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Abstract: A new data analysis method is developed for the angle resolving silicon telescope
introduced at the neutron time of flight facility n_TOF at CERN. The telescope has already been
used inmeasurements of several neutron induced reactions with charged particles in the exit channel.
The development of a highly detailed method is necessitated by the latest joint measurement of the
12C(n, p) and 12C(n, d) reactions from n_TOF. The reliable analysis of these data must account for
the challenging nature of the involved reactions, as they are affected by the multiple excited states
in the daughter nuclei and characterized by the anisotropic angular distributions of the reaction
products. The unabridged analysis procedure aims at the separate reconstruction of all relevant
reaction parameters — the absolute cross section, the branching ratios and the angular distributions
— from the integral number of the coincidental counts detected by the separate pairs of silicon
strips. This procedure is tested under the specific conditions relevant for the 12C(n, p) and 12C(n, d)
measurements from n_TOF, in order to assess its direct applicability to these experimental data.
Based on the reached conclusions, the originalmethod is adapted to a particular level of uncertainties
in the input data.
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1 Introduction

The neutron time of flight facility n_TOF at CERN is a neutron production facility aiming at measur-
ing the neutron induced reactions. A massive lead spallation target irradiated by the 20GeV proton
beam from the CERN Proton Synchrotron serves as the primary source of neutrons, delivering an
extremely luminous white neutron beam spanning 12 orders of magnitude in energy— from 10meV
to 10GeV. The n_TOF facility features two experimental areas: Experimental Area 1 (EAR1), hor-
izontally placed at 185 m from the spallation target, and the Experimental Area 2 (EAR2) vertically
placed at 20 m above the target. While EAR1 is best adjusted to the high neutron energy and the
high resolution measurements, EAR2 excels at the measurements with small, highly radioactive
samples characterized by low cross sections for the investigated reactions. More details on the
general features of the n_TOF facility and EAR1 itself may be found in ref. [1], while the specifics
on EAR2 are addressed in refs. [2–4]. An overview of the experimental program at n_TOF may be
found in ref. [5]. A general overview ofmany different types of detectors used at n_TOF for themea-
surements of various types of the neutron induced reactions, together with the detailed description
of the procedures for the analysis of electronic signals from these detectors, can be found in ref. [6].

A new, highly sophisticated silicon telescope (SITE) has recently been introduced at n_TOF
for measurements of the neutron induced reactions with charged particles in the exit channel [7].
It consists of two separate and segmented layers of 16 silicon strips, 5 cm × 3 mm each, placed in
parallel between the layers. The detector is shown in figure 1a. Both layers are 5 cm × 5 cm in
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(a) (b)

Figure 1. (a) Experimental setup housing the segmented silicon telescope (SITE), originally used for
the measurement of the 7Be(n, p) reaction. (b) Top: upgraded experimental configuration used for the
measurements of the 12C(n, p) and 12C(n, d) reactions, comprising two silicon telescopes (a caption from
Geant4 simulations). The central object is a carbon sample, as a source of several displayed proton trajectories.
Bottom: closeup of a rear telescope, showing a stripped structure of ∆E and E layers (the strips of alternating
colors, separated by a very thin layer of inactive silicon).

lateral dimensions, distanced by 7 mm. The first (∆E) layer and the second (E) layer are 20 µm and
300 µm thick, respectively. The detector allows to discriminate different types of charged particles
using the ∆E-E telescope method, while also offering the limited angular discrimination, governed
by its geometry and the sample-relative positioning.

Excellent particle discrimination capabilities of this silicon telescope have been clearly demon-
strated [7] and it has already been successfully used in the challenging measurement of the 7Be(n, p)
reaction cross section, highly relevant for the long-standing Cosmological Lithium Problem [8].
This measurement has also been accompanied by the measurement of the 7Be(n, α) reaction cross
section [9], employing a similar type of silicon sandwich detector [10].

Rather recently an integral measurement of the 12C(n, p)12B reaction has been performed at
n_TOF, using two liquid scintillation C6D6 detectors for the detection of β-rays from the decay of the
produced 12B [11, 12]. The results of this measurement have turned out somewhat surprising, lying
entirely outside of values predicted by all earlier datasets available for this reaction (experimental
or otherwise), which are in a rather poor agreement between each other (for a concise review of
these datasets see refs. [11–13]). In order to resolve this conundrum a more advanced energy-
differential measurement of the 12C(n, p)12B and 12C(n, d)11B reactions was proposed [13] and
already performed at EAR1 at n_TOF, using an upgraded SITE configuration displayed in figure 1b.
The upgrade consisted in introducing a second telescope in order to increase the angular coverage
as much as possible, while keeping both of them outside of the neutron beam. We will refer to
these two telescopes as front and rear, the front one being parallel to the sample and covering
the forward angles, with the rear one being parallel to the neutron beam and mostly covering the
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backward angles (see figure 1b). The analysis of the experimental data on the 12C(n, p) and the
12C(n, d) reaction is under way, pending the development of a new analysis method for extracting
the relevant reaction parameters. Most important among these is the absolute cross section. The
angle-differential cross sections for the reaction flow via the separate excited states of a daughter
nucleus (11B [14] or 12B [15]) would also be highly desirable. However, the reliable decoupling of
these states might not be possible at the level of statistics expected from the latest measurement.

The purpose of this paper is twofold. The first is to develop the necessary formalism for
the analysis of the data obtained with the multi-channel telescope (section 2). The second is to
investigate its applicability on the artificially generated dataset resembling the first experimental
dataset from n_TOF to which the method is to be applied at a later date: that of the 12C(n, p)
reaction (section 3). In doing this we aim (1) to provide the future users of the method with all the
necessary steps and considerations to be taken into account in extracting the optimal set of physical
parameters from a givenmeasurement; (2) to provide an honest assessment of the direct applicability
of the method to a dataset of a given level of uncertainties, in particular the one expected from
the 12C(n, p) measurement, and (3) to provide alternative solutions in case the direct application
proves to be unreliable due to the level of uncertainties in the extracted results (section 4). Since
we develop the method having a specific 12C(n, p) reaction in mind, it cannot be overemphasized
that the procedure is aimed at and designed for the particular detector setup, based on the ∆E-E
telescoping principle, rather than for the particular reaction of even the type of reaction. Therefore,
at no point should the method be considered as limited to this specific (type of) reaction, nor should
the conclusions regarding a particular 12C(n, p) measurement from n_TOF be misinterpreted for
some general limitation of the method itself.

