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Shape phase transitions in odd-A Zr isotopes
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Spectroscopic properties that characterize shape-phase transitions in neutron-rich odd-A Zr isotopes are
investigated using the framework of nuclear density-functional theory and particle-core coupling. The
interacting-boson Hamiltonian of the even-even core nuclei, and the single-particle energies and occupation
probabilities of the unpaired neutron, are completely determined by deformation constrained self-consistent
mean-field calculations based on the relativistic Hartree-Bogoliubov model with a choice of a universal energy
density functional and pairing interaction. The triaxial (β, γ ) deformation energy surfaces for even-even 94−102Zr
indicate the occurrence of a transition from triaxial or γ soft (94,96Zr) to prolate (98Zr) and triaxial (100,102Zr)
shapes. The corresponding low-energy excitation spectra of the odd-A Zr isotopes are in very good agreement
with recent experimental results. Consistent with the structural evolution of the neighboring even-even Zr nuclei,
the state-dependent effective deformations and their fluctuations in the odd-A isotopes indicate a pronounced
discontinuity around the transitional nucleus 99Zr.

DOI: 10.1103/PhysRevC.102.034315

I. INTRODUCTION

For many years the structure of neutron-rich nuclei with
mass number A ≈ 100 has been a challenging topic for exper-
iments that use radioactive-ion beams. This particular mass
region has also attracted considerable attention in theoretical
studies due to its rich microscopic structure. The effective
interaction between nucleons determines the corresponding
shell structure and gives rise to various shapes, quantum
(shape) phase transitions [1] and shape coexistence [2]. Since
neutron-rich nuclei in this mass region are also involved in
the rapid neutron-capture process, an accurate theoretical de-
scription of their low-lying structure and transition rates is
important for modeling the formation of chemical elements in
various astrophysical scenarios. In many cases the low-energy
structure is so rich that it provides an ideal testing ground for
theoretical models.

Recently a number of experimental and theoretical studies
of spectroscopic properties of even-even Zr isotopes have
been reported. Most experimental results have suggested the
occurrence of shape coexistence in 96Zr [3] and 98Zr [4,5], a
quantum phase transition around the neutron number N ≈ 60
[6,7] and γ -soft and triaxial shapes at 100,102Zr [8]. Theoretical
studies have generally confirmed these experimental findings
[3,9–12]. In contrast, much less theoretical research has been
devoted to shape-phase transitions in odd-A Zr nuclei, for
which in the last couple of years several measurements of
various spectroscopic properties have been reported, e.g., 97Zr
[13] and 99Zr [14,15].

A microscopic calculation of spectroscopic properties of
odd-mass nuclei is a challenging task, because in odd-A
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systems one has to take explicitly into account both single-
particle and collective degrees of freedom [16]. We have
developed a theoretical method [17] for computing spectro-
scopic properties of odd-A nuclei, based on the framework
of nuclear density-functional theory (DFT) [18–20] and the
particle-core coupling scheme [16]. In this approach the even-
even core is described with the interacting boson model
(IBM) [21], and the particle-core coupling is fashioned using
the interacting boson-fermion model (IBFM) [22]. In a first
step a set of constrained self-consistent mean-field (SCMF)
calculations is performed for each even-even mass nucleus
to provide the potential energy surface (PES). By mapping
the SCMF energy surface onto the expectation value of the
IBM Hamiltonian, the parameters of the interaction terms
of the even-even (boson) core Hamiltonian are completely
determined. The same SCMF calculations also provide the
spherical single-particle energies and occupation probabilities
for the odd nucleon, and these quantities are used as input
to construct the boson-fermion interactions. Even though a
few boson-fermion interaction strengths have to be adjusted
to the empirical low-energy spectra for each odd-A nucleus,
the method has allowed for a systematic, detailed, and com-
putationally efficient description of spectroscopic properties
of nuclei with odd nucleon number(s). So far, this method
has been applied to a variety of nuclear structure phenomena
in odd-mass and odd-odd nuclei, including quantum phase
transitions in axially symmetric [23] and γ soft [24] odd-A
nuclei, octupole correlations in neutron-rich Ba isotopes [25],
chiral band structure in the mass A ≈ 130 [26] region, and β

decay [27,28].
The scope of this work is a simultaneous description of

quantum phase transitions that are supposed to take place in
the even-even and odd-A Zr isotopes, using the aforemen-
tioned theoretical method. Here we consider the even-even
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isotopes 94−102Zr and the neighboring odd-neutron nuclei
95−103Zr. The underlying SCMF calculations are carried out
within the framework of the relativistic Hartree-Bogoliubov
method with the density-dependent point-coupling (DD-PC1)
[29] energy density functional and a separable pairing force
[30]. SCMF calculations based on the DD-PC1 functional
have been successfully applied to various static and dynamic
properties of finite nuclei, such as the phenomena of quantum
phase transitions [23,24,31], triaxial deformations [32,33], oc-
tupole correlations [25,31], shape coexistence [34], clustering
[35], and fission dynamics [36,37].

The article is organized as follows. In Sec. II the SCMF
energy surfaces for the even-even Zr isotopes are discussed.
Section III illustrates the procedure to construct the bosonic
and particle-core (IBFM) Hamiltonians for the even-even and
odd-A Zr isotopes based on the DFT SCMF calculations. In
Sec. IV we discuss spectroscopic properties of even-even and
odd-A Zr isotopes in comparison to available data, including
low-energy excitation spectra and electromagnetic transition
rates, as well as possible signatures of quantum phase tran-
sitions (Sec. V). Section VI contains a brief summary of the
principal results.

