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Abstract The study of (anti-)deuteron production in pp
collisions has proven to be a powerful tool to investigate
the formation mechanism of loosely bound states in high-
energy hadronic collisions. In this paper the production of
(anti-)deuterons is studied as a function of the charged par-
ticle multiplicity in inelastic pp collisions at

√
s = 13 TeV

using the ALICE experiment. Thanks to the large number of
accumulated minimum bias events, it has been possible to
measure (anti-)deuteron production in pp collisions up to the
same charged particle multiplicity (dNch/dη ∼ 26) as mea-
sured in p–Pb collisions at similar centre-of-mass energies.
Within the uncertainties, the deuteron yield in pp collisions
resembles the one in p–Pb interactions, suggesting a common
formation mechanism behind the production of light nuclei
in hadronic interactions. In this context the measurements are
compared with the expectations of coalescence and statistical
hadronisation models (SHM).

1 Introduction

High-energy collisions at the large hadron collider (LHC)
create a suitable environment for the production of light
(anti-)nuclei. In ultra-relativistic heavy-ion collisions light
(anti-)nuclei are abundantly produced [1–3], but in elemen-
tary pp collisions their production is lower [1,4–6]. As a
consequence, there are only few detailed measurements of
(anti-)nuclei production rate in pp collisions. However, with
the recently collected large data sample it is now possible
to perform more differential measurements of light (anti-)
nuclei production as a function of multiplicity and transverse
momentum. In this paper, we present the detailed study of
the multiplicity dependence of (anti-)deuteron production in
pp collisions at

√
s = 13 TeV, the highest collision energy

so far delivered at the LHC.
The production mechanism of light (anti-)nuclei in high-

energy hadronic collisions is not completely understood.
However, two groups of models have turned out to be particu-

� e-mail: alice-publications@cern.ch

larly useful, namely statistical hadronisation models (SHM)
and coalescence models. The SHMs, which assume parti-
cle production according to the thermal equilibrium expec-
tation, have been very successful in explaining the yields of
light (anti-)nuclei along with other hadrons in Pb–Pb col-
lisions [7], suggesting a common chemical freeze-out tem-
perature for light (anti-)nuclei and other hadron species. The
ratio between the pT-integrated yields of deuterons and pro-
tons (d/p ratio) in Pb–Pb collisions remains constant as a
function of centrality, but rises in pp and p–Pb collisions with
increasing multiplicity, finally reaching the value observed
in Pb–Pb [1,8,9]. The constant d/p ratio in Pb–Pb collisions
as a function of centrality is consistent with thermal produc-
tion, suggesting that the chemical freeze-out temperature in
Pb–Pb collisions does not vary with centrality [10]. Assum-
ing thermal production in pp collisions as well, the lower d/p
ratio would indicate a lower freeze-out temperature [10]. On
the other hand, the ratio between the pT-integrated yields
of protons and pions (p/π ratio) does not show a significant
difference between pp and Pb–Pb collisions [11,12]. Also,
for p–Pb collisions the freeze-out temperature obtained with
SHMs using only light-flavoured particles is constant with
multiplicity and its value is similar to that obtained in Pb–Pb
collisions [13]. Thus, the increase of the d/p ratio with multi-
plicity for smaller systems cannot be explained within the
scope of the grand-canonical SHM as is done in case of
Pb–Pb. It is also not consistent with a simple SHM that the
d/p and p/π ratios behave differently as a function of mul-
tiplicity even though numerator and denominator differ in
both cases by one unit of baryon number. Nonetheless, a pro-
cess similar to the canonical suppression of strange particles
might be worth considering also for baryons. A recent calcu-
lation within the SHM approach with exact conservation of
baryon number, electric charge, and strangeness focuses on
this aspect [14].