2 Method derivation

Let θ be the angle of proton emission in the center of mass frame (of the incoming neutron and
12C nucleus before the reaction, and of the outgoing proton and the 12B nucleus after the reaction),
relative to the direction of the neutron beam. We immediately introduce:

χ ≡ cos θ (2.1)

as a relevant variable. For simplicity of terminology we still refer to χ as the angle of the proton
emission. Let Ni j be the total number of protons detected in coincidence by the (i, j)-pair of strips,
with the first index i denoting someof the thin∆E-strips and the a second index j denoting someof the
thickE-strips fromany telescope (front or rear). LetE be the energy of the incident neutron. The pro-
ton produced by the neutron of sufficiently high energy might be emitted leaving the 12B nucleus in
any of the energetically accessible states. Thus, the proton energy is clearly contingent on the daugh-
ter nucleus’ excited states. Denoting these states by x (x = 0 being the ground state), we define the
probability εi j(x, E, χ) for the coincidental detection— by the (i, j)-pair of strips — of protons pro-
duced by the neutrons of energy E and emitted under an angle χ leaving the 12B nucleus in a state x:

εi j(x, E, χ) ≡
d2Ni j(x, E, χ)
d2N(x, E, χ)

, (2.2)
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Figure 2. Examples of the coincidental detection probabilities for protons from the 12C(n, p) reaction induced
by 20MeV neutrons, leaving the 12B nucleus in the ground state. The probabilities are shown for an arbitrary
(i-th) ∆E-strip in coincidence with the several closest E-strips.

with d2Ni j(x, E, χ) as the number of the detected protons and d2N(x, E, χ) as the number of pro-
tons emitted under such conditions. These probabilities may easily be obtained from the dedicated
simulations, described in appendix A. It should be noted that they reflect the properties of the
experimental setup itself, and are independent of the angular distribution of the emitted protons.

Only for illustration purposes, figure 2 shows the coincidental detection probabilities
εi j(0, 20 MeV, χ) for protons produced by 20MeV neutrons, leaving the 12B nucleus in the ground
state (x = 0). The probabilities are shown for some arbitrarily selected, i-th ∆E-strip in coinci-
dence with the several closest E-strips. During the method implementation these curves, i.e. their
smooth(ed) forms never have to be constructed, as their integrals can be calculated as the weighted
sum of the simulated counts. The issue is further addressed in appendix A.

The number of protons emitted under the described specific conditions may be decomposed as:

d2N(x, E, χ) = φ(E)µ(E)
%(x, E, χ)
Σtot(E)

(
1 − e−ηΣtot(E)

)
dEdχ, (2.3)

with φ(E) as a time-integrated energy dependent neutron flux irradiating the sample:
φ(E) = dΦ(E)/dE , dΦ(E) being the total number of neutrons of energy E intercepted by the
sample. The multiple scattering factor µ(E) describes an increase in the neutron flux at an energy
E due to the energy loss of higher-energy neutrons by means of the multiple scattering inside
the sample itself. With %(x, E, χ) as the partial cross section for the 12C(n, p) reaction, i.e. for a
particular reaction of interest, Σtot(E) is the total cross section for any neutron induced reaction
in the carbon sample. Finally, η is the areal density of the sample, as encountered by the neutron
beam, in the number of atoms per unit area. While the term 1 − e−ηΣtot(E) gives a probability for
any neutron reaction to occur (the exponential term itself being the transmission probability), the
differential ratio %(x, E, χ)/Σtot(E) governs the probability of that reaction being the one of interest.
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The differential cross section may now be decomposed as:

%(x, E, χ) = σ(E) ρ(x, E) A(x, E, χ), (2.4)

with σ(E) as the total cross section for the 12C(n, p) reaction, ρ(x, E) as the energy-dependent
branching ratios for the reaction flow via the particular excited state of 12B, and A(x, E, χ) as the
angular distribution of protons specific to that state.

From eq. (2.3) we now isolate all the terms that are independent of the detector setup, while
being available from the experiment, simulation or any evaluation database:

w(E) ≡
1 − e−ηΣtot(E)

Σtot(E)
φ(E)µ(E). (2.5)

The neutron flux φ(E) at EAR1 (as well as the flux at EAR2 [16]) is available from the dedicated
measurements at n_TOF [17]. Even in a general case of a thick sample, themultiple scattering factor
could be obtained from the dedicated simulations if the total cross section Σtot(E) and the elastic
scattering cross section Σel(E) for carbon were known with sufficient precision, which they are [12].
However, as the very thin carbon sample was used during the energy-differential measurement —
0.25 mm [13], with the thickness of 0.35 mm, i.e. an areal density of η = 4×10−3 atoms/barn being
intercepted by the neutron beam due to the sample tilt of 45◦ (figure 1b) — a thin sample approx-
imation becomes highly appropriate. In this approximation the deviation of the multiple scattering
factor from unity is completely negligible: µ(E) ≈ 1, while the full fractional term from eq. (2.5)
approximates to η due to ηΣtot(E) � 1 within the entire neutron energy range of interest. Hence:

w(E) ≈ ηφ(E). (2.6)

Using eqs. (2.4) and (2.5), eq. (2.3) may now be rewritten as:

d2N(x, E, χ) = w(E)σ(E) ρ(x, E) A(x, E, χ) dEdχ. (2.7)

We now take into account that due to the energy spread of the neutron beam the experimental data
must be analyzed within the energy intervals of finite width. We use the following notation for one
such interval:

E ≡ [Emin, Emax], (2.8)

meaning that all the later quantities denoted by E are either integrals or averages over E, or that they
may be separately and independently selected for each such energy interval. Since any particular
method implementation requires a weighted averaging over w(E), we immediately introduce the
following norm:

WE ≡
∫
E
w(E)dE . (2.9)

Returning to the differential number of protons d2Ni j(x, E, χ) detected by a particular pair of strips
and recalling that there may be multiple excited states of the daughter nucleus contributing to the re-
action, wemaywrite the expression for the total number of protons detected by the (i, j)-pair of strips:

N (E)i j =

XE∑
x=0

∫
E

dE
∫ 1

−1
dχ

d2Ni j(x, E, χ)
dEdχ

, (2.10)
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with XE as the highest excited state affecting the data from the energy interval E. It should be noted
that the total detected counts N (E)i j taken for analysis will also be dependent on the energy deposition
cuts imposed on the experimental data. We will consider this dependence implicitly absorbed
within the terms N (E)i j and, consequently, the corresponding detection probabilities εi j(x, E, χ).

We now define an arbitrary bijective mapping:

(i, j) 7→ α, (2.11)

allowing us to write eq. (2.10) in a single index, which will soon become useful in bringing the
system to an appropriate matrix form. This bijection never needs to be explicitly constructed. Using
this formal manipulation in conjunction with applying eqs. (2.2) and (2.7) to eq. (2.10), we arrive
at the master equation:

N (E)α =
XE∑
x=0

∫
E

dE
∫ 1

−1
dχ εα(x, E, χ)w(E)σ(E)ρ(x, E)A(x, E, χ). (2.12)

Our goal is now to bring this equation into the matrix form:

®N (E) = EE ®P (E) (2.13)

by constructing the vector ®N (E) of total detected counts N (E)α , by designing an appropriate matrix
EE and by isolating the sought parameters of the partial cross section within the vector ®P (E). We
will obtain this matrix form by decomposing the angular distributions into partial waves (Legendre
polynomials).

