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This paper presents the first measurements of the charge independent (CI) and charge dependent (CD) 
two-particle transverse momentum correlators GCI

2 and GCD
2 in Pb–Pb collisions at √sNN = 2.76 TeV by the 

ALICE collaboration. The two-particle transverse momentum correlator G2 was introduced as a measure 
of the momentum current transfer between neighboring system cells. The correlators are measured as 
a function of pair separation in pseudorapidity (�η) and azimuth (�ϕ) and as a function of collision 
centrality. From peripheral to central collisions, the correlator GCI

2 exhibits a longitudinal broadening 
while undergoing a monotonic azimuthal narrowing. By contrast, GCD

2 exhibits a narrowing along both 
dimensions. These features are not reproduced by models such as HIJING and AMPT. However, the 
observed narrowing of the correlators from peripheral to central collisions is expected to result from 
the stronger transverse flow profiles produced in more central collisions and the longitudinal broadening 
is predicted to be sensitive to momentum currents and the shear viscosity per unit of entropy density 
η/s of the matter produced in the collisions. The observed broadening is found to be consistent with the 
hypothesized lower bound of η/s and is in qualitative agreement with values obtained from anisotropic 
flow measurements.
© 2020 Conseil Européen pour la Recherche Nucléaire,. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Measurements of particle production and their correlations per-
formed at the Relativistic Heavy Ion Collider (RHIC) and the Large 
Hadron Collider (LHC) provide compelling evidence that the mat-
ter produced in heavy-ion collisions is characterized by extremely 
high temperatures and energy densities consistent with a decon-
fined, but strongly interacting Quark–Gluon Plasma (QGP) [1–4]. 
Collective flow, which manifests itself by the anisotropy of parti-
cle production in the plane transverse to the beam direction, is 
characterized by the harmonic coefficients of a Fourier expansion 
of the azimuthal distribution of particles relative to the reaction 
plane. Comparisons of these harmonic coefficients with hydrody-
namical model predictions indicate that the matter produced in 
those collisions has a shear viscosity per unit of entropy density, 
η/s, that nearly vanishes [2,5]. The shear viscosity quantifies the 
resistance that any medium presents to its anisotropic deforma-
tion. It contributes to the transfer of momentum from one fluid 
cell to its neighbors as well as the damping of momentum fluc-
tuations. The reach of η/s effects is expected to grow with the 
lifetime of the system. Recent measurements of flow coefficients 
and hydrodynamical predictions largely focus on the precise de-
termination of η/s [6–9]. However, quantitative descriptions of 

� E-mail address: alice -publications @cern .ch.

heavy-ion collisions with hydrodynamical models generally rely 
on specific parametrizations of the initial conditions of colliding 
systems, i.e., their initial energy and entropy density distribution 
in the transverse plane, the magnitude of initial fluctuations, the 
thermalization time, and several model parameters. It is found that 
the precision of model predictions is hindered, in particular, by un-
certainties in the initial state conditions. Indeed, values of shear 
viscosity that best match the observed flow coefficients are depen-
dent on the initial conditions, and unless the magnitude of the 
initial state fluctuations can be precisely assessed, the achievable 
precision on η/s might remain limited [10,11]. Systematic studies 
of correlations between different order harmonic coefficients [12], 
shown to be sensitive to the initial conditions and the temperature 
dependence of η/s, can help to provide further constraints to those 
conditions and to the transport properties of the system. Novel 
approaches based on Bayesian parameter estimation [13,14] bring 
progress on a simultaneous characterization of the initial condi-
tions and the QGP. Furthermore, it was pointed out [15] that the 
strength of momentum current correlations may be sensitive to 
η/s. It was shown, in particular, that the longitudinal broadening 
of a transverse momentum (pT) correlator, formally defined below 
and hereafter named G2, with increasing system lifetime is directly 
sensitive to η/s while it does not have any explicit dependence on 
the initial state fluctuations in the transverse plane of the system.