In coalescence models (anti-)nuclei are formed by nucle-
ons close in phase-space [15]. In this approach, the coales-
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cence parameter B2 quantitatively describes the production
of (anti-)deuterons. B2 is defined as

B2
(
pp

T

) = Ed
d3Nd

dp3
d

/ (

Ep
d3Np

dp3
p

)2

= 1

2πpdT

d2Nd

dydpdT

/(
1

2πpp
T

d2Np

dydpp
T

)2

, (1)

where E is the energy, p is the momentum, pT is the
transverse momentum and y is the rapidity. The labels
p and d are used to denote properties related to protons
and deuterons, respectively. The invariant spectra of the
(anti-)protons are evaluated at half of the transverse momen-
tum of the deuterons, so that pp

T = pdT/2. Neutron spectra
are assumed to be equivalent to proton spectra, since neu-
trons and protons belong to the same isospin doublet. Since
the coalescence process is expected to occur at the late stage
of the collision, the parameter B2 is related to the emission
volume. In a simple coalescence approach, which describes
the uncorrelated particle emission from a point-like source,
B2 is expected to be independent of pT and multiplicity.
However, it has been observed that B2 at a given transverse
momentum decreases as a function of multiplicity, suggest-
ing that the nuclear emission volume increases with multi-
plicity [2,9,16]. In Pb–Pb collisions the B2 parameter as a
function of pT shows an increasing trend, which is usually
attributed to the position-momentum correlations caused by
radial flow or hard scatterings [17,18]. Such an increase of
B2 as a function of pT has in fact also been observed in pp
collisions at

√
s = 7 TeV [6]. However, if pp collisions are

studied in separate intervals of multiplicity, B2 is found to be
almost constant as a function of pT [8]. Similarly, B2 does
not depend on pT in multiplicity selected p–Pb collisions [9].
Moreover, the highest multiplicities reached in pp collisions
are comparable with those obtained in p–Pb collisions and
not too far from peripheral Pb–Pb collisions. Therefore, the
measure of B2 as a function of pT for finer multiplicity inter-
vals in pp collisions at

√
s = 13 TeV gives the opportunity

to compare different collision systems and to evaluate the
dependence on the system size.

The paper is organized as follows. Section 2 discusses the
details of the ALICE detector. Section 3 describes the data
sample used for the analysis and the corresponding event
and track selection criteria. Section 4 presents the data anal-
ysis steps in detail, such as raw yield extraction and various
corrections, as well as the systematic uncertainty estimation.
In Sect. 5, the results are presented and discussed. Finally,
conclusions are given in Sect. 6.

2 The ALICE detector

A detailed description of the ALICE detectors can be found
in [19] and references therein. For the present analysis the
main sub-detectors used are the V0, the inner tracking system
(ITS), the time projection chamber (TPC) and the time-of-
flight (TOF), which are all located inside a 0.5 T solenoidal
magnetic field.

The V0 detector [20] is formed by two arrays of scintil-
lation counters placed around the beampipe on either side
of the interaction point: one covering the pseudorapidity
range 2.8 < η < 5.1 (V0A) and the other one covering
−3.7 < η < −1.7 (V0C). The collision multiplicity is esti-
mated using the counts in the V0 detector, which is also used
as trigger detector. More details will be given in Sect. 3.

The ITS [21], designed to provide high resolution track
points in the proximity of the interaction region, is composed
of three subsystems of silicon detectors placed around the
interaction region with a cylindrical symmetry. The silicon
pixel detector (SPD) is the subsystem closest to the beampipe
and is made of two layers of pixel detectors. The third and
the fourth layers consist of silicon drift detectors (SDD),
while the outermost two layers are equipped with double-
sided silicon strip detectors (SSD). The inner radius of the
SPD, 3.9 cm, is essentially given by the radius of the beam
pipe, while the inner field cage of the TPC limits the radial
span of the entire ITS to be 43 cm. The ITS covers the pseu-
dorapidity range |η| < 0.9 and it is hermetic in azimuth.

The same pseudorapidity range is covered by the TPC
[22], which is the main tracking detector, consisting of a
hollow cylinder whose axis coincides with the nominal beam
axis. The active volume, filled with a Ne/CO2/N2 gas mixture
(Ar/CO2/N2 in 2016), at atmospheric pressure, has an inner
radius of about 85 cm, an outer radius of about 250 cm, and
an overall length along the beam direction of 500 cm. The gas
is ionised by charged particles traversing the detector and the
ionisation electrons drift, under the influence of a constant
electric field of ∼ 400 V/cm, towards the endplates, where
their position and arrival time are measured. The trajectory
of a charged particle is estimated using up to 159 combined
measurements (clusters) of drift times and radial positions of
the ionisation electrons. The charged-particle tracks are then
formed by combining the hits in the ITS and the reconstructed
clusters in the TPC. The TPC is used for particle identification
by measuring the specific energy loss (dE/dx) in the TPC
gas.

