset gives peff (p, 0) from Eq. (1) in a wide doping range
and demonstrates the smooth change around pc.

local gap inhomogeneity, but in a continuous manner [13,26].
Importantly, as noted in Ref. [26], the results do not critically
depend on the shape of the distribution. This is also seen
from Fig. 2, which shows the calculated phase diagrams and
representative resistivities for three different values of the
skew parameter. A strong skew pushes the linear-T regime to
lower temperatures, but for p < pc, the resistivity is always
quadratic in the T → 0 limit. We will return to this point
below. The skew might result from, or be amplified by, a
cooperative effect: Since the localization gap derives from
electronic correlations among neighboring unit cells, a spatial
region without localized carriers could induce a collapse of the
gaps in its vicinity. Such an avalanche effect might effectively
introduce a low-energy cutoff in the gap distribution, and
cause a strong skew around and above optimal doping.

For an additional quantitative comparison between the
model and experiment, we extract the low-temperature
quadratic resistivity coefficient, A2, in the regime where ρ =
A2T 2 [T < T ∗∗, red in Figs. 1(b) and 1(c)], and the linear
coefficient, A1, for T > T ∗, similar to previous work [5].
As shown in Fig. 3, the model captures the data well. The
doping dependence of A2 is consistent with A2 ∼ 1/p up
to at least p ∼ 0.13, whereas A1 decreases somewhat more
strongly with doping. Note also that the model correctly
captures the relative magnitudes of A1 and A2, which cannot
be separately adjusted within the calculation. Notably, there
is no enhancement of either A1 or A2 near optimal doping,
neither experimentally [5] nor within the model, inconsistent
with the notion of an underlying quantum-critical point with
fluctuations that significantly affect the itinerant electronic
system [44–47].
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FIG. 4. Resistivity phase diagrams of other cuprate families. (a)
Experimental and (b) model resistivity phase diagram for BSLCO,
and (c) experimental and (d) model phase diagram for YBCO. The
data are from Ref. [3], and the model parameters are listed in
Table I. Experimental resistivity curves are normalized to the values
at 280 K (BSLCO) and 290 K (YBCO); calculated curvatures are
normalized by peff (p, 0). The experimental phase diagrams include
superconducting domes and the corresponding fluctuation regimes,
while the model phase diagrams are limited to the normal state.

III. OTHER CUPRATES

Having demonstrated the success of the phenomenologi-
cal model from a comparison with Hg1201, we turn to the
resistivity phase diagrams for other cuprate families from
Ref. [3]. Figure 4 shows a comparison for Bi2Sr2−zLazCuO6+δ

(BSLCO) and YBCO. A comparison for LSCO was per-
formed in Ref. [26]. The gap distribution parameters for
the four cuprates are summarized in Table I. Notably,
other cuprates exhibit structural complications that are ab-
sent in Hg1201, including orthorhombic distortions (LSCO),
superstructure (bismuth-based cuprates), and Cu-O chains
(YBCO). Nevertheless, measurements of linear and quadratic
resistivity coefficients show a nearly universal evolution with
doping [5]. The modeling bears this out, and gives good
agreement with the respective experimental phase diagrams
with similar gap distribution parameters. Clearly, the model

TABLE I. Gap distribution parameters for six cuprate families.
The parameters for LSCO are from Ref. [26], and the parameters for
Tl2201 and Bi2201 are rough estimates obtained from comparison
with Hall number data only (Fig. 5).