II. SELF-CONSISTENT MEAN-FIELD ENERGY SURFACES
FOR EVEN-EVEN ZR ISOTOPES

The first step of the analysis is a set of constrained
SCMF calculations of potential energy surfaces for the even-
even core nuclei, performed using the relativistic Hartree-
Bogoliubov method [19] with the density-dependent point
coupling (DD-PC1) [29] functional for the particle-hole chan-
nel, and a separable pairing force of finite range [30] in
the particle-particle channel. The constraints imposed in the
SCMF calculations are the mass quadrupole moments, which
are represented by the dimensionless quadrupole deformation
parameters β and γ [16].

In Fig. 1 we display the SCMF (β, γ ) energy surfaces
for 94−102Zr. Several remarkable features appear already at
the mean-field level. The nucleus 94Zr exhibits a pronounced
triaxial minimum at γ ≈ 40◦, even though it is located near
the neutron shell closure at N = 50. For 96Zr, the potential
becomes more γ soft, and essentially two shallow minima
appear, one on the prolate and the other on the oblate side.
A prolate local minimum between β = 0.4 and 0.5 is also
visible. The structure appears to change significantly at 98Zr:
While the surface is still rather flat in the γ direction for
the interval 0.2 � β � 0.3, a pronounced prolate minimum
develops at around β = 0.5 and becomes the equilibrium
configuration. This prolate minimum develops even further
for 100Zr but, compared to 98Zr, the surface again becomes
softer in γ . Finally, in 102Zr a triaxial global minimum is
found at γ ≈ 15◦. Those γ -soft and triaxial shapes obtained
for 100,102Zr are compatible with recent experimental results
[8].

It might be useful to note some predictions obtained
using different EDFs. In particular, results of Hartree-Fock-
Bogoliubov calculations based on the Gogny-D1S [38] EDF
are available [39]. The Gogny-HFB calculations predict an
almost spherical shape for 94Zr and a weakly deformed oblate

shape for 96Zr. They also determine a coexistence of oblate (at
β ≈ 0.2) and prolate (at β ≈ 0.5) minima in 96Zr consistent
with the result of the present work, but in the former case the
global minimum is on the oblate side. For the deformed nuclei
100,102Zr, the Gogny-HFB surfaces appear rather similar to the
present results. The Gogny-HFB calculation with the D1M
EDF [40] has also been reported in Ref. [10]. The D1M energy
surfaces are generally softer but not strikingly different from
the D1S ones. A noticeable difference between the two Gogny
EDFs is that with the D1M EDF an oblate global minimum is
obtained for 100Zr.

III. CONSTRUCTION
OF THE FERMION-BOSON HAMILTONIAN

To calculate spectroscopic properties of nuclei, the static
mean-field method has to be extended to include collective
correlations that arise from symmetry restoration and fluctu-
ations around mean-field minima [41]. In the present work
collective correlations are taken into account by mapping
the SCMF solutions onto the corresponding interacting-boson
systems [42]. The coupling of the odd nucleon to the even-
even core is described within the neutron-proton interacting
boson-fermion model (denoted hereafter as IBFM-2).

The complete IBFM-2 Hamiltonian consists of the
neutron-proton IBM (IBM-2) [43] Hamiltonian ĤB for the
even-even core nucleus, the single-neutron or proton Hamil-
tonian Ĥρ

F (ρ = ν/π ), and the Hamiltonian that represents the
coupling between the odd neutron/proton and the boson core
Ĥρ

BF:

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + Ĥ ν
BF + Hπ

BF. (1)

For the IBM-2 Hamiltonian we employ the following form,
which has been shown [10] to provide a good description of
spectroscopic data in this mass regions:

ĤB = ε
(
n̂dν

+ n̂dπ

) + κQ̂ · Q̂ + κ ′ ∑
ρ ′ �=ρ

T̂ρρρ ′ + κ ′′L̂ · L̂, (2)

where the first term n̂d = n̂dν
+ n̂dπ

, with n̂dρ
= d†

ρ · d̃ρ (ρ =
ν, π ), represents the d-boson number operator, and Q̂ = Q̂ν +
Q̂π is the quadrupole operator with Q̂ρ = s†

ρ d̃ρ + d†
ρ s̃ρ +

χρ[d†
ρ × d̃ρ](2). The third term is a specific three-body boson

interaction [32] with T̂ρρρ ′ = ∑
L[d†

ρ × d†
ρ × d†

ρ ′ ](L) · [d̃ρ ′ ×
d̃ρ × d̃ρ](L), where L denotes the total angular momentum
of the boson system. As in Refs. [10,32], we consider only
the L = 3 terms, since they play a dominant role in pro-
ducing minima at γ ≈ 30◦. The last term in Eq. (2) is the
rotational Hamiltonian with the angular momentum operator
L̂ = L̂ν + L̂π = √

10
∑

ρ=ν,π [d+
ρ × d̃ρ](1).

The single-nucleon Hamiltonian in Eq. (1) reads:

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1

(
a†

jρ
× ã jρ

)(0)
(3)

with ε jρ the single-particle energy of the spherical orbital
jρ . For the boson-fermion interaction Ĥρ

BF, we employ the
commonly used form [22]:

Ĥρ
BF = 
ρQ̂ρ ′ · q̂ρ + �ρV̂ρ ′ρ + Aρ n̂dρ

n̂ρ, (4)
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FIG. 1. SCMF (β, γ ) deformation energy surfaces (in MeV) for the even-even nuclei 94−102Zr, obtained from constrained relativistic
Hartree-Bogoliubov calculations using the DD-PC1 functional [29] and a separable pairing force [30]. The total SCMF energies are plotted to
5 MeV with respect to the global minimum. The energy difference between neighboring contours is 100 keV.