A first measurement of the broadening of the two-particle 
transverse momentum correlator G2 was reported by the STAR 
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collaboration [16]. Improved techniques to correct for instrumen-
tal effects have since then been reported [17–19]. In this letter, 
these techniques are used to measure differential charge inde-
pendent (CI) and charge dependent (CD) two-particle transverse 
momentum correlators, GCI

2 and GCD
2 , respectively, as a function 

of pair rapidity difference, �η, and azimuthal angle difference, 
�ϕ , for selected ranges of Pb–Pb collision centrality. The shapes 
of these correlators are studied with a two-component model and 
the longitudinal and azimuthal widths of their near-side peaks are 
studied as a function of the Pb–Pb collision centrality. The longi-
tudinal broadening of GCI

2 from peripheral to central collisions is 
used to assess the magnitude of η/s of the matter produced in 
Pb–Pb collisions while the longitudinal and azimuthal widths of 
GCD

2 are used to assess the role of competing effects, including ra-
dial flow, diffusion, and the broadening of jets by interactions with 
the medium. In that context, measurements of G2 are also com-
pared with previously reported measurements of the two-particle 
number correlator R2 and two-particle transverse momentum cor-
relator P2 [18].

2. The G2 correlator

The dimensionless variant of the G2 correlator [15,20] reported 
in this letter is defined according to

G2 (η1,ϕ1, η2,ϕ2)

= 1

〈pT,1〉〈pT,2〉
[∫

�
pT,1 pT,2 ρ2(�p1, �p2)d pT,1d pT,2∫

�
ρ1(�p1)d pT,1

∫
�

ρ1(�p2)d pT,2

− 〈pT,1〉(η1,ϕ1)〈pT,2〉(η2,ϕ2)

⎤
⎦ (1)

where � is the phase space region in which the measurement 
is performed; �p1 and �p2 are the three-momentum vectors of 
particles of a given pair; pT,1 and pT,2 their transverse mo-
mentum components, respectively; ρ1(�pi) = d3N/dpT,i dηi dϕi and 
ρ2(�p1, �p2) = d6N/dpT,1 dη1 dϕ1 dpT,2 dη2 dϕ2 represent single and 
pair particle densities, expressed as functions of �pi , i = 1, 2, and 
(�p1, �p2), respectively; 〈pT〉(ηi, ϕi) is the average transverse mo-
mentum of particles observed at (ηi, ϕi), with ηi, ϕi , i = 1, 2, 
referring to single-track pseudorapidity and azimuthal angle, re-
spectively; and 〈pT,i〉 =

∫
ρ1(�pi) pT,i d�pi is the inclusive average 

transverse momentum of produced particles, i = 1, 2, in the con-
sidered event ensemble. Experimentally, G2 is calculated as

G2 (η1,ϕ1, η2,ϕ2) = 1

〈pT,1〉〈pT,2〉
[

S pT(η1,ϕ1, η2,ϕ2)

〈n1,1(η1,ϕ1)〉〈n1,2(η2,ϕ2)〉
− 〈pT,1〉(η1,ϕ1)〈pT,2〉(η2,ϕ2)

]
(2)

with

S pT(η1,ϕ1, η2,ϕ2) =
〈n1,1∑

i

n1,2∑
j�=i

pT,i pT,j

〉
(3)

where n1,1 and n1,2 are the number of tracks on each event 
within bins centered at η1, ϕ1 and η2, ϕ2, and with transverse 
momentum pT,i , i ∈ [1, n1,1], and pT, j , j �= i ∈ [1, n1,2], respec-
tively. Angle brackets, 〈· · ·〉, refer to event ensemble averages, 
〈A〉 = ∑Nevents

1 A/Nevents. The correlators GLS
2 and GUS

2 are first mea-
sured for like-sign (LS) and unlike-sign (US) pairs separately, and 
combined to obtain CI and CD correlators according to GCI

2 =
1
2

(
GUS

2 + GLS
2

)
and GCD

2 = 1
2

(
GUS

2 − GLS
2

)
, respectively [18]. Mea-

surements of G2(η1, ϕ1, η2, ϕ2) are averaged across the longitu-
dinal and azimuthal acceptances in which the measurement is 

performed to obtain G2(�η, �ϕ), where �η = η1 − η2 and �ϕ =
ϕ1 − ϕ2, with a procedure similar to that used for R2 and P2 cor-
relators [18].