�0 δ pc α

Hg1201 3800 K 700 K 0.197 2
LSCO 3900 K 800 K 0.22 2
BSLCO 4300 K 700 K 0.175 4
YBCO 4500 K 500 K 0.177 2
Tl2201 ∼3700 K ∼700 K ∼0.22 2
Bi2201 ∼3500 K ∼1000 K ∼0.2 2

FIG. 5. Doping dependence of the carrier density for (a) Tl2201
and (b) Bi2201, demonstrating the smooth crossover from p to 1 + p
across optimal doping. Data are from Ref. [49], and the curves are
obtained from the model using the estimated parameters listed in
Table I. Note that the curves are not fits (since, especially in the
case of Bi2201, the fitting procedure would be unreliable), and a
variation of roughly ±10% in the gap distribution parameters would
not change the agreement much.

with a skewed Gaussian gap distribution has enough flexibility
to account for material-specific differences, while success-
fully capturing the universal features of the phase diagram.
The gap distribution parameters for the different families
are similar, with a somewhat smaller distribution width for
YBCO. This points to a universal underlying mechanism of
gap inhomogeneity, which appears to be inherent to these
lamellar perovskite-related oxides and at best weakly related
to doping-induced disorder. Namely, LSCO and BSLCO are
substitutionally doped, whereas Hg1201 and YBCO are doped
with interstitial oxygen, with widely different levels of point
disorder that affects the CuO2 planes [48].

In addition to the resistivity data, recent measurements of
the Hall number in overdoped cuprates [49] permit a direct
comparison with the effective carrier density in our model,
under the reasonable assumption that the Hall number is a
good measure of carrier density for cuprates with simple
Fermi surface geometries [13]. Figure 5 shows the low-
temperature Hall number data for Tl2Ba2CuO6+δ (Tl2201)
and Bi2Sr2CuO6+δ (Bi2201) from Ref. [49], together with the
calculated peff using gap distribution parameters very similar
to the other cuprates (see Table I). The good agreement sup-
ports a key feature of the model—the gradual closing of local
gaps with increasing doping, as opposed to a quantum-critical
point.

IV. DISCUSSION

The phenomenological model of Ref. [26] is simple, yet it
provides remarkable agreement with experiments. While this
points to a significant degree of universality in the physics of
the cuprates, it is also important to discuss the limits of the
model and its possible future extensions. First, we note that
the agreement with experiment is best on the underdoped side
of the phase diagram, where the mean gap scale is relatively
large; this is understandable, since there the details of the gap
distribution function are least important, and the Fermi surface
(the Fermi arcs) is relatively simple. Around optimal doping,
the model yields approximately linear-T resistivity due to a
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temperature-dependent carrier density, as further discussed
below. Yet there exists no doping level where the resistivity
is strictly linear; equivalently, the negative-curvature region
is wedge-shaped in the phase diagram, without a vertical
zero-curvature line. This is in qualitative agreement with
data for most cuprate families (especially YBCO, Figs. 4(c)
and 4(d), and LSCO [26]), yet the high-temperature zero-
curvature lines are typically steeper in the experimental phase
diagrams. Within the phenomenological model framework,
such an effect can be obtained, e.g., by allowing for a mild
temperature dependence of the gap distribution parameters.
Physically, this is reasonable, since the gaps (and distribution
widths) certainly depend on the delocalized carrier density,
which in turn strongly depends on temperature around optimal
doping. A self-consistent model for the gap distribution pa-
rameters would likely yield better agreement with experiment,
and the temperature dependence of the parameters should
furthermore play a role in determining Tc as well. Therefore,
the assumptions of a constant gap distribution width and a
mean gap that is linear in doping are oversimplifications. We
note though that this simplification was deliberate [26]: the
aim was to pursue an Occam’s razor approach, i.e., to capture
the essential behaviors of the cuprates with the smallest set of
assumptions, where possible small corrections are not taken
into account.