Before proceeding further let us put forth the tools and considerations common to any particular
implementation of themethod. Let us denote byRE the number of relevant pairs of strips composing
the experimental dataset from ®N (E) and by PE the number of the partial cross section parameters
from ®P (E). Then we can select at most RE parameters to reconstruct:

RE ≡ dim
[
®N (E)

]
PE ≡ dim

[
®P (E)

] }
⇒ PE ≤ RE. (2.14)

When PE < RE, the best solution to this system may be found by means of the weighted least
squares method [18]:

®P (E) =
(
E>EV−1

E EE
)−1E>EV−1

E
®N (E), (2.15)

with VE are the covariance matrix of the input data, allowing for the propagation of experimental
uncertainties in order to obtain the covariance matrixVE of the reconstructed parameters and their
respective uncertainties δP(E)β as:

VE =
(
E>EV−1

E EE
)−1

⇒ δP(E)β =
√
[VE ]ββ . (2.16)

From the raw results obtained from eq. (2.15) wewill have to calculate various consequent quantities
— the total reaction cross section, branching ratios and the angular distribution parameters—while
dealing with the high uncertainties and possible correlations in the reconstructed ®P (E). Therefore,
we are well advised to take into account the effects of the full covariancematrix upon the propagation

– 6 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
2
0
1
1

of uncertainties. Let any of these quantities be the scalar function of ®P (E) that we generally denote
as: FE ≡ F

(
®P (E)

)
. Then the respective uncertainty δFE may be expressed as:

δFE =
√

JFVE J>F =

√√√√ PE∑
β=1

PE∑
β′=1

∂FE
∂P(E)β

∂FE
∂P(E)β′

[VE ]ββ′, (2.17)

with JF indicating the conventionally defined Jacobian matrix of the function F.

2.1 Partial waves decomposition

We start by decomposing the angular distributions into the selected number of partial waves, i.e.
Legendre polynomials Pl(χ):

A(x, E, χ) ≈
LE(x)∑
l=0

al(x, E) Pl(χ), (2.18)

with the maximum wave number LE(x) freely adjustable to any given excited state, within the
constraints of the total number RE of the available data points. Eq. (2.12) may now be rewritten as:

N (E)α ≈
XE∑
x=0

LE(x)∑
l=0

∫
E
w(E)σ(E) ρ(x, E) al(x, E) dE

∫ 1

−1
εα(x, E, χ)Pl(χ) dχ

= 2WE
XE∑
x=0

LE(x)∑
l=0

〈
σρal

〈
εα

〉
l

〉
E
,

(2.19)

where we recognize the appearance of the weighted averages 〈·〉E and 〈·〉l, with w(E) and Pl(χ)

as the respective weighting functions. We now approximate the average product by the product of
averages: 〈

σρal
〈
εα

〉
l

〉
E
≈ ¯̄ε(E)

αxlσ̄
(E) ρ̄

(E)
x ā(E)xl , (2.20)

with the single and double averages appearing as:

σ̄(E) ≡
1

WE

∫
E
w(E)σ(E) dE, (2.21)

ρ̄
(E)
x ≡

1
WE

∫
E
w(E) ρ(x, E) dE, (2.22)

ā(E)xl ≡
1

WE

∫
E
w(E) al(x, E) dE, (2.23)

¯̄ε(E)
αxl ≡

1
2WE

∫
E
w(E) dE

∫ 1

−1
εα(x, E, χ) Pl(χ) dχ. (2.24)

In analogy to eq. (2.11) we introduce another arbitrary bijective mapping:

(x, l) 7→ β, (2.25)

never having to be explicitly constructed, but allowing for a unique-index labeling. In that, β spans
the range of all free parameters, i.e. the total number of coefficients ā(E)xl : β = 1, . . . ,PE. As it holds:
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PE =
∑XE

x=0[LE(x) + 1], from eq. (2.14) we have the following constraint upon the distribution of
Legendre coefficients among the relevant exited states:

1 + XE +
XE∑
x=0
LE(x) ≤ RE. (2.26)

Equation (2.19) is now recast as:

N (E)α ≈ 2WE
XE∑
x=0

LE(x)∑
l=0

¯̄ε(E)
αxlσ̄

(E) ρ̄
(E)
x ā(E)xl = 2WE

PE∑
β=1

¯̄ε(E)αβσ̄
(E) ρ̄

(E)
β ā(E)β , (2.27)

having thus been brought into the matrix form from eq. (2.13), with the appropriate definitions:[
EE

]
αβ
≡ 2WE ¯̄ε(E)αβ, (2.28)

P(E)β ≡ σ̄
(E) ρ̄

(E)
β ā(E)β . (2.29)

The entire solution ®P (E) and the corresponding uncertainties are now easily found from eqs. (2.15)
and (2.16).

Applying the normalization condition
∫ 1
−1 A(x, E, χ)dχ = 1 to eq. (2.18), we find that:

a0(x, E) = 1/2 ⇒ ā(E)x0 = 1/2, (2.30)

i.e. all the 0th terms are fixed and carry the entire angular distribution norm. Plugging this result
into eq. (2.29): P(E)x0 = σ̄

(E) ρ̄
(E)
x /2 and combining it with the normalization condition

∑XE
x=0 ρ̄

(E)
x = 1,

we find:

σ̄(E) = 2
XE∑
x=0

P(E)x0 . (2.31)

The next step consists of identifying the branching ratios as:

ρ̄
(E)
x =

2P(E)x0
σ̄(E)

=
P(E)x0∑XE

y=0 P(E)y0

, (2.32)

culminating in the separation of the angular coefficients:

ā(E)xl =
P(E)xl

σ̄(E) ρ̄
(E)
x
=

1
2

P(E)xl

P(E)x0

. (2.33)

The uncertainties δσ̄(E), δρ̄(E)x and δā(E)xl follow directly from eq. (2.17), according to the full
covariance matrixVE from eq. (2.16) .

When the total number of the relevant excited states becomes so large that the total number
PE of required parameters becomes comparable to the total number RE of available data points,
and/or when these points are affected by large uncertainties, the coefficients ā(E)xl exhibit substantial
uncertainties themselves and the contributions from the particular excited states can not be reliably
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separated. In this case onemay attempt to reconstruct the “global” partial wave coefficients averaged
over the excited states:

¯̄a(E)
l
=

XE∑
x=0

ρ̄
(E)
x ā(E)xl fLE(x)−l =

∑XE
x=0 P(E)xl fLE(x)−l

2
∑XE

y=0 P(E)y0

, (2.34)

hoping for a manageable uncertainty in the total contribution to a given partial wave. The factors
f` ,defined as:

f` ≡

{
0 if ` < 0
1 if ` ≥ 0

(2.35)

simply take into account whether a given partial wave was adopted for a given excited state. As all
the 0th terms are fixed by eq. (2.30), we immediately have ¯̄a(E)0 = 1/2 and δ ¯̄a(E)0 = 0.