3. Measurement techniques

The results presented in this letter are based on 1.1 × 107 se-
lected minimum bias (MB) Pb–Pb collisions at 

√
sNN = 2.76 TeV 

collected during the 2010 LHC heavy-ion run by the ALICE ex-
periment. Detailed descriptions of the ALICE detectors and their 
respective performances are given in Refs. [21,22]. The MB trig-
ger was configured in order to have high efficiency for hadronic 
events, requiring at least two out of the following three conditions: 
i) two hits in the second inner layer of the Inner Tracking System 
(ITS), ii) a signal in the V0A detector, iii) a signal in the V0C detec-
tor. The amplitudes measured in the V0 detectors are additionally 
used to estimate the collision centrality reported in nine classes 
corresponding to 0–5% (most central), 5–10%, 10–20%, ..., 70–80% 
(most peripheral) of the total interaction cross section [23]. The 
vertex position of each collision is determined with tracks recon-
structed in the ITS and the Time Projection Chamber (TPC) and is 
required to be in the range |zvtx| ≤ 7 cm of the nominal interaction 
point (IP). Pile-up events, identified as events having multiple re-
constructed vertices in the ITS, are rejected. Additionally, the extra 
activity observed in slow response detectors (e.g., TPC) relative to 
that measured in fast detectors (e.g., V0) for out of bunch pile-up 
events is used to discard these events. The remaining event pile-
up contamination is estimated to be negligible. Longitudinally, the 
ITS covers |η| < 0.9, the TPC |η| < 0.9, V0A 2.8 < η < 5.1 and V0C 
−3.7 < η < −1.7. These four detectors feature full azimuthal cov-
erage.

The present measurement of the G2 correlators is based on 
charged particle tracks measured with the TPC detector in the 
transverse momentum range 0.2 ≤ pT ≤ 2.0 GeV/c and the pseu-
dorapidity range |η| < 0.8. In order to ensure good track quality 
and to minimize secondary track contamination, the analysis is 
restricted to charged particle tracks involving a minimum of 50 
reconstructed TPC space points out of a maximum of 159, and 
distances of closest approach (DCA) to the reconstructed primary 
vertex of less than 3.2 cm and 2.4 cm in the longitudinal and ra-
dial directions, respectively. An alternative criterion, used in the 
analysis of the systematic uncertainties, that relies on tracks re-
constructed with the combination of the TPC and the ITS detectors, 
henceforth called “global tracks”, involves a minimum of 70 recon-
structed TPC space points, hits either on any of two inner layers 
of the ITS, or in the third inner layer of the ITS, and a tighter DCA 
selection criterion in both, longitudinal and radial directions, the 
latter one pT-dependent. Electrons (positrons), whose one of the 
largest sources are photon conversions into e+e− pairs, are sup-
pressed discarding e+ and e− by removing tracks with a specific 
energy loss dE/dx in the TPC closer than 3σdE/dx to the expected 
median for electrons and at least 5σdE/dx away from the π , K and 
p expectation values.

The single and pair efficiencies of the selected charged parti-
cles are estimated from a Monte Carlo (MC) simulation using the 
HIJING event generator [24] with particle transport through the 
detector performed with GEANT3 [25] tuned to reproduce the de-
tector conditions during the 2010 run. Corrections for single track 
losses due to non-uniform acceptance (NUA) are carried out us-
ing a weighting technique [17] separately for data and for recon-
structed MC data. Weights are extracted separately for positive and 
negative tracks, for each collision centrality range, as a function of 
η, ϕ , pT and the longitudinal position of the primary vertex of 
each event, zvtx. The pT-dependent single track efficiency correc-
tion is extracted as the inverse of the ratio of the number of NUA 
corrected reconstructed HIJING tracks to generated tracks. Data are 
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Fig. 1. Two-particle transverse momentum correlations GCI
2 (top) and their longitudinal (middle) and azimuthal (bottom) projections for the most central (left), semi-central 

(center) and peripheral (right) Pb–Pb collisions at √sNN = 2.76 TeV. Vertical bars (mostly smaller than the marker size) and shaded blue bands represent statistical and 
systematic uncertainties, respectively. The systematic uncertainty on the long-range mean correlator strength is quoted as δB in both projections. Under-corrected correlator 
values at �η, �ϕ = 0 are not shown. See text for details.

