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The elliptic flow (v2) of (anti-)3He is measured in Pb–Pb collisions at √sNN = 5.02 TeV in the transverse-
momentum (pT) range of 2–6 GeV/c for the centrality classes 0–20%, 20–40%, and 40–60% using the 
event-plane method. This measurement is compared to that of pions, kaons, and protons at the same 
center-of-mass energy. A clear mass ordering is observed at low pT, as expected from relativistic 
hydrodynamics. The violation of the scaling of v2 with the number of constituent quarks at low pT, 
already observed for identified hadrons and deuterons at LHC energies, is confirmed also for (anti-)3He. 
The elliptic flow of (anti-)3He is underestimated by the Blast-Wave model and overestimated by a simple 
coalescence approach based on nucleon scaling. The elliptic flow of (anti-)3He measured in the centrality 
classes 0–20% and 20–40% is well described by a more sophisticated coalescence model where the phase-
space distributions of protons and neutrons are generated using the iEBE-VISHNU hybrid model with 
AMPT initial conditions.

© 2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The primary goal of studying ultra-relativistic heavy-ion colli-
sions is to investigate the properties of the Quark–Gluon Plasma 
(QGP), a phase of matter made of deconfined quarks and gluons, 
which is created under extreme conditions of high temperature 
and energy density. At the Large Hadron Collider (LHC), the QGP 
can be studied in a region of the phase diagram where a cross-over 
transition from the deconfined phase to ordinary nuclear matter is 
expected based on Quantum Chromodynamics (QCD) calculations 
on the lattice [1–3].

In ultra-relativistic heavy-ion collisions, light nuclei, hypernu-
clei, and their antiparticles are produced in addition to other par-
ticle species. The production mechanism of these loosely bound 
composite objects in heavy-ion collisions is not clear and is still 
under debate. Two phenomenological models are typically used to 
describe the light (anti-)(hyper-)nuclei production: the statistical 
hadronization model [4–9] and the coalescence approach [10–13]. 
In the former, light nuclei are assumed to be emitted by a source 
in local thermal and hadrochemical equilibrium and their abun-
dances are fixed at chemical freeze-out. This model reproduces the 
light-flavored hadron yields measured in central nucleus–nucleus 
collisions, including those of (anti-)nuclei and (anti-)hypernuclei 
[4]. However, the detailed mechanism of hadron production and 
the explanation of the propagation of loosely-bound states through 
the hadron gas phase without a significant reduction in their yields 
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are not addressed by this model. It has been conjectured that such 
objects could be produced at the phase transition as compact col-
orless quark clusters which are expected to interact little with the 
surrounding matter [8]. In the coalescence approach, light nuclei 
are assumed to be formed by the coalescence of protons and neu-
trons which are close in phase-space at kinetic freeze-out [11]. In 
the simple version of this model, nucleons are treated as point-like 
particles and the coalescence process is assumed to happen if the 
difference between their momenta is smaller than a given thresh-
old, typically of the order of 100 MeV/c, which is a free parameter 
of the model, while space coordinates are ignored. On the con-
trary, in the state-of-the-art implementations of the coalescence 
approach, the quantum-mechanical properties of nucleons and nu-
clei are taken into account and the coalescence probability is cal-
culated from the overlap between the wave functions of protons 
and neutrons which are mapped onto the Wigner density of the 
nucleus. The phase-space distributions of protons and neutrons at 
the kinetic freeze-out are generated from particle production mod-
els, such as A Multi-Phase Transport Model (AMPT) [14], or from 
hydrodynamical simulations coupled to hadronic transport models 
[13]. The advanced coalescence model qualitatively describes the 
deuteron-to-proton and 3He-to-proton ratios measured in different 
collision systems as a function of the charged-particle multiplicity 
[15], while the simple coalescence approach provides a descrip-
tion of pT spectra of light (anti-)nuclei measured in high-energy 
hadronic collisions only in the low-multiplicity regime [16].

A key observable to study the production mechanism of light 
(anti-)nuclei is the elliptic flow, i.e. the second harmonic (v2) of 
the Fourier decomposition of their azimuthal production distri-
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bution with respect to a collision symmetry plane. The latter is 
defined by the impact parameter of the incoming nuclei and the 
beam direction [17]. The elliptic flow of light nuclei was measured 
by PHENIX [18] and STAR [19] at the Relativistic Heavy Ion Col-
lider (RHIC). The centrality dependence of v2 for deuterons (d) 
and antideuterons (d) was found to be qualitatively similar to that 
of identified hadrons [19]. An approximate atomic mass number 
(A) scaling was observed for the elliptic flow of light nuclei when 
compared to the proton v2 up to pT/A = 1.5 GeV/c, with slight de-
viations for higher pT/A [19]. The flow of identified hadrons is of-
ten described using the Blast-Wave model [20–22]. This is a model 
inspired by hydrodynamics, which assumes that the system pro-
duced in heavy-ion collisions is locally thermalized and expands 
collectively with a common velocity field. The system undergoes a 
kinetic freeze-out at the temperature Tkin and is characterized by a 
common transverse radial flow velocity (β) at the freeze-out sur-
face. The Blast-Wave model, however, fails in reproducing the v2
of light nuclei measured in Au–Au collisions at 

√
sNN = 200 GeV

[19], which is instead well described by a more sophisticated co-
alescence model where the phase-space distributions of nucleons 
are generated using the string-melting version of AMPT [14].