More broadly, the interaction between the localized and
delocalized components likely plays an important role when-
ever the relevant localization scales are small compared to the
thermal energy, and including these interactions could be an
interesting next step. Such effects are likely most important on
the overdoped side of the phase diagram; e.g., in the Tl-based
cuprates, a nontrivial temperature dependence of both resistiv-
ity and Hall number has been observed, including a shallow
minimum in the Hall number, but with the mobility always
proportional to T 2 [50]. Such subtle effects cannot be captured
within the simple phenomenological model [26], and will
probably require a better understanding of the microscopics of
the hole-localization process. Namely, the model effectively
treats the localization gap as a single-particle property, yet
realistically the process involves electronic correlations over
several unit cells. This likely leads to a temperature-dependent
minimum size of localized clusters, and a complex interplay
between thermal and correlation effects. Overdoped cuprates
show other complications as well—the Fermi surfaces of the
Bi- and La-based compounds undergo a Lifshitz transition
beyond optimal doping, with an associated peak in the density
of states. The nontrivial evolution of the Fermi surface should
affect both the doping and temperature dependences of all
transport coefficients, including the Hall number and mobil-
ity [13,51], since these observables are weighted averages
over the Fermi surface. The most dramatic example is the
transition from a holelike to an electronlike Fermi surface
in LSCO, which leads to a carrier density of 1 − p instead
of 1 + p at high doping. The model implicitly assumes a
doping-independent Fermi surface shape, and thus cannot
capture such effects without further refinement. Finally, the
assumption of a universal Fermi-liquid-like carrier mobility is
not correct in some parts of the phase diagram. One example
is the downturn in the Hall number observed below optimal
doping as a result of incipient Fermi-surface reconstruction

associated with charge-density-wave (CDW) order. This ef-
fect is fairly weak in the temperature range relevant to our
modeling, and it is more clearly visible at temperatures below
Tc, once superconductivity is suppressed with a strong c-
axis magnetic field, as discussed further below. Moreover,
both the resistivity and the Hall mobility change signifi-
cantly close to Tc due to superconducting precursor effects,
which are not included in the modeling. Mixed CDW and
superconducting correlations are also a possibility and may
lead to filamentary fluctuations [52]. The superconducting
precursor regime leads to an additional inflection point in the
resistivity curvature phase diagram, which makes it somewhat
difficult to discern the linear-T regime close to optimal doping
[Fig. 1(b)].

Another important point is the absolute value of the re-
sistivity, which can be fairly high compared to “good” met-
als. Although it is often suggested that the cuprates exceed
the semiclassical Mott-Ioffe-Regel limit for coherent charge
transport, arguments have been put forward that the relevant
limit is in fact significantly higher due to electronic cor-
relations [5,13,53]. However, the high resistivity values at
moderate and low doping are mainly the result of a low charge
density (with an underlying large Fermi surface), whereas
the room-temperature Hall mobility of the cuprates such as
Hg1201 is comparable to that of ordinary metals such as
aluminum [13]. We note that there is indeed experimental evi-
dence for an approach to resistivity saturation, e.g., in strongly
underdoped LSCO at high temperatures [2,53]. Naturally, at
high enough temperatures, the premises of our model break
down, in at least two possible ways: (i) additional scattering
mechanisms, such as coupling to optic phonons, will modify
the simple T 2 scattering rate; (ii) the resistivity values will
approach saturation, yet at a significantly higher level than the
semiclassical Mott-Ioffe-Regel limit [53]. However, since the
available Hall mobility data up to 400 K show no evidence
for these deviations, there is no need to include them in the
model.

