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12 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
13 School of Physical Science and Technology, Southwest University, Chongqing
400715, People’s Republic of China
14 Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland
15 Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Str. 1, 60438
Frankfurt am Main, Germany
16 Department of Physics and Astronomy and FRIB Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States of America

Original content from this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

0954-3899/20/113002+58$33.00 © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6471/abab4f
https://orcid.org/0000-0001-8707-3410
https://orcid.org/0000-0001-7123-7230
https://orcid.org/0000-0002-4158-3770
https://orcid.org/0000-0002-9814-0719
https://orcid.org/0000-0002-6296-2112
https://orcid.org/0000-0002-8084-7425
https://orcid.org/0000-0002-9286-1304
https://orcid.org/0000-0002-7618-4876
https://orcid.org/0000-0002-4505-1552
https://orcid.org/0000-0002-6061-1319
https://orcid.org/0000-0002-4775-4403
https://orcid.org/0000-0002-9203-6849
https://orcid.org/0000-0002-5271-2021
https://orcid.org/0000-0003-2645-2569
https://orcid.org/0000-0002-9267-5253
https://orcid.org/0000-0002-0153-1212
https://orcid.org/0000-0001-6723-1020
https://creativecommons.org/licenses/by/4.0/


J. Phys. G: Nucl. Part. Phys. 47 (2020) 113002 Topical Review

17 Department of Technical Physics, School of Physics, Peking University, Beijing
100871, People’s Republic of China
18 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States of America
19 Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, 91058
Erlangen, Germany
20 Center for Computational Simulation, Universidad Politécnica de Madrid,
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Abstract
There has been much recent interest in nuclear fission, due in part to a new
appreciation of its relevance to astrophysics, stability of superheavy elements,
and fundamental theory of neutrino interactions. At the same time, there have
been important developments on a conceptual and computational level for the
theory. The promising new theoretical avenues were the subject of a work-
shop held at the University of York in October 2019; this report summarises
its findings and recommendations.
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1. Introduction

The theory of nuclear fission has a long history, driven for many years by technological appli-
cations and heavy element studies. Today the needs are even broader with the recognition of
new connections to other disciplines such as astrophysics and fundamental science.

In the past, fission theory was largely phenomenological. Recent significant advances in
microscopic modelling, which can be tested thanks to the rapid growth in computational capa-
bilities including leadership-class computers, provide opportunities for developing fission the-
ory to a new level of refinement. In addition, experimental fission data of unprecedented detail
and quality are now being acquired and can be used to validate models more thoroughly.

A disclaimer is in order, because we used the word ‘microscopic’ in the previous para-
graph. In the context of fission theory and indeed all theory that is applied to large nuclei,
‘microscopic’ should not be construed as an ab initio many-body theory with all Hamilto-
nian input taken from the outside. In our field, theory is useful at a quantitative level only if
the parameters, or coupling constants, of models are optimised to experiment. For that rea-
son, all quantitative nuclear models are phenomenological at some level. Superlatives such
as ‘fully microscopic’ or ‘from first principles’, sometimes used to characterise particular
approaches, may be viewed more as wishful thinking than the present reality. However, it
is useful to distinguish the degrees of phenomenology in different theoretical approaches. In
this document we will use the term ‘microscopic theory’ for theoretical approaches in which
nucleonic degrees of freedom are explicitly present together with inter-nucleon forces. The
most prominent example is nuclear density functional theory (DFT) which is based on effec-
tive nucleon–nucleon interactions that generate mean fields and the associated single-particle
orbitals. In this document we assess the future promise of a number of extensions of DFT.
Some of them remain microscopic, but others are best characterised as phenomenological.

This document was initiated at the Workshop on Future of Theory in Fission held in
York in October 2019 (https://www.york.ac.uk/physics/news/events/groups/nuclear-physics/
2019/future-of-theory-in-fission-workshop/). The premise of the meeting was that fission
theory is ripe for rapid progress. Consequently, the focus was on future developments,
perspectives, and challenges. The questions motivating the workshop were:

• Considering the broad range of observables, what are the physics objectives that fission
theory needs to address?

• What are realistic goals that can be achieved with advanced microscopic frameworks and
modern computational tools?

• Can microscopic theory provide justification for successful phenomenological assump-
tions and models?

• Which current approximations routinely made in fission studies are justified or not, or
unavoidable or not, in view of the present-day computational capabilities? What are the
robust approximations that can be employed to simplify the treatment and/or reduce the
computational effort?

• Is it realistic to envision a unified microscopic theory of fission that would cover the entire
energy range from spontaneous fission (SF) to fission well above the barrier?

• What are the best strategies for the community to optimise fission theory research?

As seen from the list of sections, this document summarises the broad range of topics cov-
ered in the York Workshop. Our unifying theme is the pathway towards solving the fission
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problem via modern many-body frameworks by taking advantage of the latest computational
methodologies. In this context, the main purpose of this document is to outline challenges and
point to possible solutions rather than to provide a detailed review of nuclear fission theory.
The interested reader is encouraged to consult recent reviews of various aspects of fission the-
ory, e.g., Schunck and Robledo (2016) (overview of microscopic models) and Andreyev et al
(2017), Talou et al (2018), Schmidt and Jurado (2018) (description of state-of-the-art fission
phenomenology), which contain extensive lists of references.

Of the various shape regions depicted in figure 1, we shall cover microscopic dynamics
in the domains around the initial state and the barriers as well as the highly deformed region
beyond. But we are leaving out the important challenge of describing how the system prop-
agates from one region to another because there has been virtually no coherent microscopic
theory addressing this question up to now. This underscores the fact that there will still be much
future work to do in nuclear fission theory.

2. Main features of fission

To set the stage for the subsequent specialised considerations, we begin with a brief presenta-
tion of the main features of the nuclear fission phenomenon. Figures 1 and 2 present schematic
illustrations of the evolution leading from a single nucleus to two pre-fragments, nascent frag-
ments, primary fragments, which subsequently appear in detectors as fission fragments, see
caption of figure 2.

Fission is a time-dependent transformation which can be conveniently separated into distinct
stages, each characterised by its own time scale, as shown in figure 2. The process proceeds
from some initial state through a complicated collective evolution ending with the emergence of
two excited nascent fragments. They in turn undergo a sequence of prompt and/or delayed de-
excitations decays ending with two product nuclei in their ground or isomeric excited states35.

The most obvious physical attribute during the evolution of the fissioning nucleus is its
overall elongation, correlated with the different stages as shown in figure 1. Initially the elon-
gation is that of the equilibrium shape of the mother nucleus. From this, the collective evolution
proceeds through a sequence of shapes whose time-dependent elongations exhibit a diffusive
behaviour. Eventually the system finds itself beyond the outer saddle point and then evolves
towards scission, as its shape takes on a binary form and the elongation grows ever larger. At
scission the system divides into nascent fragments which are then accelerated apart.

2.1. Spontaneous and induced fission

It is useful to distinguish SF which occurs in nuclei in their ground states from induced fission
brought about by a reaction or decay process bringing in energy from the outside. SF is one of
the main decay modes of superheavy nuclei and is therefore of great interest in the experimental
search for them. While SF primarily occurs from the nuclear ground state, it has also been
observed from isomeric states.

On the theory side, the relatively long lifetimes are due to the existence of a potential bar-
rier that must be penetrated. Consequently SF is an inherently quantal process; see section 3.6.
An interesting aspect of SF is its dependence on the number parity of the nucleus: in odd–A
nuclei it is typically hindered by ∼ 3–5 orders of magnitude relative to their even–even neigh-
bours. Fission of odd–odd nuclei is believed to be even more hindered, but credible data are
scarce.

35 In this paper, we are not concerned with the extremely rare phenomena of ternary and quaternary fission.
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Figure 1. Schematic illustration of the features most relevant to the fission phenomenon.
The red curve depicts (in a one-dimensional projection) the potential energy as a function
of the elongation; the ground state is at the lowest minimum, and the shape-isomeric
state is at the second minimum. From these states it is possible to tunnel through the
potential barrier. Tunnelling is also relevant for neutron or photon induced fission when
the resulting initial state lies below the fission barrier. If the initial state is excited above
the fission barrier, it may undergo a complicated shape evolution crossing the barrier
from above. Once the system finds itself beyond the barrier, it relatively quickly descends
towards scission. There it divides into two nascent fragments, which subsequently move
apart under the influence of their mutual Coulomb repulsion while gradually attaining
their equilibrium shapes and become primary fragments. Primary fragments then de-
excite by evaporating neutrons, radiating photons, and undergoing β decay.

In addition to an SF, fission can be induced by a variety of nuclear reactions. The fission-
induced processes include: neutron capture (responsible for energy production in fission reac-
tors), electron capture and beta decay, photofission, and reactions involving charged particles
and heavy ions. In all these processes, the fissioning nucleus is created in an excited state,
which may lie above or below the fission barrier.

Theoretical descriptions of fission induced by fast probes often assume the creation of
a compound nucleus at a given thermal excitation energy. However, as discussed later, that
assumption might be ill-founded for fast probes because the nuclear system may not have
sufficient time to thermalise before undergoing fission. This becomes increasingly important
at higher energies where pre-equilibrium processes play an increasingly significant role and
may lead to the emission of one or more nucleons before equilibrium is reached. Moreover, as
the excitation energy of the compound nucleus is increased, neutron evaporation competes ever
more favourably with fission and as a result, one or more neutrons may be evaporated before fis-
sion occurs (multi-chance fission). In addition, for non-thermalised systems one should develop
approaches using fixed energy rather than fixed temperature.

2.2. Important observables

When talking about fission observables, it is important to remember that what is often
considered ‘experimental’ is often the result of an indirect process, in which a quantity of
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Figure 2. Schematic representation of the different stages of a fission process, starting
from the initial nucleus (on the left), approaching the scission point as pre-fragments,
dividing into two excited nascent fragments, which after getting fully Coulomb acceler-
ated become primary fragments, then promptly emit neutrons and photons and undergo
β decays, and finally become fission fragments in the exit channel. The associated time
scales are indicated on the axis underneath.

interest is extracted from measurements with the help of some model or model-dependent
assumptions.

Nuclear fission is a very complex transformation and there are many quantities of interest
that are directly measurable and subject to theoretical modelling. [A set of key fission observ-
ables suitable for validation of theoretical models was proposed in Bertsch et al (2015).] We
list here some of the most important ones, with their common designations:

Spontaneous-fission half-lives (TSF). Measured SF lifetimes (or half-lives) span a range from
microseconds or smaller to billions of years. To describe such a range is a significant
challenge to theory.

Total and differential fission cross sections. For instance, the neutron induced fission cross
section σ(n, f ) and its energy and angular dependence or the threshold energy for fission
observed in a photo-fission cross section that is closely related to the height of a fission
barrier.

Yields (Y(A), Y(Z), Y(Z, A)). They describe probabilities for producing fission fragments of
given mass and/or charge. Such data are particularly important in nuclear astrophysics.
Yields refer to primary, independent or cumulative distributions (see figure 2).

Fission spectrum. This includes the average number of neutrons per fragment, their energies,
the average number of photons per fragment and their energies, multiplicity distributions,
angular correlations, etc.

Total kinetic energy (TKE). The post-acceleration kinetic energy of the fission fragments, its
distribution, and its dependence on fragment mass.

Beta-decay spectrum of fission products. This is particularly important for the fundamental
theory of beta decay and includes the neutrino spectrum.

6
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Correlations between the above quantities (e.g., between fragment mass and TKE), as well
as with other quantities (e.g., with the spin of the fissioning nucleus) are also very important.
We wish to emphasise that the fission observables should be accompanied by uncertainties.
This is crucial in the context of nuclear data evaluation and applications in general.

In this context, it is useful to mention some important unobservables (physical concepts that
cannot be observed directly). Arguably, the most celebrated quantity that belongs to this group
is the fission barrier. Fission barrier height can be defined theoretically as the energy difference
between the ground state and the highest saddle point in a computed potential energy surface
(PES) that has the lowest energy for all possible paths leading to fission from the ground state.
Fission barriers inferred from measured cross sections are plagued with ambiguities because
the extraction procedure is often based on a simplistic picture of a fission pathway. Another
unobservable concept is that of a compound nucleus; it is based on a model that assumes the
full thermalisation of the system and ignores pre-equilibrium processes. Other useful yet unob-
servable quantities include: scission point at which the nucleus breaks into nascent fragments,
shell energy on the path to fission, pairing energy at the barrier, and pre-fragments that are
formed in the pre-scission region.

3. Basic concepts of fission theory

To lay the groundwork for discussing the promising ideas for future development, we recall
here some of the basic theoretical tools at our disposal. In time-dependent formalisms, basic
distinctions can be made between dynamics based on inertial motion, dynamics based on dif-
fusion motion in a statistical framework, and dynamics that combine inertial and diffusive
motion. The relevant computational methodologies are often referred to by their acronyms;
the ones used here are listed in table 1.

Before going into details of different concepts discussed below, we want to touch upon one
specific term that is abundantly used in the theory of nuclear fission, namely, the concept of
adiabaticity. First, a disclaimer is in order, because in the rigorous (electronic) time-dependent
DFT (TDDFT), see, e.g. Burke et al (2005), the term ‘adiabatic’ has a different meaning than
here. Indeed, there it denotes an approximation of the time-dependent functional that is local
in time and thus disregards memory effects. In this sense, all time-dependent approaches to
fission, which we discuss below, are adiabatic, and releasing this constraint in nuclear physics
probably belongs to the future not covered by the present report at all.

In nuclear physics, the term ‘adiabatic’ has several interwoven, although not fully identi-
cal facets. First, it may mean that the collective motion proceeds through a sequence of local
ground states, each corresponding to the system being constrained to a given set of collec-
tive coordinates and intrinsic quantum numbers. Adiabatic motion then means that a time-
dependent wave function acquires collective kinetic energy through infinitesimal admixtures
of local excited states, whereas non-adiabatic corrections correspond to significant admixtures
of those. A dissipative motion (section 3.5) means a constant irreversible flow of energy away
from the local ground state.

Provided the local ground states are well defined and do not cross with excited states,
this constitutes a coherent physical picture. However, this picture breaks down in situations
where several local ground states (characterized by different intrinsic quantum numbers) coex-
ist and compete energetically (e.g., different one-quasiparticle states in odd–A nuclei). Then,
the system may proceed diabatically, along a fixed configuration, or adiabatically, by chang-
ing the configuration, depending on the Landau–Zener probability of a diabatic transition
(section 3.7).

7
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Table 1. Glossary of used acronyms pertaining to nuclear fission mod-
els and fission characteristics (in alphabetic order).

Acronym Meaning

ATDDFT Adiabatic TDDFT
ATDHFB Adiabatic TDHFB
BCS Bardeen–Cooper–Schrieffer
CHF Constrained HF
CHFB Constrained HFB
CSE Collective Schrödinger equation
DDD Dissipative diabatic dynamics
DFT Density functional theory
EDF Energy density functional
GCM Generator coordinate method
GOA Gaussian overlap approximation
HF Hartree–Fock
HFB Hartree–Fock–Bogoliubov
HO Harmonic oscillator
MM Microscopic macroscopic
PES Potential energy surface
QRPA Quasiparticle RPA
RPA Random phase approximation
SF Spontaneous fission
TDDFT Time-dependent DFT
TDGCM Time-dependent GCM
TDHF Time-dependent HF
TDHFB Time-dependent HFB
TDRPA Time-dependent RPA
TKE Total kinetic energy

In the context of the time-dependent Hartree–Fock (TDHF) or TDDFT, adiabaticity denotes
a very specific approximation of the time-dependent one-body density matrix, which is
assumed to have the time-odd part much smaller than its time-even part (Baranger and Vénéroni
1978). In essence, this approximation holds only when the motion is appropriately slow.
Another commonly used definition of adiabaticity involves a separation of variables into slow
and fast coordinates (Tully 2012). Many concepts of fission theory, such as the collective
Schrödinger equation (CSE), are based on the division of degrees of freedom into ‘collective’
and ‘non-collective’.

All those definitions are connected by the fact that, in practice, the local ground states can
only be considered within the mean-field picture, which means the TDDFT interpretation of
the one-body evolution. A weak mixing with low-lying excited states is then equivalent to the
requirement of the slow motion. In the following, the notions of adiabaticity and dissipation
are discussed in many places, as undoubtedly they constitute pivotal points of the theoretical
description of fission.

3.1. Time scales

It is important to understand the various time scales associated with the different stages of
fission in order to anticipate the kind of dynamics that would be needed in the theory. One of
the most intriguing questions about fission dynamics is the time it takes for fission to occur.

8
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There are in fact several time scales that affect the duration of the fission process. Fission
that goes through the compound nucleus is delayed by the compound nucleus lifetime, which
is much longer than the dynamics time scales. At excitation energies below the fission barrier,
the fission lifetime is largely dominated by the tunnelling probability and can vary by many
orders of magnitude. The next scale is that of the collective motion from the outer turning
point to scission, see figure 1. The slower this is, the more valid will be diffusive and statistical
modelling of the dynamics. Finally, the time it takes to scission plays a special role affecting
particularly the TKE and excitation energies of the fragments. At higher energies, the distinc-
tions between the different stages are less clear, but the basic dynamics taking the system from
a highly excited compound nucleus to a scission configuration is governed by a similar time
scale.