The elliptic flow of d and d was measured by the ALICE Collab-
oration in Pb–Pb collisions at 

√
sNN = 2.76 TeV in the transverse-

momentum range 0.8 ≤ pT < 5 GeV/c for different centrality 
classes [23]. The scaling of v2 with the number of constituent 
quarks (nq) is violated for identified hadrons including deuterons, 
with deviations up to 20% [23]. Predictions from simultaneous fits 
of the pT spectra and the v2 of charged pions, kaons, and pro-
tons using a Blast-Wave model provide a good description of the 
v2 of deuterons in the measured pT range for all centralities, con-
sistent with common kinetic freeze-out conditions [23]. A simple 
coalescence model, based on the A-scaling of v2 [24], fails in re-
producing the data for all centralities and in the entire pT range 
[23]. The data are fairly well described by a coalescence approach 
which uses as an input the phase-space distributions generated 
with the default AMPT settings [13]. However, this model does 
not describe the coalescence parameter B2, defined as the ratio 
between the invariant yield of deuterons and the square of the in-
variant yield of protons [23]. The predictions obtained using the 
string-melting version of AMPT, which described RHIC data, are 
not consistent with the ALICE measurement [23].

The first measurement of the (anti-)3He elliptic flow in Pb–Pb
collisions at 

√
sNN = 5.02 TeV is presented in this paper. This mea-

surement complements the picture obtained from that of the pro-
ton and deuteron flow at LHC energies.

2. Experimental apparatus and data sample

ALICE is one of the four big experiments at the LHC dedicated 
to the study of heavy-ion collisions at ultra-relativistic energies. A 
detailed description of the ALICE apparatus and its performance 
can be found in Refs. [25] and [26].

Trajectories of charged particles are reconstructed in the AL-
ICE central barrel with the Inner Tracking System (ITS) [25] and 
the Time Projection Chamber (TPC) [27]. These are located within 
a large solenoidal magnet, providing a highly homogeneous mag-
netic field of 0.5 T parallel to the beam line. The ITS consists of six 
cylindrical layers of silicon detectors with a total pseudorapidity 
coverage |η| < 0.9 with respect to the nominal interaction region. 
The ITS is used in the determination of primary and secondary 
vertices, and in the track reconstruction. The TPC is the largest de-
tector in the ALICE central barrel, with a pseudorapidity coverage 
|η| < 0.9. It is used for track reconstruction, charged-particle mo-
mentum measurement and for particle identification via the mea-
surement of the specific energy loss of particles in the TPC gas. The 
transverse-momentum resolution ranges from about 1% at 1 GeV/c

to about 10% at 50 GeV/c in Pb–Pb collisions at 
√

sNN = 2.76 TeV
[26] and at 

√
sNN = 5.02 TeV [28]. The dE/dx resolution depends 

on centrality and is in the range 5–6.5% for minimum ionizing par-
ticles crossing the full volume of the TPC [26]. Collision events 
are triggered by two plastic scintillator arrays, V0A and V0C [29], 
located on both sides of the interaction point, covering the pseu-
dorapidity regions −3.7 < η < −1.7 and 2.8 < η < 5.1. Each V0 
array consists of four rings in the radial direction, with each ring 
comprising eight cells with the same azimuthal size. The V0 scin-
tillators are used to determine the collision centrality from the 
measured charged-particle multiplicity [30,31], and to measure the 
orientation of the symmetry plane of the collision.

The data used for this analysis were collected in 2015 during 
the LHC Pb–Pb run at 

√
sNN = 5.02 TeV. A minimum bias event 

trigger was used, which requires coincident signals in the V0 de-
tectors synchronous with the bunch crossing time defined by the 
LHC clock.

3. Data analysis

3.1. Event selection

In order to keep the conditions of the detectors as uniform 
as possible and reject background collisions, the coordinate of 
the primary vertex along the beam axis is required to be within 
10 cm from the nominal interaction point. Collisions with multi-
ple primary vertices are tagged as pile-up events and rejected. A 
centrality-dependent non-uniformity in the angular distribution of 
the symmetry plane, of maximum 6% is found. In order to correct 
for this non-uniformity, the events are re-weighted based on the 
collision centrality (C ) and the angle of the symmetry plane �2. 
The weight for a given two-dimensional cell (C , �2) is defined as 
the ratio between the average number of events, for all C and �2, 
and the actual number of events in the same two-dimensional cell. 
The centrality classes used for the analysis presented in this Letter 
are 0–20%, 20–40%, and 40–60%. In total, approximately 20 million 
events are selected in each centrality class.