subsequently corrected with NUA and single track efficiency cor-
rections. Pair losses due to track merging or crossing are corrected 
in part based on the technique described in [18] and in part based 
on the ratio of the average number of reconstructed HIJING pairs 
relative to the generated number of pairs. Corrections for pT de-
pendent pair losses are not included in the reported results given 
they have a large (> 20%) systematic uncertainty. Correlator values 
at |�η| < 0.05, |�ϕ| < 0.04 rad., left under-corrected by this last 
fact, are not reported in this work. However, this does not impact 
the shape and width of the G2 correlator, which are of interest for 
the determination of the viscous broadening. No filters are used to 
suppress like-sign (LS) particle correlations resulting from Hanbury 
Brown and Twiss (HBT) effects. For pions, which dominate the par-
ticle production, HBT produces a peak centered at �η, �ϕ = 0 in 
GLS

2 . The width of this peak decreases in inverse proportion to the 
size of the collision system. Given the number of HBT pairs is rel-
atively small compared to the total number of pairs accounted for 
in GLS

2 , the implied reduction of the longitudinal broadening is rel-
atively modest and thus not considered in this analysis.

4. Statistical and systematic uncertainties

Statistical uncertainties on the strength of G2 are extracted 
using the sub-sample method with ten sub-samples. Systematic 
uncertainties are determined by repeating the analysis under dif-
ferent event and track selection conditions. Deviations from the 
nominal results are considered significant and assessed as sys-
tematic uncertainties based on a statistical test [26]. The impact 
of potential TPC effects sensitive to the magnetic field polarity is 

assessed by splitting the whole data sample into positive and nega-
tive magnetic field configurations, whereas uncertainties associated 
with the collision centrality estimation are studied by comparing 
nominal results, based on the V0 detector, with those obtained 
with an alternative centrality measure based on hit multiplicity 
on the two inner layers of the ITS. Effects of the kinematic ac-
ceptance in which the measurement is performed are investigated 
by repeating the analysis with events in the range |zvtx| < 3 cm of 
the nominal IP. The presence of biases caused by secondary parti-
cles is checked using the “global tracks” selection criterion. Biases 
associated with pair losses are studied based on pair efficiency 
corrections obtained with HIJING/GEANT3 simulations. The largest 
systematic uncertainty amounts to a global shift in G2(�η, �ϕ)

correlator strength which is independent of �η and �ϕ and is 
reported as δB . This shift affects the magnitude of the projec-
tions onto �η and �ϕ but not the shapes of the near-side peak, 
|�ϕ| < π/2, of G2 along these coordinates. Systematic uncertain-
ties in the shape of the near-side peak of GCI

2 and GCD
2 are mainly 

due to the presence of secondary particles. Overall, systematic 
uncertainties on the shapes of the projections of GCI

2 and GCD
2

along the longitudinal (azimuthal) dimension amount to 4%(5%) 
and 5%(10%), respectively, with decreasing values towards periph-
eral events.

5. Results

Fig. 1 presents the correlators GCI
2 (�η, �ϕ) measured in 0–5%, 

30–40%, 70–80% Pb–Pb collisions, and their respective projections 
along the �η and �ϕ axes. The GCI

2 correlators feature sizable 
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�ϕ modulations, dominated in mid-central collisions by a strong 
elliptic flow (cos(2�ϕ)) component. On the near-side, atop the az-
imuthal modulation, the GCI

2 correlators feature a near-side peak 
whose amplitude monotonically decreases from peripheral to cen-
tral collisions while its longitudinal width systematically broadens. 
Qualitatively similar trends were observed for the R2 and P2 corre-
lators reported by ALICE [18] and the GCI

2 correlator (there named 
C ) reported by STAR [16]. In most central collisions, the amplitude 
of the �ϕ modulations associated with collective flow decreases 
but the longitudinal broadening remains. Additionally, a depletion 
centered at (�η, �ϕ) = (0, 0) consistent with previous ALICE re-
sults [27,28] can be seen.