One of the most difficult questions to investigate experimentally is fission time scales since
they involve the early stages of fission dynamics. They are not generally accessible directly but
must be inferred from the analysis of products at later stages of fission. Experiments attempting
to measure fission times (Hinde 1993, Jacquet and Morjean 2009, Frégeau et al 2012, Sikdar
et al 2018) often need to be complemented by a model description of, e.g., the emitted neutrons
and their dependency on angular momentum or excitation energy. See section 7.7 for a discus-
sion of this topic. As a result, it is likely that different experimental methods probe different
characteristics of the fission time distribution. Theoretically, in addition to dynamics, statistical
processes such as particle emission and thermal fluctuations may be important. In general, one
needs theoretical approaches accounting for fluctuations in order to predict the entire fission
time distribution instead of the average or most likely time.

3.2. Mean-field theory

The mean-field approximation provides the backbone of microscopic nuclear theory for all but
the lightest nuclei. In the context of nuclear fission, the great advantage of the mean-field theory
is that it is directly formulated in the intrinsic, body-fixed reference frame of the nucleus, in
which the concept of deformed nuclear shape and its dynamical evolution is naturally present.

Briefly, the self-consistent many-body wave functions are directly or indirectly composed
of Slater determinants of orbitals, with the orbitals computed as eigenstates of one-body mean-
field potential. If the mean-field potential is determined by the expectation value of a Hamilto-
nian in the Slater determinant, we arrive at Hartree–Fock (HF) approximation. If a pairing field
is included, we arrive at the Hartree–Fock–Bogoliubov (HFB) approximation. As in electron
DFT of condensed matter and atomic physics, the Fock-space Hamiltonian is often replaced
by an energy density functional (EDF) defined through one-body densities or density matrices.
As is common practice in the nuclear physics literature, we will use these notions interchange-
ably, where HFB and HF are used to distinguish between nuclear DFT with (HFB) and without
(HF) treatment of pairing correlations. The use of an EDF instead of a Hamilton operator
sometimes necessitates to take different intermediate steps in formal derivations, but leads to
self-consistent equations that for all practical purposes coincide with those of HF (or HFB if
pairing is present).

Another approach in common use, the macroscopic–microscopic (MM) method, avoids
the delicate issues of constructing an EDF that reproduces the systematic properties of heavy
nuclei. Here the basic properties of the nucleus are derived from its size and shape, expressed
in some parameterisation of the surface. The orbitals are constructed with a potential derived
from the shape of the nuclear surface, and its energy is computed using the liquid drop
model together with shell corrections determined by the orbital energies. The first quantitative
theoretical understanding of fission came from this approach (Brack et al 1972, Bjørnholm and
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Lynn 1980), see also its review in Krappe and Pomorski (2012), and it has been successfully
applied to calculate mass and charge yields.

In HF and HFB, wave functions representing different nuclear shapes are constructed by
constraining the single-particle density matrix in some way. This is often implemented by
adding fields with Lagrange multipliers, but it can also be done more directly; see section 8.1.2.
Typically, in nuclear DFT the nuclear shape is defined by several parameters that are taken as
collective variables.

3.2.1. Potential energy surface. The PES represents the lowest possible energy of the evolv-
ing system consistent with the specified values of the collective variables. As mentioned above,
the PES is generally multi-dimensional. Although the PES alone does not suffice for predicting
the dynamical evolution, it is nevertheless very useful because its topography makes it possi-
ble to understand and anticipate the main features of the dynamics. The local minima, saddle
points, and the scission surface are key features that often make it possible to predict isomeric
properties, threshold energies, and fission fragment yields.

For a given point in the collective space, the potential energy of the corresponding nuclear
configuration and its internal structure can be obtained either by minimising the total energy
in the CHF (constrained HF) or CHFB (constrained HFB) framework or by calculating the
MM energy for the specified shape. The first method results in an optimised shape within the
given constraints while the second method can miss aspects of the shape beyond the defined
shape parameterisation. There are important consequences in both methods for defining the
collective space variables and for the continuity of the resulting surface (Möller et al 2001,
Dubray and Regnier 2012, Schunck et al 2014).

While the standard PES describes the configuration having no excited orbitals or quasi-
particle excitations, some approaches need energy in the presence of internal excitations. In
the MM method it requires the calculation of shell and pairing corrections at finite excitation
(Ignatyuk et al 1980), while the self-consistent method may employ a temperature-dependent
DFT formalism (Egido et al 2000, Pei et al 2009, Sheikh et al 2009, Schunck et al 2015a, Zhu
and Pei 2016).

3.2.2. Other constraints in DFT. The PES is usually presented as a function of a few multi-
pole moments in the CHF and CHFB framework, but multipole moments control the shape
only loosely and do not provide sufficient discrimination between intrinsic configurations at
large elongations. When needed, other types of constraints can provide additional discrimina-
tion power. For example one can define a neck-size parameter to be added to the multipole
moments (Warda et al 2002). More drastically, the entire density distribution ρ (r) can be con-
strained. Such a density-constrained method (Cusson et al 1985, Umar et al 1985) has been
used successfully within TDHF (time-dependent HF) approach to calculate heavy-ion interac-
tion potentials (Umar and Oberacker 2006, Simenel and Umar 2018). For a sequence of shapes
in the collision, the instantaneous density of the evolving system obtained in TDHF is used as
a constraint for a static HF calculation, yielding the lowest-energy configuration compatible
with the constraint. This eliminates both the collective kinetic energy and the internal excitation
and may therefore be interpreted as the potential energy. While this information is important
for going beyond TDHF and TDHFB (time-dependent HFB), there is no simplification in the
dynamics when taking the r-dependent density as a collective variable. See section 4.1 for
additional discussion of collective variables.

It is also possible to introduce constraints that depend more on the wave function than on the
shape. In particular, one can get a high discriminatory power in the space of axially symmetric
configurations by requiring a certain filling of the orbitals with respect to their axial symmetry
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(Bertsch et al 2018). See also constraints pertaining to the strengths of pairing correlations,
discussed in section 4.1.

3.3. Time-dependent DFT

The time-dependent version of HF is an established approach to nuclear dynamics and has
been extensively used to model heavy ion collisions (Simenel 2012, Simenel and Umar 2018,
Sekizawa 2019). In principle it can be easily generalised to the HFB approximation, but one
is only now reaching the computational power to carry out calculations without introducing
artificial constraints and approximations (Bulgac et al 2016, Hashimoto and Scamps 2016,
Scamps and Hashimoto 2017, Magierski et al 2017, Bulgac et al 2019a). These approaches
have an important property that they respect energy conservation and the expectation values
of conserved one-body observables such as particle number. Their strong point is that they
usually give a good description of the average behaviour of the system under study. Their
weak point is that, since TDHF equations emerge as a classical field theory for interacting
single-particle fields (Kerman and Koonin 1976), the TDDFT approach can neither describe
the motion of the system in classically-forbidden part of the collective space nor quantum
fluctuations. As a consequence, the real-time TD approach cannot be applied to SF theory.
Moreover, the fluctuations in the final state observables, some being due to non-Newtonian
trajectories (Aritomo et al 2014, Sadhukhan et al 2017), are often greatly underestimated in
time-dependent approaches.

3.4. Beyond mean-field theory

While the symmetry-broken product wave function of HFB already provides a very good
description for many properties, it is deficient if a self-consistent mean-field symmetry is
weakly broken. In such cases, it is advisable to extend the method beyond a single-reference
DFT. One way of doing this is to use the small amplitude approximation to the TDHFB, i.e.,
the quasiparticle random phase approximation (QRPA). The QRPA is a vertical expansion that
accounts for selected correlations coming from excited states of the system. Another way of
enriching the DFT product state is through a multi-reference DFT (Bender et al 2019). This
represents a horizontal expansion (Dönau et al 1989). Two commonly used beyond-DFT meth-
ods belong to this category. One is the generator coordinate method (GCM). The GCM wave
function is a superposition of single-reference DFT states computed along a collective coordi-
nate (or coordinates). The second group contains various projection techniques, in which the
projection operation is applied to an HFB state in order to restore internally-broken symme-
tries. The most advanced multi-reference DFT approaches combine the virtues of the vertical
and horizontal expansion by employing the GCM based on the projected HFB states, which
often contain contributions from multi-quasiparticle excitations.

3.4.1. Generator coordinate method. A microscopic Hamiltonian treated in the CHF or
CHFB approximations can be mapped onto a CSE in the coordinates defined by constraints.
This mapping is the essence of the GCM. Typically the mapping is carried out using the
Gaussian overlap approximation (GOA) to determine the kinetic energy operator. Examples
of such calculations for low-energy fission can be found in Goutte et al (2004), Goutte et al
(2005), Erler et al (2012b), Regnier et al (2016), Zdeb et al (2017), Tao et al (2017), Reg-
nier et al (2019), Zhao et al (2019). With several coordinates, the GCM produces much wider
distribution in the mass yields than can be realised in the evolution in time of a single CHF
or CHFB configuration. On the other hand, the underlying wave function is composed of
zero-quasiparticle configurations and so underestimates the non-collective internal energy.
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To take into account non-adiabatic effects during the fission process, the inclusion of
excitations built on the zero-quasiparticle vacuum becomes essential. Several experimental
observables attest to the importance of two-quasiparticle (2-qp) excitations, which include the
pair-breaking mechanism and the coupling of pairs to the collective degrees of freedom. From
this point of view, the inclusion of explicit 2-qp components into the GCM wave function is of
interest (Bernard et al 2011). One of the major advantages of the model is the nonlocal nature
of the couplings between collective modes and intrinsic excitations. The development of this
approach, however, poses several problems related to the truncation of the 2-qp space; keep-
ing track of excitations along the collective path; and evaluation of overlap kernels. So far, the
model presented in Bernard et al (2011) has not yet been be applied to fission problems.

3.4.2. Projection techniques. The nuclear Hamiltonian commutes with particle number,
angular momentum, and parity symmetry operations. The density functional of nuclear DFT is
usually symmetry-covariant (Carlsson et al 2008, Rohoziński et al 2010). Still, due to the spon-
taneous breaking of intrinsic symmetries in mean-field theory, several symmetries are usually
broken in a nuclear DFT-modeling of fission. There are well-established projection methods
to restore broken symmetries based on the generalised Wick’s theorem (Mang 1975, Stoitsov
et al 2007, Bender et al 2019, Sheikh et al 2019) that have been applied to calculations of the
fission barrier of 240Pu, either combining parity and particle-number projection (Samyn et al
2005), or combining angular-momentum and particle-number projection with shape mixing
(Bender et al 2004). The methods are straightforward in principle for models based on a Fock-
space Hamiltonian. Difficulties can arise in EDF realisations of nuclear DFT, as discussed in
Anguiano et al (2001), Dobaczewski et al (2007), Bender et al (2009), Duguet et al (2009),
Sheikh et al (2019)). However, these problems do not concern the calculation of one-body
observables such as the average particle number in the fission fragments (Regnier and Lacroix
2019, Bulgac 2019).

3.5. Dissipative dynamics

While the self-consistent DFT dynamics is very powerful, it largely ignores the internal degrees
of freedom that can bring large fluctuations of observables and dissipate energy (Kubo 1966,
Yamada and Ikeda 2012). There are several ways that the additional degrees of freedom can
be taken into account in the equation of motion.

A simple diffusion master equation assumes the presence of first-order time derivatives.
This approach has been remarkably successful in describing mass and charge yields (Ran-
drup and Möller 2011). While the utility of this ansatz has received some support from recent
microscopic calculations (Bulgac et al 2019a), its quantitative validity still needs to be derived.

More generally, one can consider time-dependent models that combine time-even inertial
dynamics with time-odd dissipative dynamics. A common classical formulation is with a multi-
dimensional Langevin equation (Sierk 2017, Usang et al 2019). In this approach, the dissipated
energy goes into a heat reservoir characterised by a temperature. Recently, a hybrid Langevin-
DFT approach has been applied to explain SF yields (Sadhukhan et al 2016). While this is
reasonable in a phenomenological theory, there is so far no microscopic justification of this
approach. It is to be noted, however, that the predicted fission yield distributions are found
insensitive to large variations of dissipation tensor (Randrup et al 2011, Sadhukhan et al 2016,
Sierk 2017, Matheson et al 2019). The corresponding quantum dynamics requires an equation
of motion for the density matrix of the system. One formulation is with the Lindblad equation;
see also Bulgac et al (2019b).
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3.6. Quantum tunnelling

Tunnelling motion in SF is usually treated via a quasiclassical, one-dimensional formula for the
action integral which is based on two main quantities that can be obtained in nuclear DFT: the
PES and the collective inertia (or mass) tensor. The fission path is computed in a reduced mul-
tidimensional space, using between two and five collective coordinates describing the nuclear
shape and pairing; see section 4.1. The mass tensor requires the assumption of a slow, near-
adiabatic motion; see section 4.2. The pairing gap makes this assumption most credible for
even–even nuclei, but even in such systems one can expect non-adiabatic effects due to level
crossings (Schütte and Wilets 1975a, Schütte and Wilets 1975b, Strutinsky 1977, Nazarewicz
1993). The following questions are relevant for making progress in SF studies.

Generalised fission paths. Usually, SF trajectories in the collective space are determined by
considering several shape-constraining coordinates. It is better to assume that the collec-
tive motion happens in a large space parameterised by the Thouless matrix characterising
an HFB state. One approach to determine the collective path in that way has been proposed
in Marumori et al (1980) and Matsuo et al (2000). There the equations of motion have a
canonical form (involving both coordinates and momenta), and constraining operators are
dynamically determined.

Multi-dimensional WKB formula. The current barrier-penetration methodology is based on
a minimisation of the collective action along one-dimensional paths, although our experi-
ence with above-barrier fission evolution suggest that the use of several degrees of freedom
is important. It may be possible to generalise the one-dimensional quasiclassical WKB-
like formula by a more general solution to a few-dimensional tunnelling problem (Scamps
and Hagino 2015).

Non-adiabatic effects. The admixtures of non-adiabatic states may be crucial to understand
fission hindrance in odd nuclei. The excitations to higher configurations can be induced
by crossings of single-particle levels and by the Coriolis coupling; see section 3.7.

Instanton formalism. An alternative approach is provided by the formalism of imaginary-time
TDHFB (Reinhardt 1979, Levit et al 1980, Puddu and Negele 1987, Negele 1989, Skalski
2008). Configuration mixing can be performed according to well defined equations, and
SF lifetimes could be determined without having to define collective inertia. Non-self-
consistent solutions using a phenomenological Woods–Saxon potential and omitting pair-
ing have already been obtained (Brodziński et al 2018). If the simplified approach with
pairing gives the proper order of magnitude for the fission hindrance and its weak depen-
dence on particle numbers, the next step would be to incorporate the requirement of
self-consistency.

3.7. Level crossing dynamics

In the original framework for a microscopic theory of fission above the fission barrier, Hill and
Wheeler (Hill and Wheeler 1953) proposed a model based on time-dependent diabatic evolu-
tion of mean-field configurations interrupted by possible jumps to other configurations at the
points of level crossings. At those intersections the probability to switch orbitals would be com-
puted by the Landau–Zener formula (Wittig 2005). This viewpoint has been pursued further in
the later literature, especially in the context of MM models (Schütte and Wilets 1978, Nören-
berg 1983, Matev and Slavov 1991) but the challenges of implementing a microscopic theory
has prevented the actual calculation of macroscopic parameters such as friction coefficients.

In the present era, computational resources are available to carry out this programme using
DFT and effective interactions to compute the interaction matrix elements at level cross-
ings. Thus, we may now make theoretical predictions of the balance between inertial and
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dissipative dynamics that can be used as inputs to more macroscopic models such as the ones
solved with the Langevin equation. The steps to carry out this programme could follow the
strategy of the dissipative diabatic dynamics (DDD) approach (Nörenberg 1983, Nörenberg
1984, Berdichevsky et al 1989, Matev and Slavov 1991, Mirea 2014, Mirea 2016). This would
involve the construction of diabatic PES, computing the interaction matrix elements between
the configurations that cross each other, and obtaining information about the time-dependence
of the motion along the path. This can be achieved by adding constraints on the velocity
fields in the time-dependent evolution of the configurations so that energy is conserved, see
section 8.1.2. With these additional tools one can explore the probability that there will be
some excitation of the nucleus along the fission path. Namely, the probability of exciting the
system from the adiabatic path to a 4-qp excited state can be computed using the Landau–Zener
formula. To get an actual dissipation rate, one would need to track a large number of level
crossing along the diabatic path. There are many issues that need to be studied carefully at
this point such as (i) non-orthogonality of the configuration basis; (ii) validation of the level
density against compound nucleus level density in the first well; (iii) breaking down of the
assumptions inherent in the Landau–Zener formula at low velocities; and (iv) development of
reliable statistical approximations to deal with the large number of level crossings.

3.8. Collective kinetic energy

The nuclear shape evolution generally rearranges the nucleons and it is important to understand
the associated collective kinetic energy. Beyond the outer turning point, while the electro-
static repulsion tends to accelerate towards the scission point, dissipative couplings damp the
motion. To connect with experiment, collective kinetic energy beyond the saddle point is par-
ticularly important, because any relative motion at scission adds to the fragment kinetic energy
generated by the Coulomb repulsion following scission. While in an adiabatic description
all the energy difference between the saddle point (or the outer turning point for the low-
energy fission) and the scission point is converted into collective kinetic energy, for strongly
non-adiabatic motion, the system will irreversibly convert most of that energy into intrinsic
excitations, endowing the nascent fragments with little collective motion.

For the low-energy fission, where the motion is fairly adiabatic and the dynamics of the
system is governed by a CSE, the corresponding kinetic energy can be calculated on the basis
of the associated inertia tensor. For a quantitative description of the collective kinetic energy
it is therefore essential to understand: the relevant collective coordinates (see section 4.1);
the inertia tensor (see section 4.2); the role of non-adiabatic effects in general and during the
descent to scission in particular (see section 3.12); and the role of dissipation, especially near
scission. In the time-dependent approaches, the kinetic energy can be obtained by computing
the collective current as the local collective kinetic energy density ∝ j2, where j is the current
density.