3.2. Track selection and particle identification

(Anti-)3He candidates are selected from the charged-particle 
tracks reconstructed in the ITS and TPC in the kinematic range 
pT/|z| > 1 GeV/c and |η| < 0.8, where z is the particle electric 
charge in units of the elementary charge. Tracks are required to 
have a minimum number of clusters in the TPC, NTPC

cls , of at least 
70 out of a maximum of 159, and in the ITS, N ITS

cls , of at least 
two with one cluster located in any of the two innermost ITS 
layers. The number of TPC clusters used in the dE/dx calcula-
tion, NTPC

cls (dE/dx) is required to be larger than 50. Good quality 
of the track fit is also required, expressed by χ2/NTPC

cls < 4 and 
a ratio of the number of TPC clusters attached to the track over 
the number of findable TPC clusters (accounting for track length, 
location, and momentum) larger than 80%. The contribution from 
secondary tracks is reduced by requiring a maximum Distance of 
Closest Approach (DCA) to the primary vertex in the transverse 
plane (DCAxy < 0.1 cm) and in the longitudinal direction (DCAz < 1
cm). These selection criteria ensure a high track-reconstruction ef-
ficiency, which is larger than 80%, and a resolution in the dE/dx
measured in the TPC of about 6% in the centrality and pT ranges 
used for this measurement.

The expected average dE/dx for (anti-)3He, 〈dE/dx〉3He, is given 
by the Bethe formula and the standard deviation of the distri-
bution of dE/dx − 〈dE/dx〉3He, denoted σ

3He
dE/dx , is the TPC dE/dx

resolution measured for (anti-)3He. For the (anti-)3He identifica-
tion, the dE/dx measured in the TPC is required to be within 
3 σ

3He
dE/dx from the expected average for 3He. The distributions 
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Fig. 1. Distributions of (dE/dx − 〈dE/dx〉3He

)
/σ

3He
dE/dx measured in the TPC for the transverse-momentum ranges 2 ≤ pT < 3 GeV/c (left) and 3 ≤ pT < 4 GeV/c (right). The 

vertical bars represent the statistical uncertainties of the data. The blue dotted and the red dash-dotted lines indicate the 3H and 3He contributions while the black solid 
lines show the sum of both. The ranges used for the signal extraction are indicated by the vertical black-dotted lines.

of 
(
dE/dx − 〈dE/dx〉3He

)
/σ

3He
dE/dx for the transverse-momentum 

ranges 2 ≤ pT < 3 GeV/c and 3 ≤ pT < 4 GeV/c are shown in 
Fig. 1. The range used for the (anti-)3He selection is indicated by 
the vertical black-dotted lines. The contamination by (anti-)3H is 
estimated by fitting the measured 

(
dE/dx − 〈dE/dx〉3He

)
/σ

3He
dE/dx

distribution in a given pT range using two Gaussian functions, one 
for (anti-)3H and the other for (anti-)3He. The (anti-)3H contribu-
tion is subtracted from the distribution to extract the (anti-)3He 
signal in the range within ±3σ

3He
dE/dx . The contamination from 

(anti-)3H is negligible for pT > 3 GeV/c (see right panel of Fig. 1). 
The contamination from (anti-)4He is expected to be negligible 
over the full pT range considering that its production rate mea-
sured in Pb–Pb collisions at 

√
sNN = 2.76 TeV is suppressed com-

pared to that of (anti-)3He by a factor ∼ 300 [32].

3.3. Secondary 3He from spallation processes

The main background for this measurement is represented by 
secondary 3He produced by spallation reactions in the interac-
tions between primary particles and nuclei in the detector material 
or in the beam pipe. This background source is relevant only for 
3He, while this effect is negligible for anti-3He. Nuclear fragments 
emitted in spallation processes have almost uniform angular dis-
tributions with respect to the direction of the incoming particle, 
while primary 3He tracks originate from the primary vertex. The 
contribution of secondary 3He produced by spallation can be in-
vestigated from the DCAxy distribution, which has a peak around 
zero for primary 3He and is almost flat for secondary 3He. The 
DCAxy distributions for 3He candidates measured in the transverse-
momentum ranges 2 ≤ pT < 3 GeV/c and 3 ≤ pT < 4 GeV/c
are shown in Fig. 2. The sign of the DCAxy is positive if the pri-
mary vertex is inside the track curvature and negative if it lies 
outside. These distributions are obtained by selecting tracks with 
|DCAz| < 1 cm and applying a stricter requirement for the selection 
of 3He candidates, given by −2 ≤ (

dE/dx − 〈dE/dx〉3He

)
/σ

3He
dE/dx

< 3. This asymmetric range is used to increase the purity of the 
3He sample by suppressing the 3H contamination. The contribu-
tion from secondary 3He produced by spallation is found to be 
relevant in this analysis only in the transverse-momentum range 
2 ≤ pT < 3 GeV/c.