where ρ ′ �= ρ. The first, second, and third terms in the equa-
tion above are the quadrupole dynamical, exchange, and
monopole interactions, respectively. It is assumed that both
the dynamical and exchange terms are dominated by the inter-
action between unlike particles (i.e., between the odd neutron
and the proton bosons or between the odd proton and the
neutron bosons), and that, for the monopole term, the interac-
tion between like particles (i.e., between the odd neutron and
the neutron bosons or between the odd proton and the proton
bosons) plays a dominant role [22]. The fermionic quadrupole
operator q̂ρ reads:

q̂ρ =
∑
jρ j′ρ

γ jρ j′ρ

(
a†

jρ
× ã j′ρ

)(2)
, (5)

where γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ and Qjρ j′ρ = 〈l 1
2 jρ ||Y (2)

||l ′ 1
2 j′ρ〉. The exchange term V̂ρ ′ρ in Eq. (4) can be written as:

V̂ρ ′ρ = −(s†
ρ ′ d̃ρ ′ )(2)

⎧⎨
⎩

∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ

:
[(

d†
ρ × ã j′′ρ

)( jρ ) × (
a†

j′ρ
× s̃ρ

)( j′ρ )](2)
:

⎫⎬
⎭ + (H.c.),

(6)

with β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ .
In this work, the nearest doubly magic nucleus 100Sn is

taken as the boson vacuum. The neutron boson number Nν
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is then equal to the number of valence neutron pairs, that is,
Nν = 2, 3, 4, 5, and 6 for the even-even nuclei from 94Zr to
102Zr, respectively. The proton boson number Nπ = 5 is fixed
and equals the number of proton hole pairs. We note that in
several previous IBM calculations [11,12] the proton Z = 40
subshell was taken as the inert core for the proton bosons in
Zr isotopes. In those studies two independent IBM Hamilto-
nians, one for the regular configuration with the proton boson
number Nπ = 0 and the other for the intruder configuration
with Nπ = 2 associated with the proton two-particle-two-hole
excitation across the shell Z = 40, are considered and allowed
to mix in order to account for shape coexistence [44]. It is,
however, beyond the scope of the present work to include
intruder configurations and the corresponding configuration
mixing. The Z = 40 subshell could also be used here as the
proton inert core but, from a practical point of view, the IBM
model space with the proton boson number Nπ = 0 plus the
neutron boson number 2 � Nν � 6 would be far too small
for a quantitative description of collective physical observ-
ables. In addition, for Nπ = 0 the dynamical and exchange
odd neutron-boson interactions in Eq. (4) do not contribute to
odd-A Zr isotopes.

The structure of the odd-A Zr nuclei is described as a sys-
tem with a single (unpaired) neutron coupled to the even-even
boson-core with mass number A − 1. For the fermion valence
space, we consider the full neutron major shell N = 50–82,
i.e., the 3s1/2, 2d3/2, 2d5/2, and 1g7/2 spherical orbitals for
positive-parity states, and the unique-parity 1h11/2 orbital for
negative-parity states.

The first step in the construction of the particle-boson
Hamiltonian Eq. (1) is to specify the strength parameters for
the IBM-2 Hamiltonian ĤB. The parameters ε, κ, χν, χπ , and
κ ′ are completely determined by mapping the SCMF energy
surface in the vicinity of the global minimum onto the expec-
tation value of the IBM-2 Hamiltonian in the boson coherent
state [42], i.e., ESCMF(β, γ ) ≈ EIBM(β, γ ). Only the strength
parameter κ ′′ of the L̂ · L term has been determined separately,
in such a way [45] that the cranking moment of inertia in
the bosonic intrinsic state should reproduce the one computed
by the SCMF within the relevant range of |β| � 0.6. The
mapped IBM-2 energy surfaces, depicted in Fig. 2, reproduce
the corresponding SCMF surfaces. In addition, we list in Ta-
ble I the strength parameters for the boson-core Hamiltonian.
The positive sign of the parameter κ ′ for 94Zr leads to a
triaxial minimum, while the opposite sign obtained for all the
other nuclei produces the two minima on the energy surface
corresponding to prolate and oblate shapes. A previous IBM
calculation of Ref. [46] has also used the three-body term to
produce the two minima. However, the three-body term has a
rather minor effect on the excitation spectra except for the γ

band [32], and its contribution is shown to be even weaker
when the strength parameter κ ′ has a negative sign. It is,
therefore, expected that the contribution of this term to the
low-lying states in the odd-A systems, at least near the yrast
line, is also small. In addition, since the current IBFM code
is limited to two-body boson interactions, in the following
calculations for the odd-A Zr isotopes the three-body boson
terms are not included.

The Hamiltonians for the single neutron Ĥ ν
F and the boson-

fermion interaction Ĥν
BF are determined by using the method

developed in Ref. [17]. The spherical single-particle energies
ε j and occupation probabilities v2

j of the odd-neutron orbital
j are provided by the same constrained SCMF calculations.
In the following, since we consider for the fermionic degree
of freedom only an odd neutron, the terms Ĥπ

F and Ĥπ
BF in

Eq. (1), as well as the subscript ρ in jρ’s are omitted. The
strength parameters for the boson-fermion interaction ĤBF,
denoted by 
sdg, �sdg, and Asdg (
h, �h, and Ah) for positive
(negative) parity, are treated as the only free parameters and
are determined separately for each parity to reproduce the ex-
perimental low-lying excitation spectra. The criteria for fitting
these parameters are that the spin of the ground state (i.e.,
the lowest-energy state for each parity) should be reproduced,
as well as the excitation energies of few lowest yrast states
to a reasonable accuracy. Of course, the overall systematics
of the lowest bands, i.e., the energy level spacing within the
bands and the observed �I = 1 or 2 systematics, should also
be reproduced. Transition strengths are not taken into account
in the fitting procedure.