3 Method implementation

We illustrate the implementation of the method by applying it to the 12C(n, p) data artificially
generated by the Geant4 simulations. We consider here the data from 1MeV wide energy range
E = [19.5 MeV, 20.5 MeV], approximately where this reaction’s cross section is expected to reach
its maximum. The branching ratios and the angular distributions for each relevant excited state were
arbitrarily constructed.

3.1 Selecting the excited states

The excited states contributing to the reaction within the given neutron energy range E need to
be clearly identified, as the method requires them to be known in advance. For the 12C(n, p)
reaction, there are total of 15 states in the 12B daughter nucleus with the energy threshold Ethr below
the upper limit of the considered neutron energy range (Ethr < 20.5 MeV) [15]. Their excitation
energies together with the correspondingQ-values and the energy thresholds in the laboratory frame
are listed in table 1. While all these states contribute to the reaction, not all of them necessarily
contribute to the totality of the detected counts, especially those very close to the reaction threshold.
The reason is threefold: (1) the very low reaction cross section close to the threshold; (2) the
pronounced forward boost of the produced protons in the laboratory frame, making them miss most
of the detection setup; (3) the low proton production energy causing them to be stopped by the
sample itself, never reaching the detectors at all. Therefore, it needs to be estimated in advance
which states may be excluded from the analysis of the experimental data. As the exact evaluation of
the expected amount of the detected counts from each state is, of course, impossible without the prior
knowledge of the partial cross sections for each separate state (their branching ratios and angular
distributions), one needs to rely on some reasonable estimate. One such useful figure of merit is the
approximate probability estimator ε̃(E)x for the coincidental detection by any pair of the ∆E-E strips:

ε̃
(E)
x ≡

1
2WE

∑
α

∫
E
w(E)dE

∫ 1

−1
εα(x, E, χ)dχ, (3.1)

constructed by assuming — in the absence of any prior information — the isotropic angular dis-
tribution of protons in the center of mass frame: A(x, E, χ) ≈ 1/2, and applying the same energy
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Table 1. States in the 12B nucleus relevant for the selected demonstration example. The table lists their
excitation energies Ex [15], the corresponding Q-values and the energy thresholds Ethr for the 12C(n, p)
reaction in the laboratory frame.

x Ex [MeV] Q [MeV] Ethr [MeV]
0 0.00 12.59 13.65
1 0.95 13.54 14.68
2 1.67 14.26 15.46
3 2.62 15.21 16.49
4 2.73 15.31 16.60
5 3.39 15.98 17.32
6 3.76 16.35 17.72
7 4.00 16.59 17.98
8 4.30 16.89 18.31
9 4.46 17.05 18.48
10 4.52 17.11 18.55
11 4.99 17.56 19.05
12 5.61 18.20 19.73
13 5.73 18.31 19.85
14 6.00 18.59 20.15

deposition cuts as are to be applied to the experimental data. Figure 3 shows thus obtained prob-
ability estimates for the relevant 12B states. Although the portion N (E)x of the produced protons
still remains entirely unknown, the observed decrease in ε̃(E)x together with the expected decrease in
N
(E)
x for the higher states allows one to make informed estimates about the relevance of the expected

partial contributions N (E)x to the detected counts: N (E)x ≈ ε̃
(E)
x N

(E)
x . From these considerations ap-

plied to figure 3 we elect to include only the first 11 states (up to the 10th excited one, i.e. XE = 10)
for further analysis. The artificial data to be analyzed were, of course, simulated by including all
15 states with the energy thresholds below the upper limit of the considered neutron energy range.

It must be pointed out that this exclusion of higher states from the analysis may, in principle,
affect the cross section normalization, as the branching ratios of the excluded states become unob-
tainable. However, as already discussed, the cross sections around the energy thresholds for these
states are expected to be negligible and so is their impact upon the total reaction cross section. Still,
if there were reasonable indications to the contrary, one should be aware that the reconstructed cross
section σ̄(E) is only partially contributed by those states that were kept for the analysis.

3.2 Varying the amount of partial waves

The highest wave numbers LE(x) for each excited state are evidently the method’s adjustable
parameters. For the total of RE relevant pairs of strips from eq. (2.14), there is a total of

(
RE
XE+1

)
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Figure 3. Figure of merit: estimated probabilities for the coincidental detection of protons from the 12C(n, p)
reaction by any pair of ∆E-E strips, dependent on the excited state x that the daughter nucleus 12B was left
in. The considered neutron energy range is E = [19.5 MeV, 20.5 MeV].

selections ofLE(x) satisfying the constraint from eq. (2.26), with
(
·

·

)
denoting a binomial factor. For

RE = 60, as used later, and XE = 10 this amounts to approximately 3.4 × 1011 combinations. If we
were to impose some maximum admissible wave number LE that may be assigned to any particular
state — implying, for purpose of these simple estimates, that the selection of LE itself must be such
that (LE + 1)(XE + 1) ≤ RE, in order for each of XE + 1 states to be allowed LE + 1 waves — then
the number of possible selections for LE(x) reduces to (LE + 1)XE+1. For example, the maximum
value LE = 4 compatible with RE = 60 and XE = 10 yields approximately 4.9 × 107 combinations.
However, the following physical argument helps us in reducing the number of possible combinations
even further, by keeping only the physically sensible selections of LE(x). We consider that close
to the reaction threshold the nuclear reactions are expected to be isotropic (in the center-of-mass
frame), while the anisotropy is expected to appear (and possibly intensify) with increasing incident
particle energy. This suggests that the higher excited states — characterized by a higher threshold
— should not be assigned more partial waves than the lower states, i.e.:

LE(x1) ≥ LE(x2) for x1 < x2. (3.2)

For the maximum admissible wave number LE, the number of combinations consistent with this
constraint is now reduced to

(LE+XE+1
XE+1

)
. For example, the maximal value LE = 4 compatible with

RE = 60 and XE = 10 leaves the total of 1365 combinations. All we need now is the algorithm for
constructing such combinations. For the maximum wave number LE to be assigned to any state,
the particular combination of nonincreasing LE(x) values may be uniquely defined by the set of
LE states Λ` (` = 1, . . . , LE) at which the maximum wave number LE(x) increases by 1. In other
words, Λ` form a set of states such that LE(x) = ` ends at x = Λ` , i.e.:

LE(x) = ` for Λ`+1 < x ≤ Λ`, (3.3)
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with additional fixed boundariesΛ0 = XE andΛLE+1 = −1, defined for the convenience of the imple-
mentation. The algorithm now reduces to generating all combinations (LE-tuples) of Λ` such that:

Λ`+1 ≤ Λ` with Λ` ∈
{
− 1, . . . ,XE

}
for ` = 1, . . . , LE. (3.4)

It is easy to confirm that if Λ` = −1 for all `, then LE(x) = 0 for all x, i.e. all the states are assigned
only the isotropic component. The other extreme is Λ` = XE for all `, meaning that LE(x) = LE for
all x, i.e. all the states are assigned the maximum allowed number of partial waves.