For the measurement presented in this Letter, 3He are used for 
2 ≤ pT < 3 GeV/c, while the sum of 3He and 3He is used for 
higher pT where the contribution from secondary 3He from spal-
lation is negligible. This is possible because the elliptic flow of 
3He and 3He are consistent within the statistical uncertainties in 

Fig. 2. DCAxy distributions of 3He candidates, selected requiring −2 < (dE/dx −
〈dE/dx〉3He)/σ

3He
dE/dx < 3, with |DCAz| < 1 cm measured in the transverse-

momentum intervals 2 ≤ pT < 3 GeV/c (blue) and 3 ≤ pT < 4 GeV/c (red).

the pT range where these two measurements can be compared, 
i.e. pT > 3 GeV/c, and in all centrality intervals. A vanishing dif-
ference between the elliptic flow of matter and antimatter nuclei 
at LHC energies is already observed for (anti-)protons [33,34] and 
(anti-)deuterons [23]. This observation is consistent with the de-
creasing trend of the difference between the elliptic flow of pro-
tons and antiprotons, deuterons and antideuterons with increas-
ing center-of-mass energy at RHIC going from 

√
sNN = 7.7 GeV to √

sNN = 200 GeV [35].

3.4. The event-plane method

The initial spatial anisotropy of the hot and dense matter cre-
ated in non-central nucleus–nucleus collisions results in an az-
imuthal anisotropy of particle emission with respect to the sym-
metry plane. The azimuthal distribution of the emitted particles 
can be expressed as a Fourier series [36]

dN

dϕ
∝ 1 + 2

∑
n≥1

vncos
(
n
(
ϕ − �n

))
, (1)

where �n indicates the orientation of the nth symmetry plane, ϕ
is the azimuthal angle of a particle, and the Fourier coefficients vn
are also referred to as the flow coefficients.

Experimentally, the true symmetry plane can only be recon-
structed approximately because of the finite detector resolution. 
The measured symmetry plane is called ‘event plane’. The elliptic 
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Fig. 3. Event-plane resolution R�2 of the second harmonic as a function of the col-
lision centrality.

flow of (anti-)3He is measured using the Event-Plane (EP) method 
[37]. The v2 of (anti-)3He in each pT range is given by

v2{EP, |	η|>0.9} (pT) = π

4R�2

Nin-plane (pT) − Nout-of-plane (pT)

Nin-plane (pT) + Nout-of-plane (pT)
,

(2)

where the |	η| represents the minimal pseudorapidity gap be-
tween the V0 detectors and the TPC, the R�2 is the event-plane 
resolution for the second harmonic, and Nin-plane and Nout-of-plane

are the number of (anti-)3He candidates in-plane and out-of-plane, 
respectively. Particles are regarded as ‘in-plane’ if the azimuthal 
difference |	ϕ| = |ϕ −�EP

2 | < 45◦ or |	ϕ| = |ϕ −�EP
2 | > 135◦ , and 

‘out-of-plane’ otherwise, where �EP
2 is the orientation of the event 

plane. The latter is reconstructed using the V0 detectors. The cal-
ibrated amplitude of the signal measured in each cell of the V0 
arrays is used as a weight wcell in the construction of the flow 
vector Q 2 [37]

Q 2 =
Ncell∑
j=1

wcell · exp(i2ϕcell) (3)

where Ncell is the number of cells of the V0 detectors and ϕcell is 
the azimuthal angle of the geometric center of each cell. In order 
to account for a non-uniform detector response which can generate 
a bias in the �EP

2 distribution, the components of the Q 2-vector 
are adjusted using a re-centering procedure [38]. The orientation 
of the event plane angle is obtained using the real and imaginary 
parts of Q 2

�EP
2 = 1

2
arctan

(
Im(Q n)

Re(Q n)

)
(4)

The event-plane resolution R�2 is calculated using the three 
sub-event correlation technique with charged particles [37]

R�2 =
√√√√ 〈cos

(
2
(
�A

2 − �B
2

))〉 · 〈cos
(
2
(
�A

2 − �C
2

))〉
〈cos

(
2
(
�B

2 − �C
2

))〉 , (5)

where A refers to the event plane measured using the V0 detec-
tors, while B and C refer to those obtained in the positive (η > 0) 
and negative (η < 0) pseudorapidity regions of the TPC. For the lat-
ter two measurements, a set of reconstructed charged tracks with 
0.2 ≤ pT < 20 GeV/c and |η| < 0.8 is used. Minimal quality crite-
ria are applied to these tracks, such as the requirement of having a 
number of TPC clusters larger than 70 and a χ2/NTPC

cls < 4. The sec-
ond harmonic event-plane resolution as a function of the collision 
centrality is shown in Fig. 3.

Considering the centrality dependence of R�2 , the elliptic flow 
measurements are performed in centrality intervals of 5% width for 
the range 0–40%, and of 10% width for the range 40–60%. The lat-
ter two intervals are larger due to the limited number of (anti-)3He 
candidates. The resolutions for the centrality ranges 40–50% and 
50–60% are given by the weighted averages of the resolutions cal-
culated in centrality bins of 5% width, with the number of charged 
tracks in the corresponding centrality ranges as a weight. Finally, 
the elliptic flow measurements for the wider centrality classes 
used in this analysis are obtained as weighted averages of the mea-
surements in the smaller centrality ranges

v2 (pT) =
∑

i vi
2 (pT) · Ni

(anti-)3He
(pT)∑

i Ni
(anti-)3He

(pT)
, (6)

where vi
2 (pT) is the elliptic flow measured in a given pT range 

and in the centrality interval i, and Ni
(anti-)3He

is the number of 
(anti-)3He candidates for the same centrality and pT range.