While most models agree that the pre-scission kinetic energy forms only a small part of the
final fragment kinetic energy, there is no general consensus about its quantitative magnitude
(Bonneau et al 2007, Borunov et al 2008, Simenel and Umar 2014, Bulgac et al 2019b). In
general the TDDFT calculations suggest that the evolution beyond the fission barrier is strongly
dissipative, and this impacts the predicted kinetic energy (Bulgac et al 2019b).

It should be noted that TDHF models for high-energy fission are too diabatic, as the absence
of pairing leads to artificial fission hindrance (Goddard et al 2015). The inclusion of pairing
by allowing occupation number evolution solves this hindrance problem (Matev and Slavov
1991, Tanimura et al 2015, Scamps et al 2015); see also section 3.10.

The calculation of collective kinetic energy and inertia for nuclei with an odd number of pro-
tons and/or neutrons sometimes leads to diverging quantities. While a solution to this problem
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is still missing, a natural strategy would be to relax the adiabatic approximation. Note that
this is also mandatory when the two nascent fragments start accelerating close to the scission
point. In this context, the TDDFT is arguably the most suited method, since it naturally allows
the investigation of non-adiabatic effects in macroscopic transport coefficients (Tanimura et al
2015). The most important challenge for the TDDFT method is the inclusion of dissipation
along the fission path, together with consistent fluctuations in such a way that the fluctua-
tion–dissipation theorem is satisfied. The real challenge for this microscopic approach will be
to properly describe the energy exchange between collective and intrinsic degrees of freedom
(see section 3.12 for more discussion).

3.9. Approaches based on reaction theory

Nuclear fission can be naturally formulated in the language of reaction theory. Indeed, the SF
process can be viewed as a decay of a Gamow resonance, while the induced fission can be
expressed as a coupled-channel problem. The description of fission cross sections in induced
fission, for instance, is clearly in the domain of reaction theory.

There are two general frameworks for the reaction theory of many-particle systems, namely
R-matrix theory and K-matrix theory. The R-matrix framework has been extensively used in the
past to construct phenomenological treatments of induced fission (Bjørnholm and Lynn 1980).
But this approach is not well adapted to microscopic calculations and has never been applied
at a microscopic level. In contrast, the K-matrix theory is closely allied with the configuration-
interaction Hamiltonian approach that has been very successful in nuclear structure theory. The
K-matrix theory has been applied to a broad range of physics subfields, but in nuclear physics
only as a framework for statistical reaction phenomenology (Kawano et al 2015). There are
severe challenges to implementing the theory microscopically. Some of these challenges are
similar to those discussed in section 3.7 in the context of microscopic DDD implementations.

First, one needs to construct a basis of non-orthogonal CHFB configurations that effectively
span the important intermediate states in the fission dynamics. This may be contrasted with
present approaches that rely heavily on an adiabatic approximation or TDDFT implementa-
tions. Another challenge is the need for microscopic calculation of the decay width of internal
configurations to continuum final states of the daughter nuclei. Tools based on the GCM should
be powerful enough to estimate the needed widths (Bertsch and Younes 2019, Bertsch and
Robledo 2019). It would take a large computational effort, and to date no implementations of
the GCM have be validated. However, there is some experience for nuclear decays releasing
an alpha particle (IdBetan and Nazarewicz 2012) as well as simple reactions involving light
composite particles (Wen and Nakatsukasa 2017).

The K-matrix reaction theory might be applied as a schematic model for testing the approx-
imations made in other approaches (Bertsch 2020). In particular, the importance of pairing in
induced fission is not well understood. As mentioned in the next subsection, fission does not
occur on a reasonable time scale in pure TDHF at low energies; adding pairing via TDHFB
lubricates the dynamics.

3.10. Pairing as a fission lubricant

It is often said that pairing acts as a lubricant for fission. What is meant by this assertion
is that if pairing is removed from the treatment, then the evolution from the ground state to
scission takes place through diabatic configurations which are often disconnected. As a con-
sequence, mean-field time evolution is sometimes unable to find the path to scission (Goddard
et al 2015). As realised early (Moretto and Babinet 1974, Negele 1989, Nazarewicz 1993), the
pairing interaction mixes those configurations and enables smooth transitions between them
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(Nakatsukasa and Walet 1998). The stronger the pairing is, the easier these transitions are, and
the faster fission occurs.

Pairing also plays an important role in the traditional WKB treatment of SF. The half life is
proportional to the exponential of the action, which in turn is proportional to the square root
of the effective collective inertia. The latter is proportional to the inverse of the square of the
pairing gap, so the stronger pairing correlations the smaller action and shorter half lives. Indeed,
numerous MM studies (Urin and Zaretsky 1966, Łojewski and Staszczak 1999, Staszczak et al
1989) demonstrated that pairing can significantly reduce the collective action; hence, affect
predicted SF lifetimes. Implications of the pairing strength being a collective degree of freedom
for fission are very significant, especially for the SF half-lives (Staszczak et al 1989, Giuliani
et al 2014, Sadhukhan et al 2014, Zhao et al 2016, Bernard et al 2019).

3.11. Statistical excitation energy

Apart from possible tunnelling, the fission path traverses the PES at finite intrinsic excitation
energy.36 It can also be thought of as the energy of the quasiparticle excitations in the fissioning
nucleus. Because the intrinsic energy is fairly high, and the collective evolution is fairly slow,
the system has the character of a compound nucleus. Therefore the intrinsic energy is often
referred to as the statistical energy and characterised by a local temperature. Any dynamical
model of fission must therefore take into account statistical excitation energy parameterised
by a local temperature. Furthermore, it is of interest to study how the fission process develops
as a function of total energy, as is conveniently done in experiments inducing fission by pro-
jectiles at variable energies. However, in the microscopic frameworks, the concept of the finite
temperature is plagued by a number of conceptual and technical difficulties:

Definition of temperature. In the context of the MM approaches, an effective, deformation-
dependent temperature can easily be defined following the recipes given in Ignatyuk et al
(1980) and Diebel et al (1981). Given the local temperature at each point of the collective
space, one can construct an auxiliary PES by damping the shell correction accordingly
(Randrup and Möller 2013). This maintains a micro-canonical description of the process
where the total energy is constant, yet an effective PES exists and can be used for dynam-
ics. Such an approach is more difficult in the DFT framework. First of all, many EDFs have
an effective nucleon mass well below unity, adversely affecting the relationship between
excitation energy and derived temperature. Secondly, the connection between the experi-
mental excitation energy and the finite-temperature PES has not been clearly defined and,
in principle, calculations of dynamics should be carried out without its help (Pei et al 2009,
Sheikh et al 2009, Schunck et al 2015a, Zhu and Pei 2016). In any case, it is important
to have a good definition of temperature to describe the disappearance of fission barriers,
the increase in fluctuations, and the damping of pairing and shell effects.

Fluctuations. At finite excitation energy the fissioning system displays statistical fluctuations
in addition to its inherent quantum fluctuations. Therefore a large variety of outcomes is
possible and, consequently, fluctuations of observables are significant. As is obvious from
the wide spreads in mass and charge yields, it is essential that the theoretical framework
allows the development of large fluctuations in the final outcome. Moreover, because the
possible final outcomes exhibit a very large diversity, it is not feasible to express them
as fluctuations around an average. Rather, the only practical approach would provide an
ensemble of outcomes whose further fate (the primary fragment de-excitations process)

36 For clarity, the excitation energy is the difference between the total energy and the PES energy computed in CHFB
constrained to the same shape parameters. The collective kinetic energy is subtracted out to obtain the intrinsic part.
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can then be followed individually and specific observables can be extracted much as an
ideal experiment would be analysed. This can be achieved in probabilistic treatments using
Monte-Carlo simulations.

3.12. Coupling between degrees of freedom

The adiabatic approximation has often been employed to describe SF and low-energy induced
fission. In these formulations, the coupling of the adiabatic collective states to the other internal
degrees of freedom is a continuing challenge. Nevertheless, it is important to assess how such
couplings affect decay rates and branching ratios of the fission channel to other channels. There
are models available for the coupling, e.g. Brink et al (1983), Caldeira and Leggett (1983), but
they have never been validated in a microscopic reaction-theory setting. It is worth noticing,
however, that the classical Langevin equation can be derived using the model by Caldeira and
Leggett (Abe et al 1996). This fact might be utilised to extend the Langevin approach to the
quantal (tunnelling) regime. That would be an important step for the theory of low-energy
nuclear dynamics.

Another problem is that the adiabatic approximation breaks down at level crossings. In that
situation, a possible approach to treat dissipation is with the DDD approach (see section 3.7).

A challenge for microscopic theory is to include adiabatic dynamics together with couplings
to internal degrees of freedom. Such a method should include a consistent treatment not only
for intermediate states but also for the collective inertia. Current methods to compute inertial-
mass tensor rely on the adiabatic approximation (Giannoni and Quentin 1980, Matsuo et al
2000, Hinohara et al 2007, Hinohara et al 2008, Wen and Nakatsukasa 2020). A challenging
problem is to develop a microscopic theory for the large-amplitude collective motion that takes
into account non-adiabatic transitions.

Ideally, the dynamic equations would provide a time-dependent statistical density matrix
rather than the time-dependent wave function produced by TDHF, TDHFB, etc. An ambi-
tious framework for such a theory has been proposed in Dietrich et al (2010). It would require
major additions to the present coding algorithms as well as availability of high-performance
computing resource to implement.

3.12.1. One- and two-body dissipation mechanisms. In the theory of heavy ion reactions, it
has been long recognised that there are two distinct mechanisms that arise in a semi-classical
approach to dissipation (Sierk and Nix 1980, Randrup and Swiatecki 1984). The one-body
dissipation operates at the level of TDDFT. It is fast when it is present because the relevant
time scale is the time it takes a nucleon to transverse the nucleus. The two-body dissipation is
associated with nucleon–nucleon collisions which are largely blocked at the Fermi surface; its
time scale is much longer. Quantum mechanically, it requires theoretical frameworks beyond
mean-field theory, for example, the inclusion of quasiparticle excitations in the time-dependent
wave functions.

In the semi-classical theory, the one-body dissipation can be encapsulated in two formu-
las, the wall formula for the internal dissipation in a large nucleus, and the window formula
for heavy ion reactions. Both have been used very successfully for many years. However, the
assumptions required for the validity of the wall formula may become questionable for low-
energy fission dynamics: time scales are long and shape changes are highly correlated into low
multipoles.

With the improvements in the computational capabilities for carrying out TDDFT, it should
be possible to map out the region of validity of the semi-classical reductions much better. We
now have credible evidence that the one-body dissipation in a quantum framework is adequate
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to dissipate the collective kinetic energy (Wada et al 1993), but still not capable to produce a
statistical equilibrium.

Fluctuations in collective variables. The presence of dissipation has two distinct but funda-
mentally related effects on the evolution of the collective variables. One is the average effect
of the dissipative coupling which acts as a friction force resisting the evolution; this part is
well described by the DFT. The other arises from the remainder of the dissipative effect which
appears as a random force on the collective variables. These two forces are related by the
fluctuation–dissipation theorem (Kubo 1966), often referred to as the Einstein relation.

As a consequence of the fluctuating force, the system is continually faced with a multitude
of trajectory branchings, a situation that is very hard to encompass within the usual microscopic
frameworks. That mean-field approaches, such as TDHF, are not suitable for describing collec-
tive fluctuations has become especially apparent after the advent of the variational approach by
Balian and Vénéroni (Balian and Vénéroni 1981) who also proposed an alternative treatment
of one-body fluctuations equivalent to time-dependent random phase approximation (TDRPA)
(Balian and Vénéroni 1984). The practical applications of this method to fission are still lim-
ited (Scamps et al 2015, Williams et al 2018) and further developments of the formalism are
required. A more radical approach would be to develop treatments that automatically endow
the collective variables with fluctuations by making their evolution explicitly stochastic, as
discussed in section 3.12.2.

Time-dependent generator coordinate method. A quasiparticle HFB vacuum is not expected
to be a good approximation for long-time evolutions. A simple estimate leads to the conclusion
that the lifetime of such state is of the order of 100–200 fm c−1, whereas the time it takes from
the saddle to scission might exceed several thousand of fm c−1.

For the long time evolution, the mean-field state is expected to couple to the surrounding
many-body states leading both to the breakdown of the mean-field picture, and to a dispersion
beyond mean field in the collective space (Goeke and Reinhard 1980, Goeke et al 1981). This
dispersion is usually described by the TDGCM (time-dependent GCM).

However, there are a number of limitations in current applications of the TDGCM to fission
that all employ the GOA. For the moment, most implementations assume that the collective
motion stays in the adiabatic PES. With this assumption, the manifestation of non-adiabaticity,
and henceforth a proper description of the transfer of energy from collective motion to internal
excitation, cannot be achieved. Extending the TDGCM approach beyond the adiabatic limit
(Bernard et al 2011, Regnier and Lacroix 2019) to incorporate dissipation and internal exci-
tation, will require broadening the CSE picture for the collective degrees of freedom; see, for
instance, Dietrich et al (2010).

The internal equilibration process. Once the energy is transferred from the collective to the
internal degrees of freedom, it should be understood how the energy is subsequently being
redistributed so that internal statistical equilibrium is approached.

The onset of equilibration in interacting many-body systems is a long-standing problem and
several theories have been proposed to treat this process (Abe et al 1996, Lacroix et al 2004,
Simenel 2010). In most treatments, it is assumed that repeated in-medium Pauli-suppressed
two-body collisions lead the internal degrees of freedom towards statistical equilibrium on a
time scale that is relatively short compared with that of the macroscopic evolution.

One example is the extended TDHF approach (Wong and Tang 1978, Wong and Tang 1979,
Lacroix et al 1999) or its extensions based on the Bogoliubov–Born–Green–Kirkwood–Yvon
hierarchy, generically called time-dependent density matrix (Cassing and Mosel 1990, Peter
et al 1994). These approaches have rarely been used in nuclear reactions (Tohyama and Umar
2002, Assié and Lacroix 2009) and specific technical problems seem to strongly jeopardise the
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obtained results (Wen et al 2018). However, a promising step forward has been achieved with
the purification technique, opening new perspectives (Lackner et al 2015, Lackner et al 2017).

Apart from these technical issues, this approach has the advantage that it leads naturally
to the Boltzmann-like description. However, during fission, especially as the system passes
through the barrier region, the excitation energy is sufficiently low to cause quantal and thermal
fluctuations to coexist. This may lead to non-Markovian effects in the macroscopic evolu-
tion, which obviously would complicate the treatment. An extension of the TDGCM approach
has been proposed for including thermal fluctuations (Dietrich et al 2010), while quantum
approaches treating the thermalisation process have proven to be rather complicated. To cir-
cumvent them, approximate treatments have been suggested, including the relaxation-time
approximation; see Reinhard and Suraud (2015) for recent developments.

3.12.2. Stochastic dynamics. Microscopic treatments of dissipation are discussed in
section 3.7 and the previous section. Such a level of detail can be avoided by a macroscopic
transport approach, treating its parameters phenomenologically. The equations here describe
the evolution of just a few collective properties, typically the shape of the fissioning system, as
the initial compound nucleus evolves into two separate fragments. Because the retained col-
lective degrees of freedom are coupled dissipatively to the internal system, the macroscopic
evolution has a stochastic character and the natural formal framework is the Langevin transport
equation. This treatment has been very successful (Sierk 2017, Usang et al 2019) in calculating
a variety of fission observables. A particular advantage of the Langevin dynamics is that it auto-
matically allows the collective trajectory to undergo dynamical branchings, thereby making it
possible for the system to evolve from a single shape to a large variety of final configurations.

Once the collective degrees of freedom have been identified, the Langevin equation requires
three ingredients: the (multi-dimensional)PES, the associated inertia tensor, and the dissipation
tensor describing the coupling to the internal system and giving rise to both the collective
friction force and the diffusive behaviour of the collective evolution. It is straightforward to
apply microscopic theory to determine the first two of these key quantities. For example, recent
calculations of spontaneous-fission mass and charge yields (Sadhukhan et al 2016, Sadhukhan
et al 2017, Matheson et al 2019), employed DFT to obtain the PES and the inertia tensor as a
function of several collective coordinates, then performed a WKB action minimisation for the
tunnelling, and a subsequent Langevin propagation until scission using a schematic dissipation
tensor and random force. Such a hybrid approach can be extended to the calculation of other
fission observables, such as the shapes and kinetic energies of the fragments.

The microscopic justification for the parameterised dissipation tensor remains a problem. As
we have seen previously, TDDFT includes one-body dissipation mechanisms. However, dissi-
pation cannot take place without fluctuations but it is not clear how to include the fluctuations
in the microscopic treatments. Fluctuations inherent in individual configurations of HF or HFB
can be addressed by the stochastic mean-field approach, which makes a statistical assumption
on the origin of fluctuations, see Ayik (2008), Lacroix and Ayik (2014), Tanimura et al (2017)
and references therein. In this approach, the noise only stems from the initial conditions. How-
ever, as it is well known in open quantum systems theory, complex initial fluctuations can
lead to a stochastic dynamics with Markovian and non-Markovian noise continuously added
in time during the evolution. Understanding the connection between initial fluctuation in col-
lective space with the microscopic Langevin approach on one side, and the link with current
phenomenological Langevin approaches on the other, should be addressed in the near future.