The TOF system [23] covers the full azimuth for the pseu-
dorapidity interval |η| < 0.9. The detector is based on the
multi-gap resistive plate chambers (MRPCs) technology and
it is located, with a cylindrical symmetry, at an average dis-
tance of 380 cm from the beam axis. The particle identifica-
tion is based on the difference between the measured time-of-
flight and its expected value, computed for each mass hypoth-
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Table 1 Summary of the relevant information about the multiplicity
classes and the fits to the measured transverse momentum spectra of
anti-deuterons. 〈dNch/dη〉 is the mean pseudorapidity density of the
primary charged particles [25]. n and C are the parameters of the Lévy–

Tsallis fit function [27]. dN/dy is the integrated yield, with statistical
uncertainties, multiplicity-uncorrelated and multiplicity-correlated sys-
tematic uncertainties (see the text for details). 〈pT〉 is the mean trans-
verse momentum

Multiplicity class 〈dNch/dη〉 n C (GeV) dN/dy
(×10−4

) 〈pT〉 (GeV/c)

I 26.02 ± 0.35 7 ± 3 0.37 ± 0.05 16.0 ± 0.4 ± 0.5 ± 1.8 1.57 ± 0.08 ± 0.05 ± 0.03

II 20.02 ± 0.27 7 ± 3 0.32 ± 0.04 12.2 ± 0.2 ± 0.4 ± 1.4 1.43 ± 0.04 ± 0.04 ± 0.02

III 16.17 ± 0.22 6 ± 2 0.27 ± 0.03 9.4 ± 0.1 ± 0. 3 ± 1.1 1.31 ± 0.03 ± 0.03 ± 0.04

IV + V 12.91 ± 0.13 8 ± 3 0.27 ± 0.03 7.13 ± 0.08 ± 0.20 ± 0.79 1.21 ± 0.02 ± 0.01 ± 0.03

VI 10.02 ± 0.14 7 ± 2 0.23 ± 0.03 5.34 ± 0.07 ± 0.20 ± 0.59 1.12 ± 0.02 ± 0.01 ± 0.03

VII 7.95 ± 0.11 6 ± 2 0.19 ± 0.03 3.99 ± 0.07 ± 0.20 ± 0.44 1.06 ± 0.02 ± 0.01 ± 0.03

VIII 6.32 ± 0.09 17 ± 13 0.23 ± 0.03 2.73 ± 0.04 ± 0.06 ± 0.30 0.98 ± 0.01 ± 0.01 ± 0.03

IX 4.50 ± 0.07 10 ± 5 0.19 ± 0.03 1.64 ± 0.03 ± 0.06 ± 0.19 0.92 ± 0.01 ± 0.01 ± 0.03

X 2.55 ± 0.04 10 ± 5 0.15 ± 0.02 0.59 ± 0.02 ± 0.04 ± 0.07 0.82 ± 0.01 ± 0.02 ± 0.02

esis from track momentum and length. The overall resolution
on the time-of-flight of particles is about 80 ps.

A precise starting signal for the TOF system can be also
provided by the T0 detector, consisting of two arrays of
Cherenkov counters, T0A and T0C, which cover the pseudo-
rapidity regions 4.61 < η < 4.92 and −3.28 < η < −2.97,
respectively [24]. Alternatively, the start time can be pro-
vided by the TOF itself or the bunch-crossing time can be
used, as described in [24].

3 Data sample

The data samples used in this work consist of approximately
950 million minimum bias pp events collected during the
LHC proton runs in 2016 and 2017. The data were collected
using a minimum bias trigger requiring at least one hit in both
the V0 detectors. Moreover, the timing information of the V0
scintillators is used for the offline rejection of events triggered
by interactions of the beam with the residual gas in the LHC
vacuum pipe. To ensure the best possible performance of the
detector, events with more than one reconstructed primary
interaction vertex (pile-up events) were rejected.