4. Systematic uncertainties

The main sources of systematic uncertainties in this measure-
ment are related to the event selection criteria, track reconstruc-
tion, particle identification, occupancy effects in the TPC, and the 
subtraction of the feed-down contribution from weak decays of hy-
pertritons. Except for the systematic uncertainty due to the event 
selection, all other contributions are estimated using Monte Carlo 
(MC) simulations based on the HIJING generator [39]. Simulated 
events are enriched by an injected sample of (anti-)(hyper-)nuclei 
generated with a flat pT distribution in the transverse-momentum 
range 0 < pT < 10 GeV/c and a flat rapidity distribution in the 
range −1 < y < 1. The interactions of the generated particles with 
the experimental apparatus are modeled by GEANT 3 [40]. The 
input transverse-momentum distribution of injected (anti-)3He is 
corrected using centrality and pT-dependent weights to reproduce 
its measured shape, which is described by the Blast-Wave function. 
The parameters are taken from the (anti-)3He measurement in 
Pb–Pb collisions at 

√
sNN = 2.76 TeV [41] assuming the same spec-

tral shape in Pb–Pb collisions at 
√

sNN = 5.02 TeV. The systematic 
uncertainties estimated using the MC simulations are found to be 
independent on the input parametrization of the (anti-)3He spec-
trum. A good matching between the distributions of variables used 
for track selection and particle identification is found between data 
and MC simulations. This guarantees the reliability of the detector 
response description and of the systematic uncertainties obtained 
based on MC simulations.

4.1. Systematic uncertainties due to the event selection criteria

The effect of different event selection criteria is studied by com-
paring the v2 measurements obtained by varying the selection 
range of the z-coordinate of the primary vertex, using different 
centrality estimators, selecting events corresponding to opposite 
magnetic field orientations, using different pile-up rejection cri-
teria, and selecting events with different interaction rates. The 
limited number of (anti-)3He candidates prevents the estimation 
of this source of systematic uncertainties from data since the v2
measurements obtained using these different selection criteria are 
consistent within their statistical uncertainties, i.e. the systematic 
uncertainties are comparable to or smaller than the statistical ones. 
The systematic uncertainty related to event selection criteria is as-
sumed to be identical to that of the proton v2 measured in Pb–Pb
collisions at 

√
sNN = 5.02 TeV and it is taken from Ref. [34]. The 

total systematic uncertainty due to the event selection is 2.7% and 
is obtained by adding all contributions in quadrature.
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4.2. Systematic uncertainties due to tracking and particle identification

The systematic uncertainties due to track reconstruction and 
particle identification are estimated using MC simulations. This is 
done to benefit from the larger number of (anti-)3He in the sim-
ulation as compared to data to reduce the interference between 
statistical fluctuations and systematic uncertainties. The same az-
imuthal asymmetry as measured in data in each centrality and 
pT range is artificially created for the injected (anti-)3He with re-
spect to a randomly oriented event plane by rejecting a fraction 
of the out-of-plane (anti-)3He. This is done because the injected 
(anti-)3He are produced with v2 = 0 by the MC generator. The 
v2 of the embedded (anti-)3He is then measured using the re-
constructed tracks in the simulation. Different track selection cri-
teria and signal extraction ranges are used to measure the v2, 
in which the analysis parameters are selected randomly inside a 
range around the default value using a uniform probability distri-
bution. The different selection criteria are varied simultaneously 
in order to include the effects of their possible correlations. In 
each centrality class and for each transverse-momentum range, the 
measurements obtained using different selection criteria follow a 
Gaussian distribution whose standard deviation is very similar to 
the statistical uncertainty, indicating a residual correlation between 
systematic variations and statistical fluctuations. Assuming that the 
spread of the different measurements is only due to statistical fluc-
tuations, the mean of the Gaussian distribution is considered as the 
best estimate of the reconstructed v2. The difference between the 
injected v2 in the simulation and the mean of the Gaussian spread 
of the measurements is taken as the systematic uncertainty due 
to tracking and PID. This uncertainty ranges between 1% and 4%, 
depending on pT and centrality. An additional component to the 
tracking uncertainty originates from the difference between the v2
measured using the positive and negative pseudorapidity regions 
of the TPC. This contribution cannot be estimated from data due 
to the limited number of (anti-)3He and is assumed to be identical 
to that of the proton v2 measurement, which is 2% [34]. The lat-
ter is added in quadrature to the systematic uncertainties related 
to tracking and particle identification.