In order to study the centrality evolution of the near-side peak 
of the GCI

2 and GCD
2 correlators independently of the underly-

ing collective azimuthal behavior, they are separately parametrized 
with a two-component model defined as

F (�η,�ϕ) = B +
6∑

n=2

an × cos (n�ϕ)

+ A × γ�η

2ω�η 
(

1
γ�η

) e
−

∣∣∣∣ �η
ω�η

∣∣∣∣γ�η

× γ�ϕ

2ω�ϕ 
(

1
γ�ϕ

) e
−

∣∣∣∣ �ϕ
ω�ϕ

∣∣∣∣γ�ϕ

, (4)

where B and an are intended to describe the long-range mean 
correlation strength and azimuthal anisotropy, while the bidimen-
sional generalized Gaussian, defined by the parameters A, ω�η , 
ω�ϕ , γ�η and γ�ϕ , is intended to model the signal of interest. The 
(�η, �ϕ) = (0, 0) depletion present in the GCI

2 correlator is not 
properly modeled by Eq. (4) and the depletion area, |�η| < 0.31
and |�ϕ| < 0.26 rad., is excluded from the fit. Bidimensional fits 
are carried out considering only statistical uncertainties. In the 
case of the GCI

2 correlator the χ2/ndf values for semi-central to 
peripheral collisions are found in the range 1–2; for central col-
lisions they increase to 4. The area which contributes the most 
to the increase of the χ2/ndf is the region between the general-
ized Gaussian and the Fourier expansion. Excluding this area the 
χ2/ndf values obtained in central collisions are within the range 
1–2.3. Fits of GCD

2 give χ2/ndf of the order of unity for periph-
eral to semi-central collisions and in the range 2–3.5 for central 
collisions. Larger χ2/ndf values observed in central collisions rise 
because the near side peak starts to depart from the generalized 
Gaussian description. The actual focus is on the evolution of the 
widths. The longitudinal and azimuthal widths of the correlators, 
denoted σ�η and σ�ϕ , respectively, are then extracted as the stan-
dard deviation of the generalized Gaussian

σ�η(�ϕ) =
√√√√ω2

�η(�ϕ)(3/γ�η(�ϕ))

(1/γ�η(�ϕ))
, (5)

and plotted as a function of collision centrality in the top panels of 
Fig. 2 for both GCI

2 and GCD
2 correlators. The global shift of the cor-

relator strength, quoted as a systematic uncertainty in the projec-
tions of the correlators, does not affect the shape of the near-side 
peak of G2. Accordingly, the widths are not affected either. Corre-
lations between the contributors to the longitudinal width and the 
harmonic parameters for the GCI

2 correlator are found as follows: 
a2 and a4 are anti-correlated with ω�η with values in the ranges 
−0.8 to −0.4 and −0.5–0, respectively, while a3 is correlated with 
values 0–0.4. On the other hand, a2 and a4 are correlated with 

Fig. 2. Top panels: collision centrality evolution of the longitudinal (left) and az-
imuthal (right) widths of the G2 CD and CI correlators measured in Pb–Pb col-
lisions at √sNN = 2.76 TeV. Central and bottom panels: width evolution relative 
to the value in the most peripheral collisions of the two-particle transverse mo-
mentum correlations GCI

2 (central) and GCD
2 (bottom) along the longitudinal (left) 

and azimuthal (right) dimensions. Data are compared with HIJING and AMPT model 
expectations. In data, vertical bars and shaded bands represent statistical and sys-
tematic uncertainties, respectively. For models, shaded bands represent statistical 
uncertainties.

γ�η with values within 0.4–0.8 and 0–0.5, respectively, while a3
is anti-correlated with values in the range −0.5–0. a2 correla-
tions show no centrality dependence while the absolute value of 
a3 and a4 correlations decreases from central to peripheral colli-
sions. In the case of the contributors to the azimuthal width, a2
and a4 are correlated with ω�ϕ and with γ�ϕ with values in the 
ranges 0.5–0.8 and 0.6–0.9, and 0.6–0.9 and 0.7–0.9, respectively, 
while a3 is anti-correlated with both with values within −0.8 to 
−0.5 and −0.9 to −0.7. On the azimuthal dimension the absolute 
value of the harmonic coefficients correlations decreases towards 
peripheral collisions. Systematic uncertainties in the widths of the 
near-side peak of GCI

