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The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double
spin asymmetries, ALL, for charged pions at midrapidity (jηj < 0.35) in longitudinally polarized pþ p
collisions at

ffiffiffi

s
p ¼ 510 GeV. These measurements are sensitive to the gluon spin contribution to the total

spin of the proton in the parton momentum fraction x range between 0.04 and 0.09. One can infer the sign
of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are
found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at
ffiffiffi

s
p ¼ 200 GeV, which show a nonzero positive contribution of gluon spin to the proton spin.

DOI: 10.1103/PhysRevD.102.032001

I. INTRODUCTION

The spin of the proton is known to be ℏ=2, yet its
decomposition in terms of its constituents, quarks and
gluons, is not very well known. Initially, the fixed-target
deep-inelastic scattering (DIS) experiments measured
the polarized structure function, g1ðx;Q2Þ, where x is the
parton momentum fraction of the proton and Q2 is the
momentum transfer squared, enabling the reconstruction of
the quark spin contributions, ΔΣðx;Q2Þ, with the help of
weak and hyperon decay constants. Early measurements
found this contribution to be substantially smaller than
expected [1], leading to the so-called spin crisis. In addition
to the quark spins, gluon spins as well as the constituents’
orbital angular momenta can contribute to the spin sum rule

[2]. Because DIS at low to moderate energies essentially
couples through the electromagnetic interaction, it is most
sensitive to the quark spin contributions and the gluon spin
only enters via scaling violations.
In contrast, in polarized pþ p collisions, for example at

the Relativistic Heavy Ion Collider (RHIC), the dominant
hard interaction happens via the strong interaction. Therefore,
for midrapidity (jηj < 0.35) hadronic or jet final states with
small to intermediate energies, quark-gluon and gluon-gluon
interactions are the dominant processes. Consequently, longi-
tudinal-double-spin asymmetries, ALL, are sensitive to the
gluon-spin contribution to the proton, Δgðx;Q2Þ. The RHIC
jet [3] and neutral pion asymmetry measurements [4] at a
center-of-mass energy,

ffiffiffi

s
p

, of 200 GeV resulted in the first
indication of a nonzerogluon-spin contribution to the nucleon
spin when the jet and neutral-pion datawas analyzed together
with the DIS and semi-inclusive DIS results in a global
analysis [5,6]. Subsequently, various measurements at a
higher collision energy of 510 GeV have confirmed this
nonzero gluon polarization [7–10] and those combined with
results at

ffiffiffi

s
p ¼ 200 GeV [11] have extended the parton

momentum fraction x coverage to lower values of approx-
imately 10−3.
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While the global fits clearly prefer a positive gluon
polarization in the probed x range, another direct exper-
imental confirmation would be helpful. The addition of
charged pion asymmetries with the help of different
fragmentation of up and down quarks [12] into π� provides
this possibility. Because up and down quark polarizations
are reasonably well known, the ordering of the positive,
neutral and negative pion asymmetries immediately
informs about the sign of the gluon spin. A positive gluon
spin, coupled with the positive up quark polarization and
negative down quark polarization would result in πþ

asymmetries to be the largest, followed by π0 and, then,
π−. The charge-separated pion asymmetry results at
ffiffiffi

s
p ¼ 200 GeV have already been published [13].
In this paper, we report the charged pion longitudinal

double spin asymmetries at
ffiffiffi

s
p ¼ 510 GeV that were

extracted by the PHENIX experiment at midrapidity. The
paper is organized as follows. In Sec. II, the PHENIX
experiment and the detector components relevant for this
result are described. In Sec. III, the analysis procedure for
extracted charged pions and their double spin asymmetries at
midrapidity is discussed. In Sec. IV, the results are presented.
The summary is given in Sec. V.

II. EXPERIMENTAL SETUP

In 2013, the PHENIX experiment at RHIC collected
data from longitudinally polarized pþ p collisions at
ffiffiffi

s
p ¼ 510 GeV with an average polarization of 0.55
and 0.56 for the clockwise (blue) and counterclockwise
(yellow) beams, respectively. An integrated luminosity of
108 pb−1 was sampled for charged-pion asymmetry mea-
surements at midrapidity.
The PHENIX detector is described in detail in Ref. [14].