4.3. Systematic uncertainty due to occupancy effects in the TPC

Different reconstruction efficiencies for in-plane and out-of-
plane particles, due to occupancy effects in the TPC, can create 
a bias in the v2 measurement. This effect is studied using MC 
simulations by comparing the reconstruction efficiency for differ-
ent charged-particle multiplicities. The same track selection criteria 
used in data are applied to the reconstructed tracks in the simu-
lation for the efficiency calculation. The maximum deviation be-
tween the reconstruction efficiencies for different multiplicities is 
0.5%, corresponding to a ratio between in-plane and out-of-plane 
efficiencies of r = 0.995 ± 0.001. The difference between the v2
measured assuming r = 1 and r = 0.995 corresponds to the maxi-
mum variation range of v2. The systematic uncertainty from occu-
pancy is then given by this maximum difference divided by 

√
12, 

assuming a uniform distribution. This uncertainty decreases with 
increasing pT and yields at maximum 2% for the centrality range 
0–20% and 0.5% for the centrality ranges 20–40% and 40–60%.

4.4. Systematic uncertainty due to the feed-down subtraction

The feed-down systematic uncertainty is due to the unknown 
v2 of (anti-)3He from the weak decay of the (anti-)3

�H. The frac-
tion of secondary (anti-)3He from the (anti-)3

�H decays in the re-
constructed track sample is calculated using MC simulations. This 
fraction is about 6% for the centrality range 0–20% and ∼ 5% for 
the centrality ranges 20–40% and 40–60%, slightly increasing with 

Table 1
Summary of systematic uncertainties. The ranges represent the 
minimum and maximum uncertainties in the case where the 
systematic uncertainties depend on pT and centrality.

Source of systematic uncertainty Value (%)

Primary vertex selection 1
Centrality estimator 1.5
Magnetic field orientation 1
Pile-up rejection 1
Interaction rate 1.5
Tracking and particle identification 2 − 4.5
Occupancy in the TPC 0.5 − 2
Feed-down 2

Total 4 − 6

Fig. 4. Elliptic flow (v2) of (anti-)3He measured in Pb–Pb collisions at √
sNN =

5.02 TeV for the centrality classes 0–20%, 20–40%, and 40–60%. The statistical un-
certainties are shown as vertical bars, systematic uncertainties as boxes.

pT. The relative abundances of (anti-)3
�H and (anti-)3He in the sim-

ulation are adjusted to the measured values in Pb–Pb collisions at √
sNN = 2.76 TeV [42], assuming that the yield ratio between (anti-

)3
�H and (anti-)3He does not differ significantly from that in Pb–Pb

collisions at 
√

sNN = 5.02 TeV, which is not published yet. The v2
of (anti-)3He from the (anti-)3

�H decay is assumed to be within the 
range of ±50% with respect to the v2 of the inclusive (anti-)3He. 
This variation is selected to provide a conservative estimate of the 
feed-down uncertainty. For each of these extremes, the feed-down 
contribution is subtracted. The systematic uncertainty due to the 
feed-down subtraction is given by the difference between these 
two limits divided by 

√
12. This uncertainty is ∼ 2% in all central-

ity ranges, almost independent of pT.
The different contributions to the systematic uncertainties of 

this measurement are summarized in Table 1.

5. Results

5.1. Experimental results

The elliptic flow of (anti-)3He measured in Pb–Pb collisions at √
sNN = 5.02 TeV for the centrality classes 0–20%, 20–40% and 

40–60% is shown in Fig. 4 as a function of pT. The measurement 
in the transverse-momentum range 2 < pT < 3 GeV/c is done us-
ing only 3He. An increasing elliptic flow is observed going from 
central to semi-central collisions, as expected. This is due to the 
increasing azimuthal asymmetry of the overlap region of the col-
liding nuclei at the initial collision stage, which results in a larger 
azimuthal asymmetry of the momenta of the final-state particles. 
In each centrality class, the elliptic flow increases with pT in the 
measured pT range.

The (anti-)3He elliptic flow is compared to that of pions, kaons, 
and protons measured using the scalar-product method at the 
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Fig. 5. Comparison between the elliptic flow of (anti-)3He measured using the event-plane method and that of pions, kaons, and protons measured using the scalar-product 
method in Pb–Pb collisions at √sNN = 5.02 TeV for the centrality classes 0–20% (left), 20–40% (middle) and 40–60% (right). See text for details. Vertical bars and boxes 
represent the statistical and systematic uncertainties, respectively.

Fig. 6. Comparison between the elliptic flow of pions, kaons, protons, and (anti-)3He divided by the number of constituent quarks (nq) as a function of pT/nq (upper panels) 
and transverse kinetic energy per constituent quark Ekin

T /nq (lower panels) for the centrality classes 0–20% (left), 20–40% (middle) and 40–60% (right). See text for details. 
Vertical bars and boxes represent the statistical and systematic uncertainties, respectively.

same center-of-mass energy [34] in Fig. 5. Given the good event-
plane resolution shown in Fig. 3 and the large statistical uncertain-
ties of the (anti-)3He v2 measurements, the difference between the 
scalar-product and event-plane method to calculate the (anti-)3He 
elliptic flow is negligible. The v2 of pions, kaons, and protons 
is measured in smaller centrality ranges compared to those used 
in this analysis. The corresponding v2 for the centrality classes 
0–20%, 20–40%, and 40–60% are obtained as weighted averages of 
the v2 measured in smaller centrality classes using the pT spec-
tra taken from [43] as weights. A clear mass ordering is observed 
for pT < 3 GeV/c, consistent with the expectations from relativis-
tic hydrodynamics [44]. The v2 of (anti-)3He shows a slower rise 
with pT compared to that of pions, kaons, and protons due to its 
larger mass.