The adopted ε j and v2
j for each orbital, and the boson-

fermion interaction strengths are shown in Tables II and III,
respectively. As the strength parameters are adjusted for each
odd-A nucleus, they should reflect the corresponding differ-
ence in structure between neighboring isotopes. For instance,
there are significant differences in these parameters between
95Zr and 97Zr both for the sdg (positive-parity) and h11/2

(negative-parity) configurations. In addition, one may notice
in Table III that unusually large values of the exchange in-
teraction strengths are chosen for the 1h11/2 configuration in
97−103Zr. In many IBFM calculations the typical value of this
parameter is a few MeVs. In the present case the large values
arise because the occupation probabilities for the 1h11/2 or-
bital obtained from the SCMF calculation are very small, e.g.,
v2

h11/2
= 0.020 for 97Zr (see Table II), and, consequently, the

factor β2
j j ∝ u2

jv
2
j in Eq. (6) is also small. In order to account

for the small v2
j values, a large strength for the exchange term

� is required specifically for the 1h11/2 configuration. In fact,
the resulting constant � j j ≡ β2

j j

√
10/Nν (2 j + 1) takes a real-

istic value, e.g., for 97Zr, for which the largest �h is obtained,
it is approximately � j j = −2.2 MeV. We also note that such
large exchange strength parameters of the order � ≈ 50 MeV
were already considered in some previous studies, e.g., in
Ref. [47].

The resulting IBFM-2 Hamiltonian, with the parameters
thus determined, is diagonalized to produce excitation ener-
gies and transition rates for a given odd-A nucleus.

IV. SPECTROSCOPIC PROPERTIES

A. Excitation spectra of even-even Zr isotopes

The energy spectra of low-lying excited states in the even-
even Zr isotopes are depicted in Fig. 3. The transition between
different shapes with increasing neutron number is charac-
terized by the rapid decrease of the low-spin levels starting
from 96Zr to 100Zr. The fact that the lowest levels for 96Zr are
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FIG. 2. The bosonic energy surfaces based on the IBM-2 Hamiltonian in Eq. (2), with the parameters determined by the corresponding
constrained SCMF calculations.

found at rather high energy when compared to the neighboring
isotopes points to the N = 56 neutron subshell closure (due to
the filling of the 2d5/2 orbital), and the sudden decreases of

TABLE I. Strength parameters of the IBM-2 Hamiltonian ĤB

for the even-even nuclei 94−102Zr. All the parameters, except the
dimensionless χν and χπ , are in units of MeV.

ε κ χν χπ κ ′ κ ′′

94Zr 0.501 −0.075 −0.06 0.21 0.28 0.029
96Zr 0.345 −0.090 −0.35 0.24 −0.12 0.051
98Zr 0.284 −0.073 −0.54 0.11 −0.32 0.032

100Zr 0.036 −0.047 −0.45 0.20 −0.12 0.002
102Zr 0.081 −0.040 −0.52 0.49 −0.10 0.004

the energy levels from N = 56 toward N = 60 corresponds
to the enhancement of collectivity. As shown in Fig. 3, these
empirical features are qualitatively reproduced by the present
calculation.

One notices, however, that the excitation energies of the
second 0+ state in the nuclei 98,100Zr are predicted far too
high with respect to their experimental counterparts. The oc-
currence of very low-lying excited 0+ states is often attributed
to effects such as shape coexistence related to intruder config-
urations, and to pairing vibrations, both of which are outside
the model space of the present IBM framework. Several recent
IBM calculations [10–12] that include the effects of intruder
excitations across the proton Z = 40 subshell closure and
configuration mixing of normal and intruder configurations,
reproduced the 0+

2 excitation energies. A drawback of such
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TABLE II. Neutron single-particle energies ε j (in MeV) and oc-
cupation probabilities v2

j obtained from spherical SCMF calculations
for the odd-A nuclei 95,97,99,101,103Zr.

3s1/2 2d3/2 2d5/2 1g7/2 1h11/2

95Zr ε j −4.322 −3.838 −6.219 −5.199 −0.894

v2
j 0.078 0.068 0.484 0.204 0.014

97Zr ε j −4.557 −4.038 −6.418 −5.499 −1.149

v2
j 0.127 0.099 0.604 0.327 0.020

99Zr ε j −4.773 −4.241 −6.614 −5.801 −1.409

v2
j 0.188 0.135 0.699 0.462 0.026

101Zr ε j −4.970 −4.445 −6.806 −6.099 −1.671

v2
j 0.265 0.181 0.777 0.600 0.031

103Zr ε j −5.146 −4.643 −6.993 −6.388 −1.929

v2
j 0.367 0.245 0.843 0.730 0.036

extended calculations is that, since two independent Hamil-
tonians associated with different boson numbers need to be
introduced [44], the number of model parameters increases
significantly. In particular, the extension of this formalism to
odd-mass systems, i.e., to the case of an odd nucleon coupled
to the configuration-mixing IBM core, becomes exceptionally
complex. The current implementation of the IBFM does not
perform configuration mixing in the boson space and, there-
fore, here the calculation for the even-even Zr isotopes is
carried out without the inclusion of intruder excitations and
configuration mixing.

For 94,96Zr the present calculation predicts a level structure
characterized by the energy ratio E (4+

1 )/E (2+
1 ) > 2. This is at

variance with the experimental results, which exhibit a smaller
ratio E (4+

1 )/E (2+
1 ) < 2. The discrepancy could be accounted

for by the fact that the employed IBM consists of only collec-
tive nucleon pairs of monopole and quadrupole types (i.e., s
and d bosons). For the transitional nucleus 98Zr, the 2+

1 level
is particularly low, as in the case of 96Zr. In our calculation the
lowest-lying states for 98Zr are mostly based on configurations
located close to the prolate global minimum at β ≈ 0.5 on the
SCMF energy surface. The resulting IBM spectra are likely
to be more rotational-like than observed in experiment. We
obtain γ -soft spectra for 100,102Zr, and this result is consistent
with the underlying SCMF surfaces, which are indeed soft in
the γ degree of freedom.