Each of two nearly back-to-back arms of the central
spectrometer covers a rapidity range jηj < 0.35 and an
azimuthal range of Δϕ ¼ π

2
. The PHENIX detector ele-

ments used in this analysis include the drift chambers (DC),
the pad chambers (PC), the ring imaging Čerenkov (RICH)
detector and the electromagnetic calorimeters (EMCal).
The RICH, filled with CO2 gas radiator, is used for
charged-pion identification. The EMCal comprises two
different types of calorimeters. Six sectors are constructed
with lead-scintillator (PbSc) towers in sampling configu-
ration with depth of 0.85 interaction lengths. Two sectors
are made of lead-glass towers with a depth of 1.05 nuclear
interaction lengths. Because the events sampled for this
analysis are triggered via energy deposit thresholds, only
the fraction of pions that shower in the EMCal are
available. Analysis is limited to the PbSc-triggered events,
because the higher-energy thresholds result in lower back-
ground fractions than in the lead-glass towers. Charged
particle tracks are reconstructed with the DC and PC
tracking system. These detectors also provide the momen-
tum information of the tracks. A match between a projected

track onto the EMCal and the location of deposited energy
is required to veto charged tracks with mis-reconstructed
momenta. The silicon-vertex detector surrounds the beam
pipe with layers at nominal radii 2.6, 5.1, 11.8, 16.7 cm
with an acceptance of jηj < 1 and Δϕ ¼ 0.8π. The total
material budget is 0.13 radiation lengths and the detector
was not in operation in 2013. This created a large source of
electron background from conversions of direct and decay
photons.
Additionally, two sets of 64 quartz-crystal radiators

attached to photomultipliers located at z positions of
�144 cm and rapidities between 3.1 to 3.9 were used to
trigger hard collision events and to select events within
�30 cm of the collision vertex in the asymmetry analysis.
These beam-beam counters and the zero-degree calorim-
eters were used together to evaluate the luminosities seen
by the PHENIX detector. The zero-degree calorimeters,
comprising three sections of a hadronic calorimeter located
at�18 m from the PHENIX interaction point, are also used
to monitor the polarization orientation and confirm that the
polarization direction of the beams has been rotated to the
longitudinal direction.

III. ANALYSIS PROCEDURE

A. Dataset and triggers

The 2013 detector configuration was similar to the
published results at

ffiffiffi

s
p ¼ 200 GeV [13] in 2009, except

that the hadron-blind detector was no longer installed. Due
to the higher collision energy and collision rates in 2013, the
energy thresholds of the EMCal triggers were increased by a
factor of ≈2–3 compared to in 2009 and events were
triggered by particles leaving at least 2.2, 3.7, 4.7 or
5.6 GeV energy deposits in the EMCal for the various
trigger types. The lower energy threshold triggers were
prescaled such that only a fraction of events satisfying
the trigger requirements was recorded. A logical OR of all
these triggers (i.e. if any trigger condition was met) was
used for the transverse momentum bins in the range
5 GeV=c < pT < 11 GeV=c, where the less prescaled
higher threshold triggers are dominant. To minimize the
background contribution for the highest transverse momen-
tum bin (11 GeV=c < pT < 15 GeV=c), the 2.2 GeV
threshold trigger was not used. The trigger efficiency curves
as a function of transversemomentumwith energy threshold
of 3.7 GeV for the PbSc are displayed in Fig. 1 for π�
candidateswhere also a preselection cut on the ratio between
cluster energy to reconstructed momentum (E=p, to be
described in detail below) was already applied. High pT
charged pions punch through the EMCal with approxi-
mately a 50% chance, depositing only a small fraction of
their energy corresponding to the minimum-ionizing par-
ticles (MIPs) at ≈0.3 GeV due to their low probability of
nuclear interactions in the detector. The preselection cuts for
π� are blind to theMIP interactions and consequently result
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in higher trigger efficiencies than for the casewhere all types
of interactions are taken into account. Nonetheless, this
analysis does not include MIPs, and the approach properly
takes into account the pT dependence of trigger efficiency
after applying preselection cuts.