Even in its simplest form, the phenomenological model of
Ref. [26] provides a reasonably good explanation of the linear-
T behavior near optimal doping, perhaps the most unusual
transport feature of the cuprates. This warrants further discus-
sion in light of an often-invoked quantum-critical fluctuation
scenario for the cuprate phase diagram. The approximately
linear-T resistivity is obtained in the model by forgoing the
common assumption that the resistivity temperature depen-
dence is solely determined by the scattering rate. This assump-
tion is especially far reaching in the T -linear region, since a
T -linear scattering rate is often interpreted as being indicative
of quantum-critical fluctuations [1,47]. Yet this is clearly
incompatible with the experimentally determined underlying
universal Hall mobility [13,15]. Despite suggestions (e.g.,
based on optical conductivity results [54]) that the scattering
rate changes across T ∗, there is no evidence of such behavior
in the Hall mobility data [13,15], and we take the latter as
relevant for modeling transport. The Hall mobility involves
the ratio of the transport lifetime and effective mass, and it is
in principle possible that their doping and temperature depen-
dences conspire to give universal T 2 behavior. This is highly
unlikely, however, as it would require a remarkable level of
fine-tuning across the whole phase diagram [13,15]. Notably,
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optical experiments suggest a doping-independent effective
Drude mass in several cuprates [10]. Furthermore, exquisite
measurements of the superfluid density of LSCO do not show
any anomalies that could be associated with an increased
effective mass of the superconducting carriers around p ∼ 0.2
in zero magnetic field [55]. In contrast, quantum oscillation
studies of the Fermi surface in high magnetic fields show
evidence for effective mass changes with doping [56]. Yet
it seems likely that the high-field state with a reconstructed
Fermi surface is related to CDW order and qualitatively
different from the zero-field normal state [29,57,58], since
there exist no appreciable CDW-related features in the zero-
and low-field resistivity phase diagrams (see also below).
A recent specific-heat study of codoped La-based cuprates
argues for an increased Sommerfeld coefficient, and therefore
an increased carrier effective mass, around a critical doping
level [44]. However, both the itinerant and localized subsys-
tems ought to contribute to the specific heat. Regarding the
itinerant subsystem, careful consideration of the Van Hove
singularity at the Fermi level in the La-based cuprates is
warranted [59]. One would also expect an increase of the low-
temperature effective Sommerfeld coefficient in the doping
range where the localization gap structure crosses the Fermi
level, since in this range holes can be continuously thermally
excited across the local gaps.

If the scattering rate is simply quadratic in temperature
and the effective mass essentially constant, the nontrivial
behavior of the resistivity is due to a temperature-dependent
carrier density, as indeed supported by the modeling. Notably,
this argument has been used in previous work to model the
transport coefficients of underdoped cuprates [14,60,61], and
it is consistent with Hall-effect measurements [13,14,62,63].
We emphasize though that the scattering rate in our model
remains quadratic throughout the phase diagram, and in the
limit of zero temperature, the resistivity is quadratic as well.
This is in stark contrast to the quantum phase transition
scenario [1,44,47], in which the linear-T resistivity originates
from scattering off quantum fluctuations near a critical point.
In this scenario, the zero-temperature limit of the resistivity
is linear, with possible deviations at higher temperatures and
away from the putative quantum-critical doping level [46];
furthermore, the anomalous scattering mechanism should
cause the coefficients A1 and A2 to peak around the critical
doping, which is not observed for Hg1201 (Fig. 3) or other
cuprates [5]. In the cuprates, it is notoriously difficult to
determine the true low-temperature normal-state behavior,
because of the extremely high magnetic fields needed to
completely suppress superconductivity and the possibility
of a field-induced modification of the normal state [4,64].
For compounds with lower critical fields, such as Nd-doped
LSCO, there have been reports of low-temperature linear-T
resistivity and constant Hall mobility [45]; yet we empha-
size that these compounds are structurally and electronically
complex, with several low-temperature structural transitions
that involve soft phonons [65], structural instabilities [66],
and high residual resistivities [3,45]. Moreover, a recent NMR
investigation uncovered a field-induced spin-glass state in
LSCO up to optimal doping whose disappearance coincides
with the vanishing of low-temperature resistivity upturns [67].
It is likely that this nonuniversal glassy state influences both

low-temperature transport coefficients [12,15] and specific
heat in experiments where Tc is suppressed with magnetic
fields [67], and that the (nonuniversal) short-range spin cor-
relations might be closely related to the inhomogeneity that
underpins our model. Importantly, however, our focus is on
the gross features of the phase diagram, up to the compar-
atively high-temperature/energy scale relevant to the high-Tc