In parallel, attempts have been made to reformulate quantum theories leading to thermali-
sation as a stochastic process between quasiparticle states (Reinhard and Suraud 1992, Lacroix
2006) and important efforts are being made nowadays in condensed matter physics to apply
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these methods (Slama et al 2015, Lacombe et al 2016). For the moment, such reformulation
have been essentially made assuming jumps between Slater determinants, and equivalent for-
mulations including superfluidity is desirable for fission. A specific problem is again that at
very low excitation energy, stochastic approaches might face the difficulty of exploring rare
processes.

3.12.3. Dissipation tensor. As is clear from the discussion in previous sections, dissipation
plays a key role in fission dynamics. Langevin transport treatments of the collective evo-
lution (Karpov et al 2001, Sierk 2017) employ the simple wall and window formulas (see
section 3.12.1) in various variants, for example the chaos-weighted wall friction (Pal and
Mukhopadhyay 1998). In many calculations, the dissipation tensor was phenomenologically
adjusted to reproduce experimental results. In recent transport studies (Usang et al 2016,
Usang et al 2017), both the dissipation tensor and the inertial-mass tensor were derived micro-
scopically within the locally harmonic linear response approach as outlined in (Ivanyuk and
Hofmann 1999), but a validation of this method still remains to be carried out.

In general, one-body dissipation is rather insensitive to the local nuclear temperature
(whereas two-body dissipation is strongly energy dependent, especially at low energy where
the Pauli blocking is effective). Recent studies (Sadhukhan et al 2016) have shown the impor-
tance of dissipation in fission, even at energies relevant to SF (Dagdeviren and Weidenmüller
1987). As a consequence, the shape evolution acquires the character of Brownian motion and
many resulting observables, most notably the fragment mass distribution, are rather indepen-
dent of the specific dissipation strength employed (Randrup et al 2011, Sierk 2017, Sadhukhan
et al 2016).

One observable that is somewhat sensitive to the dissipation strength is the final fragment
kinetic energy, a quantity that has proven to be difficult to treat reliably in models. By contrast,
the time elapsed from the crossing of the fission barrier until scission is quite sensitive to
the dissipation, being roughly inversely proportional to its strength. However, this quantity
is difficult to measure directly, though somewhat equivalent experimental information can be
obtained from quasi-fission processes (Williams et al 2018, Banerjee et al 2019).

It is an important challenge to derive the dissipation tensor from microscopic models. For
this, the TDDFT method (including pairing) might be a suitable tool. In its basic form, by
energy conservation and by the knowledge of the kinetic energy and excitation of the nascent
fragments after scission, one can determine the total energy dissipated from the initial condi-
tion. (The excitation of the nascent fragments is initially partly given in the form of distortion
energy which will gradually be converted to additional internal excitation as the fragment
shapes relax to their equilibrium forms.) Two existing approaches might be useful for obtain-
ing information on dissipation in TDDFT. The first is the density-constrained TDHF method
of section 3.2.2. More systematic application of this approach to disentangle the collective
energy from the excitation energy without imposing the adiabatic approximation is desirable.
An alternative approach, called dissipative-dynamics TDHF, consists in making a macroscopic
mapping of the collective evolution (Washiyama and Lacroix 2008, Washiyama et al 2009)
which, however, requires a somewhat ambiguous choice of the relevant collective coordinates.
This approach has not yet been applied to the fission problem, although a first step in this
direction has been made (Tanimura et al 2015).

4. Many-body inputs

The treatment of collective nuclear dynamics in fission requires a variety of inputs that can be
obtained from many-body theory.
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4.1. Collective degrees of freedom

The starting point in the study of large amplitude collective dynamics is the identification of
the degrees of freedom to go into the equations of motion. Although collective coordinates
are not direct observables, they are treated as physical degrees of freedom; they are required
for the construction of the PES as well as the associated inertia- and dissipation tensors. To
achieve a satisfactory description of fission observables, such as the fragment mass distribution
or the total fragment kinetic energy, it is essential to include a sufficiently rich set of collective
coordinates. For example, even though the principal fission degree of freedom is the overall
elongation, it is necessary to also include a shape coordinate breaking reflection symmetry
to obtain realistic fragment mass yields. It was argued long ago (Nix 1969) that a reasonable
description must use a minimum of five degrees of freedom, namely overall elongation, neck-
ing, reflection asymmetry, and the shapes of the two emerging fragments. It appears that an
overall intensity of pairing correlations, treated as a degree of freedom, should also be added
to this list (Staszczak et al 1989, Giuliani et al 2014, Sadhukhan et al 2014, Zhao et al 2016,
Bernard et al 2019). However, the number used in actual studies is often smaller, primarily due
to computational considerations.

Within the framework of MM treatments, the principal collective degrees of freedom are
those characterising the nuclear shape. A variety of shape families have been employed. Prob-
ably the most widely used are the three-quadratic-surface parameterisation in Nix (1969), and
the parameterisation of Brack et al (1972), which have three parameters. A detailed discus-
sion of the advantage of one particular parameterisation over another can be found in Möller
et al (2009). However, even five shape degrees of freedom may not always be sufficient. For
example, triaxial shape deformations are often important in the region of the first saddle.

Self-consistent treatments based on nuclear EDFs have used multipole moments of the mat-
ter distribution as constraints to play the role of collective coordinates (Krappe and Pomorski
2012, Younes et al 2019). The primary collective coordinates employed in such studies are the
quadrupole moments Q20 and Q22 used to control the overall distortion and triaxiality of the
system, respectively, the octupole moment Q30, used to control its reflection asymmetry, and
the neck parameter or the hexadecapole moment Q40. An interesting possibility is to gener-
alise the use of a set of multipole moments as the constraining operators by using the density
distribution itself, see section 3.2.2 for further discussion.

It is important to recognise the principal difference between the use of the nuclear shape
as a (multi-dimensional) collective variable, as is done in the macroscopic–microscopic
approaches, and the use of a set of density moments, as is being done in the microscopic
treatments. Whereas the former approach calculates the properties of the system having the
specified shape, the latter automatically performs energy minimisation so the system being
treated is the one having the lowest energy subject to the specified moment constraints. Conse-
quently its shape (or more generally: its matter distribution) is not under complete control. As
discussed in section 3.2.1, the self-consistent density distribution may exhibit discontinuities
as the moments are varied smoothly as a small change in the constraints might cause the new
minimal state to have a quite different spatial appearance. This problem is particularly severe
near the scission point, where there might be a major reorganisation of orbital fillings. A recent
detailed study of this problem (Dubray and Regnier 2012) developed diagnostic tools for iden-
tifying its presence and demonstrated how additional constraints could help. In any case, no set
of collective coordinates were found that could eliminate the problem entirely. It is therefore
clear that at least three collective constraints are needed to mitigate such discontinuities.

Fluctuations of the pairing field have also been used as collective coordinates (Staszczak
et al 1989), see section 3.10. Here, a constraint on the dispersion in particle number
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〈N2〉 − 〈N〉2 is imposed to control the strength of the pairing field (Vaquero et al 2011, Vaquero
et al 2013). Studies of fission dynamics have shown that the coupling between shape and pair-
ing degrees of freedom has in fact a significant effect on the collective inertia and, therefore,
on the dynamical paths in the collective space. In particular, it may have a pronounced influ-
ence on SF half-lives (Sadhukhan et al 2014, Zhao et al 2016, Bernard et al 2019). Pairing
coordinates may also be important for the odd–even staggering in the fission yields (Mirea
2014, Rodriguez-Guzmán and Robledo 2017). Induced fission is traditionally treated in a finite-
temperature framework, where pairing is quickly quenched by the statistical fluctuations. Here,
again, the dynamical treatment of pairing could substantially change the picture.

Generally, the introduction of additional collective coordinates increases the required
numerical effort significantly. Nevertheless, for more refined descriptions, there is a need for
a few additional collective variables that are not shape-related. One is the projection of total
angular momentum on the fission axis, usually denoted by K (Nadtochy et al 2012, Bertsch
et al 2018), which affects the angular distribution of the fission fragments. In a recent study, the
configuration space was constructed in the HF approximation using the K-partition numbers
as additional constraints (Bertsch et al 2018).

Another additional collective degree of freedom is related to the isospin. Except for TDHF,
TDHFB, and DFT-Langevin, fission treatments have usually assumed that the fragments retain
the same proton-to-neutron ratio as that of the mother nucleus. While some progress has
recently been made in incorporating this degree of freedom into the MM treatments (Möller
et al 2014, Möller and Ichikawa 2015, Möller and Schmitt 2017), further developments are
still needed.

A near-term challenge will be to take advantage of newly available extensive computing
resources and expand the space of collective coordinates, with the aim of obtaining a more
realistic description of the evolution of the fissioning nucleus into fragments, especially in the
region where nascent fragments appear near and beyond scission.

4.2. Collective inertia

The ATDHFB (adiabatic time-dependent HFB) and GCM+GOA formalisms are often applied
to derive collective inertias for the CSE. In the ATDHFB this requires the inversion of the full
linear response matrix. From a computational point of view, this is a daunting task that has been
often alleviated by imposing various approximations (Schunck and Robledo 2016). Typically,
fission calculations rely on the ATDHFB inertias within the so-called non-perturbative crank-
ing approximation, where the non-diagonal terms of the linear response matrix are neglected
and the derivatives of the generalised density matrix with respect to the collective variables are
computed numerically (Baran et al 2011). Very recently, both the exact and non-perturbative
cranking GCM + GOA inertias have been computed for the first time (Giuliani and Robledo
2018), showing that the non-perturbative cranking ATDHFB inertias can be reproduced even
without the inclusion of collective momentum variables.

In the TDGCM framework, the expression for the collective kinetic energy can be obtained
using either the GCM or the ATDHFB formalism. While the latter approach leads to the phys-
ical inertia in the case of translational motion (Ring and Schuck 1980), the GCM approach
may be incorrect if the conjugate collective variables are not included as collective degrees
of freedom. This requires doubling the dimensionality of the collective space and in practice
this is rarely if ever done (Goeke and Reinhard 1980). To obtain a more realistic inertia, the
ATDHFB expression is sometimes used in the GCM approaches. The possibility of using fully
consistent GCM with pairs of collective variables would be desirable in the future.
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Given the current status, several aspects should be addressed in order to reduce the source
of uncertainties in the estimation of collective inertias. Among the most impelling ones is the
calculation of the exact ATDHFB inertias. This is desirable because, according to the instanton
formulation (see Skalski (2008) and section 3.6), it is the ATDHFB that provides a compatible
framework to tackle the problem of nuclear dynamics under the barrier. The full linear response
matrix has been inverted in Lechaftois et al (2015) under some approximations but this method
has not yet been extended to fission studies. Alternatively, one could try an approach along the
lines of the finite amplitude method (Hinohara 2015), where rather than inverting the linear
response matrix itself one computes its action on the time derivative of the density matrix enter-
ing in the expression of the collective inertias. Such an approach has already been proposed
and tried long time ago (Dobaczewski and Skalski 1981), and, as advocated in Dobaczewski
(2019), the time is ripe to start implementing it routinely in all ATDHFB calculations. Regard-
less of the practical implementation, the estimation of the exact ATDHFB inertias is a crucial
step to understand the validity of the non-perturbative cranking approximations, which will
reduce the uncertainties related to the collective inertias and bring a sounder estimation of
collective kinetic energies and in the general adiabatic description of the fission process.

When it comes to non-adiabatic formulations, collective inertia can be derived within the
DDD formalism (Mirea 2019). For low collective velocities, the DDD inertia reduce to the
cranking expressions.

4.3. Collective dissipation

In most treatments of the fission dynamics based on microscopic theory, it has been assumed
that the collective degrees of freedom are well decoupled from the intrinsic degrees of free-
dom, usually referred to as the adiabatic assumption. Unfortunately, the nuclear A-body wave
function of the nucleus cannot, in general, be expressed in terms of slow and fast components.
Indeed, the typical time scale of nuclear collective modes is only slightly greater than the single-
particle time scale (Nazarewicz 2001). In the context of fission, the adiabatic approximation
is questionable as the collective motion is highly dissipative (Blocki et al 1978, Bulgac et al
2019b), see section 3.5.

There is therefore an urgent need for addressing the collective dissipation within a micro-
scopic framework. While this presents a significant computational undertaking, the most
immediate task consists in deriving the appropriate expressions for the dissipation in the par-
ticular microscopic model employed, a problem that is still quite unsettled (Barrett et al 1978).
Another challenge is to identify high-quality fission data that will constraint the dissipation
tensor.

4.4. Level densities

The nuclear level density is a key ingredient of the Hauser–Feschbach statistical theory of
nuclear reactions. Modelling many aspects of fission reactions rely on this type of statistical
reaction theory: a first example is nucleon-induced fission, where the capture of the projectile
by the target and the fission of the resulting compound nucleus are treated as a two-step process.
Another example is the prompt de-excitation of the nascent fission fragments, which can be
treated as compound nuclei undergoing statistical decays. Especially for applications in nuclear
astrophysics, such as the calculation of fission transmission coefficients and fission yields,
reliable predictions of nuclear level densities over a broad range of excitations for a large region
of nuclei are desired.

Three main classes of nuclear level density models exist: analytical models (such as the
back-shifted Fermi gas), configuration-interaction methods, and combinatorial model. Due to
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their simplicity, analytical models are often used in reaction codes, but they do not account
for specific nuclear structure effects to a satisfactory degree. While in principle very power-
ful, configuration-interaction shell-model methods have so far been applied only to a limited
number of light and medium-mass nuclei because of their computational complexity. In con-
trast, the shell-model Monte Carlo (SMMC) approach is capable of calculating level densities
of heavy nuclei and was applied to nuclei as heavy as the lanthanides (Alhassid et al 2008).
SMMC level densities have the advantage that they include contributions from both intrinsic
and collective excitations. However, application of SMMC across the nuclear chart will require
large computational resources.

Combinatorial models do not suffer from this hurdle and have been applied on the scale of
the nuclear chart. These are usually based on the microscopic single-particle levels (provided
by DFT calculations, microscopic–macroscopic approaches, or analytical optical potentials)
from which the many-quasiparticle excited states are obtained after pairing has been included.
The level density obtained by such combinatorial counting must be augmented by the effect of
excited states that are mostly collective in nature. Most important is the appearance of rotational
bands for deformed nuclei which may increase the level density by more than an order of
magnitude even at moderate excitation energies. Even though this effect is very important,
most treatments have long included it only by means of an empirical formula based on the
moment of inertia of the nucleus (Bjørnholm et al 1973). However, more recent approaches
have considered each individual many-quasiparticle excited state to be a rotational bandhead
(Uhrenholt et al 2013), thus avoiding the introduction of adjustable parameters. Collective
vibrations have also been included (Hilaire et al 2012, Uhrenholt et al 2013), but these are
most often neglected as they have been found to have only a small impact at low excitations
compared to the rotational enhancement.

An additional aspect of the modelling of these collective enhancements is their dependence
on the nuclear shape. For example, photofission rates are sensitive to the ratio of level densities
at the ground state and at the fission saddle point. Many transport models use the level density
(as a function of the collective coordinates) to relate the local excitation energy to a local tem-
perature. Furthermore, recent transport treatments of fission have employed shape-dependent
level densities to guide the nuclear shape evolution (Ward et al 2017), an approach that automat-
ically takes account of the gradual decrease of pairing and shell effects at increasing excitation.
The effect of this energy dependence is often emulated by using a phenomenological damp-
ing function for the level density. Finally, shape-dependent microscopic level densities are
also important for the division of the internal excitation energy between the pre-fragments at
scission (Albertsson et al 2020).

Statistical quantities are important in many aspects of fission, and microscopic theory is
needed to go beyond the current empirical modelling of their dependence on shape and other
variables. Particularly challenging is the problem of calculating shape-dependent level den-
sities with a proper description of the gradual erosion of the shell effects with increasing
energy.

5. Initial conditions

Nuclear fission can proceed from a variety of initial states; see section 2.1. In addition to SF,
the process can be induced by a variety of nuclear reactions that lead to the initial state of
the fissioning (mother) nucleus. Figure 3 displays some characteristic time intervals for the
preparation of the initial state. The reaction types are roughly ordered by the amount of energy
they may bring into the compound system, with the most energetic reactions (‘fast probes’) on
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Figure 3. Time scales for various reactions that may induce fission in large nuclei. FP
means fast probes and CN stands for compound nucleus.

the left. On the right, labelled ‘CN fission’, are the more gentle probes such as neutron capture
that proceed through the compound nucleus.

5.1. Neutron-induced fission

Due to its importance in applications, low-energy neutron-induced fission is probably the
best experimentally studied and phenomenologically parameterised fission process. Proceed-
ing through narrow neutron resonances, it creates the nucleus in a long-lived excited state that
has enough time to thermalise the absorbed energy, thus forming a compound nucleus.

The incident neutron creates a compound nucleus at an excitation energy that can range
from somewhat below the barrier to energies above the barrier. As the neutron energy is
raised, the resulting excitation may make it possible for the nucleus to evaporate one or more
neutrons before fissioning (referred to as a multi-chance fission). At still higher energies, non-
equilibrium emission grows important and a thermalised compound nucleus is established only
after the loss of one (or possibly more) nucleons.

The representation of the initial compound state in terms of elementary excitations is
impractical because the level density is prohibitively high. Thus a direct description in terms of
QRPA modes, GCM excited states, etc, would not be feasible and it may be preferable to adopt
an approach based on statistical quantum mechanics. However, for the neutron-induced fission
close to the neutron drip line, where level densities at the neutron separation energies are small,
the process could still be dominated by the direct component rather than the compound one.

Besides the energy, all the quantum numbers of the formed compound nucleus may affect
the subsequent fission process, especially when the energy is close to the barrier height. This
level of detail is retained in the R-matrix theory, discussed in section 3.9.