B. Charged pion identification and
background estimation

In addition to the trigger, a matching track in the drift
chamber is required to be pointing to the EMCal tower that
fired the trigger. The transverse momentum of the particle is
determined by the bending of the track in the magnetic field
before the DC. In addition, the reconstructed tracks are
required to fire more than one photomultiplier by Čerenkov
light in the RICH. The threshold for pions is around
4.9 GeV and until the kaon threshold of 17.3 GeV is
reached the RICH fires only for pions and electrons (muons
are not dominant and are already eliminated by the energy
cut from the high energy threshold of trigger). To remove
electrons as well as accidental track-EMCal cluster coin-
cidences, the ratio between cluster energy and track
momentum (E=p) is required to be larger than 0.2 and
smaller than 0.8, taking into account that most pions do not
deposit all their energy in the electromagnetic calorimeter
in contrast to electrons.
For the further rejection of electron background from the

charged pion candidates, the probability that a cluster has

developed via electromagnetic shower processes (shower
shape) was determined from fitting the well understood
electromagnetic shower shape in the EMCal to the cluster in
question. The shower shape probability was required to be
less than 0.1. The succession of the selection criteria on the
raw charged particle spectra can be seen in Fig. 2. A clear
bump can be seen once the momentum is large enough for
pions to emit Čerenkov light. The contribution at momenta
below the bump indicates remaining electrons and
other accidental coincidences. After applying electron rejec-
tion cuts, their contributions are substantially reduced
(≈0.01–0.085). The remaining background in the higher
transverse momentum range is studied with full MC simu-
lations using PYTHIA [15] as event generator andGEANT3 [16]
for the detector description. Figure 3 shows that at low
transverse momenta below 5 GeV=c the distribution is
dominated by electrons, accidental pion coincidences, and
(to a smaller extent) kaons and protons. At higher transverse
momenta, electrons are the dominant background, which is
small compared to pion signals until the RICH hit require-
ment becomes fulfilled by kaons as well. The simulated
contributions describe reasonably well both the signal-
dominated region at higher transverse momenta and the
background-dominated region below 5 GeV=c.
The relative size of pion signal and electron backgrounds

is then further compared with data by studying the full E=p
range including the electron peak at ratios around unity
where it is quite prominent. Based on this comparison, as
seen in Fig. 4, the nonpion background is found to be below
a few percent. A Gaussian function for the electron peak
and an error function for the pion signal are fit to the E=p
distribution in each pT bin. The extracted parameter of the
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Gaussian was used to scale the electron background from
the simulation. As the background level was found to be
small, the scaling factor was varied by a factor of 2 in the
background corrected asymmetries, variation was assigned
as systematic uncertainty and the effect of the scale
variation found to be small.

C. Asymmetry analysis

The selected pions are then separated by a spin pattern,
which determines whether the protons collided with the
same or opposite helicities. These asymmetries are nor-
malized for the fluctuations in luminosity from the bunch
crossings with the same (þþ) helicity and opposite (þ−)
helicity, known as relative luminosity, R ¼ Lþþ=Lþ−

(≈1.002):

ALL ¼ 1

PBPY

Nþþ − RNþ−

Nþþ þ RNþ− ; ð1Þ

where PB and PY are the average beam polarizations for the
blue and yellow beam, respectively, and N is the number of
charged pions from the bunch crossings with the same and
opposite helicities.
In 2013, nominal beam fills from injection to dump of

beams at RHIC lasted eight hours. The PHENIX DAQ
system collected data in runs within the fill. Because the
prescale of the trigger as well as the polarization values,

which were calculated by the initial polarization and the
rate of decrease of polarization as a function of time,
changed on a run-by-run basis, the analysis is carried out
separately for each run. The asymmetries are calculated for
each run and each transverse momentum bin and are fit by a
constant over all runs. During the 2013 RHIC running
period the average beam polarizations PB and PY were
0.55� 0.02 and 0.56� 0.02 for blue and yellow beams,
respectively [17].
During the data-taking 16 different spin pattern combi-