The production of primary (anti-)deuterons is measured
around mid-rapidity. In particular, the spectra are provided
within a rapidity window of |y| < 0.5. To ensure that all
tracks have the maximal length, only those in the pseudora-
pidity interval |η| < 0.8 are selected. In order to guarantee
good track momentum and dE/dx resolution in the relevant
pT ranges, the selected tracks are required to have at least 70
reconstructed points in the TPC and two points in the ITS.
In addition, at least one of the ITS points has to be measured
by the SPD in order to assure for the selected tracks a resolu-
tion better than 300 μm on the distance of closest approach
to the primary vertex in the plane perpendicular (DCAxy)
and parallel (DCAz) to the beam axis [19]. Furthermore, it

is required that the χ2 per TPC reconstructed point is less
than 4 and tracks originating from kink topologies of weak
decays are rejected.

Data are divided into ten multiplicity classes, identified
by a roman number from I to X, going from the highest
to the lowest multiplicity. However, in this analysis classes
IV and V are merged into a single class to achieve a better
statistical precision. The multiplicity classes are determined
from the sum of the V0 signal amplitudes and defined in
terms of percentiles of the INEL> 0 pp cross section, where
INEL > 0 events are defined as collisions with at least one
charged particle in the pseudorapidity region |η| <1 [25].
The mean charged particle multiplicity 〈dNch/dη〉 for each
class is reported in Table 1.

4 Data analysis

4.1 Raw yield extraction

The identification of (anti-)deuterons is performed with two
different methods, depending on their transverse momentum.
For pT < 1 GeV/c, the identification is done using a mea-
surement of the dE/dx in the TPC only. In particular, for
each pT interval the number of (anti-)deuterons is extracted
through a fit with a Gaussian with two exponential tails to the
nσ distribution. Here, nσ is the difference between the mea-
sured TPC dE/dx and the expected one for (anti-)deuterons
divided by the TPC dE/dx resolution. However, for pT ≥ 1
GeV/c it is more difficult to separate (anti-)deuterons from
other charged particles with this technique. Therefore, the
particle identification in this kinematic region is performed
using the TOF detector. The squared mass of the particle
is computed as m2 = p2

(
t2
TOF/L2 − 1/c2

)
, where tTOF is

the measured time-of-flight, L is the length of the track and
p is the momentum of the particle. In order to reduce the
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background, only the candidates with a dE /dx measured in
the TPC compatible within 3σ with the expected value for a
(anti-)deuteron are selected. The squared-mass-distributions
are fitted with a Gaussian function with an exponential tail
for the signal. A significant background is present for pT ≥
1.8 GeV/c and is modelled with two exponential functions. In
the range where the background is negligible, the raw yield
is extracted by directly counting the candidates. Otherwise,
the squared-mass distribution is fitted with the described
model, using an extended-maximum-likelihood approach.
The (anti-)deuteron yield is then obtained by a fit parameter.

4.2 Efficiency and acceptance correction

A correction for the tracking efficiency and the detector
acceptance must be applied to obtain the real yield. The
correction is evaluated from Monte Carlo (MC) simulated
events. The events are generated using the standard genera-
tor PYTHIA8 (Monash 2013) [26]. However, PYTHIA8 does
not handle the production of nuclei. Therefore, in each event
it is necessary to inject (anti-)deuterons. In each pp colli-
sion one deuteron or one anti-deuteron is injected, randomly
chosen from a flat rapidity distribution in the range |y| < 1
and a flat pT distribution in the range pT ∈ [0, 10] GeV/c.
The correction is defined as the ratio between the number of
reconstructed (anti-)deuterons in the rapidity range |y| < 0.5
and in the pseudorapidity interval |η| < 0.8 and the number
of generated ones in |y| < 0.5. The correction is computed
separately for deuterons and anti-deuterons and for the TPC
and TOF analyses.

Another correction is related to the trigger efficiency. All
the selected events are required to have at least one charged
particle in the acceptance, i.e. in the pseudo-rapidity region
|η| < 1 (INEL > 0) [25]. Due to the imperfection of the trig-
ger, some INEL > 0 events are wrongly rejected (event loss).
Consequently, all the (anti-)deuterons produced in the erro-
neously rejected events are lost as well (signal loss). There-
fore, it is necessary to correct the spectra for the event and the
signal losses. Event loss is more relevant at low multiplicity
and almost negligible at high multiplicity (∼ 12% for multi-
plicity class X and < 1‰ for multiplicity class I). The correc-
tions are computed from MC simulations, because both the
number of rejected events and the number of (anti-)deuterons
produced in those same events are known. However, it is
not possible to count the number of lost (anti-)deuterons
directly, because the artificial injection of one (anti-)deuteron
per event will bias the number of lost candidates that can
be extracted from this MC data set. Instead, the number of
lost pions, kaons and protons are extracted from a different
MC data set and then these values are extrapolated to the
deuteron mass. The standard transport code used in ALICE
simulations is GEANT3. However, it is known from other
ALICE analyses on nuclei that GEANT4 provides a more