3.3 Optimizing the model parameters

The obvious question now is how to select an optimal combination of the wave numbers LE(x). We
propose here a simple— and by no means unique— selection principle. As the variations in LE(x)
directly affect the number of themodel parameters: PE =

∑XE
x=0[LE(x) + 1], the reduced chi-squared

estimator X2 lends itself easily to a quick and efficient evaluation of the goodness of the fit:

X2 =

(
®N (E) − EE ®P (E)

)>V−1
E

(
®N (E) − EE ®P (E)

)
RE − PE

'
1

RE − PE

RE∑
α=1

(
N (E)α −

∑PE
β=1

[
EE

]
αβ

P (E)β
)2(

δN (E)α
)2 . (3.5)

The rightmost expression holds when the covariance matrix VE of the input data is diagonal, i.e.
when the correlations between the components of ®N (E) are negligible. As opposed to the goodness
of fit — which will for large RE systematically improve by increasing the number of partial waves,
as long as PE does not closely approach RE — the reliability of the fit, reflected through the un-
certainties in the reconstructed ®P (E), rapidly degrades with increasing number of parameters. For
estimating this reliability we propose a simple calculation of the uncertainty δX2 in the chi-squared
value from eq. (3.5) by means of eq. (2.17), since X2 is sensitive to all the fitted parameters —
unlike, for example, the reconstructed cross section σ̄(E) from eq. (2.31). In the context of our
problem the minimization of X2 and its uncertainty δX2 seem to be opposing objectives. Therefore,
we propose to minimize their product X2δX2 as the simplest estimator that should at its minimum
provide the optimal tradeof between the goodness and the reliability of the fit.

There are additional issues to consider. For the number of partial waves too inadequate for
a given set of the experimental data, some of the branching ratios ρ̄(E)x from eq. (2.32) may turn
out to be negative or greater than unity — a clear signature of the badness of the fit, going beyond
the particular values of X2. These fits should be immediately rejected as physically unsound, i.e.
disqualified from any kind of optimization procedure, be it the minimization of X2δX2 or some
alternate technique.

Yet another quality control mechanism consists of checking if the reconstructed angular distri-
butions for each angular state:

Ā(E)x (χ) ≡

LE(x)∑
l=0

ā(E)xl Pl(χ) =
1
2

LE(x)∑
l=0

P(E)xl

P(E)x0

Pl(χ) (3.6)

become negative at any point. If so, such fits may also be immediately rejected, regardless of
their goodness. One should be wary, however, in making such rejections when there are prior
indications that some states may indeed feature the very low branching ratios or highly anisotropic
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angular distributions that locally come close to zero. In this case any statistical fluctuation in the
input data may easily drive the reconstructed results toward the negative values, while the results
do remain reasonably reliable representations of the true reaction parameters. It should be noted
that the reconstructed branching ratios may discard all fits as unphysical, if every combination of
wave numbers LE(x) produces at least one negative ρ̄(E)x . On the other hand, the isotropic angular
distributions will always pass the negativity test, so that the fully isotropic fit (LE(x) = 0 for all x)
will always be accepted, based on the positivity of the angular distributions themselves.

Prior to calculating X2, δX2 or any consequent quantity to be used in judging the suitability
of the fitted result, one may also consider manually eliminating from the set of fitted parameters
those P(E)xl that, according to eq. (2.33), yield the angular coefficients too small (|ā(E)xl | � 1) or
unreasonably large (|ā(E)xl | � 1) in magnitude. For the associated β, this is most easily done by
setting P(E)β = 0 and [VE ]ββ′ = [VE ]β′β = 0 for all β′ within the covariance matrix from eq. (2.16).
This procedure helps in regularizing the fit, as the exceedingly small |ā(E)xl | are commonly the
sporadic results caused by the finite precision data, while the distinctly large |ā(E)xl | are expected to
appear as the consequence of overfitting the statistical fluctuations in the input data. One should, of
course, be prepared for the closer inspection and the critical evaluation of the results if the optimal
set of parameters happens to be precisely thus manipulated set. However, what is expected from
this procedure is the artificially induced increase in the fit suitability estimator X2δX2, such that
some alternative set of parameters takes precedence as the optimal one.

In summary, we propose to identify the optimal combination of the maximum wave numbers
LE(x) by minimizing the product X2δX2 — or any such estimator balancing between the goodness
and the reliability of the fit — while taking into account the physical soundness of the results,
whether by immediately rejecting those physically inadmissible or by appropriately penalizing
them during the optimization procedure.

3.4 Method investigation: 12C(n,p) data

We now test the method on a particularly challenging example of the artificially generated 12C(n, p)
data, as means of appraising its applicability to the experimental data from n_TOF. The simulated
dataset — the set of counts N (E)α detected by a particular pair of strips — was obtained from the
same Geant4 simulations as used for obtaining the coincidental detection probabilities, i.e. the
central design matrix EE . The neutron energies were sampled within the 1MeV wide interval
E = [19.5 MeV, 20.5 MeV], all 15 states from table 1 were used in constructing the dataset, while
only the first 11 states from figure 3 were considered for the reconstruction. For the buildup of the
test counts an arbitrarily constructed branching ratios ρ(x, E) for each of the 15 states were used (rep-
resented by later figure 5), together with the angular distributions A(x, E, χ) arbitrarily constructed
for each state, which were all designed from the three lowest Legendre polynomials (P0, P1, P2).

Figure 4 shows the relevant set of coincidental counts recorded by different∆E-E pairs of strips,
ordered by magnitude. While there are (16 E-strips)×(16 ∆E-strips )×(2 telescopes) = 512 possible
pairs of strips in the used SITE configuration from figure 1b, one can see from figure 4 that only the
tenth of those are characterized by a sufficient coincidental detection probability to be considered
for analysis. It should be noted that the counts from figure 4 were constructed from an exceedingly
large dataset, featuring the negligible statistical fluctuations. In order to easily generate the statis-
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Figure 4. Artificial set of the coincidentally detected counts obtained from an exceedingly large dataset
generated by Geant4 simulations, virtually unaffected by the statistical fluctuations. The numbers of counts
are ordered by their magnitude and scaled relative to their maximum value (from the most efficient ∆E-E
pair of strips). The values for the analysis are constructed by first scaling these counts to a desired level
of statistics and then generating the appropriate Poissonian fluctuations. Only the counts above 5% of the
maximum value (the dashed threshold) are kept for the analysis.

tical variations in the dataset to be taken for analysis, we first scale these counts to a desired level
of statistics (thus constructing their statistically expected values) and then generate the appropriate
Poissonian fluctuations. For purposes of this demonstration we keep only those coincidental counts
N (E)α that are higher than 5% of the maximum value (the dashed threshold from figure 4). Depending
on a particular realization of the Poissonian fluctuations, around RE = 60 relevant pairs of strips
meet this condition. The statistical uncertainties are then assigned to these counts by setting the
diagonal elements of the input covariance matrixVE from eqs. (2.15) and (2.16) to: [VE ]αα = N (E)α .