nations for the two beams were utilized to minimize
systematic effects. These several patterns were found to
provide consistent asymmetries, based on T-tests between
them, and therefore no systematic uncertainty was assigned
due to the different patterns.
To test for other potential systematic effects, the asym-

metry calculation is repeated many times with randomized
spin patterns for each run. The resulting asymmetry
distributions for all iterations peak around zero with a
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Gaussian width given by the statistical uncertainties and the
corresponding χ2=n:d:f: distributions of the fits center
around unity.
Other systematic uncertainties include a global scale

uncertainty of 6.5% due to the accuracy of the beam
polarization determination [17] and the transverse compo-
nent of the beams, which has been found to be negligible
for the double longitudinal spin asymmetries. The uncer-
tainty on the asymmetries based on the relative luminosity
extraction is δALL ¼ 3.8 × 10−4.
The momentum scale uncertainty of the hadron trans-

verse momentum has also been taken into account, but
given the size of the transverse momentum bins used for the
asymmetries, bin migration is minimal. The nonpion back-
ground has also been considered based on the background
yields evaluated by comparing MC with data. The back-
ground asymmetry is estimated based on an electron
enhanced data sample, which is found to be consistent
with zero. The systematic uncertainty from the background
asymmetry is evaluated by varying the background fraction
after taking into account the evaluated background asym-
metry mentioned above. These systematic uncertainties
range from 2 × 10−5 to 10−3.

IV. RESULTS

The resulting final double spin asymmetries are dis-
played in Fig. 5 as a function of transverse momentum for
positive and negative pions and compared to the previously
published neutral pions. As can be seen, the results are
consistent with the DSSV [5] fit that has considered only
the 200 GeV data but not the 510 GeV data. Due to the
large statistical uncertainties, the sign of the gluon polari-
zation in the probed x region cannot directly be inferred
from the ordering of the asymmetries for the three charges.
However, it was found that the present results are consistent
with the positive gluon polarization from the global fits.
The reason for the comparatively low statistics for charged
pions compared to neutral pions is the trigger requirement
of having substantial energy deposited in the electromag-
netic calorimeter, which happens only for a small fraction
of charged pions.
In addition, one can also compare these data to the

previously published measurements of charged pions at
ffiffiffi

s
p ¼ 200 GeV. They are complementary because the
hadrons detected at the same transverse momenta but at
different center-of-mass energies probe a different momen-
tum fraction region. Therefore, the exact same measure-
ment at higher collision energy of

ffiffiffi

s
p ¼ 510 GeV probes a

lower value of x than what was possible with the previously
published data at

ffiffiffi

s
p ¼ 200 GeV. While the experimen-

tally measured transverse momentum contains a convolu-
tion of x for both partons and the momentum fraction z
from the fragmentation process, the variable xT ¼ 2pT=

ffiffiffi

s
p

can act as a proxy for the x ranges probed. Figure 6 shows

the measurements at 200 and 510 GeVand one can see the
substantially lower xT reach. Based on PYTHIA [15]
simulations of charged pions in the rapidity range and
transverse momentum ranges probed in this publication,
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mean x values of ≈0.04–0.09 can be accessed. Despite the
limited statistical precision, this additional information at
lower x will improve global fits of the gluon polarization
when this data is included. The asymmetries are tabulated
in Table I.

V. SUMMARY

In summary, PHENIX has measured the charged
pion double spin asymmetries at midrapidity (jηj < 0.35)
in longitudinally polarized pþ p collisions at

ffiffiffi

s
p ¼

510 GeV. These measurements are sensitive to the gluon
spin contribution to the total spin of the proton in x
range ≈0.04–0.09. The asymmetries are found to be
consistent with global fits that have included only
200 GeV RHIC data, and a nonzero, positive gluon
polarization in the x region probed by RHIC has been
found. In the proposed sPHENIX experiment [18], the
hadronic calorimeter will greatly enhance triggering effi-
ciency for charged hadrons and, therefore, significantly
improve the statistical precision for charged pion measure-
ments and make such direct evaluation of the gluon spin
contribution possible.
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