realistic transport of (anti-)nuclei. The GEANT3 response
is hence scaled to the GEANT4 one to take into account
this effect. Moreover, the spectra obtained with TOF are fur-
ther corrected to take into account the TPC-TOF matching
efficiency using a data-driven approach. This correction was
evaluated for the analysis of the (anti-)deuteron production
in the p–Pb data sample collected in 2013 [9]. In that year
not all the modules of the transition radiation detector (TRD),
which is located between the TPC and the TOF, were already
installed. In this way it was possible to compute the effects
of the presence of the TRD, comparing the (anti-)deuteron
yields in the regions where the TRD modules were present
and in those where they were not yet installed. This correc-
tion was also verified with Run 2 data, by comparing the
yields extracted with the TPC with those extracted with the
TOF in the pT region where both the techniques can be used.

4.3 Subtraction of secondary deuterons

Secondary deuterons are produced in the interaction of par-
ticles with the detector material and their contribution must
be subtracted from the total measured deuteron yield. How-
ever, the production of secondary anti-deuterons is extremely
rare due to baryon number conservation. Hence, the correc-
tion is applied only to the deuteron spectra. The fraction of
primary deuterons is evaluated via a fit to the DCAxy dis-
tribution of the data, as described in [1]. The template for
primary deuterons is obtained from the measured DCAxy

of anti-deuterons. The template from secondary deuterons is
instead obtained from MC simulations. The production of
secondary deuterons is more relevant at low pT (at pT =
0.7 GeV/c the fraction of secondary deuterons is ∼ 40%)
and decreases exponentially with the transverse momentum
(< 5% for pT = 1.4 GeV/c). The only other possible con-
tribution to secondary deuterons that is known is the decay
3
�H → d + p +π . However, 3

�H production has not yet been
observed in pp collisions and its production yield is therefore
lower than that of 3He, which is less than a thousandth of the
deuteron production rate [6].

4.4 Systematic uncertainties

A list of all the sources of systematic uncertainty is shown in
Table 2. The values are reported for the multiplicity classes
I and X, for the lowest and highest pT values.

The track selection criteria are a source of systematic
uncertainty. In this category we include all the contributions
related to the single-track selection: DCA, number of clusters
in the TPC and, for the TOF analysis, the width of the dE/dx
selection applied in the TPC. These uncertainties are evalu-
ated by varying the relevant selections, as done in [8]. At
low pT (pT < 1 GeV/c) the contribution is 2% for deuterons
due to the DCAz and DCAxy selections, which influence the
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Table 2 Summary of the main
contributions to the systematic
uncertainties for the extreme
multiplicity classes I and X.
Values in brackets are referred
to anti-deuterons. If they are not
present, the systematic
uncertainty is common for
deuterons and anti-deuterons.
More details about the sources
of the uncertainties can be found
in the text

Source d (d̄)

Multiplicity Class I Class X

pT (GeV/c) 0.7 3.8 0.7 2.6

Track selection 2% (1%) 2% (3%) 2% (1%) 5% (6%)

Signal extraction 1% 7% (7%) 1% 5% (5%)

Material budget < 1% < 1% < 1% < 1%

TPC-TOF matching 4% (7.5%) 4% (7.5%) 4% (7.5%) 4% (7.5%)