5.2. Fission induced by fast probes

Fission can be induced by fast probes such as photons (photofission), charged particles, and
high-energy neutrons. Surrogate reactions, such as fission following multi-nucleon transfer
reactions, are also included here. In these processes, the nucleus is created in an excited state
above or below the fission barrier. This state may exhibit specific well-defined structures, such
as the giant dipole resonance, which have substantial widths.

Present theoretical descriptions of fission induced by fast probes most often assume the
creation of a compound nucleus at a given thermal excitation energy (cf the process of neutron-
induced fission discussed in section 5.1). However, for fast probes such an assumption might
be ill-founded because the nuclear system may not have sufficient time to thermalise before
undergoing fission. Therefore, a non-thermal description of fission at high excitation energies
is very much desired (Dobaczewski 2019).

This becomes increasingly important at higher energies where pre-equilibrium processes
play an increasingly significant role and may lead to the emission of one or more nucleons
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before equilibrium is reached. Moreover, as the excitation energy of the compound nucleus
is increased, neutron evaporation competes ever more favourably with fission and, as a result,
multi-chance fission is likely to happen.

5.3. Formation by electromagnetic and weak-interaction fields

5.3.1. Photofission. In photofission, a nucleus decays through the fission channel after absorb-
ing a high-energy photon—a γ-ray. The characteristics of the excited state resulting from
photo-absorption—the initial state for the fission process—determines the evolution of the
system, for instance, by determining whether enough excitation energy is available to surmount
the fission barrier. Thus, the knowledge of excited states above both the ground state (for fissile
nuclei) and shape isomers, as well as multipole transition probabilities between these states, is
in principle needed to model photo-absorption as a function of the photon energy. If the pho-
ton is absorbed through the dipole operator on an even–even nucleus, the angular distribution
of the fission fragments gives information about the mixing of the K quantum number in the
fission process. In general and outside of the giant dipole absorption peak, theories such as the
QRPA are needed to sort out the multipoles.

5.3.2. Coulomb excitation. Another electromagnetic excitation method to study fission of
heavy nuclei in a relativistic accelerator beam is Coulomb excitation. Here, the process can
be treated as excitation by virtual E1 photons, so the considerations in the previous paragraph
apply. While the energy transferred is not precisely known, the theory for its distribution is
well established.

5.3.3. β decay and electron capture. Fission of nuclei far from stability can sometimes be
studied when the nuclide is formed by β decay of a progenitor nuclide. In terms of the exci-
tation energy, β-delayed fission is intermediate between SF and Coulomb-excitation induced
fission. Importantly, this process makes it possible to study low-energy fission in proton-rich
heavy nuclei that are not accessible by other techniques (Andreyev et al 2013). As in Coulomb
excitation, the excitation energy given to the nucleus is not known precisely. Thus the theory
of β-decay strength function is required to model the whole process. In this regard, the QRPA
(in its charge-exchange formulation) is very valuable.

The process of β-delayed fission also plays an important role in nucleosynthesis, because
it helps to terminate the rapid-neutron-capture process. Fission may occur from the compound
nuclei created by neutron capture or from the β-decay daughters of those nuclei (Mumpower
et al 2018). The latter can happen whenever the β decay populates a daughter state with an
excitation energy above (or near) the height of the fission barrier. Since it is important to know
the spin and the parity of the initial state before fission, the description of β-delayed fission
requires a microscopic model of the charge-exchange process to provide β-strength distribu-
tions; for the recent QRPA work see Mustonen et al (2014), Mustonen and Engel (2016), Shafer
et al (2016). The QRPA applications used to describeβ-decay are often limited to allowed tran-
sitions. Thus it would be necessary to extend many current QRPA codes to enable computation
of all possible final states in daughter nuclei.

Because β-delayed fission often involves odd–odd nuclei, one should employ a formal-
ism that can be extended to such systems without introducing any additional approximation.
Therefore, both the underlying HFB solver as well as the QRPA implementation should break
time-reversal symmetry, that is, extend beyond the equal filling approximation. This last point
is essential to differentiate between low- and high-spin states in odd–odd nuclei, and thus
distinguish between decays from potential isomeric states and the ground state. Once the fis-
sioning daughter state has been determined, one should be able to calculate the corresponding
PES for the particular energy, spin, and parity.
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5.4. Heavy-ion reactions

In the search for superheavy nuclei, the experiment uses a heavy-ion reaction to fuse together
two large nuclei, hoping that the combined system equilibrates and then decays as a compound
nucleus. Cross sections can be estimated for this reaction mechanism, but a crucial ingredient
is the probability to form a compound nucleus. The reaction is called fusion–fission in that
case; if there is no equilibration it is called quasifission. The understanding of this distinction
requires a combination of statistical and truly dynamical approaches which are not necessarily
confined to a collective subspace. Quasifission leads to the formation of products that may have
similar properties to fission products, but are produced without the formation of compound
nucleus. Fusion–fission occurs after the formation of a composite system which fissions due
to its excitation, resulting in a fragment distribution that is peaked at equal mass breakup of the
composite system. This difference in fragment distributions indicates that quasifission is the
faster process and corresponds to a system that is not yet fully equilibrated. As a dynamical
process, quasifission is amenable to a description using the TDHF approach (Simenel and
Umar 2018). A number of TDHF studies of heavy-ion reactions have been reported in recent
years (Wakhle et al 2014, Oberacker et al 2014, Umar et al 2016, Godbey et al 2019, Sekizawa
2019, Godbey and Umar 2020). In general, the TDHF results agree well with the experimental
quasifission yields, and shed light on some of the underlying reaction dynamics in relation to
target/projectile combinations.

Quasi-fission and fusion–fission could be used to map out the non-adiabatic collective land-
scape between the fusion entrance channel and the fission exit channel. The calculated time
scales indicate that while fast quasifission events dominate, much slower events resulting in a
fracture with equal mass fragments have also been observed.

One of the open experimental questions is how to distinguish quasifission from
fusion–fission. This is important for calculation of the evaporation residue formation prob-
ability in superheavy element searches. A collaborative effort between theory and experiment
is needed to find ways to address these issues. One may try to ‘calibrate’ the experimental
quasifission yields with the help of theoretical simulations thus allowing the extraction of
the fusion–fission yield. Study of angular distributions (now routinely measured with large
angular acceptance detectors (Banerjee et al 2019)) may be one of the ways to approach this
task.

Theoretical studies of quasifission have taught us that the dynamics may be dominated by
shell effects (Simenel and Umar 2018, Sekizawa 2019). Despite the apparent strong differences
between fission and quasifission, it is interesting to note that similar shell effects are found in
both phenomena (Scamps and Simenel 2018, Scamps and Simenel 2019, Godbey et al 2019).
Quasifission can then potentially be used as an alternative mechanisms to probe fission mode
properties. For instance, this could provide a much cheaper way than fusion–fission to test the
influence of the 208Pb shell effects in super-asymmetric SHE fission. Note that this approach
would only provide information on the properties of fission modes (mass asymmetry, TKE,
excitation energy), but not directly on their competition. Indeed, the latter is likely to be deter-
mined near the saddle point, a region of the PES which is not necessarily explored by the
quasifission paths.

6. Forces for fission dynamics

The collective fission dynamics can be understood as a balancing of three different types
of forces: the driving forces arising from the generally multi-dimensional potential energy
of deformation of the fissioning system, the inertial forces caused by the macroscopic rear-
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rangement of the nucleons associated with the change of the collective coordinates, and the
dissipative forces arising from the coupling of the considered collective coordinates to the
remainder of the nuclear system. In a microscopic approach these fission-driving forces are
derived from the effective inter-nucleon interactions, which are optimised to selected data.

6.1. Energy density functional

In a microscopic approach to fission, the effective inter-nucleon interaction or EDF is the only
ingredient of the theory that includes adjustable parameters. Therefore, the choice of a func-
tional ultimately determines the quality of the microscopic description of phenomena related
to fission, and the level of quantitative agreement with data.

Several types of EDF have been proposed over the years, many of which have also been
applied to fission. These functionals can be non-relativistic or relativistic (or covariant), and
this choice leads to different equations of motion for nucleons; they can be functionals of local
or non-local densities; they can be strictly defined as the expectation value of a corresponding
generating many-body operator or not; and finally the couplings (parameters) can be constants
or include a medium (density) dependence.

The two most widely used non-relativistic EDFs (Bender et al 2003, Schunck 2019) are
the finite-range Gogny EDF, which is constructed including the HFB expectation value of a
density-dependent interaction, and the Skyrme EDF, which includes momentum- and density-
dependent zero-range terms in the interaction. Other types of local non-relativistic EDFs
that were recently developed and applied to detailed studies of fission processes are the
Barcelona–Catania–Paris–Madrid (Baldo et al 2013), SEI (Behera et al 2016), and SeaLL
(Bulgac et al 2018) EDFs. Similarly, there are several varieties of relativistic EDFs in use
(Schunck 2019, Agbemava et al 2017, Agbemava et al 2019), either with finite-range (meson-
exchange) or contact interaction potentials, with non-linearities in the meson and/or nucleon
fields, or including density-dependent couplings. Two relativistic point-coupling (contact)
functionals, in particular, have successfully been applied to studies of fission dynamics:
PC-PK1 (Zhao et al 2010) and DD-PC1 (Nikšić et al 2008).

One important challenge is to increase the predictive power of novel nuclear EDFs compared
to traditional functionals such as Gogny or Skyrme, which apparently cannot be improved
further (Kortelainen et al 2014). For instance, the density-matrix expansion (Carlsson and
Dobaczewski 2010, Gebremariam et al 2010, Gebremariam et al 2011, Stoitsov et al 2010)
can be used to construct nuclear EDFs that are guided by first principles (Dyhdalo et al 2017,
Navarro Pérez et al 2018, Zhang et al 2018). Extensions of time-tested EDFs have been sub-
ject to recent studies. For example, higher-order gradient terms have been added to the Skyrme
EDF (Carlsson et al 2008, Davesne et al 2013, Becker et al 2017). The Gogny family of func-
tionals have been extended to include additional density-dependence and tensor interactions
(Chappert et al 2015, Pillet and Hilaire 2017, Bernard et al 2020). One hopes that such exten-
sions would augment the parameter space to be optimised for a better description of fission
properties.

Over the past decade it has been realised that exact projection techniques (see section 3.4.2)
and exact GCM are ill-defined for EDFs that are not strictly constructed from an effective
Fock-space Hamiltonian (Anguiano et al 2001, Dobaczewski et al 2007, Lacroix et al 2009,
Bender et al 2009, Duguet et al 2009, Robledo 2010b). The basic dilemma that one faces in this
context is that a suitable form of an effective Hamiltonian that reaches the descriptive power of
conventional EDFs has not yet been identified. As a first step in this exploration, a scheme for a
systematic construction of flexible two-body interactions by combining finite-range Gaussians
and gradients, has been proposed (Dobaczewski et al 2012, Bennaceur et al 2017). Limiting
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oneself to a two-body interaction, however, will inevitably lead to an unrealistically small effec-
tive mass (Davesne et al 2018), such that one always has to add three-body, and perhaps even
higher, interactions. The computationally simplest form of such terms is provided by contact
three-body forces with gradients (Sadoudi et al 2013). It turns out, however, that when added
to two-body interactions of various forms, they do not offer sufficient flexibility, which makes
this quest even more challenging.

Many advanced methods for beyond-DFT modelling of fission dynamics often include
explicit correlation energies that were implicit in the effective interaction obtained from the
EDF optimisation. This inconsistency may degrade the descriptive and predictive power of
the model and should be avoided. A better strategy would be to optimise the EDF parameters
using data sensitive to large deformations. This issue is most obvious in the case of corrections
for quantal zero-point motion related to symmetry breaking and shape fluctuations, such as
those for the centre-of-mass, rotational, and shape-vibrational motion. For instance, the inertia
that determines the former is the mass number A, which becomes ambiguous whenever one
considers the separation of a single nucleus into fragments (Goeke et al 1983, Skalski 2006).
The rotational correction increases with deformation and therefore lowers fission barriers, etc.
To further complicate matters, one form of quantal correction is transformed into other forms
when changing deformation (Goeke et al 1983, Skalski 2006), such that from this point of
view many quantal corrections have to be treated simultaneously. The same considerations
also apply to exact projections and full GCM.

Static and dynamic pairing correlations play a crucial role for the calculation of deformation
energy surfaces, the dynamic fission path, and collective inertia. This means that the pairing
part of the effective interaction or EDF might have to be tailored in such a way to reproduce
both ground-state properties and selected features that determine fission data, see section 6.2.

6.2. Optimisation strategies

Once the form and the framework for which the parameters of an EDF are to be adjusted
are decided, the next question concerns the selection of fit observables. Most of the fission
observables (lifetimes, fission fragment distributions, . . . ) are computationally expensive and
cannot be systematically considered during the optimisation. Therefore, one has to identify
properties that encapsulate the essence of the relevant physics probed by fission and, at the
same time, can be computed in a reasonable time.

First of all, the EDF has to be capable of describing the structure of the initial state of the fis-
sioning nucleus and the final state of the fragments. At low excitation energy, the requirements
for this are the same as for standard nuclear structure applications. One of the most important
constraints on the EDF specifically relevant for fission studies is its ability to describe states
at very large deformation. Two different types of properties control the general features of
fission dynamics: on the one hand the surface and surface-symmetry energy coefficients that
determine the average resistance of the nucleus against deformation (Nikolov et al 2011, Jodon
et al 2016), and on the other hand the evolution of shell structure that generates the minima
and maxima associated with the multi-humped structure of the deformation energy landscape
(Brack et al 1972).

There is some direct information about the excitation energy of highly-deformed states that
is available and that can be used to inform the parameter fit. On the one hand, there are barrier
heights data (Capote et al 2009, Smirenkin 1993), which have to be interpreted with some
caution as in one way or the other the available values were obtained via intermediate models
(Capote et al 2009). On the other hand, there are also measured excitation energies of some
fission isomers (Singh et al 2002). For a very limited number of fission isomers there is also
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information about their quadrupoledeformation from E2 transition moments (Metag et al 1980,
Thirolf and Habs 2002), and some information about their shell structure can be obtained from
the quantum numbers of bandheads. Additional data on such states would clearly be of great
help for fine-tuning the nuclear EDF.

To date, the EDFs most commonly used in fission studies have been adjusted to fission
isomer excitation energies (Kortelainen et al 2012) or fission barriers (Bartel et al 1982, Berger
et al 1991, Goriely et al 2007), with the exception of the relativistic functionals PC-PK1 (Zhao
et al 2010) and DD-PC1 (Nikšić et al 2008) that combine information on deformed heavy
nuclei and the nuclear matter equation of state. Some authors suggest paying more attention to
the nucleus–nucleus interaction between pre-fragments near scission (Adamian et al 2016).

A technical issue that needs to be addressed is that many parameterisations of the nuclear
EDF exhibit so-called finite-size instabilities, meaning that homogeneous infinite nuclear mat-
ter is unstable against a transition to an inhomogeneous phase that is either polarised in spin or
isospin or both, see Pastore et al (2015) for a review. Finite-size instabilities can be triggered
by gradient terms in the EDF, but also by finite-range terms in non-local EDFs (Martini et al
2019, Gonzalez-Boquera et al 2020). Many parameterisations of the Skyrme EDF exhibit such
instability in one or the other spin channel, which becomes an issue when working with time-
reversal breaking configurations or when calculating certain RPA modes. Such instabilities are
also sometimes found in isovector channels of some Skyrme and Gogny parameterisations.
All of these instabilities can be efficiently and unambiguously detected with linear-response
calculations of infinite nuclear matter. Such test can be easily incorporated into fit protocols, as
already done for the UNEDF2 (Kortelainen et al 2014) and SLy5sX (Jodon et al 2016) Skyrme
parameterisations.

Irrespective of the choices that will be ultimately made for the form of the EDF and the pro-
tocol for the adjustment of parameters, it is clearly desirable to have just one or a few standard
EDFs for fission studies that are used by as many groups as possible in order to eliminate pos-
sible dependencies upon the parameterisation when comparing results obtained with different
approaches to treat the many-body problem. For TDDFT treatments, it is also important that
EDFs are fitted without the centre-of-mass corrections (Goeke et al 1983, Skalski 2006, Kim
et al 1997, Simenel 2012, Kortelainen et al 2012).

6.3. Uncertainty quantification

As discussed in the previous section, nuclear density functionals have to be calibrated to exper-
imental data. This empirical wisdom is built into the quality measure χ2(p) which is a scalar
function of the Np model parameters p. The common use of χ2 is to deduce the optimal
parameterisation p0 by minimising χ2.

Systematic uncertainties can be revealed by comparing predictions of different models; for
fission applications, see Kortelainen et al (2012), Agbemava et al (2017). In the context of
statistical uncertainties related to model parameters, much information can be unravelled by
employing χ2 in connection with the tools of statistical analysis (Dobaczewski et al 2014,
McDonnell et al 2015, Schunck et al 2015c, Schunck et al 2015b, Nikšić et al 2015, Reinhard
2018).

Computing the probability distribution of the parameters p rather than a single point gives
immediately access to two important new pieces of information, the uncertainty of a predicted
observable, and the correlation between two observables. Uncertainties are important to con-
trol the quality of a prediction. This is mandatory when using the results in further calculations
as done, e.g., in nuclear astrophysics, and it is an extremely useful indicator for model devel-
opment because it reveals deficiencies of parameterisations. Correlations add another world of
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information. They allow a sensitivity analysis to check the impact of a certain model parameter
on an observable (Kortelainen et al 2010, Kortelainen et al 2012) and they indicate the infor-
mation content of a new observable as compared to previous ones (Reinhard and Nazarewicz
2010, McDonnell et al 2015). In the context of the present report, it is particularly interesting
to apply correlation analysis for the very different observables discussed here, e.g., relating
fusion cross sections and fission properties.