2 and GCD
2 are mainly due to the presence of 

secondary particles. With the alternative track selection criterion, 
systematic uncertainties on the longitudinal and azimuthal widths 
of the near-side peak are estimated to be 2% and 3%, respectively, 
for both GCI

2 and GCD
2 , for most central events, with decreasing 

values towards peripheral collisions. Uncertainty contributions on 
the widths are not correlated with centrality and averages along 
centrality classes are considered. Overall, maximum systematic un-
certainties of 4%(2%) and 3.5%(3%) are assigned to the GCI

2 and GCD
2

widths, respectively, along the longitudinal (azimuthal) dimension. 
The impact of the size of the area excluded from the fit on the 
width of the GCI

2 correlator is evaluated enlarging the area in both 
dimensions. Only semi-central to central centrality classes have 
their corresponding longitudinal widths modified. The effect is a 
broadening from 1.5% in the 30–40% class up to a broadening of 
20% in the 0–5% class incorporated as an additional asymmetric 
systematic uncertainty on the widths of GCI

2 . On the azimuthal 
widths the impact is reduced to a 2% narrowing.

6. Discussion

Broadening and narrowing are hereafter intended as the behav-
ior of the correlation function, measured by its widths, when going 
from peripheral collisions, high values of centrality percentile, to 
central collisions, lower values of centrality percentile. The GCI

2 cor-
relator broadens longitudinally but narrows in azimuth, whereas 
the GCD

2 correlator narrows both longitudinally and azimuthally. 
As shown in Fig. 3, these dependencies are qualitatively consis-
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Fig. 3. Left panel: collision centrality evolution of the longitudinal width of number correlator RCD
2 and transverse momentum correlators P CD

2 and GCD
2 . Central panel: idem 

for the azimuthal width of RCD
2 , P CD

2 and GCD
2 . Right panel: collision centrality evolution of the longitudinal width of RCI

2 , P CI
2 , and GCI

2 . Data for R2 and P2 are from [18]. 
Vertical bars and shaded bands represent statistical and systematic uncertainties, respectively.

tent with those of R2 and P2 correlators measured in the same 
kinematic range by the ALICE collaboration [18]. Note that the G2

correlator is sensitive to transverse momentum and number den-
sity fluctuations since both affect the momentum current density. 
In contrast, R2 is sensitive to number density fluctuations and P2, 
sensitive to transverse momentum fluctuations, is designed to min-
imize the contribution of those number density fluctuations [29]. 
In fact [29]

(P2 + 1) (R2 + 1) = (G2 + 1) (6)

so, the increase in transverse momentum currents could be due to 
either the increase in multiplicity or the increase of transverse mo-
mentum. The GCD

2 and P CD
2 correlators feature approximately equal 

widths while RCD
2 is approximately 30% wider throughout its cen-

trality evolution. The centrality dependence of GCD
2 is qualitatively 

consistent with that of balance function (BF) observations [30,31]. 
Phenomenological analyses of the BFs suggest that their narrow-
ing with centrality is largely due to the presence of strong radial 
flow and delayed hadronization in Pb–Pb collisions [30]. It is thus 
reasonable to infer that radial flow and larger 〈pT〉, in more cen-
tral collisions, also produce the observed narrowing of GCD

2 . This 
conjecture is supported by calculations of the collision centrality 
dependence of GCD

2 azimuthal widths with the HIJING and AMPT 
models shown in the bottom right panel of Fig. 2. Radial flow 
might also explain the observed azimuthal narrowing of the GCI

2
correlator with centrality, which is reasonably well reproduced by 
calculations with AMPT with string melting, but not by HIJING 
or AMPT calculations with only hadronic rescattering as shown in 
central right panel of Fig. 2.