ITS-TPC matching 1% 2.5% 1% 2.5%

Signal Loss – – 6% 3%

Total 5% (8%) 9% (11%) 8% (10%) 10% (12%)

estimation of the fraction of primary deuterons, while for
anti-deuterons this systematic uncertainty is around 1%. It
increases with pT and the growth is more pronounced for low
multiplicity. The systematic uncertainty on the signal extrac-
tion is evaluated by directly counting the (anti-)deuteron can-
didates. It is obtained by varying the interval in which the
direct counting is performed. Its contribution is ∼ 1% at
low pT and increases with pT. Another source of system-
atic uncertainty is given by the incomplete knowledge of the
material budget of the detector in the Monte Carlo simu-
lations. The effect is evaluated by comparing different MC
simulations in which the material budget was increased and
decreased by 4.5%. This value corresponds to the uncertainty
on the determination of the material budget by measuring
photon conversions. This particular systematic uncertainty
is below 1%. The imperfect knowledge of the hadronic inter-
action cross section of (anti-)deuterons with the material con-
tributes to the systematic uncertainty as well. Its effect is eval-
uated with the same data-driven approach used to investigate
the TOF-matching efficiency, as described in Sect. 4.2. Half
of the correction, corresponding to the 1σ confidence inter-
val, is taken as its uncertainty contributing 4% to the system-
atic uncertainty for deuterons and 7.5% for anti-deuterons.
Similarly, an uncertainty related to the ITS-TPC matching
is considered. It is evaluated from the difference between
the ITS-TPC matching efficiencies in data and MC and its
contribution is less than 2.5%. Finally, a source of system-
atic uncertainties results from the signal loss correction. It is
assumed to be half of the difference between the signal-loss
correction (described in Sect. 4.2) and 1. It is strongly depen-
dent on the event multiplicity: it is negligible at high mul-
tiplicity (multiplicity classes from I to VII) and contributes
up to 6% in the lowest multiplicity class (class X). Where
present, it decreases with pT.

5 Results and discussion

The transverse momentum spectra of deuterons and anti-
deuterons in different multiplicity classes as well as INEL>0

pp collisions are reported in Fig. 2. The spectra normalised
to inelastic pp collisions (INEL) are included in the data pro-
vided with this paper. The mean charged-particle multiplicity
〈dNch/dη〉 for each class is reported in Table 1. The spectra
exhibit a slight hardening with increasing multiplicity: the
slope of the spectra becomes less steep and the mean trans-
verse momentum 〈pT〉 moves towards higher values. This
effect is similar to that observed in Pb–Pb collisions, where
it is explained with the presence of increasing radial flow
with centrality [1,28]. However, in pp collisions the inten-
sity of the hardening is not as dramatic. The ratio between
the spectra of anti-deuterons and deuterons for all the multi-
plicity classes under study is reported in Fig. 2. The ratio is
compatible within uncertainties with unity in all multiplicity
classes.

To calculate the integrated yield (dN/dy) and the mean pT

the spectra have been fitted with the Lévy–Tsallis function
[27,29,30]:

d2N

dy dpT
= dN

dy

pT (n − 1) (n − 2)

nC[nC + m (n − 2)]
(

1 + mT − m

nC

)−n

,

(2)

where m is the particle rest mass (i.e. the mass of the

deuteron), mT =
√
m2 + p2

T is the transverse mass, while
n, dN/dy and C are free fit parameters. The Lévy–Tsallis
function is used to extrapolate the spectra in the unmeasured
regions of pT. One contribution to the systematic uncertainty
is obtained by shifting the data points to the upper border of
their systematic uncertainty and to the corresponding lower
border. The difference between these values and the reference
one is taken as an uncertainty which amounts to ∼ 11%.
Another contribution to the systematic uncertainty is esti-
mated by using alternative fit functions such as simple expo-
nentials depending on pT and mT, as well as a Boltzmann
function, and is found to be ∼ 3%. The two contributions are
summed in quadrature. The extrapolation amounts to 25%
of the total yield in the highest multiplicity class, where the
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Fig. 1 Transverse-momentum
spectra of deuterons (top) and
anti-deuterons (bottom)
measured in pp collisions at√
s = 13 TeV in different

multiplicity classes (circles) and
in INEL>0 events (squares).
The mean charged-particle
multiplicity for classes I and X
are reported in the figures and
all the values for the multiplicity
classes can be found in Table 1.
For the analyses in multiplicity
classes, the multiplicity
increases moving from the
bottom of the figure upwards.
The statistical uncertainties are
represented by vertical bars
while the systematic
uncertainties are represented by
boxes. The dashed lines are
individual fits with a
Lévy–Tsallis function [27] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Individual fit

widest pT range is measured, and increases up to 35% in the
lowest multiplicity class.