phenomenon that can clearly be understood without invoking
quantum criticality. We also note that, for YBCO [3] and
Hg1201 [Fig. 1(a)], the low-temperature resistivity cannot be
linear in temperature (with the same slope as at high temper-
ature) around optimal doping. Namely, if one extrapolates the
linear dependence above Tc to T = 0, one finds a negative
residual resistivity, which implies that the underlying normal-
state resistivity must have curvature at low temperatures (in
the hypothetical absence of superconductivity). Both YBCO
and Hg1201 feature relatively small residual resistivities [3,5]
due to the relatively gentle effects of oxygen doping [48],
which has enabled the observation of quantum oscillations in
underdoped samples [28,29,68]. Yet the same argument can-
not be made for LSCO or BSLCO, where point disorder due
to substitutional doping induces large residual resistivities at
all doping levels [3,4] and resistivity upturns for underdoped
samples [3,15,69]. Importantly, in the doping range of the
present study, there is no evidence for a doping-dependent
zero-field effective mass, and hence the linear resistivity co-
efficient is inconsistent with the recent assertion of a univer-
sal “Planckian dissipation limit” [70]. This is the case not
only for Hg1201, but also for the other cuprates analyzed
here.

As mentioned, the resistivity phase diagram is rather in-
sensitive to the different electronic ordering phenomena in
underdoped cuprates, most importantly weak CDW order [1].
Quasistatic two-dimensional CDW correlations with short
coherence lengths and small amplitudes have been mapped as
a function of doping and temperature in, e.g., YBCO [71,72]
and Hg1201 [57,58,73] via resonant x-ray scattering and
pump-probe optical experiments, and found to be strongest
in the underdoped part of the phase diagram (around p ∼
0.12 and p ∼ 0.09, respectively, for YBCO and Hg1201).
In addition, dynamic CDW correlations are present in a
wide doping/temperature range [73–75]. Yet no particular
features related to the characteristic CDW temperatures are
seen in the normal-state resistivity phase diagrams considered
in the present work, and only modest downturns are visible
in the low-field Hall constant above Tc around p ∼ 0.1 in
Hg1201 [13] and other cuprates [14,76] (compared to the
substantial effect in high-field Hall data [77] at temperatures
below the zero-field Tc that is associated with a reconstructed
Fermi surface). This indicates that the CDW-induced Fermi-
surface reconstruction [29,78] is a secondary, emergent phe-
nomenon that only occurs in high magnetic fields and at
temperatures below the zero-field Tc.

Notably, the mean gap scale �m is also seen in photoemis-
sion and tunneling experiments [26,41], and it manifests itself
as a broad peak in the optical conductivity, detected in several
representative cuprate families [13,26,79,80]. It is the highest
intrinsic gap scale in a hierarchy of (pseudo)gaps observed by
different experimental probes in underdoped cuprates [26,41].
While firmly rooted in experiment, the model tested here is
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phenomenological in nature and does not give microscopic
insight into the origin of the local gap, its doping dependence,
or the gap distribution function. The model uses the simplest
possible assumptions for the mean gap and distribution width
doping dependences, which in reality may be somewhat dif-
ferent, especially for strongly underdoped compounds close
to the insulating phase [26]. The inhomogeneous gap can be
interpreted as a localization gap, induced by strong electronic
correlations. Accordingly, the extrapolated mean gap at zero
doping is within a factor of 2 of the transport charge-transfer
gap [14]; this discrepancy can be remedied if a nonlinear
gap dependence on doping is used [26]. The localization gap
scale decreases relatively slowly with doping, compared to
simple Mott insulators such as doped LaTiO3 [81]. This is
most likely a consequence of the two-component electronic
subsystem, which might be viewed as orbital-selective Mott
physics [82–84]. Clearly, any underlying microscopic theory
must include real-space inhomogeneity from the onset. In
this vein, we note that an early inhomogeneous Hartree-
Fock plus random phase approximation calculation related
the midinfrared feature seen in optical conductivity to Cu
d9 hole delocalization and polaron formation in underdoped
LSCO [85].