TABLE III. The adopted values for the boson-fermion strength
parameters of the IBFM-2 Hamiltonian ĤBF, used for the sdg and
h11/2 configurations to describe the positive- and negative-parity low-
lying states, respectively, of the odd-A nuclei 95−103Zr. All entries in
the table are in the units of MeV.


sdg �sdg Asdg 
h �h Ah

95Zr 0.1 0.0 0.0 0.4 0.4 0.0
97Zr 0.3 3.6 0.0 0.5 47.0 4.0
99Zr 0.5 1.3 −4.0 0.5 30.0 −3.0
101Zr 0.5 0.66 −0.3 0.1 17.0 −0.0
103Zr 0.2 0.66 0.0 0.2 12.6 0.0

FIG. 3. Low-energy excitation spectra of the even-even isotopes
94−102Zr, calculated with the IBM-2 Hamiltonian of Eq. (2). The cor-
responding data, taken from the compilation of the ENSDF database
[48], are included for comparison.

B. Excitation spectra of odd-A Zr isotopes

The principal scope of this work are spectroscopic calcu-
lations of structural evolution in the odd-A Zr isotopes, and
in the following we discuss in much more detail the results
for odd-A systems. First, in Fig. 4 we display the systematics
of calculated excitation spectra for the low-lying positive-
and negative-parity yrast states of the odd-A Zr isotopes, in
comparison to available data [13,14,48,49]. The excitation
energies of negative-parity states are plotted with respect to
the energy of the lowest-lying negative parity state. One no-
tices that the calculated spectra reproduce very nicely the
experimental results for both parities, except perhaps for the
excitation energy of 3/2− in most of the odd-A Zr.

For both parities the level structure changes significantly
between 97Zr and 101Zr. The fact that the experimental spectra
are particularly expanded at N = 57, that is, the excitation
energies of most levels exhibit peaks at N = 57, is inter-
preted as an effect of the neutron 2d5/2 subshell filling in the
corresponding even-even core nucleus 96Zr. The calculated
positive-parity states are in better agreement with experiment
compared to the negative-parity states, in particular at N =
57. This is probably because for the negative parity only
the unique-parity 1h11/2 orbital is considered. For the lighter
odd-A Zr isotopes the energy spectra of 95,97Zr appear al-
most harmonic. In the transitional region at 99Zr many of
the yrast levels are lowered in energy, and a more compli-
cated low-lying structure with higher level density emerges.
For negative-parity states, in particular, many of the higher-
spin levels exhibit a sharp lowering in energy at the neutron
number N = 59. For the heavier isotopes 101,103Zr, we find
a more regular pattern of excitation spectra, characterized by
the �I = 1 level sequence with increasing angular momen-
tum. As one notices from Figs. 4(c) and 4(d), in most odd-A
nuclei the spin of the calculated lowest negative-parity state
is at variance with data. This could be due to the calcu-
lated occupation number v2

h11/2
and the resulting boson-core

interaction. However, we also note that the lowest-state spins
for the negative-parity states are, in many cases, not firmly
established experimentally [48].
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FIG. 4. Excitation spectra for the low-lying positive [(a) and (b)] and negative-parity [(c) and (d)] states of the odd-A nuclei 95−103Zr. The
experimental levels are from Refs. [13,14,48,49].

C. Detailed level schemes of selected odd-A Zr nuclei

It is interesting to consider in more detail the excitation
spectra of individual odd-A Zr isotopes in the transitional
region. Figures 5–7 display the lowest band structures of
both parities in 97,99,101Zr, which are most relevant for the
discussion of a shape transition. Included are also the corre-
sponding experimental spectra for comparison. To help with
the analysis of the structure of the lowest positive-parity
states, in Fig. 8 we plot the the probability amplitudes of the
3s1/2, 2d3/2, 2d5/2, and 1g7/2 single-particle configurations in
the wave functions of the yrast states 1/2+

1 , 3/2+
1 , 5/2+

1 , and
7/2+

1 .

1. 97Zr

There is no definite band structure established experimen-
tally in 97Zr. As it can be deduced from Fig. 8, it appears that
all four single-particle configurations (3s1/2, 2d3/2, 2d5/2, and
1g7/2) almost equally contribute to the composition of the
wave functions of the lowest-lying positive-parity states. Our
calculation predicts two �I = 2 positive-parity bands char-
acteristic for the weak-coupling limit, and a �I = 1 band
with a pronounced doublet structure built on the 1/2+

2 . At
variance with the data, the 3/2+

1 state is calculated too low

in energy, just a few keV above the 1/2+ ground state. For
the negative-parity states, the calculation predicts many more
levels than observed in experiment so far, and also the E2
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FIG. 5. Comparison between theory and experiment [13,48] for
the positive (left) and negative-parity (right) excitation spectrum of
97Zr.
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FIG. 6. Band structure of theoretical positive (upper panel) and
negative-parity (lower panel) excitation spectra of 99Zr in compari-
son to the available data [14,48].

strengths of these states are strongly fragmented. This makes
the assignment of low-lying negative-parity states into bands
almost impossible.

2. 99Zr

Unlike 97Zr, several band structures have recently been
experimentally identified in the nucleus 99Zr [14,15,48]. Both
the experimental and theoretical positive-parity energy spectra
in Fig. 6 exhibit strongly coupled �I = 1 and weakly coupled
�I = 2 bands coexisting at low energy. As seen in Fig. 8, the
structure of the low-lying low-spin positive-parity yrast states
is similar to that of 97Zr: All four single-particle configura-
tions equally contribute to the IBFM-2 wave functions. For
instance, in the 1/2+

1 ground state the 3s1/2, 2d3/2, 2d5/2, and
1g7/2 single-particle configurations contribute with probabil-
ities of 21%, 27%, 31%, and 21%, respectively. In contrast,
most of the states in the �I = 1 band based on the 3/2+

2
state, are predominantly (about 80%) composed of the 2d5/2

single-particle configuration. Another two �I = 2 weakly
coupled bands built on top of the 9/2+

2 and 11/2+
3 states are

predicted. The main component of these bands is, again, the
2d5/2 configuration, especially for higher-spin states in the
bands. In the lower-spin states close the 9/2+

2 and 11/2+
3 band
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FIG. 7. Same as in the caption to Fig. 6, but for the nucleus 101Zr.
The data are from Ref. [48,50].

heads, the four single-particle configurations are so strongly
mixed, that the band assignment for these states according to
the systematics of the E2 transitions is not very certain.