The statistical uncertainty on the integrated yield is
obtained by moving the data points randomly within their
statistical uncertainties, using a Gaussian probability distri-
bution centered at the measured data point, with a standard
deviation corresponding to the statistical uncertainty. In the
unmeasured regions at low and high pT, the value of the fit
function at a given pT is considered. In this case the statisti-

cal uncertainty is estimated using a Monte Carlo method to
propagate the uncertainties on the fit parameters. Following
the same procedure, the 〈pT〉 and its statistical and system-
atic uncertainties are computed. The resulting mean pT and
dN/dy, as well as the parameters of the individual Lévy–
Tsallis fits, are listed in Table 1.

The coalescence parameter as a function of the trans-
verse momentum is shown in Fig. 3. The transverse momen-
tum spectra needed for the B2 computation are taken from
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Fig. 2 Ratio between the
transverse momentum spectra of
anti-deuterons and deuterons in
different multiplicity classes.
The statistical uncertainties are
represented by vertical bars
while the systematic
uncertainties are represented by
boxes
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Ref. [31]. The B2 values for INEL>0 collisions show a sig-
nificant deviation from a transverse momentum independent
coalescence parameter as expected by the simplest imple-
mentation of the coalescence model. However, it has been
shown [8] that the the multiplicity-integrated coalescence
parameter is distorted because deuterons are biased more
towards higher multiplicity than protons, and consequently
have harder pT spectra than expected from inclusive pro-
tons. The coalescence parameter evaluated in fine multiplic-
ity classes is consistent with a flat behaviour, in agreement
with the expectation of the simple coalescence model.

The evolution of the coalescence parameter as a function
of the charged particle multiplicity is sensitive to the pro-
duction mechanism of deuterons. Recent formulations of the
coalescence model [32,33] implement an interplay between
the size of the collision system and the size of the light nuclei
produced via coalescence.

Figure 4 shows how the B2, for a fixed transverse
momentum interval, evolves in different systems as a func-
tion of the charged particle multiplicity. B2 is shown at
pT = 0.75 GeV/c, which was measured in all the anal-
yses. However, the trend is the same for other pT values.
The measurements are compared with the model descriptions
detailed in [33]. The two descriptions use different parame-
terisations for the size of the source. Parameterisation A uses
the ALICE measurements of system radii R from HBT stud-
ies as a function of multiplicity[34]. These values are fitted
with the function:

R = a 〈dN/dη〉1/3 + b, (3)

where a and b are free parameters. In parameterisation B
the free parameters a and b in Eq. 3 are fixed to repro-
duce the B2 of deuterons in Pb–Pb collisions at

√
sNN =

2.76 TeV in the centrality class 0–10%. The first parameteri-
sation (dashed red line) describes well the measured B2 in pp
and p–Pb collisions, while it overestimates the measurements
in Pb–Pb collisions. However, as outlined by the authors in
[33], a more refined parameterisation of the HBT radius evo-
lution through different systems might reduce the observed
discrepancy. The parameterisation of the source size fixed
to the B2 measurement in central Pb–Pb collisions already
departs from the measurements in peripheral Pb–Pb colli-
sions and it underestimates the coalescence parameter for
small colliding systems.

Figure 5 shows the ratio of the pT-integrated yields of
deuterons and protons for different multiplicities in differ-
ent collisions systems and at different energies. The ratio
increases monotonically with multiplicity for pp and p–Pb
collisions and eventually saturates for Pb–Pb collisions. The
experimental data are compared with a SHM prediction. In
this implementation of the model, called the canonical sta-
tistical model (CSM), exact conservation of baryon number
(B), charge (Q), and strangeness (S) is enforced using the
recently developed THERMAL-FIST package [14]. The cal-
culations with the CSM are performed using 155 MeV for the
chemical freeze-out temperature, B = Q = S = 0 and two
different values of the correlation volume, which is expressed
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Fig. 3 Coalescence parameter
B2 for anti-deuterons for
different multiplicity classes
(circles) and for INEL>0
collisions (squares). For the
analyses in multiplicity classes,
the multiplicity decreases
moving from the bottom of the
figure upwards. The statistical
uncertainties are represented by
vertical bars while the
systematic uncertainties are
represented by boxes. B2 is
shown as a function of pT/A,
being A = 2 the mass number
of the deuteron
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Fig. 4 Coalescence parameter
B2 at pT/A = 0.75 GeV/c as a
function of multiplicity in pp
collisions at