The broadening of the longitudinal width of the GCI
2 correla-

tor is of particular interest given predictions that it should grow 
in proportion to η/s of the matter produced in the collisions [15]. 
As expected for a system with finite viscosity, it is found that GCI

2
broadens significantly with increasing collision centrality, while by 
contrast, GCD

2 exhibits a slight but distinct narrowing. This GCD
2

longitudinal narrowing is expected from a boost of particle pairs 
by radial flow but is not properly accounted for by AMPT cal-
culations shown in the bottom left panel of Fig. 2. Radial flow 
should also produce a narrowing of the GCI

2 correlator in the lon-
gitudinal direction. However competing effects, possibly associated 
with the finite shear viscosity of the system, are instead producing 
a significant broadening although reaching what seems a satura-
tion level at semi-central collisions. Note that HIJING and AMPT, 
with the hadronic rescattering enabled, grossly fail to reproduce 
the observed broadening and instead predict a slight narrowing 
(Fig. 2 central left panel). AMPT with string melting and without 
the hadronic rescattering phase qualitatively reproduces the longi-
tudinal broadening of GCI

2 , even its saturation, but grossly miss the 
narrowing of GCD

2 along that dimension and thus cannot be con-
sidered reliable in this context.

Fig. 4. Two-particle transverse momentum correlation GCI
2 longitudinal width evo-

lution with the number of participants in Au–Au collisions at √sNN = 200 GeV [16]
and in Pb–Pb collisions at √

sNN = 2.76 TeV, measured in this work, using the 
bi-dimensional fit described in the text (2D) and the method used by the STAR 
experiment [16] (1D). For completeness, STAR RMS low limit [16] is also shown.

Particles produced by jet fragmentation are also known to ex-
hibit correlations and jet-medium interactions can broaden such 
correlations. Two-particle correlation measurements, of particles 
associated with high-pT jets, indeed show substantial broaden-
ing of low pT particle correlations relative to correlation functions 
measured in pp collisions [27,28,32]. This broadening, however, is 
observed in both the longitudinal and azimuthal directions in stark 
contrast with the behavior of the inclusive GCI

2 correlator mea-
sured in this work which exhibits a significant narrowing in the 
azimuthal direction. Additionally, the number of particles from jets 
is relatively small compared to the number from the bulk. There-
fore, although jet fragmentation may contribute to the broadening 
observed in the longitudinal direction, it is unlikely to amount to 
a significant contribution given the observed narrowing in the �ϕ
direction and the relatively low impact of correlations from jet par-
ticles.

Fig. 4 compares results from this analysis with those reported 
by the STAR collaboration [16]. For proper comparison, Fig. 4
presents root mean square (RMS) widths of �η projections of GCI

2
calculated above a long range baseline as in the STAR analysis [16]. 
Although STAR reported results are based on the dimensional ver-
sion of GCI

2 , the same expression as in Eq. (1) but without the nor-
malization 〈pT,1〉〈pT,2〉, the correlator widths reported in this letter 
are identical for both, the dimensional and dimensionless versions 
of the G2 correlator. The longitudinal broadening measured in this 
analysis, using the 1D RMS method, amounts to 36% while that 
observed by STAR reaches 74% showing also a saturation at semi-
central collisions. It was verified that the smaller broadening seen 
in this analysis is not a result of the slightly narrower longitudinal 
acceptance of the ALICE experiment by testing the analysis method 
with Monte Carlo models reproducing the approximate shape and 
strength of the measured correlation functions. The longitudinal 
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Fig. 5. Expected longitudinal widths for the most central collisions of the two-
particle transverse momentum correlation GCI

2 for different values of η/s by using 
the expression suggested in [15]. Data point error bars represent total uncertainties 
obtained by adding in quadrature statistical and systematic uncertainties. In the for-
mula σc is the longitudinal width for the most central collisions inferred by using 
this expression and represented for each of the η/s values by the color discontin-
uous bands (continuous for η/s = 1/4π ) at the highest number of participants, σ0

is the longitudinal width for the most peripheral collisions (only two participants) 
which is obtained by extrapolating the fit, Tc is the critical temperature, τ0 is the 
formation time and τc,f the freeze-out time. Error caps in the same color as the 
discontinuous bands, represent uncertainties of the inferred longitudinal widths for 
the most central collisions (see text for details).

broadening of GCI
2 and its observed saturation thus appears to be 

potentially dependent on the beam energy.
Interpreting the longitudinal broadening of GCI

2 as originating 
exclusively from viscous effects, an estimate of the shear viscosity 
per unit of entropy density, η/s, of the matter produced in heavy-
ion collisions can be extracted [16] using the expression