The comparisons between the measurements of v2/nq of 
(anti-)3He, pions, kaons, and protons are shown in Fig. 6 as a func-
tion of pT/nq (upper panels), and transverse kinetic energy per 
constituent quark Ekin

T /nq (lower panels). The transverse kinetic 

energy is defined as Ekin
T =

√
m2 + p2

T − m, where m is the mass of 
the particle. The violation of nq scaling for the measured range of 
pT/nq � 0.7 GeV/c, already established for the elliptic flow mea-
surements of identified hadrons at the LHC [23,34,45], is observed 
also for (anti-)3He. The nq scaling at larger pT/nq cannot be tested 
with the limited data sample used for this analysis.

5.2. Model comparisons

The (anti-)3He v2 measurements are compared with the ex-
pectations from the Blast-Wave model and a simple coalescence 
approach using the same procedure followed in [23].

The Blast-Wave predictions are obtained from a simultaneous 
fit of the v2 and the pT spectra of pions, kaons, and protons 
measured in Pb–Pb collisions at 

√
sNN = 5.02 TeV [34,43] in the 

transverse-momentum ranges 0.5 ≤ pπ
T < 1 GeV/c, 0.7 ≤ pK

T <

2 GeV/c, and 0.7 ≤ pp
T < 2.5 GeV/c, respectively, and in the same 

centrality classes. The four parameters of the Blast-Wave fits repre-
sent the kinetic freeze-out temperature (Tkin), the mean transverse 
expansion rapidity (ρ0), the amplitude of its azimuthal variation 
(ρa), and the variation in the azimuthal density of the source (s2), 
as described in [21]. The values of the Blast-Wave parameters ex-
tracted from the fits are reported in Table 2 for each centrality 
interval. The elliptic flow of (anti-)3He is calculated using the pa-
rameters obtained from the simultaneous fit and the 3He mass, i.e., 
assuming the same kinetic freeze-out conditions.

The simple coalescence approach used in this context is based 
on the assumption that the invariant yield of (anti-)3He with trans-
verse momentum pT is proportional to the product of the invariant 
yields of its constituent nucleons with transverse momentum pT/3
and on isospin symmetry, for which the proton and neutron v2 are 
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Fig. 7. Elliptic flow of (anti-)3He in comparison with the predictions from the Blast-Wave model and a simple coalescence approach for the centrality classes 0–20% (left), 
20–40% (middle), and 40–60% (right). The lower panels show the differences between data and models for each centrality range. The statistical uncertainties of the data and 
the model are added in quadrature. Vertical bars and boxes represent the statistical and systematic uncertainties, respectively.

Table 2
Blast-Wave parameters extracted from the simultaneous fits of the pT

spectra and v2 of pions, kaons, and protons. See text for details.

Fit parameters Centrality classes

0–20% 20–40% 40–60%

Tkin (MeV) 106 ± 1 110 ± 1 117 ± 1
ρ0 ×10−1 8.78 ± 0.01 8.92 ± 0.02 7.48 ± 0.01
ρa ×10−2 1.37 ± 0.01 2.98 ± 0.01 3.16 ± 0.01
s2 ×10−2 4.06 ± 0.01 9.02 ± 0.01 1.29 ± 0.01

identical. Considering only elliptical anisotropies of the constituent 
nucleons, i.e. neglecting higher order harmonics, the coalescence 
predictions are obtained from the elliptic flow of protons v2,p mea-
sured in Pb–Pb collisions at 

√
sNN = 5.02 TeV [34] using the scaling 

law [46]

v2,3He (pT) = 3v2,p (pT/3) + 3v3
2,p (pT/3)

1 + 6v2
2,p (pT/3)

. (7)

Fig. 7 shows the comparison of the (anti-)3He v2 measure-
ments with the predictions of the Blast-Wave model and the sim-
ple coalescence approach. The differences between the data and 
the model for each centrality interval are shown in the lower 
panels. These are calculated using the weighted averages of the 
models in the same pT intervals of the measurement. For the Blast-
Wave model, the pT spectrum of (anti-)3He measured in Pb–Pb
collisions at 

√
sNN = 2.76 TeV [41] is used as a weight. This is 

justified considering that the (anti-)3He pT spectrum in Pb–Pb col-
lisions at 

√
sNN = 5.02 TeV is expected to be similar to that at √

sNN = 2.76 TeV, as observed for lighter hadrons [43]. The proton 
spectrum measured in Pb–Pb collisions at 

√
sNN = 5.02 TeV [43], 

with pT scaled by A = 3, is used as a weight for the coalescence 
model. The data are located between the two model predictions in 
all centrality intervals except for more peripheral collisions, where 
the coalescence expectations are closer to the data.