The experimental negative-parity spectra look much more
regular, with only two �I = 2 bands extending to high-spin.
The calculation reproduces the overall structure of the ex-
perimental negative-parity spectra but does not confirm the
assigned band heads of the two �I = 2.

3. 101Zr

The even-even core for this nucleus (100Zr) is located near
the end of the phase transition, and the (β, γ ) energy surface
exhibits a more extended prolate deformation at large β. In
contrast to 97,99Zr, the lowest-lying positive-parity states for
101Zr are predominantly composed of the 1g7/2 (≈20%) and
2d5/2 (≈80%) single-particle configurations (see Fig. 8). The
excitation spectra for both parities display a more regular band
structure compared to 97,99Zr, and the states in each band are
connected by strong E2 transitions. The calculated yrast band
built on the 3/2+

1 ground state follows the strong-coupling
�I = 1 systematics of the E2 transitions. The second excited
band in experiment, based on the tentatively assigned 9/2+

state at 940 keV, could be compared with the predicted strong-
coupling �I = 1 band built on the 9/2+

3 state at 619 keV.
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FIG. 8. Probability amplitudes of the 3s1/2, 2d3/2, 2d5/2, and
1g7/2 single-neutron configurations in the wave functions of the
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1 (d) in the odd-A isotopes 95−103Zr.

However, one should keep in mind that this band has been
assigned to the state 9/2[404] associated with the proton 1g9/2

intruder state [50], whereas this state is not included in the
configuration space of the present IBFM-2 calculation.

For the negative-parity two �I = 2 structures have been
empirically identified as yrast bands. Several �I = 2 bands
are also obtained in the calculation. The lowest two reproduce
the excitation energies of the experimental bands but differ
in spin by one unit. As mentioned above, this can partly
be due to the limited IBFM-2 space that includes only the
1h11/2 negative-parity orbital. Note, however, that the spin
assignment for the experimental states is tentative. Also the
theoretical band assignment in this case may not be unique,
since several states with the same spin are calculated within
a small energy interval and, because of mixing, their E2
transitions are weak and fragmented. The band structure for
the neighboring nucleus 103Zr is similar to the one obtained
for 101Zr but is not discussed here since there are no data
available.

D. Electromagnetic properties

There is also limited experimental information about the
electromagnetic transition rates for the odd-A Zr isotopes.
These properties are readily computed using the eigenstates
of the IBFM-2 Hamiltonian. The E2 operator T̂ (E2) in the
IBFM-2 takes the form [22]:

T̂ (E2) = eB
ν Q̂ν + eB

π Q̂π − 1√
5

eF
∑

j j′
γ j j′ (a

†
j × ã j′ )

(2), (7)

where the fixed values for the boson effective charges eB
ν =

eB
π = 0.10 eb are chosen so that the B(E2; 2+

1 → 0+
1 ) values

for the deformed even-even core nuclei, i.e., 100,102Zr, are re-
produced. The neutron effective charge eF = 0.5 eb is adopted
from our earlier calculation [26]. The M1 transition operator
T̂ (M1) reads

T̂ (M1) =
√

3

4π

⎧⎨
⎩gB

ν L̂B
ν + gB

π L̂F
π − 1√

3

∑
j j′

(u ju j′ + v jv j′ )

× 〈 j′‖gν
l l + gν

ss‖ j〉 (a†
j × ã j′ )

(1)

⎫⎬
⎭. (8)

The empirical g factors for the neutron and proton bosons,
gB

ν = 0 μN and gB
π = 1.0 μN , respectively, are adopted. For

the neutron g factors, the standard Schmidt values gν
l = 0 μN

and gν
s = −3.82 μN are used, with gs quenched by 30% with

respect to the free value.
In Table IV we list the calculated B(E2) and B(M1) tran-

sition rates, the electric quadrupole Q(I ) and magnetic dipole
μ(I ) moments for the odd-A nuclei 95,97,99,101Zr, for which
data are available. Only the quadrupole and magnetic mo-
ments for the ground state are known for 95Zr. The calculated
Q(5/2+

1 ) is rather small in magnitude. It is opposite in sign
to the experimental value, which is, however, also relatively
small in magnitude. The sign of the magnetic moment of 95Zr
has not been identified experimentally, but it is likely to be
negative from the present calculation. For the 97Zr, all the
calculated experimental transition strengths and moments are
in a good agreement with the data.

The B(E2; 7/2+
1 → 3/2+

1 ) transition rate in 99Zr is exper-
imentally suggested to be rather weak [15], similar to the
neighboring isotope 97Zr. The predicted E2 strength for this
transition is a bit larger, but is in the same order of magnitude
as the experimental one. The experimental B(E2; 7/2+

2 →
3/2+

2 ) transition rate of 46 ± 12 W.u. is considerably under-
estimated by the calculation. As seen in Fig. 6, both the 7/2+

2
and 3/2+

2 states are in the same band in our calculation. This
band is dominated by the �I = 1 E2 systematics, and the
�I = 2 E2 transitions within the band are much weaker. The
phenomenological IBFM calculation performed in Ref. [14]
has also underestimated the measured value of this transition
strength by a factor of five. In the present calculation the
B(E2) values for the negative-parity states in 99Zr are also by
a factor of five to six lower than the experimental ones [15].
Nevertheless, the majority of the B(M1) values, as well as
the magnetic moments for the low-lying positive-parity states,
both the sign and magnitude, are nicely reproduced.