There is still more potential in statistical analysis of DFT. So far, the evaluation of uncertain-
ties and correlations has mostly been based on a Taylor expansion of the χ2 and of observables
around the optimal parameterisation p0. This runs easily beyond validity, particularly for fis-
sion properties (Higdon et al 2015). Thus one needs to evaluate the integrals

∫
dNp p . . . in

detail which grows quickly infeasible. Here one can take advantage of modern techniques of
supervised learning. Employing the posterior probability distribution computed with emula-
tors, one can propagate theoretical statistical uncertainties in predictions of various computed
quantities, including binding energies and PESs (McDonnell et al 2015, Neufcourt et al 2018,
Neufcourt et al 2020, Lasseri et al 2020). One can teach the emulators to improve the predic-
tions of selected observables in a given region of the nuclear chart by one order of magnitude at
practically no extra cost. This is particularly desirable if the output of nuclear DFT calculations
is used as input in other chains of calculations as, e.g., in nuclear astrophysics simulations.

To estimate uncertainties, both systematic and statistical, uniform model mixing (Erler et al
2012a, Agbemava et al 2017) can already provide a very valuable information. More advanced
techniques involve Bayesian model averaging (Neufcourt et al 2019, Neufcourt et al 2020),
which allows to maximise the ‘collective wisdom’ of relevant models by providing the best
prediction rooted in the most current experimental information. This will be an important part
of future collaborative projects in fission theory.

7. Fission fragments

In the last stage of the fission process, the nucleus descends towards scission where it divides
into nascent fragments, which then de-excite, see figure 1. The following sections are devoted
to fission fragments and the related fission observables.

7.1. Scission

The scission event is arguably one of the least understood processes in fission, although some
experimental information on scission configurations have just became available (Ramos et al
2020). In a mean-field picture it marks the transition from the final state of the elongated fis-
sioning nucleus to the initial state of the two separated nascent fission fragments. As discussed
later in section 7.5, there are good reasons to think that the nascent fragments are entangled at,
or immediately after, scission but it is not clear whether this entanglement persists to the stage
of the fission fragments or quantum decoherence takes place. Furthermore, the characteristics
of these fragments such as their charge, mass, energy, angular momentum, parity, level density,
etc, are crucial ingredients in determining the properties of the neutron and γ spectra, as well
as the β-decay chains, see section 7.7.

Before microscopic time-dependent descriptions of fission dynamics became available, the
scission event was most often treated with ad hoc assumptions, ignoring any role for dynam-
ics. At one extreme, scission is assumed to transform the system into a statistical ensemble
of two nuclei having their surfaces separated. In the framework of DFT theory, various crite-
ria were introduced to define scission based on the HFB solution for the fissioning nucleus.
The simplest ones define a threshold value for the density between the two pre-fragments or
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the expectation value of the neck moment. The main problem with such schemes, however,
is that both the intrinsic energy of each pre-fragment and their relative interaction energy are
extremely poorly described: before the separation of the pre-fragments, both the nuclear and
Coulomb interaction energies are vastly overestimated because of the large overlap between
the pre-fragments; when the primary fragments are well separated, the minimisation principle
underpinning the HFB equation leads to the two fragments in their ground state. Such dramatic
simplifications can be mitigated by performing unitary transformations on the total wave func-
tion of the fissioning system which, while leaving the whole system invariant, can be designed
to minimise the interaction (or equivalently, maximise the localisation) of the pre-fragments
(Younes and Gogny 2011). In spite of the development of such techniques, it is clear that explic-
itly non-adiabatic, time-dependent methods provide a much better handle on scission—at least
when it comes to defining the initial conditions of the nascent fragments.

7.2. Fission fragment yields

Three main methods are used to determine the yields of different fission fragments. Scission-
point models assume a statistical distribution of probability among a set of scission configura-
tions of the nucleus (Fong 1953, Wilkins et al 1976), see Lemaître et al (2019) and Paşca et al
(2019) for recent realisations. These models require the definition of an ensemble of scission
configurations that can either be determined by constrained mean-field calculations or from
an analytical parameterisation of the shapes of the di-nuclear system. Each of these nuclear
configurations is then populated according to a Boltzmann distribution, with the temperature
defined in accordance with the initial energy of the system. Since it is computationally effec-
tive, this method is used in systematic studies or to investigate the evolution of yields with the
excitation energy of the compound nucleus. However, the choice of the ensemble of scission
configurations remains arbitrary and may influence the resulting yields. Moreover, an explicit
use of temperature for a non-adiabatic and time-dependent process is not really well justified.

To some degree, also the total fragment kinetic energy may be estimated. In particular,
some models have sought to predict those quantities exclusively on the basis of the scission
configurations (Lemaître et al 2015), but their predictive power has been limited due to the
importance of the collective path taken prior to scission. Indeed, experience with a diffusive
transport model (Randrup et al 2011) has shown that not only the scission hypersurface but the
global topography of the PES may have a qualitative influence on the outcome.

To avoid the assumption of statistical equilibrium at scission, one possibility is to describe
the evolution of the compound nucleus from some initial state at lower deformation up to the
configurations close to scission. In this approach, one defines an equation of motion for a few
collective coordinates associated with a parameterised shape of the nuclear surface. Assuming
that these collective degrees of freedom interact with a thermal bath of intrinsic excitations,
leads to the Langevin equations in the deformation space; see section 3.5.

These transport equations have been solved in multi-dimensional spaces both in MM and
hybrid-DFT frameworks either directly (Miyamoto et al 2019, Sierk 2017, Ishizuka et al 2017,
Usang et al 2019, Sadhukhan et al 2016, Sadhukhan et al 2017, Matheson et al 2019) or in the
strongly damped (Smoluchowski) limit (Randrup and Möller 2011, Randrup et al 2011, Ward
et al 2017). The result is the probability of populating different nuclear configurations close to
scission and it is then straightforward to determine the resulting mass asymmetry.

Most often these treatments have concentrated on the mass number, assuming that the
proton-to-neutronratio remains constant, but recent progress has been made (Möller et al 2014,
Möller and Ichikawa 2015, Möller and Schmitt 2017, Sadhukhan et al 2016, Sadhukhan et al
2017, Matheson et al 2019) towards including also the isospin degree of freedom, thus making
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it possible to determine both the mass and the charge yields. The transport framework takes
into account the dissipative effects of the collective dynamics and may even account for the
emission of neutrons in the course of the evolution (Eslamizadeh and Raanaei 2018). One gen-
eral limitation is that the Langevin treatment is restricted to the classically allowed region of
the collective space, so it cannot treat tunnelling.

As mentioned in section 3.4.1, an alternative approach to computing fission fragment yields
within a quantal description is the TDGCM (Regnier et al 2019, Zhao et al 2019, Younes et al
2019, Verriere and Regnier 2020). Here, a major difficulty is the determination of a proper man-
ifold of states which usually consists of an ensemble of quadrupole and octupole constrained
HFB solutions. While this description of quantum collective dynamics can treat tunnelling, it
fails to include diabatic aspects of the dynamics close to scission. Let us also mention recent
TDHF (Simenel and Umar 2014, Goddard et al 2015, Goddard et al 2016), TDHF + BCS
(Scamps et al 2015, Scamps and Simenel 2018) and TDHFB (Bulgac et al 2019a) studies of
fission. In these cases, the initial configurations for the time-dependent calculations are gen-
erated by constrained calculations at some elongation beyond the outer turning point. These
methods are well suited to investigate the role of shell effects at scission (Scamps and Simenel
2018, Scamps and Simenel 2019), and thus provide valuable guidance to more phenomeno-
logical models like the scission-point models discussed earlier in this section. As mentioned
earlier in section 3.3, time-dependent theories will be challenged to reproduce the tails of the
yield distribution, due to non-Newtonian Langevin trajectories, unless a mechanism equiva-
lent to the random force of the Langevin equation is included (Aritomo et al 2014, Sadhukhan
et al 2017). Moreover, the present formulation does not allow for the treatment of quantum
tunnelling.

All these state-of-the-art methods have their own strengths and weaknesses. Yet, they all
rely on determining the probabilities to populate a set of scission configurations. A common
feature in all these approaches is that the fragment yields are computed at scission, where
the two nascent fragments still interact through the nuclear force, see section 7.1. As a result,
estimates of particle number with projection methods, for example, become extremely sensitive
to the condition that define scission configurations. Other observables such as energy sharing
between nascent fragments, may not be relevant at this stage of the fission process. Methods
should be developed to determine the yields of observables further away from scission.

Current methods have been mostly focussed on the yields associated with the mass, charge,
and sometimes TKE of the fragments. To go beyond this simple picture, the challenge is to
extend the space of configurations in the fission channel in order to be able to make quantitative
predictions of correlated yields for these three observables, and eventually additional ones.
The new observables of interest are typically the angular momentum and parity of the nascent
fragments.

Finally, the prediction of fission yields is essential for a correct description of r-process
nucleosynthesis and superheavy elements. It would, therefore, be important to carry out sys-
tematic large-scale calculations of fission yields in regions of the nuclear chart far from
the valley of stability. While such large scale calculations present a serious challenge for
computationally intensive models of fission dynamics, some recent progress in this direc-
tion has been reported in Giuliani et al (2018), Lemaître et al (2018), Giuliani et al (2019),
Rodŕıguez-Guzmán et al (2020).

7.3. Number of particles in fission fragments

The estimation of Y(Z, A) is usually based on the assumption that the probability density of
the mass and charge of the fragments associated with a Bogoliubov wave function is Gaussian.
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However, in order to describe the odd–even staggering seen in charge distributions more refined
methods are required.

In the MM DDD approach, the odd–even effect in fission yields can be attributed to the
pair-breaking effect (Mirea 2014). In order to assign a particle number to a pre-fragment in the
vicinity of the scission configuration, a condition has been introduced in Mirea (2011) based
on the position of the neck. A similar approach to particle number identification was proposed
in the DFT approach of Younes and Gogny (2011) using the unitary transformations on the
total wave function aiming at maximising the localisation of pre-fragments.

Even earlier, a method has been proposed in Simenel (2010) to estimate the exact prob-
ability distribution of mass and charge in a nascent fragment created in microscopic models
by introducing the particle-number projection for fragments. This method has been applied
to determine the transfer probabilities of nucleons during collision reactions and then gener-
alised to superfluid system (Scamps and Lacroix 2013) with the use of the Pfaffian method
(Robledo 2009), and applied to fission (Scamps et al 2015) in TDHF + BCS, thus showing
that the odd–even effects can be described with the mean-field dynamics. As discussed in
section 3.12.1, these distributions are affected by the lack of one-body fluctuations and corre-
lations (e.g., between mass and charge distributions). As shown in Simenel (2011), Williams
et al (2018), Godbey et al (2020), the latter can be recovered to some extend for symmetric
systems using the TDRPA (Balian and Vénéroni 1984).

It will be interesting to couple this approach with configuration-mixing methods and semi-
classical descriptions of the fission process. One should also go beyond the approximation of
identical occupation of time-reversed canonical HFB states assumed in Verriere et al (2019) to
see whether the proper blocking of one-quasiparticle states in odd–A nascent fragments, asso-
ciated with breaking of time reversal symmetry, is important for the description of odd–even
staggering of fission yields.

7.4. Energy sharing

Most of the energy released in fission appears in the form of TKE of the fission fragments.
Hence, a direct inverse correlation exists between TKE and their total excitation energy avail-
able for prompt neutron and gamma emission. Moreover, the distribution of TKE directly
influences the prompt neutron multiplicity distribution, which has been measured in a few
cases and is important in transport simulations of selected classes of integral experiments.

Once the nascent fragments are separated at scission, the Coulomb repulsion is transformed
into kinetic energy. As indicated in section 3.8, however, different models predict different
values for the collective kinetic energy at scission. It is typically a few MeV in TDDFT and
ranging from zero to 20 MeV in various transport treatments. From a theoretical point of view
a tolerance of 20 MeV, representing about 10%–15% relative uncertainty, might be deemed
acceptable. However, a change of TKE by that much would significantly change the multiplic-
ity of evaporated neutrons (by about two) and it is therefore an important challenge to fission
theory to improve on the calculation of TKE.

The available total excitation energy in fission fragments can be calculated from the energy
balance in a fission event, knowing the masses of the fissioning system and of the fission frag-
ments, once those are determined via a chosen theoretical model, or extracted from systematics
of experimental data. For any model that does not fully separate the fission fragments, the
extraction of the energy sharing will be subject to large uncertainties, as energy can flow from
one pre-fragment to the other through the neck, and in close proximity the nascent fragments
exchange energy via Coulomb interactions. Moreover, the nascent fragments are generally dis-
torted relative to their equilibrium shapes and the associated distortion energy will be converted
to additional primary fragment excitation energy, thus affecting the resulting energy sharing.
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Guidance on excitation energy partitioning is necessary for simulating neutron and photon
emissions when the total excitation energy in the fissioning system increases (as in the case
of fission induced by fast neutrons). The only indirect observable related to the excitation-
energy sharing is the average number of neutrons per fission event as a function of mass, but
the data beyond thermal neutron-induced fission and SF reactions are scarce. The results of
average neutron multiplicity measurements as a function of mass for significantly different
excitation energies in the fissioning systems, suggest that with increasing energy in the fission-
ing (actinide) system, most of the extra energy is deposited in the heavy fragments (Müller
et al 1984, Naqvi et al 1986).

It has to be emphasised that the process of energy sharing poses an interesting and nontrivial
question: does the energy sharing occur in the condition of thermal equilibrium that has devel-
oped between nascent fragments? In this case, the details of the process of neck formation and
subsequent fracture would be of secondary importance, and only the density of states associ-
ated with each of the nascent fragments would play a role. On the other hand, if equilibrium is
not reached during the saddle-to-scission evolution the details of the splitting process will be
crucial. This issue is still not resolved. Namely, the TDDFT method, which has recently been
used to parameterise the energy dependence of the excitation-energy sharing, predicts neu-
tron multiplicities as a function of mass in agreement with experimental observations (Bulgac
et al 2019a, Bulgac et al 2020). At the same time, an approach that models the excitation-
energy sharing statistically on the basis of the microscopic level densities within a Brownian
shape evolution framework, was also able to reproduce the experimental trend (Albertsson et al
2020).

7.5. Quantum entanglement

SF of even–even nuclei is a process by which a 0+ quantum system decays into two excited
nuclei which eventually, after prompt neutron and photon emission, turn into two product nuclei
in their ground states, moving apart with opposite momenta. In this sense, the process is anal-
ogous to the emission of two electrons from a singlet state, with the additional complication
that in fission, neutrons and gamma rays are emitted at or beyond the scission point.

The fission process conserves quantum numbers and, therefore, those that characterise the
initial state, such as particle number (Bulgac and Jin 2017) and angular momentum, must be
shared among all particles and quanta in the exit channel. For example, neglecting neutron
emission, the final state would be a superposition of states of the two fragments with numbers
of protons and neutrons in one fragment complementing those in the other fragment, so that
they add up to the number of protons and neutrons of the initial fissioning nucleus. The par-
ticle numbers of the fragments are therefore entangled, and a measurement in one fragment
collapses the information about the particle numbers in the other fragment.

The same is true for the measurement of γ rays, which are characteristic of a given nucleus
and thus uniquely define the other fragment. Summing up the angular momenta of gamma rays
emitted from one primary fragment collapses the information about the angular momentum of
the other fragment in the exit channel. In the same way the angular-momentum polarisations of
the two fragments are also entangled. The real question is whether these effects are ultimately
important for experiment? Can they be observed at all? When and how does decoherence of
this entanglement occur? Fission fragments may represent a unique opportunity to explore
quantum entanglement of mesoscopic systems, that is, they can be the closest realisation of
the Schrödinger cat phenomenon (Dobaczewski 2019).
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7.6. Quantum numbers

An essential ingredient in the microscopic description of fission is the PES, constructed in
an intrinsic frame and including pairing correlations in the BCS or HFB approximations,
see section 3.2.1. Both of these break symmetries of the underlying Hamiltonian, and their
restoration yields additional contributions to the PES; see discussion in section 6.1.

The restoration of particle number has a relatively small effect on the PESs in actinide
nuclei, which are far from closed shells (Bernard et al 2019). However, it may have a signifi-
cant impact on the ATDHFB or GCM inertias that determine the collective Hamiltonians; see
section 3.10. In particular, extensive studies are needed in two specific areas. First, one should
consistently calculate the PES for symmetry-restored wave functions in the case of particle
number projection, possibly by including variation after projection to determine the intrinsic
states. Second, and perhaps most important, is the development of a consistent theory of collec-
tive inertias for the symmetry-restored wave functions. Recent developments in the description
and manipulation of particle number projected HFB states (called antisymmetrized germinal
power in the quantum chemistry literature) (Dukelsky et al 2019) could potentially lead to a
particle-number-projected ATDHFB theory.

The angular momenta of fragments is an important element that determines neutron yields
and other decay properties (Wilhelmy et al 1972). Given a mean-field description of the nucleus
and the knowledge of its quasiparticle excitation energies, current theoretical tools can be used
to calculate the angular momentum content of the fragments. There are two components to the
angular momentum of the newly formed fragments: non-collective and collective.