The Blast-Wave model was found to be consistent with the 
(anti-)deuteron elliptic flow measured in Pb–Pb collisions at √

sNN = 2.76 TeV in the centrality intervals 0–10%, 10–20% and 
20–40%, although the (anti-)deuteron pT distributions were slightly 
underestimated for pT < 2 GeV/c in the same centrality intervals 
[23]. Similarly to the results presented in this paper for (anti-)3He, 
the predictions from the simple coalescence model overestimated 
the (anti-)deuteron v2 in all centrality intervals. In general, the 
measurements of (anti-)deuteron and (anti-)3He elliptic flow at the 

Fig. 8. Elliptic flow of (anti-)3He measured in the centrality classes 0–20% and 
20–40% in comparison with the predictions from a coalescence model based on 
phase-space distributions of protons and neutrons generated from the iEBE-VISHNU 
hybrid model with AMPT initial conditions [13]. The model predictions are shown 
as lines and the bands represent their statistical uncertainties. The differences be-
tween data and model are shown in the lower panel for both centrality classes. The 
statistical uncertainties of the data and the model are added in quadrature. Vertical 
bars and boxes represent the statistical and systematic uncertainties, respectively.

LHC consistently indicate that the simple coalescence and Blast-
Wave models represent the upper and lower edges of a region 
where the data are typically located. The (anti-)deuteron elliptic 
flow measured in Pb–Pb collisions at 

√
sNN = 2.76 TeV is simply 

closer to the lower side of this region.
The Blast-Wave model is a simplified parametrization of the 

system expansion which is typically used to describe the hadron 
pT spectra and v2 with parameters tuned to data. However, this 
simple model cannot describe the full collective properties and 
dynamics of the system. For this, an approach based on relativis-
tic viscous hydrodynamics coupled to an hadronic afterburner is 
needed. The comparison of the measurement presented in this pa-
per with an actual hydrodynamical simulation is unfortunately not 
possible because there are no predictions for (anti-)3He available.

The predictions from a more sophisticated coalescence model 
[13] are compared to the data in the centrality ranges 0–20% 
and 20–40% in Fig. 8. The lower panel shows the differences be-
tween the data and the model for these two centrality intervals 
calculated taking the weighted average of the model in each pT
range, similarly to what is done for the Blast-Wave and the sim-
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ple coalescence predictions in Fig. 7. In this model, the coalescence 
probability is given by the superposition of the wave functions of 
the coalescing particles, and the Wigner function of the nucleus. 
The coalescence happens in a flowing medium, i.e., in the rest 
frame of the fluid cells. This introduces space-momentum corre-
lations absent in the naive coalescence approach. The phase-space 
distributions of protons and neutrons are generated from the iEBE-
VISHNU hybrid model with AMPT initial conditions [13]. Although 
this model underestimates the yield of (anti-)3He measured in 
Pb–Pb collisions at 

√
sNN = 2.76 TeV in the transverse-momentum 

range of 2 < pT < 7 GeV/c by almost a factor of two [13], it is 
able to reproduce quantitatively the elliptic flow measurements in 
the centrality classes 0–20% and 20–40% presented here. More-
over, this model provides a good description of the pT spectra and 
pT-differential elliptic flow of protons and deuterons for different 
centrality intervals in Au–Au collisions at 

√
sNN = 200 GeV and in 

Pb–Pb collisions at 
√

sNN = 2.76 TeV [13].

6. Summary

The first measurement of the (anti-)3He elliptic flow in Pb–Pb
collisions at 

√
sNN = 5.02 TeV is presented. An increasing trend 

of v2 with pT and one going from central to semi-central Pb–Pb
collisions is observed. This measurement is compared to that of 
pions, kaons, and protons at the same center-of-mass energy. A 
clear mass ordering at low pT is observed, as expected from rela-
tivistic hydrodynamics. The scaling behavior of v2 with the num-
ber of constituent quarks is violated for the measured range of 
pT/nq � 0.7 GeV/c also for (anti-)3He, as observed for the v2 of 
lighter particles measured at the LHC.

The (anti-)3He elliptic flow measured in all centrality inter-
vals lies between the predictions from the Blast-Wave model and 
a simple coalescence approach. This picture is consistent with 
that of the (anti-)deuteron v2 measured in Pb–Pb collisions at √

sNN = 2.76 TeV, which was also overestimated by the simple 
coalescence model, although it was closer to the Blast-Wave pre-
dictions. The results on the (anti-)deuteron and (anti-)3He elliptic 
flow measured at the LHC indicate that these two simple mod-
els represent upper and lower edges of a region where the elliptic 
flow of light (anti-)nuclei are typically located.

A more sophisticated coalescence approach based on phase-
space distributions of protons and neutrons generated by the iEBE-
VISHNU hybrid model with AMPT initial conditions provides a 
good description of the data in the transverse-momentum interval 
2 ≤ pT < 6 GeV/c for the centrality ranges 0–20% and 20–40%. The 
same model also provides a good description of the (anti-)deuteron 
v2 measured in Pb–Pb collisions at 

√
sNN = 2.76 TeV. This model, 

however, fails in the description of the pT-dependent yield of 
(anti-)3He measured in Pb–Pb collisions at 

√
sNN = 2.76 TeV.
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