In order to vary the maximum wave numbers LE(x) for each excited state we follow the
procedure from section 3.2, adopting the maximum supported value LE = 4. We choose the number
of counts from the most efficient pair of strips to be: max

[
N (E)α

]
= 106, making the total number

of counts detected across all kept pairs:
∑RE
α=1 N (E)α = 2 × 107. The reason behind this selection is

rather simple and carries the critical repercussions for the analysis of the experimental data from
n_TOF: at lower statistics basically all the fits are discarded due to the appearance of the negative
branching ratios. In other words, for almost all generated instances of Poissonian fluctuations all
the fits (for any combination of state boundariesΛ`) produce at least one negative ρ̄(E)x . One must be
careful at this point not to confuse max

[
N (E)α

]
= 106 with some minimum intrinsic level of reliable

statistics. Instead, it reflects an amount of excited states at play: a high number of states naturally
requires high statistics if they were to be reliably disentangled one from the other.

We now appraise the method based on the accuracy and uncertainty of the reconstructed
parameters. For a condensed demonstration of the results on the reconstructed angular distributions,
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Figure 5. Typical example of the reconstructed set of branching ratios, recovered by an optimal set of wave
numbers assigned to each excited state. Only the first 11 states were considered for the reconstruction, as the
rest of them hardly contribute to the detected counts or not at all.

we use the overall distribution AE(χ), averaged over all excited states:

AE(χ) =
1

WE

X+E∑
x=0

∫
E
w(E) ρ(x, E) A(x, E, χ) dE

'

XE∑
x=0

ρ̄
(E)
x

LE(x)∑
l=0

ā(E)xl Pl(χ) =

∑XE
x=0

∑LE(x)
l=0 P(E)xl Pl(χ)

2
∑XE

x=0 P(E)x0

.

(3.7)

The reference distribution stems from the arbitrarily constructed distributions A(x, E, χ) for each
of the 15 states contributing to the reaction (X+E = 14; see table 1). The reconstructed distribution,
as denoted by ', is contributed by the reduced number of states taken for the analysis (XE = 10).
After applying the method to the different realizations of Poissonian fluctuations, our conclusions
are rather simple and straightforward. The fits yielding an unphysical set of branching ratios
also grossly misidentify the overall angular distribution AE(χ) and, in general, the reconstructed
cross section σ̄(E), reflecting the absolute normalization of the data. As such, they should indeed
be immediately rejected. Among the physically admissible fits (if there are any at all) the ones
identified as optimal do seem to reasonably reconstruct both the overall angular distribution and
the cross section, at least under the level of statistics adopted here out of necessity. However, the
set of reconstructed branching ratios themselves most often seems to be unrepresentative of the
true results, as illustrated by a typical example from figure 5. The example from figure 5 also
shows that their uncertainties may also be grossly underestimated and unrepresentative of their
error. Therefore, the reconstructed branching ratios should be taken with maximum caution.

At the adopted level of statistics most often there seems to be little difference in the results
obtained byminimizingX2 or the proposed productX2δX2, as the physicality of the branching ratios
serves as themain discriminator of the unreliable fits. Figure 6 shows an examplewhen the difference
in the reconstructed overall angular distributions obtained by minimizing X2 or X2δX2 turns out to
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Figure 6. Overall angular distribution recovered from an optimal set of wave numbers for each excited state,
obtained by minimizing either X2 (the goodness of the fit) or X2δX2 (the tradeoff between the goodness and
the reliability).

be appreciable. This example clearly illustrates the superiority of optimizing the tradeoff between he
goodness and the reliability of the fit. The power of this procedure lies not in reducing the uncertain-
ties per se, but in penalizing the overfitting, i.e. in rejecting the sporadic parameters that unnecessar-
ily and disproportionately increase the uncertainties in all other parameters, besides introducing their
own excessive ones. Indeed, while the reference angular distribution from figure 6 was constructed
as a linear combination of the 3 lowest Legendre polynomials, the one identified by minimizing X2

allows for 5 of them (the maximum amount supported by LE = 4; a clear symptom of overfitting),
while the minimization of X2δX2 finds the combination of 4 partial waves as the optimal one.

Let us recall that with so many exited states at play, the physicality of the branching ratios
serves as the primary discriminator of unreliable fits. For a significantly reduced number of states,
this method of assessment becomes much more insensitive or even entirely unavailable in case
of a single relevant, ground state. In that case the quality tradeoff between the goodness and the
reliability of the fit remains the crucial, if not the only available method for identifying the optimal
set of the fit parameters.

Finally, at the adopted level of statistics the relative uncertainty in the reconstructed cross section
σ̄(E) appears to be around 10%. As the statistically expected uncertainty scales as

(
N (E)tot

)−1/2 with
the total number N (E)tot of the detected counts, one can easily estimate the expected level of uncertainty
at any level of statistics, provided that the available data produce any acceptable fit in the first place.
Considering that the experimental n_TOF data on the 12C(n, p) reaction are expected to provide 4 to
5 orders of magnitude less statistics than adopted for this demonstration [13], even if they could be
fitted without all fits failing the physicality test, the uncertainty in σ̄(E) is thus expected to be at least
an order of magnitude grater than reconstructed cross section itself! Hence, the direct application
of the full reconstruction method presented up to this point is ill-adjusted to these experimental
data, due to the particularly unfavorable combination of the available statistics and the amount of
excited states at play. This outcome should not be confused with some intrinsic shortcoming of the
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method itself, as there is a limit to the quality of the results that could be extracted from the data of
a finite statistical precision. Fortunately, this eventuality was foreseen in advance of the experiment
and the experimental setup was specially optimized so as to minimize the systematic effects due
to the alternative approach to the analysis of these data. This approach consists of utilizing the
reduced variant of the method, by adopting a priori information on the branching ratios and the
angular distributions from an outside source — such as the TALYS theoretical model [19], adjusted
to the preexisting experimental data — and aiming solely at the reconstruction of the absolute cross
section σ̄(E). This reduced variant is addressed in the following section.

