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We report on the measurement of the size of the particle-emitting source from two-baryon correlations 
with ALICE in high-multiplicity pp collisions at 

√
s = 13 TeV. The source radius is studied with low 

relative momentum p–p, p–p, p–�, and p–� pairs as a function of the pair transverse mass mT
considering for the first time in a quantitative way the effect of strong resonance decays. After correcting 
for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, 
antiprotons, �s, and �s originate from the same source. Within the measured mT range (1.1–2.2) GeV/c2

the invariant radius of this common source varies between 1.3 and 0.85 fm. These results provide 
a precise reference for studies of the strong hadron–hadron interactions and for the investigation of 
collective properties in small colliding systems.

© 2020 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Correlation techniques have been used in particle physics since 
the 1960s [1]. Significant theoretical progress has been made to 
relate two-particle correlations at small relative momenta to the 
study of the space-time properties of the particle-emitting source 
and the final state interactions between the two particles [2,3]. 
Eventually, these methods were used to study the source size, also 
referred to as Hanbury Brown and Twiss (HBT) radius, created 
in heavy-ion collisions [4–14]. Collective effects such as hydro-
dynamic flow introduce position-momentum correlations to the 
particle emission, and hence modify the source radii in heavy-ion 
collisions at LHC energies [5]. In these systems, the decrease of 
the measured source radii with increasing pair transverse momen-
tum kT =| �pT, 1 + �pT, 2 | /2, where pT is the transverse momentum 

of each of the particles, and the transverse mass mT =
√

k2
T + m2, 

where m is the average mass of the particle pair, is attributed 
to the collective expansion of the system created in the colli-
sion [5,15]. In this context, there are predictions of a common mT
scaling of the radius for different particle pairs, which are based on 
the assumption of the same flow velocities and freeze-out times 
for all particle species [16,17]. There also is experimental evidence 
that a common mT scaling of the source radius is present for pro-
tons and kaons in heavy-ion collisions [18]. On the other hand, 
for pions the scaling seems to be only approximate [18,19], which 
could be explained by the larger effect of the Lorentz boost for 
lighter particles [16,18] but could also be influenced by the ef-

� E-mail address: alice -publications @cern .ch.

fect of feed-down from short-lived resonance decays. The radii 
obtained for Pb–Pb collisions at the LHC can be compared to the 
freeze-out volume obtained from statistical hadronization mod-
els [20] and are also essential ingredients for coalescence mod-
els [21–23].

Recent studies of high-multiplicity pp collisions reveal unex-
pected similarities to heavy-ion reactions when considering vari-
ables normally linked to collective effects, angular correlations, and 
strangeness production [24–27]. The hadronization in pp collisions 
is expected to occur on a similar time scale for all particles, and 
if a common radial velocity for all particles should be present, this 
would lead to a similar mT scaling of the source size as measured 
for heavy-ion collisions. Unfortunately, the information regarding 
the mT dependence of the source size measured in pp collisions 
is limited to low values of mT, as the existing data are based on 
analyses carried out with π–π and K–K pairs. These studies point 
to a variation of the radius as a function of the event multiplicity 
and of the pair mT [28–32]. However, aside a qualitative consid-
eration of a βT scaling [33], no quantitative description could be 
determined so far.

It is known that strongly decaying resonances may lead to sig-
nificant exponential tails of the source distribution, which can in-
fluence in particular the measured π–π correlations in heavy-ion 
collisions [34–37]. This effect is even more pronounced in small 
collision systems such as pp and p–Pb [38,39], and can substan-
tially modify the measured source radii, not only for mesons, but 
for baryons as well. So far a solid modeling of the strong resonance 
contribution to the source function is still missing.

In this work, we present the first study of the source function 
with a quantitative evaluation of the effect of strong resonance 
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decays. The search for a common particle-emitting source is con-
ducted employing data measured in high-multiplicity pp collisions 
at 

√
s = 13 TeV. The emission sources of protons and � baryons

are studied using p–p and p–� correlations as a function of the 
pair mT. After correcting for the effect of strong resonance decays, 
the overall source size decreases significantly by up to 20% and 
the values extracted from the different pair combinations are in 
agreement. The common particle-emitting source described in this 
work will allow for direct comparisons of the source sizes to the 
ones resulting from theoretical models and the presence of col-
lective phenomena in small colliding systems to be studied in a 
complementary way to analyses carried out so far [28–32,38,39]. 
These analyses concentrated on π–π and K–K correlation studies in 
pp collisions, probing the kT and mT ranges of up to 1–1.5 GeV/c2

and observing a decrease of the source radius at higher mT, with 
the measured radii reaching values even below 1 fm in the case of 
minimum bias events. The higher mT range is only accessible with 
baryon femtoscopy.

Additionally, recent ALICE studies revealed that small collision 
systems, such as pp, are a suitable environment to study the in-
teraction potential between more exotic pairs, like p–K− , p–�, 
�–�, p–�0, and p–�− [40–44]. The data of high-multiplicity trig-
gered pp collisions at 

√
s = 13 TeV provides a significantly im-

proved precision compared to the previously analyzed minimum 
bias data. Detailed studies of the interactions will be enabled by 
a precise knowledge of the size of the common source for par-
ticle emission, once corrected for the broadening due to the res-
onance decays, which depends on the pair type. Moreover, the 
effective source size is an important input for the modeling of co-
alescence and has consequences for the prediction of antimatter 
formation [21–23,45,46].