σ 2
c − σ 2

0 = 4

Tc

η

s

(
1

τ0
− 1

τc,f

)
(7)

derived in [15]. In Eq. (7) σc is the longitudinal width for the 
most central collisions (ideally 0% centrality), σ0 is the longitudinal 
width for the most peripheral collisions (ideally 100% centrality), 
Tc is the critical temperature, τ0 is the formation time and τc,f the 
freeze-out time. The correlator width for the most peripheral Pb–
Pb collisions at 

√
sNN = 2.76 TeV is estimated based on a power 

law extrapolation of the measured values, shown in Fig. 5, down 
to Npart = 2. Canonical values are used for the critical tempera-
ture, Tc = 160 MeV [33], the formation time τ0 = 1 fm/c [33], and 
the freeze-out time, τc,f = 10.5 fm/c [34]. With these inputs in 
Eq. (7), GCI

2 longitudinal widths for the most central collisions are 
calculated for several values of η/s = 0.06, 1/4π , 0.14 and 0.22
and also shown in Fig. 5 as color discontinuous (continuous for 
η/s = 1/4π ) bands at the highest number of participants. Consid-
ering 2%, 30%, and 3% uncertainties for Tc (155 < Tc < 165 TeV), 
τ0, and τc,f (10 < τc,f < 11 fm) respectively, the uncertainties of 
the four obtained GCI

2 longitudinal widths for the most central col-
lisions reach 9%, 10%, 12%, and 14%, respectively, also shown in 
Fig. 5 as error caps in the same color as the discontinuous bands. 
The GCI

2 correlator width measured in central collisions thus favors 
rather small values of η/s, close to the KSS limit of 1/4π [35]. 
The authors of Ref. [15] obtain the correlator width values, for 
Au–Au collisions at 

√
sNN = 200 GeV, without an actual measure-

ment of GCI
2 from the only available two-particle transverse mo-

mentum correlator which in its turn was inferred from event-wise 
mean transverse momentum fluctuations [36] and on its energy 
dependence [37]. They constrain η/s to a relatively wide interval 
0.08–0.30. The precision of the STAR measurement is limited by 
the relative uncertainty of the GCI

2 correlator widths for Au–Au col-
lisions at 

√
sNN = 200 GeV; η/s = 0.06–0.21 was reported in [16].

7. Conclusions

Measurements of charge dependent (CD) and charge indepen-
dent (CI) transverse momentum correlators G2 in Pb–Pb collisions 
at 

√
sNN = 2.76 TeV were presented aiming at the determination of 

the shear viscosity per unit of entropy density, η/s, of the matter 
formed in such collisions. The near-side peak of the GCD

2 corre-
lator is observed to significantly narrow with collision centrality 
both in the longitudinal and azimuthal directions. This behavior is 
found to be similar to that of the charge balance function as a re-
sult, most likely, of an increase of the average radial flow velocity 
from peripheral to central collisions. By contrast, the GCI

2 correlator 
is found to narrow only in the azimuthal direction with collision 
centrality and features a sizable broadening in the longitudinal di-
rection. The observed broadening along the longitudinal direction 
is expected based on friction forces associated with the finite shear 
viscosity of the system. Taking the model proposed in [15], an es-
timate of the value of η/s of order 1/4π , in qualitative agreement 
with values obtained from other methods [14,38], is obtained. 
String melting AMPT without the hadronic rescattering phase has 
been found to qualitatively reproduce the longitudinal broadening 
of GCI

2 but grossly misses the narrowing of GCD
2 along that dimen-

sion. The observed saturation in the longitudinal broadening and 
the sizable difference in broadening relative to that observed by 
STAR may result from the interplay of viscous forces and kinematic 
narrowing associated to radial flow. In the latter case, the differ-
ence compared to the STAR results due to a possible dependence 
on the beam energy could be better established with expanded 
experimental measurements for energies in the beam energy scan 
(BES) at RHIC or at 5.02 TeV at the LHC.
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V. Petráček 36, M. Petrovici 47, R.P. Pezzi 70, S. Piano 59, M. Pikna 13, P. Pillot 114, O. Pinazza 33,53, 
L. Pinsky 125, C. Pinto 27, S. Pisano 10,51, D. Pistone 55, M. Płoskoń 79, M. Planinic 98, F. Pliquett 68, 
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