4 Method reduction

Even when the full unfolding procedure may not be meaningfully applied due to the uncertainties
in the input data limiting the usefulness of the output results, the method formalism from section 2
still remains relevant, as it clearly establishes the connection between the measured observables
and the underlying reaction parameters. Furthermore, the coincidental detection probability of
the experimental setup must be characterized — most appropriately by means of the dedicated
simulations described in appendix A — regardless of the particular approach to the data analysis.
Starting from eq. (2.12), one may derive any particular variant of the unfolding procedure, be it
the reduction of the one from section 2.1 or even some further extension, shortly addressed in
appendix B. Motivated by the status of the experimental n_TOF data on the 12C(n, p) reaction, we
consider here the adoption of a priori information on the branching ratios and angular distributions,
aiming solely at the reconstruction of the absolute cross section. Assuming that information to be
available from an independent source, eq. (2.12) may be linearized as:

®N (E) ≈ ®ε (E)σ̄(E), (4.1)

with the vector ®ε (E) (as a matrix of a reduced dimensionality) standing in place of the design matrix
EE from eq. (2.13) and the single unknown σ̄(E) replacing the previous set ®P (E) of underlying
reaction parameters. While the definition of σ̄(E) stays the same as in eq. (2.21), ®ε (E) is now defined
by components as:

ε
(E)
α ≡

XE∑
x=0

∫
E

dE
∫ 1

−1
dχ w(E) ρ(x, E) A(x, E, χ) εα(x, E, χ), (4.2)

where the branching ratios ρ(x, E) and angular distributions A(x, E, χ) are taken from an outside
source of information. Applying eqs. (2.15) and (2.16) — while taking the covariance matrix VE
to be diagonal and composed of the uncertainties δN (E)α in the detected counts: [VE ]αα =

(
δN (E)α

)2

— the final solution for the sought cross section may now be written in a rather simple closed form:

σ̄(E) =
(
δσ̄(E)

)2
RE∑
α=1

ε
(E)
α N (E)α(
δN (E)α

)2 , (4.3)

with the associated uncertainty:

δσ̄(E) =
©«
RE∑
α=1

(
ε
(E)
α

δN (E)α

)2ª®¬
−1/2

. (4.4)
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It should be noted that this procedure still makes full use of all the experimentally available
information from separate pairs of ∆E-E strips. This feature is in clear opposition with the
more extreme reduction of the method, taking only the total number N (E)tot =

∑RE
α=1 N (E)α of coin-

cidental counts detected across an entire detection setup, in conjunction with its total detection
probability ε (E)tot =

∑RE
α=1 ε

(E)
α in order to obtain the absolute cross section overly simplistically as

σ̄(E) = N (E)tot /ε
(E)
tot , thus defeating any benefit of having used a high-end telescope — in particular, its

sophisticated dissociation into multiple strips.
Evidently, the main challenge with thus reduced method is the estimation of the systematic un-

certainties brought on by the out-of-necessity adopted branching ratios and angular distributions. An
indication of those uncertainties — and a conservative one, at that — may be obtained by adopting
all the involved angular distributions as isotropic: A(x, E, χ) = 1/2, and recalculating σ̄(E). The dif-
ference between the externally provided and all-isotropic distributions is to be taken as representing
the extreme case of the possible disparity with the true angular distributions. Another possibility is
taking among the externally provided distributions only the branching ratios or the angular distribu-
tions as given, and unfolding the data with the other type of distributions unconstrained. Comparing
these alternative results for σ̄(E) allows for an informed estimate of the systematic uncertainties.

5 Conclusions

A new angle resolving stripped silicon telescope (SITE) has recently been introduced at the neutron
time of flight facility n_TOF at CERN for the measurements of the neutron induced reactions with
the charged particles in the exit channel. Its outstanding detection properties have already been
demonstrated in the challenging measurement of the 7Be(n, p) reaction, relevant for the famous
Cosmological Lithium Problem. The joint energy-differential measurement of the 12C(n, p) and
12C(n, d) reactions has also been recently performed at n_TOF, using the upgraded and specially
optimized detector configuration consisting of the two separate silicon telescopes. As the nature of
these reactions poses significant challenges for the meaningful data analysis — being affected by
the multiple excited states in the daughter nuclei and featuring the anisotropic angular distributions
of the reaction products — we have established a clear and detailed formalism behind the measured
observables: the total number of the coincidental counts detected by any combination of ∆E-E pairs
of silicon strips. From this formal connection we have developed and tested the unfolding procedure
for the reconstruction of the underlying reaction parameters, consisting of the absolute reaction cross
section, the branching ratios and the angular distributions of the reaction products for each excited
state in the daughter nucleus. We have also addressed the finer points of the method implementation,
thus providing the consistent and reliable methodology for obtaining the optimal set of the output
parameters. Though the method may, in principle, reconstruct all these quantities separately, its
performance may be severely limited by the amount of parameters — determined by the number of
excited states and the level of anisotropy— as well as the level of uncertainties in the input data. By
testing themethod on the artificially generated dataset resembling the n_TOFmeasurement the of the
12C(n, p) reaction, we have found little hope that the full unfolding procedure could be meaningfully
applied to these particular experimental data, precisely due to the highly unfavorable combination of
the large number of the excited states and the reduced level of statistics expected from the experiment.
This unfortunate outcome should not be misinterpreted for the inherent deficiency of the method
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itself, as at some point all considered reaction parameters must be fully taken into account if the
experimental data are to be properly described and reliably analyzed. Precisely the clarity of the
formalism behind the method allows for its many alternative variants to be developed. One of these,
to be applied to the measured 12C(n, p) and 12C(n, d) data, is the reduced procedure relying on the
independent source of information on the branching ratios and angular distributions, aiming at the
reconstruction of the absolute cross section as the central reaction parameter of interest. It is worth
noting that thus reducedmethod still takes advantage of the distribution of the detected counts across
the separate∆E-E pairs of strips, as opposed to considering only the total number of counts across all
of them. Thus retained angular sensitivity opens the possibility for the estimation of the systematic
effects due to the adopted outside information (branching ratios and/or angular distributions),
allowing for the informed assessment of the systematic uncertainties in the final results.
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A Detection probability simulations

We describe the detection probability simulations and the use of the simulated data in the construc-
tion of the design matrix EE from eq. (2.28). For specificity, we again keep the 12C(n, p) reaction
in mind. The reaction details — except for its basic kinematics — are assumed unknown. The
reaction itself or its basic details may not even be (properly) implemented in the used simulation
package. Therefore, the simulations need to start by generating the exit products (protons), based
on the energy and the spatial distribution of the primary reaction-inducing particles (neutrons).