The non-collective angular momentum is carried by the quasiparticles in the pre-scission
configuration that are transferred to the post-scission nascent fragments under diabatic condi-
tions. They will end up in one or the other nascent fragment, depending on the evolution of
the corresponding orbitals with elongation; see Bertsch et al (2019a) for an example of this
transition. Their angular momentum is conserved, allowing one to estimate its contribution to
that of the nascent fragment. The collective angular momentum arises because of the defor-
mation of the compound nucleus. This component can be calculated by well-known projection
techniques used to compute rotational bands in deformed nuclei. The only difference in the
case of the fissioning system is that scission also affects the angular momentum of the system
with respect to the orientation of the fission axis. The collective contribution to the angular
momentum of the nascent fragments about the fission axis vanishes. As a result, the distri-
bution of gamma radiation in the subsequent cascade will be anisotropic with respect to this
axis (Bertsch et al 2019b). In fact, this anisotropy has been observed in SF, and a systematic
measurement would provide an invaluable test of our overall understanding of the dynamics at
the scission point.

There can be additional angular momentum generated as the pre-fragments separate, due to
higher multipole components of the Coulomb field between them, see Bertsch (2019). It is, in
fact, straightforward to calculate the effect of the electric quadrupole field on the post-scission
nascent fragments, given their deformations and their initial separations. It would therefore be
useful to have this information available when reporting fission calculations going through the
scission point.

7.7. Fragment de-excitation

Nascent fragments emerge with significant excitation energies and then primary fragments
cool down via various decay modes resulting in particle emission (neutrons and photons from
prompt and delayed emission as well as electrons and antineutrinos from β decays). In current
phenomenological approaches, the neutron emission proceeds after the nascent fragments have

36



J. Phys. G: Nucl. Part. Phys. 47 (2020) 113002 Topical Review

fully accelerated becoming primary fragments, whereupon they are treated as compound nuclei
that de-excite via particle emissions.

In order to carry out simulations of those decay chains, it is necessary to know the initial
states of the primary fragments, in particular their initial excitation energy, angular momen-
tum, and parity. On the other hand, experimental information regarding the fission fragments
can only be obtained after neutron emission. Hence, few experimental data can inform phe-
nomenological models, and the microscopic models can play an important role in providing
the necessary input for a large range of reactions. The angular momentum of the emerging
fission fragments is an important quantity that sets the competition between the neutron and γ

emission, and it has an important influence on a variety of photon observables, from prompt
fission γ multiplicity to the prompt fission spectrum and correlations between emitted photons.
To a lesser degree, it can also influence the delayed neutron and γ properties.

To reduce uncertainties, the angular momentum properties of the fission fragments should be
investigated in a framework that allows the total separation of the nascent fragments. It has been
demonstrated in TDDFT that scission is followed by a relaxation period in which the nascent
fragments transition to a deformation of primary fragments that is close to the ground-state
deformation (Bulgac et al 2019a), thereby increasing the energy available for emission.

Both γ and β decays of the primary fragments can be described using the QRPA, thus
defining a consistent framework both for the entrance and exit channels, see section 5. Because
β-decay half lives are long compared to those of γ decays, they generally can be assumed to
occur from the fragment ground state, thus making a finite-temperature description of β decay
unnecessary. But it is important to take into account that the β decays may generally populate
excited states in the daughter fragment, which would then undergo their own emission chain
before a subsequent β decay could occur. Consequently, γ decay should be investigated for
each primary fragment as a prompt phenomenon (in principle in competition with but usually
after neutron evaporation). β decay to the resulting ground-state fission products should also
be investigated, including forbidden transitions of particular importance for neutrino studies.

8. Computational strategy

Microscopic modelling of nuclear fission is an example of a computational grand challenge
(Young et al 2009, Bishop and Messina 2009, Carlson et al 2016). One reason is the complex-
ity of the problems, whose solutions require advanced notions of linear algebra, group theory,
analysis, computer science, etc. Another reason is the sheer amount of computing needed.
While a single, static HFB calculation may take between a few minutes to a few days to con-
verge on a single CPU, depending on the functional, the number of broken symmetries and
the types of constraints, up to dozens of millions of such calculations would need to be per-
formed to tackle some of the problems discussed in this document (large scale PESs, functional
optimisations, time evolution, action minimisation, symmetry restoration). In this section, we
discuss the various computational strategies that are currently available or should be explored
in the future.

8.1. Computer codes for fission

There is a broad consensus that fission is not a problem that can be handled by a single code.
Instead, the community should think of an ecosystem of different frameworks addressing dif-
ferent facets of the problem, for example, static versus time-dependent calculations. Since
fission calculations are almost always characterised by the need to compute and manipulate
very deformed configurations in heavy nuclei, this imposes specific requirements about the
codes. In this section, we review some of the existing software and identify current gaps.
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8.1.1. Brief review of available codes. A number of computer codes are available for mod-
elling various aspects of fission dynamics. The most computationally intensive ones are those
used for the calculation of HFB configurations and related quantities (inertias, energy overlaps,
time-dependent evolution, etc). Two basic implementations of HFB/TDHFB solvers differ in
the representation of the single-particle wave functions:

Space discretisation. This family of codes employs a finite volume, either in coordinate space
or momentum space, that is discretised using a suitable mesh of points. Many different
choices can be found in the literature, from the Lagrange mesh based on orthogonal poly-
nomials (Baye 2015), to B-spline-based (Blazkiewicz et al 2005, Pei et al 2008), and
adaptive wavelet-based methods (Pei et al 2014). Among the codes relevant for fission we
mention: Sky3D (Maruhn et al 2014, Afibuzzaman et al 2018, Schuetrumpf et al 2018),
and EV8 (Ryssens et al 2015b) (publicly available) as well as HFB-AX (Pei et al 2008),
MADNESS-HFB (Pei et al 2014), MOCCa (Ryssens 2016), HFB-2D-LATTICE (Terán
et al 2003, Blazkiewicz et al 2005), Skyax (Reinhard et al 2020), and the code of Jin et al
(2017).

Basis expansion. This family of codes is based on an expansion of single-nucleon wave func-
tions in a finite set of suitable basis functions. Most often this is a basis of the harmonic
oscillator (HO) eigenfunctions. There have also been attempts to use the transformed HO
basis states (Stoitsov et al 2003), or a two-centre HO basis for improving the description of
elongated shapes (Dubray et al 2008). Some of the principal codes that use this represen-
tation for fission modelling are: HFODD (Schunck et al 2017) and HFBTHO (Perez et al
2017) (both publicly available,) as well as HFBaxial (Robledo 2010a, Robledo et al 2018),
HFBTri (Robledo et al 2018), and HFB3 (Hashimoto 2013). The code HFB3 utilises a
basis expansion for two Cartesian directions while employing a Lagrange mesh in coor-
dinate space in the third. Two codes based on relativistic EDFs have recently been used
in calculations of self-consistent mean-field configurations as input for modelling fission
dynamics: DIRHB (Nikšić et al 2014) and MDC-RMF (Lu et al 2014).

The use of different representations determines the applicability of any given code. For
instance, all numerical schemes can efficiently deal with zero-range (Skyrme-like) effective
interactions; however, apart from implementations in spherical symmetry (Bennaceur 2020),
mesh-based discretisation schemes have not been able to employ finite-range effective forces
so far. On the other hand, basis-expansion methods have a long history of calculations with
(among others) various Gogny interactions (Robledo et al 2018), Coulomb (Dobaczewski et al
1996), and Yukawa (Dobaczewski et al 2009) forces, by expanding the interaction into Gaus-
sian form factors. Extensions to more general finite-range interactions have also been proposed
(Parrish et al 2013).

For the time-dependent calculations of fission dynamics, only mesh-based methods have
been used so far. They satisfy the demands of extreme deformations encountered at scission,
and also allow the description of the nascent fragments beyond scission. While techniques
exist to optimise the choice of basis states, mesh-based calculations have the advantage that
their numerical precision is essentially independent of the nuclear deformation (Ryssens et al
2015a).

A major aspect of the difference between the two numerical schemes is the discretisation of
the continuum. The first consequence of this is the treatment of pairing correlations since mesh-
and basis-based methods give very different descriptions of positive-energy single-particle
states. On the one hand, the coordinate representation takes correctly into account asymptotic
properties of single-particle wave functions, but it becomes impractical and time-consuming
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when dense single-particle states extending to high energies are included. This is required for a
full HFB description of the coupling between quasiparticle and quasihole states (Dobaczewski
et al 1984). On the other hand, basis-expansion methods can easily manage states of arbitrarily
high energy, but fail to reproduce the spatial asymptotics of wave functions, and are thus not
appropriate for the description of weakly-bound systems. In view of the importance of pairing
for fission applications, see section 3.10, this situation is not satisfactory. One should note,
however, that the practical importance of asymptotic properties or high-energy states in the
continuum has not yet been evaluated for fission.

Another aspect is the treatment of finite-temperature calculations. When the nucleus is
heated the Fermi surface becomes more diffuse and the statistical mixture includes contri-
butions from quasi-bound and unbound single-particle states. While preliminary studies have
been reported (Bonche et al 1984, Zhu and Pei 2014, Schuetrumpf et al 2016), the correct
treatment of this degree of freedom is an open problem, see section 3.11. Nevertheless, as in
the case of pairing correlations, we can already foresee that the applicability and performance
of mesh-based and basis-based approaches will differ significantly.

Table 2 summarises the available codes for modelling deformed nuclei, their collective prop-
erties and fission dynamics. A few additional comments are in order: in the code Sky3D all spa-
tial derivatives are evaluated using the finite Fourier transform method; the code of Hashimoto
(2013) uses a Lagrangian coordinate-space grid in the direction of the axial-symmetry axis;
the code of Jin et al (2017) uses a complete basis of single-particle states in the solution of the
TDHFB; code SkyAx (HFODD) can implement constraints on axial monopole, quadrupole,
octupole, and hexadecapole deformations (non-axial deformations up to multipolarity λ = 9)
separately.

8.1.2. Development of new capabilities. Even if the codes listed above offer a high level
of flexibility and great potentiality, we recommend the development of the following new
computing capabilities.

Adaptive meshes. The specific issues of fission dynamics require that nuclear wave functions
are computed also in regions where the nuclear density vanishes. For mesh-based imple-
mentations, uniformly spaced grids thus include discretised continuum represented by a
large number of single-particle states, even at fairly low energies. For this reason, we
recommend the development of a new-generation of mesh-based codes that will utilise
non-uniform meshes, with lattice points concentrated in space regions where nuclear
densities are non-negligible. This method would require self-consistent redefinitions of
meshes depending on relative distances, deformations, and relative orientations of nascent
fragments.

Adaptive bases. By definition, implementations that utilise two-centre HO bases describe only
regions of space where densities are sufficiently different from zero. However, they require
adaptive methods to self-consistently define bases corresponding to relative distances,
deformations, and relative orientations of nascent fragments, as proposed in Dobaczewski
(2019). We recommend the development of the corresponding HO-basis codes. Another
direction is to use the multi-resolution techniques with a multi-wavelet basis as in Pei et al
(2014).

General symmetry breaking. The concept of spontaneous symmetry breaking is crucial for a
mean-field description of atomic nuclei, but it has not been exploited to its full capabilities
yet. Even the most ambitious fission studies to date consider only configurations that still
maintain certain self-consistent symmetries. In particular, time-reversal breaking configu-
rations, needed for the description for odd and odd–odd nuclei as well as high-spin physics
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Table 2. Summary of deformed HFB and TDHFB solvers. RHB stands
for relativistic HFB. References to codes: [1] (Reinhard et al 2020), [2]
(Maruhn et al 2014, Afibuzzaman et al 2018, Schuetrumpf et al 2018),
[3] (Ryssens et al 2015b), [4] (Pei et al 2008), [5] (Pei et al 2014), [6]
(Ryssens 2016), [7] (Jin et al 2017), [8] (Kim et al 1997, Simenel 2011,
Scamps and Lacroix 2013), [9] (Sekizawa and Yabana 2016, Williams
et al 2018), [10] (Umar and Oberacker 2005), [11] (Schunck et al 2017),
[12] (Perez et al 2017), [13] (Robledo 2010a), [14] (Robledo et al 2018),
[15] (Hashimoto 2013), [16] (Nikšić et al 2014), [17] (Lu et al 2014).

Coordinate space representation

SkyAx [1] 2D axial Static CHF + BCS
Sky3D [2] 3D Cartesian CHF + BCS/TDHF
EV8 [3] 3D Cartesian Static CHF + BCS
HFB-AX [4] 2D axial, B-splines Static CHFB
MADNESS-HFB [5] 3D wavelets Static HFB
MOCCa [6] 3D Cartesian Static CHFB
LISE [7] 3D Cartesian HFB/TDHFB
TDHF3D [8] 3D Cartesian TDHF/TDRPA/TDHF + BCS
3DTDHF [9] 3D Cartesian TDHF/TDRPA
VU-TDHF3D [10] 3D Cartesian TDHF (density constraint)

Basis expansion

HFODD [11] 3D HO Static CHFB
HFBTHO [12] 2D axial HO Static CHFB
HFBaxial [13] 2D axial HO Static CHFB
HFBTri [14] 3D HO Static CHFB
HFB3 [15] 2D HO ⊗ 1D mesh (TD)HFB
DIRHB [16] 3D HO Static C RHB
MDC-RMF [17] 2D axial HO Static C RHB

and multi-quasiparticle configurations, are not included in most available computer codes.
To the best of our knowledge, HFODD and Sky3D are the only publicly available codes
that include the degrees of freedom necessary for this type of studies.

GCM with time-odd momenta. Along the same line, an extension of current GCM codes to
include time-odd collective momenta presents an interesting challenge. In addition to the
implementation of time-reversal symmetry breaking, and the development of the actual
GCM, this would also require the capability to consistently construct and constrain the
relevant conjugate momentum operators.

Overlaps and kernels. Both GCM and projection methods require multi-reference calcula-
tions, that is, determination of overlaps and matrix elements between different paired or
unpaired product states. In addition to possible problems related to the density-dependence
of the interaction (Dobaczewski et al 2007, Lacroix et al 2009, Bender et al 2009, Duguet
et al 2009, Robledo 2010b, Sheikh et al 2019), such calculations always require a higher
degree of symmetry breaking than those for the corresponding single-reference imple-
mentations. For example, restoration of the particle symmetry or 3D rotational symmetry
implies the time-reversal or simplex symmetry breaking, respectively, even if the single-
reference states that are subjected to projection conserve these symmetries. Therefore,
it is recommended that new codes are initially developed with a maximum degree of
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symmetry-breakingcapabilities, and then accelerated by implementing conserved symme-
tries in single-reference calculations. This will ensure that they are automatically portable
to multi-reference frameworks.

Matrix elements. To implement K-matrix reaction theory for fission rates, as discussed in
section 3.9, the suite of computer programs should be augmented with routines that cal-
culate effective Hamiltonian matrix elements between arbitrary CHF and CHFB config-
urations. Also, the calculation of decay widths require including momentum operators in
the set of constraining fields in the CHF and CHFB codes.

TDDFT, TDGCM, ATDDFT, and QRPA codes. We recommend building new-generation
codes for fission dynamics by directly implementing the capabilities of the TDDFT,
TDGCM, ATDDFT, and QRPA methods. For example, implementations built on HO
bases, proposed in Dobaczewski (2019), can be ported to the time-dependent adaptive
bases for TDDFT, or to the iterative solutions of the ATDDFT and QRPA methods.

Mesh-based codes for non-local EDFs. Since it is unlikely that higher accuracy of the calcu-
lated nuclear observables can be obtained using local EDFs (Kortelainen et al 2014), cur-
rent developments are focussed on new-generation non-local EDFs. As discussed above,
codes based on the HO basis are capable of treating such functionals fairly efficiently. It
is, therefore, of paramount importance to develop algorithms for implementing the same
capabilities in mesh-based codes. This is certainly a far-reaching goal; presently with
no clear ideas on the direction to take. Nevertheless, we recommend that, because of its
fundamental importance, a substantial effort should be devoted to attacking this problem.

Algorithmic improvements. All these developments recommended above depend on the effi-
cient and robust generation of self-consistent mean-field solutions with many constraints.
Constructing large numbers of these configurations is extremely demanding both in CPU
time and in the time required to diagnose convergence issues. Besides the second-order
gradient method (Robledo and Bertsch 2011), advanced algorithms from the field of non-
linear optimisation have been introduced to accelerate the convergence of self-consistent
iterations (Baran et al 2008, Ryssens et al 2019); the potential for further developments
could be far greater. Supervised or deep learning techniques could also present significant
opportunities to, e.g., optimise basis parameters for better numerical accuracy, perform
real-time diagnostic about convergence, or provide good emulators of theoretical models
(Lasseri et al 2020).

High-performance computing. Already in the late 2000s, nuclear fission was recognised
as a scientific grand challenge justifying the development of exascale computer systems
(Young et al 2009, Bishop and Messina 2009, Carlson et al 2016). Many of the various
recommendations discussed in this document, from large-scale PESs with many degrees
of freedom, to the coupling between TDHFB and TDGCM dynamics, will require the
power of such facilities. Yet, this will require a serious effort by the community to modify,
or re-factor, their codes in order to adapt to choices made at leadership computing facili-
ties. Such choices include hardware architectures (GPU and hybrid chips, memory/core),
software libraries (use of abstraction layers, more and more often in C++), or computing
policies (limited runtime).

In conclusion, we recommend the development of numerical tools, which (i) target specific
requirements of fission dynamics within the single-reference and multi-reference frameworks;
(ii) are adapted to modern computing infrastructure; and (iii) build a common code base for
fission theory. We advocate to increase the transparency associated with numerical choices by:
(i) including a detailed description of numerical procedures in published studies (for bench-
marking and an independent reproduction of the results); (ii) making codes publicly available
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under Open Source license along with their long-term continuous maintenance within, e.g., a
git repository; and (iii) writing the codes in a sufficiently modular fashion, so that new advances
can be more easily adopted by the community.