One notices that the electromagnetic properties for 101Zr
are, overall, reasonably reproduced. The exceptions are per-
haps the B(E2; 7/2+

1 → 3/2+
1 ) rate, and few small magnetic

moments that are obtained with the wrong sign.

V. SIGNATURES OF QUANTUM
SHAPE-PHASE TRANSITION

As a signature of quantum phase transition, we consider
quadrupole shape invariants [52] computed using the IBM-2
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TABLE IV. Calculated and experimental B(E2) and B(M1) tran-
sition rates (in Weisskopf units), and quadrupole Q(I ) (in units of
eb) and magnetic μ(I ) (in units of μN ) moments for the odd-A nuclei
95,97,99,101Zr. The experimental values are from Refs. [14,15,48,51].

Theory Experiment

95Zr Q(5/2+
1 ) −0.021 +0.22(2)

μ(5/2+
1 ) −1.33 1.13(2)

97Zr B(E2; 5/2+
1 → 1/2+

1 ) 6.2 >0.30
B(E2; 7/2+

1 → 3/2+
1 ) 8.8 1.55(5)

B(E2; 11/2−
1 → 7/2−

1 ) 0.15 0.25(6)
μ(1/2+

1 ) −0.33 −0.937(5)
μ(7/2+

1 ) +2.54 +1.37(14)
99Zr B(E2; 7/2+

1 → 3/2+
1 ) 9.9 1.16(3)

B(E2; 7/2+
2 → 3/2+

2 ) 2.9 46(12)
B(E2; 7/2−

1 → 3/2−
1 ) 0.24 2.1 × 102(7)

B(E2; 11/2−
1 → 7/2−

1 ) 16 99(6)
B(E2; 15/2−

1 → 11/2−
1 ) 12 60(11)

B(E2; 19/2−
1 → 15/2−

1 ) 8.6 66(9)
B(M1; 3/2+

1 → 1/2+
1 ) 0.0057 0.0102(3)

B(M1; 5/2+
1 → 3/2+

1 ) 0.074 0.042(21)
B(M1; 5/2+

1 → 3/2+
2 ) 0.0040 0.0047(20)

B(M1; 7/2+
2 → 5/2+

1 ) 0.0098 0.032(10)
B(M1; 5/2−

1 → 3/2−
1 ) 0.0063 0.015(9)

μ(1/2+
1 ) −0.48 −0.930(4)

μ(3/2+
1 ) +0.75 +0.42(6)

μ(7/2+
1 ) +1.21 ±2.31(14)

101Zr B(E2; 5/2+
1 → 3/2+

1 ) 69 3.E + 24
3

B(E2; 7/2+
1 → 3/2+

1 ) 0.00061 >1.3 × 102

B(E2; 7/2−
1 → 5/2−

1 ) 102 4.E + 2(5)
B(M1; 5/2+

1 → 3/2+
1 ) 0.017 0.036(13)

B(M1; 7/2+
1 → 5/2+

1 ) 0.16 >0.091
B(M1; 7/2−

1 → 5/2−
1 ) 0.15 0.033

Q(3/2+
1 ) +0.70 +0.81(6)

μ(3/2+
1 ) −0.09 −0.272(1)

μ(5/2+
1 ) −0.51 +0.117(65)

μ(7/2+
1 ) −0.13 < + 0.59(50)

μ(5/2−
1 ) −1.33 −0.50(23)

μ(7/2−
1 ) −1.15 −0.14(11)

and IBFM-2 wave functions. The relevant quadrupole shape
invariants for a given IBM-2/IBFM-2 state |αI〉, where a label
α distinguishes states with the same spin I , are defined as [53]

q2 = 〈αI| (Q̂ · Q̂
) |αI〉 , (9)

q3 = −
√

35

2
〈αI|[Q̂Q̂Q̂](0)|αI〉 , (10)

q4 = 〈αI|(Q̂ · Q̂)(Q̂ · Q̂)|αI〉 , (11)

q6 = 35

2
〈αI|[Q̂Q̂Q̂](0)[Q̂Q̂Q̂](0)|αI〉 , (12)

where [Q̂Q̂Q̂](0) = [[Q̂ × Q̂](2) × Q̂](0), and Q̂ is the corre-
sponding E2 transition operator. The following dimensionless
parameters read: Kn = qn/qn/2

2 with n = 3, 4, and 6 and
provide the link to the usual deformation parameters that

FIG. 9. The effective quadrupole deformation parameters βeff

(a) and γeff (b), and the fluctuations σβ (c) and σγ (d), calculated
for the lowest three 0+ states of the even-even Zr nuclei.

characterize the shape of a nucleus:

K3 = 〈β3 cos 3γ 〉
〈β2〉3/2 ≡ cos 3γeff , (13)

K4 = 〈β4〉
〈β2〉2 , (14)

K6 = 〈β6 cos2 3γ 〉
〈β2〉3 . (15)

The effective quadrupole deformation parameters read

βeff =
√

〈β2〉 = 4π

3eZR2

√
q2, (16)

γeff = 1

3
arccos K3, (17)

and the corresponding fluctuations of β and cos 3γ can be
computed from

σβ = 〈β4〉 − 〈β2〉2

〈β2〉2 = K4 − 1, (18)

σγ = 〈β6 cos2 3γ 〉 − 〈β3 cos 3γ 〉2

〈β2〉3 = K6 − K2
3 . (19)