For each separate excited state x in the daughter nucleus (12B; see table 1) the neutron energy
E is sampled from some preselected energy distribution ϕ̂E(x, E), where we use the hat-notation ·̂
to indicate the simulated (as opposed to the later determined, experimental) quantities. These
distributions are best selected as uniform or isolethargic, for the simplicity of later analysis. The
produced proton direction in the center-of-mass frame is then sampled from a preselected angular
distribution Â(x, E, χ), which is best selected as isotropic. The proton energy in the center-of-
mass frame is calculated based on the Q-value for a particular excited state. The proton energy
and direction are then boosted into the laboratory frame by the proper (in our case relativistic)
transformations. As for the initial proton position, its radial distribution relative to the direction of
the neutron beam must be sampled according to the known neutron beam profile; alternatively, the
data need to be properly reweighed according to the same beam profile during the later construction
of the EE matrix. The sampling (or the later data reweighing) of the initial proton position along the
neutron beam direction depends on the properties of the simulated sample and may vary between
extremely simple and rather involved. In case of the thin sample — implying the combination of
the geometric thickness and the total cross section such that ηΣtot(E) � 1, as discussed in a context
of eq. (2.6) — the longitudinal proton distribution may be sampled uniformly, as the neutron beam
attenuation along the sample is negligible. This was the case with our setup. Otherwise, if the
beam losses are known to be considerable, then the relative proton production probability along
the sample must be properly accounted for. In case of the homogeneous and geometrically regular
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sample this correction amounts to the factor 1 − e−ηΣtot(E)×d/D with d as the proton production
depth and D as the sample thickness along the neutron beam direction; however, this procedure still
does not take into account the multiple scattering effects. For more complex samples the correction
involves its full spatial characterization.

Each coincidental proton detection by any pair of∆E-E strips needs to be recorded by outputting
the relevant physical parameters of that particular event. The necessary data consist of: (1) the
primary neutron energy E; (2) the proton emission angle χ from the center-of-mass frame; (3) the
unique designation of the activated ∆E-E pair of strips; (4) the energy deposited in those strips.
In addition, the excited state x, the sampled neutron energy distribution ϕ̂E(x, E) and the proton
angular distribution Â(x, E, χ), together with the total number N̂E(x) of generated protons within
the sampled neutron energy interval E also have to be documented for a complete and meaningful
utilization of the simulated data. By the virtue of eq. (2.2), the elements of the design matrix EE
from eq. (2.28) may be treated as the integrals over the detected counts, so that by identifying the
amount d2N̂(x, E, χ) of generated protons as:

d2N̂(x, E, χ) = N̂E(x) ϕ̂E(x, E) Â(x, E, χ) dEdχ (A.1)

we may write: [
EE

]
αβ
=

∫
E∈E

∫
χ∈[−1,1]

w(E)Pl(χ)

ϕ̂E(x, E) Â(x, E, χ)
d2N̂α(x, E, χ)
N̂E(x)

. (A.2)

This formalism allows us to construct the sought integrals directly on a count-by-count basis,
without ever having to build the full coincidental detection probability distributions εα(x, E, χ),
such as those shown in figure 2. This is achieved simply by taking a weighted sum of all detected
counts: [

EE
]
αβ
'

1
N̂E(x)

N̂
(E)
αx∑

q=1

w(Eq)Pl(χq)

ϕ̂E(x, Eq) Â(x, Eq, χq)
. (A.3)

Here ' symbolically denotes the representation of the integrals from eq. (A.2), with the index q
enumerating all the appropriately detected counts: N̂ (E)αx of them caused by the protons leaving the
daughter nucleus in the excited state x and being coincidentally detected by the α-th pair of strips.
In exactly the same manner, the design vector elements from eq. (4.2) may be expressed as:

ε
(E)
α =

XE∑
x=0

∫
E∈E

∫
χ∈[−1,1]

w(E) ρ(x, E) A(x, E, χ)
ϕ̂E(x, E) Â(x, E, χ)

d2N̂α(x, E, χ)
N̂E(x)

(A.4)

and thus constructed on a count-to-count basis:

ε
(E)
α '

XE∑
x=0

1
N̂E(x)

N̂
(E)
αx∑

q=1

w(Eq) ρ(x, Eq) A(x, Eq, χq)

ϕ̂E(x, Eq) Â(x, Eq, χq)
, (A.5)

where the branching ratios ρ(x, E) and angular distributions A(x, E, χ) are now taken to be known
from an independent source of information.

We remind that the energy deposition cuts used in the analysis of the experimental data are
to be implemented precisely at this point, in the construction of the matrix EE or the vector ®ε (E),
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thus directly affecting the numbers N̂ (E)αx of the acceptable counts. It is also worth noting that
the weighting function w(E) is determined by the actual experimental conditions, as opposed to
the arbitrary sampling distributions ϕ̂E(x, Eq) and Â(x, Eq, χq). In that, it is evident that both the
simulations and the computational procedures from eqs. (A.3) and (A.5) are immensely simplified
when the uniform neutron energy distributions ϕ̂E(x, E) = 1/|E| and the isotropic proton angular
distributions Â(x, E, χ) = 1/2 are used.

B Method extension

We shortly comment on the possibility of the further method generalization that may be applicable
under specific conditions, namely the high statistics and at least a partial separation of the excited
states in the deposited energy spectra. For the silicon telescope consisting of ∆E and E-layers, the
entire two-dimensional∆E-E spectra may be considered in the most general case, as we do here. For
simplicity, figure 7 illustrates the basic idea on the schematic example of the one-dimensional, e.g.
(E + ∆E)-spectrum. Evidently, if the excited states are sufficiently far apart in energy (as determined
by the detector resolution), the spectra shapes may serve as an additional source of information to
be exploited. In this case one defines the differential coincidental detection probability:

ξi j(x, E, χ,E(1),E(2)) ≡
d4Ni j(x, E, χ,E(1),E(2))
d2N(x, E, χ)dE(1)dE(2)

, (B.1)

starting from the number of counts d4Ni j(x, E, χ,E(1),E(2)) characterized by the energy E(1) de-
posited in the i-th ∆E-strip and the energy E(2) deposited in the j-th E-strip. The master equation
for the total number of counts N (E)i j ı  detected within the ı-th E(1)-interval of width E(1)ı and the -th
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Figure 7. Illustrative example: the reaction products leaving the daughter nucleus in any of its excited states
may leave a clear signature in the deposited energy spectrum if the energy separation of the excited states is
sufficient.
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E(2)-interval of width E(2) is easily rewritten as:

N (E)i j ı  =

XE∑
x=0

∫
E

dE
∫ 1

−1
dχ

∫
E(1)ı

dE(1)
∫

E(2)
dE(2)

× ξi j(x, E, χ,E(1),E(2))w(E)σ(E) ρ(x, E) A(x, E, χ)

(B.2)

where the binning of the deposited-energy distributions, i.e. the set of bin widths E(1)ı and E(2) is
entirely arbitrary and may, in the most general case, depend on the particular (i, j)-pair of strips and
the neutron energy interval E. In place of the earlier bijective mapping from eq. (2.11), an entire
set of indices i, j, ı,  is now to be mapped onto the unique index α:

(i, j, ı, ) 7→ α, (B.3)

allowing the extended design matrix EE :[
EE

]
αβ
≡

∫
E

dE
∫ 1

−1
dχ

∫
E(1)ı

dE(1)
∫

E(2)
dE(2) × ξi j(x, E, χ,E(1),E(2))w(E) Pl(χ) (B.4)

to be used in bringing eq. (B.2) to the matrix form from eq. (2.13), with ®P (E) staying the same as in
eq. (2.29).
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