The good agreement with the experimental resistivity
phase diagrams, using a doping-independent gap distribution
width, is consistent with the finding of gap disorder in STM
experiments [8,19,86–88]. In principle, this intrinsic inhomo-
geneity could be of electronic origin; e.g., it has long been
argued that doped Mott insulators should generically exhibit
phase separation and spatial modulation of charge [89,90].
However, it is a distinct possibility that the inhomogeneity
has an inherently structural origin. Namely, materials with
perovskite or perovskite-derived structure are known to be
prone to both long- and short-range structural instabilities and
texturing [34,36,91]. The basic structural building blocks of
the cuprates, the copper-oxygen octahedra (or tetrahedra in
some compounds), can distort in multiple ways, which gener-
ally leads to low-symmetry average structure in most cuprates,
Hg1201 being a notable exception. Yet strain accommodation
can also lead to short-range correlated structural disorder,
i.e., bond-length and angle modulations, even in crystals with
high average symmetry [92]. Due to the long-range nature
of elastic forces, such correlations can span multiple length
scales, leading to intricate structural features [34]. The bond
angles and lengths couple directly to the parameters of the
electronic Hamiltonian, and hence local structural distortions
should be expected to profoundly influence the electronic
system in a nonlinear fashion. The effects of such intrinsic
inhomogeneity on superconducting fluctuations have recently
been documented in cuprates through resistivity, nonlinear
response, and torque magnetization experiments, which reveal
a universal percolative regime [93–95]. The disappearance of
superconductivity at high doping in LSCO is also consistent
with a percolative scenario [26]. Similar superconducting fluc-
tuation physics was also found more broadly in perovskite-
based materials [96], which demonstrates a profound relation
between structure and electronic inhomogeneity. It is hence to
be expected that the cuprate normal state is affected as well.
Through a coupling of localized holes to the lattice, subtle
inhomogeneity in bond angles and distances can induce a

localization gap distribution, which could also be amplified by
the tendency of the electronic system toward inhomogeneity.
This conclusion is supported by the observations that the
tetragonal-to-orthorhombic structural transition in LSCO [97]
corresponds to ∼100% localization of one hole per unit
cell [26] and that inversion symmetry in YBCO is broken
in a similar temperature/doping range [98]. Importantly, the
dichotomy between the localized and itinerant subsystems is
reflected in a sensitivity of the antinodal states to inhomogene-
ity, whereas the itinerant, nodal states are largely unaffected.
This is an interesting and unusual feature of the cuprates, and
its understanding will likely underpin the microscopic picture
of our model.

V. SUMMARY

We have presented a comprehensive resistivity curvature
phase diagram for the simple-tetragonal cuprate Hg1201 and
used this to test a recent phenomenological model for the
normal state in a quantitative fashion. The model employs a
renormalized gap scale that is linked to the charge-transfer
gap of the undoped insulating state, and that constitutes the
largest pseudogap scale at nonzero doping. Importantly, one
of the key assumptions of the model—that local (pseudo)gaps
close at different temperatures and doping levels—is upheld
in a comparison to Hall number data. This seems to rule out
a quantum phase transition scenario for the cuprate phase
diagram, where the Fermi surface would abruptly change at
a critical doping level. Instead, the change in carrier density
is gradual, both with doping and temperature, due to the
inhomogeneous local gaps. Furthermore, we have demon-
strated that the model is remarkably successful in reproducing
the phase diagrams of other cuprate families as well, with
nearly universal parameters. This universality implies that the
considerable gap distribution is an inherent characteristic of
the CuO2 planes, and quite insensitive to the details of the
crystal structure or doping method. On the other hand, the
differences in model parameters (in particular the distribution
widths) could provide important clues to the precise origin
of the inhomogeneity, when combined with experiments that
probe the local electronic structure.
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