√
s = 13 TeV

(anti-deuterons) and in√
s = 7 TeV [8] (average of

deuterons and anti-deuterons),
in p–Pb collisions at√
sNN = 5.02 TeV [9]

(deuterons) and in Pb–Pb
collisions at√
sNN = 2.76 TeV [1]

(deuterons). The statistical
uncertainties are represented by
vertical bars while the
systematic uncertainties are
represented by boxes. The two
lines are theoretical predictions
based on two different
parameterisations of the HBT
radius, see text for details
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(d) = 3.2 fm (PRC 99 (2019) 054905)r coalesc. 2B

Param. A (fit to HBT radii)

)2BParam. B (constrained to ALICE Pb--Pb 

c = 0.75 GeV/A/
T

p

in terms of rapidity units dV/dy, corresponding to one and
three units of rapidity, respectively. The model qualitatively
reproduces the trend observed in data. This might suggest that
for small collision systems the light (anti-) nuclei production
could be canonically suppressed and that a canonical corre-
lation volume might exist. The correlation volume required
to describe the measurements is larger than one unit of rapid-
ity. However, such a canonical suppression should also affect

the p/π ratio in a similar way and this is not observed in the
experimental measurements [11,35].

A full coalescence calculation, taking into account the
interplay between the system size and the width of the wave
function of the produced (anti-)deuterons, is also able to
describe the measured trend of the d/p ratio [36] and it
describes the data consistently better than CSM for all system
sizes.
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Fig. 5 Ratio between the
pT-integrated yields of
deuterons and protons (sum of
protons and anti-protons) for
different multiplicities in pp
collisions at

√
s = 13 TeV

(anti-deuterons) and in√
s = 7 TeV [8] (deuterons), in

p–Pb collisions at√
sNN = 5.02 TeV [9]

(deuterons) and in Pb–Pb
collisions at√
sNN = 2.76 TeV [1]

(deuterons). The statistical
uncertainties are represented by
vertical bars while the
systematic uncertainties are
represented by boxes. The two
black lines are the theoretical
predictions of the Thermal-FIST
statistical model [14] for two
sizes of the correlation volume
VC , while the magenta line
represents the expectation from
a coalescence model [36]
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6 Conclusions

The results on (anti-)deuteron production presented in this
paper display a smooth evolution with multiplicity across
different reaction systems, in agreement with the measure-
ments of other light-flavoured hadrons. This suggests that a
common physics process might be able to describe the nuclei
production in all hadronic collision systems. Coalescence and
statistical hadronisation models are able to describe qualita-
tively the observed trend in the d/p ratio and B2 as a func-
tion of the charged particle multiplicity. However, with the
precision of the current measurements it is not possible to
distinguish which mechanism drives the (anti-)deuteron pro-
duction. On the other hand, it is not clear whether the CSM
would be able to describe simultaneously the d/p and the p/π
ratios with the same chemical freeze-out conditions.

No substantial differences are seen in the dependence of
nuclei production on the charged multiplicity in pp and p–Pb
collisions and with the Pb–Pb data sample collected in Run 2
it will be also possible to perform a direct comparison with
peripheral Pb–Pb collisions. With the enhanced luminosity
in Run 3, it will be possible to measure pp collisions with
multiplicities similar to those observed in mid-central Pb–Pb
collisions. It will be interesting to see whether ALICE can
confirm this dependence when measuring nuclei production
in pp and Pb–Pb collisions at the same multiplicity.
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P. Sahoo48,49, R. Sahoo49, S. Sahoo65, P. K. Sahu65, J. Saini141, S. Sakai133, S. Sambyal100, V. Samsonov92,97, D. Sarkar143,
N. Sarkar141, P. Sarma41, V. M. Sarti104, M. H. P. Sas63, E. Scapparone53, B. Schaefer95, J. Schambach119, H. S. Scheid68,
C. Schiaua47, R. Schicker103, A. Schmah103, C. Schmidt106, H. R. Schmidt102, M. O. Schmidt103, M. Schmidt102,
N. V. Schmidt68,95, A. R. Schmier130, J. Schukraft88, Y. Schutz33,136, K. Schwarz106, K. Schweda106, G. Scioli26,
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