8.1.3. Databases. As discussed in section 8.1.2, the computational cost to generate and store
the mean-field configurations and their related quantities can be extremely high in the context
of fission applications. At the same time, many applications only require ‘integral’ quantities
related to these configurations. For example, computing SF lifetimes in the WKB approxima-
tion, or fission fragment distributions within the TDGCM + GOA framework, only requires
the HFB PES and the collective inertia tensor. Let us assume for the sake of the argument a
three-dimensional collective space with 200 × 50 × 50 = 500 000 points. Lifetimes, barrier
penetrabilities, charge and mass distributions of the fission fragments can be computed merely
from the knowledge of 1 scalar function of 3 variables (the energy) and a rank-2 tensor func-
tion of 3 variables (the inertia tensor). In our example, we would only need a grand total of
3.5 ×106 function values, which takes a very small amount of storage. By contrast, storing
all the information about the HFB solution across the same PES would take up in excess of
1.6 ×1013 function values (assuming a 40 × 20 × 20 box discretisation of 2000 HFB spinors).
Having a database of such PESs for nuclei, different energy functionals (Skyrme, Gogny, rela-
tivistic, different pairing functionals, etc) and different DFT solver technologies would be very
valuable to quantify theoretical uncertainties. Since the cost of generating a PES is high, it
would also offer maximum leverage to our small community.

9. Recommendations and challenges

The purpose of this section is to summarise the main recommendations of this report that reflect
challenges facing nuclear fission theory. The high-level recommendations, addressing the gen-
eral challenges facing the field of microscopic nuclear fission theory, are listed in section 9.1.
More detailed recommendations, pertaining to specific subareas, are listed in section 9.2. The
ordering does not imply any priority.

9.1. High-level recommendations

General recommendations relevant to the field as a whole follow below. The numbers in
brackets refer to key sections pertaining to individual recommendations.

Quantified input. Quantitative predictions require quantified input. It is essential to develop
interactions and EDFs that are specifically tailored for the purpose of modelling fission. Of
particular importance are the interaction components responsible for nuclear deformabil-
ity and the pairing interactions that control the level of adiabaticity. It would be desirable
to develop several quantified interactions/functionals for fission studies for (i) benchmark-
ing purposes and (ii) to assess statistical and systematic uncertainties. Moreover, statisti-
cal calibration of interactions for fission should be carried out that would determine the
sensitivity of parameters to key experimental constraints [sections 6 and 4].

Focus on essential ingredients. Considering limited resources, in order to maximise progress
it is important to identify the essential ingredients in fission theory that require careful
microscopic treatment and more robust ingredients that are necessary for a correct descrip-
tion of fission dynamics, but perhaps require less sophisticated modelling at the early stage
of development. An example of essential ingredient is the PES. A more robust quantity is
dissipation tensor; indeed many properties of predicted fission yields are found insensitive
to large variations of the dissipation strength [section 4].
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Modern theory extensions. There exist microscopic, yet greatly unutilised, extensions of
current models of non-adiabatic large-amplitude collective motion that can be adopted
to modern studies of nuclear fission. Many of those techniques involve algorithmic
developments and significant computational capabilities. This includes: (i) description
of fission trajectories in the full TDHFB manifold; (ii) inclusion of non-adiabatic cou-
plings between many-body configurations; and (iii) consistent treatment of quantum and
statistical fluctuations [sections 3–5, 8].

Comprehensive description. Fission is a complex phenomenon with a multitude of final chan-
nels and measured observables. In order not to be misled by a good agreement with
limited classes of data, it is advisable to develop a comprehensive approach to fission
observables. This is important because different elements of fission models are sensitive
to different data. For instance, good reproduction of fission yields does not guarantee qual-
ity predictions of TKEs. In this context, priority should be given to modelling of measured
quantities, not unobservables, which are primarily of theoretical interest [sections 7 and
2.2].

Access to quantum numbers. To be able to describe fission observables, a connection between
models of fission dynamics based on the intrinsic-system concept, and the symmetry-
conserved observables studied experimentally (particle number, angular momentum, par-
ity) needs to be established. There are two possible avenues to achieve this goal. One is
based on a reaction-theory approach that is explicitly formulated in the laboratory ref-
erence frame. Another way is by means of projection techniques. In both cases, many
foundational developments are needed [sections 3 and 7].

Entrance channels. To model various kinds of fission, it is important to develop a unified
description of initial states. At various instances of the fission phenomenon (from SF to fis-
sion induced by fast probes; from low-energy to high-energy fission), the entrance channel
should be properly described. This includes the realistic modelling of compound nucleus
for neutron-induced fission as well as specific nuclear states populated in photofission or
β-decay. In the latter case, implementation of flexible QRPA methods (for any shape, for
arbitrary multipole and charge-exchange channels, and indiscriminately for even–even,
odd, and odd–odd systems) is recommended [section 5].

Computing. Future exascale computing ecosystems will offer a unique opportunity for micro-
scopic modelling of nuclear fission. To achieve this goal, this report recommends the
development of specific computing capabilities and launching a library of general-purpose
fission software based on novel algorithms and programing that can efficiently utilise
modern computing infrastructures. To this end, collaborations with computer scientists,
applied mathematicians, and data scientists will be needed to (i) develop open-source,
modular nuclear solvers and (ii) leverage high-performance computing and statistical
machine learning [section 8.1].

Databases. Establish databases of microscopic fission output for further processing. This can
include various HFB and TDHFB results (PESs, fission pathways, fission fragment yields
and properties). Having computed multi-model fission data available will be essential
not only for post-processing but also for benchmarking and uncertainty quantification
[section 8.1.3].

9.2. Specific recommendations

A number of specific recommendations are proposed in the body of this report. The numbers
in brackets refer to specific sections where individual recommendations can be found.
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Microscopic tunnelling. In the studies of SF and low-energy fission, a part of collective motion
proceeds through the classically-forbidden space. The most commonly used approach is
that based on the CSE and a WKB approximation, in which the tunnelling rate is obtained
from the collective action calculated along an effective one-dimensional trajectory. Lim-
itations of this approach should be studied and, depending on the outcome, extensions
explored. Those include: generalisation of the one-dimensional WKB treatment to sev-
eral dimensions; increasing the number of collective coordinates; or other approaches to
tunnelling, such as the imaginary-time method [section 3.6].

Classical aspects of TDDFT. Since TDHF equations emerge as a classical field theory for
interacting single-particle fields, the TDDFT approach can neither describe the motion
of the system in classically-forbidden regions of the collective space nor quantum fluc-
tuations. In the context of tunnelling, one should determine the feasibility of arriving at
instanton solutions to the TDDFT fission problem and develop methods to calculate the
full ATDHFB collective inertia. As far as fluctuations are concerned, this problem shows
up in too-narrow fission yield distributions predicted by time-dependent theories. A possi-
ble resolution to this problem lies in the stochastic mean-field approach that allows larger
fluctuations in collective space [section 3].

Extend theory beyond even–even systems. Most microscopic calculations of nuclear fis-
sion pertain to even–even nuclei. It is therefore urgent to develop a consistent theoretical
framework for the fission of even–even, A–odd, and odd–odd nuclei. This will require
going beyond the usual blocking approximation to fully consider time-reversal symmetry-
breaking effects. Odd–even staggering of fission yields is an example of a quantity that
can be sensitive to such effects [sections 3 and 7].

Microscopic Langevin approach. Classical Langevin theory has been very successful in
explaining many properties of fission products. To bridge it with microscopic fission
frameworks, it is important to clarify the connections between microscopic TDHFB and
TDGCM with dissipative theories—to make contact with Langevin-based approaches
[sections 3.12 and 7].

Reaction-theory framework. An approach to fission based on reaction theory is useful,
because it is explicitly formulated in the laboratory reference frame, which guarantees that
the important quantum numbers are conserved. One should consider assessing the feasi-
bility of developing a practical microscopic approach to fission based on the K-matrix
reaction theory. It offers a completely different calculational framework for SF as well
[section 3.9].

Generalised fission path. On the way from the entrance configuration to scission, the fis-
sioning nucleus explores the continuum of trajectories in the collective space. Current
approaches explore limited sectors of this space and hence it is essential to develop meth-
ods to search for optimum fission pathways in such a way that a blind exploration of the
full multi-dimensional collective space is not required [section 4.1].

Generalised constraints. It would be very useful to go beyond simple constraining operators
for which important configurations may be overlooked. Within the large family of den-
sity constraints, the technique that constrains the entire density distribution obtained in
TDDFT is promising in that it provides a tight control of the shape. It naturally localises
the system in the space of nuclear configurations, as does wave function constraints such
as the K-partitioning. Also, constraints based on fission observables may be useful in the
study of fluctuations [section 3.2.2].
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Residual interactions. The ability to compute Hamiltonian matrix elements between configu-
rations is essential for microscopic calculations of reaction theory, level crossing dynam-
ics, and the dissipation tensor. This capability is already included for the pairing interaction
in CHFB. However, the neutron–proton interaction is ignored in current codes except for
its mean-field contribution [sections 3.9, 3.7 and 3.12.3].

10. Summary and conclusions

This topical review is unconventional: rather than presenting past achievements, it aims at
reviewing future options for theory of nuclear fission. As we discussed in the introduction,
numerous reviews and books that discuss experimental and theoretical aspects of nuclear fis-
sion exist (Schunck and Robledo 2016, Bertsch et al 2015, Andreyev et al 2017, Talou et al
2018, Schmidt and Jurado 2018, Krappe and Pomorski 2012, Younes et al 2019). The interested
reader is encouraged to consult these references for more extensive and detailed information.
The goal of the present work was to lay down our opinions on directions of future research
in theory of nuclear fission. While this task is challenging, we found it useful to talk about
research directions that seem to be promising and at the same time may be long overdue.

We will be most happy if our ideas are picked up by enthusiastic researchers working in this
domain of nuclear physics, and even more, if they attract new talent into this area. Undoubtedly,
many proposed directions will require concerted efforts of large collaborations, and we hope
that this topical review will contribute to fostering those.

Beyond phenomenological modelling, the theoretical description of nuclear fission requires
novel ideas on how to treat the incredible complexity of the phenomenon in a manageable and
physically meaningful way. To be implemented, many of those ideas require advanced com-
putations. In this document, we call for performing baseline work on developing quantified
interactions/functionals for fission studies; identifying the essential ingredients in fission the-
ory; utilizing extensions of current models of non-adiabatic large-amplitude collective motion;
developing a comprehensive approach to fission observables; making connection between
models based on the intrinsic-system concept and the symmetry-conserved observables; and
for realistic modelling of the compound nucleus as well as of the specific nuclear states that
form gateways to fission. Each and every one of these projects may in the future become a
challenging research direction. Together, they may lead to a major advance of the field.
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Assié M and Lacroix D 2009 Probing neutron correlations through nuclear breakup Phys. Rev. Lett. 102
202501

Ayik S 2008 A stochastic mean-field approach for nuclear dynamics Phys. Lett. B 658 174
Baldo M, Robledo L M, Schuck P and Viñas X 2013 New Kohn–Sham density functional based on

microscopic nuclear and neutron matter equations of state Phys. Rev. C 87 064305
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Lackner F, Březinová I, Sato T, Ishikawa K L and Burgdörfer J 2017 High-harmonic spectra from time-

dependent two-particle reduced-density-matrix theory Phys. Rev. A 95 033414
Lacombe L, Suraud E, Reinhard P-G and Dinh P M 2016 Stochastic TDHF in an exactly solvable model

Ann. Phys., NY 373 216
Lacroix D 2006 Stochastic mean-field dynamics for fermions in the weak-coupling limit Phys. Rev. C 73

044311
Lacroix D and Ayik S 2014 Stochastic quantum dynamics beyond mean field Eur. Phys. J. A 50 95
Lacroix D, Ayik S and Chomaz P 2004 Nuclear collective vibrations in extended mean-field theory Prog.

Part. Nucl. Phys. 52 497–563
Lacroix D, Chomaz P and Ayik S 1999 On the simulation of extended TDHF theory Nucl. Phys. A 651

369–78
Lacroix D, Duguet T and Bender M 2009 Configuration mixing within the energy density functional

formalism: removing spurious contributions from nondiagonal energy kernels Phys. Rev. C 79
044318

Lasseri R D, Regnier D, Ebran J P and Penon A 2020 Taming nuclear complexity with a committee of
multilayer neural networks Phys. Rev. Lett. 124 162502
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Müller R, Naqvi A A, Käppeler F and Dickmann F 1984 Fragment velocities, energies, and masses from
fast neutron induced fission ofU235 Phys. Rev. C 29 885

Mumpower M R, Kawano T, Sprouse T M, Vassh N, Holmbeck E M, Surman R and Möller P 2018
β-delayed fission in r-process nucleosynthesis Astrophys. J. 869 14

Mustonen M T and Engel J 2016 Global description of β-decay in even-even nuclei with the axially-
deformed Skyrme finite-amplitude method Phys. Rev. C 93 014304

Mustonen M T, Shafer T, Zenginerler Z and Engel J 2014 Finite-amplitude method for charge-changing
transitions in axially deformed nuclei Phys. Rev. C 90 024308

Nadtochy P N, Ryabov E G, Gegechkori A E, Anischenko Y A and Adeev G D 2012 Four-dimensional
Langevin dynamics of heavy-ion-induced fission Phys. Rev. C 85 064619

Nakatsukasa T and Walet N R 1998 Diabatic and adiabatic collective motion in a model pairing system
Phys. Rev. C 57 1192–203

52

https://doi.org/10.1016/s0375-9474(99)00328-0
https://doi.org/10.1016/s0375-9474(99)00328-0
https://doi.org/10.1016/s0375-9474(99)00328-0
https://doi.org/10.1016/s0375-9474(99)00328-0
https://doi.org/10.1103/PhysRevC.89.014323
https://doi.org/10.1103/PhysRevC.89.014323
https://doi.org/10.1103/PhysRevLett.119.042501
https://doi.org/10.1103/PhysRevLett.119.042501
https://doi.org/10.1016/0370-1573(75)90012-5
https://doi.org/10.1016/0370-1573(75)90012-5
https://doi.org/10.1016/0370-1573(75)90012-5
https://doi.org/10.1016/0370-1573(75)90012-5
https://doi.org/10.1140/epja/i2019-12838-7
https://doi.org/10.1140/epja/i2019-12838-7
https://doi.org/10.1016/j.cpc.2014.04.008
https://doi.org/10.1016/j.cpc.2014.04.008
https://doi.org/10.1143/PTP.64.1294
https://doi.org/10.1143/PTP.64.1294
https://doi.org/10.1143/PTP.64.1294
https://doi.org/10.1143/PTP.64.1294
https://doi.org/10.1007/BF01295771
https://doi.org/10.1007/BF01295771
https://doi.org/10.1007/BF01295771
https://doi.org/10.1007/BF01295771
https://doi.org/10.1103/PhysRevC.99.041304
https://doi.org/10.1103/PhysRevC.99.041304
https://doi.org/10.1143/PTP.103.959
https://doi.org/10.1143/PTP.103.959
https://doi.org/10.1143/PTP.103.959
https://doi.org/10.1143/PTP.103.959
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1016/0370-1573(80)90006-x
https://doi.org/10.1016/0370-1573(80)90006-x
https://doi.org/10.1016/0370-1573(80)90006-x
https://doi.org/10.1016/0370-1573(80)90006-x
https://doi.org/10.1103/PhysRevC.83.054608
https://doi.org/10.1103/PhysRevC.83.054608
https://doi.org/10.1103/PhysRevC.89.034623
https://doi.org/10.1103/PhysRevC.89.034623
https://doi.org/10.1088/0954-3899/43/10/105103
https://doi.org/10.1088/0954-3899/43/10/105103
https://doi.org/10.1103/PhysRevC.100.014607
https://doi.org/10.1103/PhysRevC.100.014607
https://doi.org/10.1103/PhysRevC.99.051601
https://doi.org/10.1103/PhysRevC.99.051601
https://doi.org/10.1140/epja/i2015-15173-1
https://doi.org/10.1140/epja/i2015-15173-1
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1103/PhysRevC.90.014601
https://doi.org/10.1103/PhysRevC.90.014601
https://doi.org/10.1140/epja/i2017-12188-6
https://doi.org/10.1140/epja/i2017-12188-6
https://doi.org/10.1103/PhysRevC.79.064304
https://doi.org/10.1103/PhysRevC.79.064304
https://doi.org/10.1016/0370-2693(74)90494-8
https://doi.org/10.1016/0370-2693(74)90494-8
https://doi.org/10.1103/PhysRevC.29.885
https://doi.org/10.1103/PhysRevC.29.885
https://doi.org/10.3847/1538-4357/aaeaca
https://doi.org/10.3847/1538-4357/aaeaca
https://doi.org/10.1103/PhysRevC.93.014304
https://doi.org/10.1103/PhysRevC.93.014304
https://doi.org/10.1103/PhysRevC.90.024308
https://doi.org/10.1103/PhysRevC.90.024308
https://doi.org/10.1103/PhysRevC.85.064619
https://doi.org/10.1103/PhysRevC.85.064619
https://doi.org/10.1103/PhysRevC.57.1192
https://doi.org/10.1103/PhysRevC.57.1192
https://doi.org/10.1103/PhysRevC.57.1192
https://doi.org/10.1103/PhysRevC.57.1192


J. Phys. G: Nucl. Part. Phys. 47 (2020) 113002 Topical Review
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