Note that R = 1.2A1/3 fm in Eq. (16).
In Figs. 9 and 10 we display βeff , γeff , σβ , and σγ for the

even-even and odd-A Zr nuclei, respectively. The signature
of a quantum phase transition can be identified as an abrupt
change of an order parameter for a particular value of the
control parameter. In the present case, in which we consider
geometric shape transitions along a chain of isotopes, the
neutron number plays the role of the control parameter, while
shape invariants or effective (state-dependent) deformations
can be considered as order parameters. The quantities defined
in Eqs. (16) to (19), that is, the effective deformations and
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FIG. 10. Same as in the caption to Fig. 9, but for several low-spin
yrast states with positive (left column) and negative (right column)
parity in the odd-A Zr isotopes.

corresponding fluctuations for the lowest-lying states, display
discontinuities close to the transitional nucleus 98Zr, at which
even-even systems undergo a phase transition. For the even-
even isotopes, in Fig. 9, the effective deformations βeff of
the lowest three 0+ states increase smoothly with the neutron
number and, as a consequence, the fluctuation σβ does not
change much in the vicinity of 98Zr. The particularly large
σβ at 94Zr indicates significant shape mixing. The effective
γ deformation, however, exhibits a more pronounced change
in the transition from 96Zr to 98Zr for all three 0+ states. We
note, in particular, the large fluctuations in γ for the second
0+ state.

As shown in Fig. 10 for the odd-A Zr nuclei, the ef-
fective deformations and corresponding fluctuations of the
lowest positive- and negative-parity states exhibit disconti-
nuities characteristic of a shape-phase transition at 99Zr. It
is interesting to note that the sudden changes appear to be
more pronounced than in the even-even neighbors. A simi-
lar effect has been found in the analysis of the microscopic
signatures of nuclear ground-state shape-phase transitions in
odd-mass Eu isotopes [54] and attributed to a shape polariza-
tion effect of the unpaired nucleon. In the present case the
strongest signature of a shape-phase transition is provided
by the effective deformations and their fluctuations for the

lowest positive-parity states. Pronounced discontinuities ap-
pear between 99Zr and 101Zr, and their microscopic origin can
be clearly identified in the composition of the IBFM-2 wave
functions shown in Fig. 8. We note that the enhancement of a
shape-phase transition in the presence of an unpaired nucleon
has also been explored using a more phenomenological IBFM
approach [55].

VI. SUMMARY

Spectroscopic properties relevant for the characterization
of shape-phase transitions in even-even and odd-A neutron-
rich Zr isotopes have been investigated using the microscopic
framework of nuclear DFT. Deformation constrained SCMF
calculations have been performed with the relativistic Hartree-
Bogoliubov method based on the universal energy density
functional DD-PC1 and a separable pairing interaction. The
triaxial (β, γ ) deformation energy surfaces obtained from the
SCMF calculations for the even-even 94−102Zr isotopes pre-
dict a very interesting nuclear structure evolution: Shallow
triaxial deformations in 94Zr, a γ -unstable potential in 96Zr,
coexistence of a shallow oblate and strongly deformed pro-
late minimum in 98Zr, and the occurrence of γ softness in
100,102Zr. These SCMF results corroborate the conclusions of
recent experimental studies.

The excitation spectra of the even-even Zr nuclei have been
computed by mapping the SCMF deformation energy surfaces
onto the expectation value of the IBM-2 Hamiltonian in the
boson condensate state. A phase-transitional behavior of the
low-lying excitation spectra, that occurs between 96Zr and
100Zr, is qualitatively reproduced. The excitation energies of
the low-lying second 0+ in 98,100Zr are, however, considerably
overestimated in the present calculation. These low-lying 0+
excitation energies have previously been explained by effects
such as shape coexistence related to intruder configurations or
pairing vibrations, both of which are outside the configuration
space of the present IBM framework.

Spectroscopic properties of the odd-A Zr nuclei are com-
puted by means of the particle-core coupling of the IBFM.
The SCMF calculations provide a microscopic input for the
construction of the basic parts of the IBFM Hamiltonian. The
calculated low-energy spectra of the odd-A Zr isotopes exhibit
interesting structural evolution close to the neutron number
N = 59, and are in very good agreement with the experimen-
tal results. In 95,97Zr, both the positive- and negative-parity
spectra correspond to a weak coupling of a vibrational even-
even core to the odd particle (neutron in this case). For
101,103Zr, bands typical of the odd nucleon strongly coupled
to a well-deformed even-even core appear as yrast structures.
The low-energy spectra for the transitional nucleus 99Zr can
be characterized by the coexistence of �I = 1 and �I = 2
positive-parity bands. The calculated quadrupole shape in-
variants provide a signature of a shape-phase transition. The
interesting result is that, for the odd-A Zr isotopes, the ef-
fective deformations β and γ , and their fluctuations exhibit
more pronounced discontinuities at the point of shape-phase
transition when compared to their even-even neighbors.

Taking into account that a microscopic SCMF calcula-
tion based on a universal EDF completely determines the
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K. NOMURA, T. NIKŠIĆ, AND D. VRETENAR PHYSICAL REVIEW C 102, 034315 (2020)

even-even core Hamiltonian and most of the IBFM Hamil-
tonian, and that only a few adjustable parameters specify
the fermion-boson terms, this approach holds promise for
exploring simultaneously even-even and odd-mass neutron-
rich nuclei in this challenging region of the nuclear chart. A
prospect for future studies is to improve the description of
the even-even Zr nuclei, especially the low-lying excited 0+
states. In this respect, a configuration-mixing IBM calculation
based on the Gogny HFB has already been reported for the
even-even Zr isotopes [10]. It will be interesting to develop
a formalism that incorporates these additional effects consis-
tently both for even-even and odd-A systems.
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[34] Z. P. Li, T. Nikšić, and D. Vretenar, J. Phys. G: Nucl. Part. Phys.

43, 024005 (2016).
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