2. Data analysis

This paper presents measurements of the p–p, p–p, p–�, and 
p–� correlation functions in high-multiplicity pp collisions at √

s = 13 TeV performed with ALICE [47,48]. The high-multiplicity 
trigger selected events based on the measured amplitude in the
V0 detector system [49], comprising two arrays of plastic scintil-
lators at 2.8 < η < 5.1 and −3.7 < η < −1.7. The threshold was 
adjusted such that the selected events correspond to the highest 
0.17% fraction of the multiplicity distribution of all INEL > 0 colli-
sions. In such events, an average of 30 charged-particle tracks are 
found in the range |η| < 0.5 [50], which constitutes an increase by 
a factor of about four with respect to the minimum bias data sam-
ple [42]. The V0 timing information was evaluated with respect to 
the LHC clock to distinguish collisions with the beam pipe material 
or beam–gas interactions.

The Inner Tracking System (ITS) [48] and Time Projection Cham-
ber (TPC) [51] are the main tracking devices in ALICE. They cover 
the full azimuthal angle and the pseudorapidity range of |η| < 0.9. 
The solenoid surrounding these detectors creates a homogeneous 
magnetic field of B = 0.5 T directed along the beam axis which 
defines the z direction. The spatial coordinates of the primary 
event vertex (PV) are reconstructed once using global tracks recon-
structed with the TPC and ITS and once using ITS tracklets [47]. If 
both methods yield a vertex, the longitudinal difference between 
the two, �z, is required to be less than 5 mm. The z component 
of the vertex, preferably determined by global tracks, has to lay 
within |V z| < 10 cm of the nominal interaction point to ensure a 
uniform detector coverage. Multiple reactions per bunch crossing 
are identified by the presence of secondary collision vertices [47]. 
Approximately 109 events fulfill the above requirements and are 
available for the analysis. The identification of protons and their 
respective antiparticles follows the complete set of criteria listed in 
Refs. [41,42]. Primary protons are selected in the transverse- mo-

mentum range between 0.5 GeV/c and 4.05 GeV/c within | η |<
0.8. Particle identification (PID) is performed by using the infor-
mation provided by the TPC and the Time-Of-Flight (TOF) [52] de-
tectors. The energy loss in the TPC gas is measured for each track, 
while the timing information of TOF is required for tracks with 
p > 0.75 GeV/c. Particles are identified by a selection on the devia-
tions from the signal hypotheses in units of the respective detector 
resolution σTPC and σTOF, according to nσ =

√
n2
σ ,TPC + n2

σ ,TOF < 3.

The distance of closest approach (DCA) to the PV is restricted 
to a maximum of 0.1 cm in the transverse plane and 0.2 cm 
in the z direction, in order to suppress weak decay products or 
particles created in interactions with the detector material. The 
composition of the sample is obtained following the methods de-
scribed in [41]. For this purpose, events were generated with 
Pythia 8.2 [53] (Monash tune [54]), processed by GEANT3 [55], fil-
tered through the ALICE detector response and subsequently han-
dled by the reconstruction algorithm [48]. These simulations were 
used to estimate that the selected protons and antiprotons have a 
momentum-averaged purity of 99%. The fraction of primary and 
secondary contributions was estimated by a fit of templates of 
their individual DCA distributions from MC to the pT-integrated 
measured distributions. This way the sample was found to consist 
of 82% primary particles. The remainder is due to weak decays of 
� (�+) baryons contributing with 13% (5%).

The � (�) candidates are selected following the procedures 
discussed in [41,42] by reconstructing the weak decay � → pπ−
(� → pπ+), which has a branching ratio of 63.9% [56]. The combi-
natorial background is reduced by requiring the distance of closest 
approach between the daughter tracks at the secondary vertex to 
be smaller than 1.5 cm. A straight line connecting the secondary 
vertex with the PV defines the trajectory of the � candidate. Pri-
mary � baryons are selected by requiring a cosine of the pointing 
angle (CPA) between the momentum vector of the � candidate 
and its trajectory to be larger than 0.99. The reconstructed daugh-
ter particle tracks are required to have an associated hit either in 
the Silicon Pixel Detector (SPD) or the Silicon Strip Detector (SSD) 
layers of the ITS or the TOF detector in order to use their timing 
information to reduce the remaining contributions from out-of-
bunch pile-up. The proton-pion invariant mass distribution is fitted 
using the sum of a double Gaussian to describe the signal and 
a second order polynomial for the combinatorial background. In 
the pT range between 0.3 to 4.3 GeV/c, the � and � candidates 
are reconstructed with a mass resolution between 1.5 MeV/c2 and 
1.8 MeV/c2. Choosing a mass window of 4 MeV/c2 around the 
nominal mass [56] results in a pT-averaged purity of 96%. Sim-
ilarly to the case of protons, CPA templates of the primary and 
secondary contributions are generated using MC simulations. These 
and a production ratio between � and �0 of 1/3 [57–60], are used 
to decompose the sample of selected � and � candidates. It is 
found to consist of 59% � baryons directly produced in the col-
lision, while 19% originate from electromagnetic decays of a �0. 
Additional contributions from weak decays of �− and �0 amount 
to 11% each.

3. Correlation function

The observable in femtoscopic measurements is the correla-
tion function C(k∗), where k∗ = 1

2 · |p∗
2 − p∗

1| denotes the relative 
momentum of particle pairs and p∗

1 and p∗
2 are the particle mo-

menta in the pair rest frame (PRF, p∗
1 = −p∗

2). It is computed as 
C(k∗) = N A(k∗)

B(k∗)
, where A(k∗) is the relative momentum distribu-

tion of correlated particle pairs, obtained from the same event, 
and B(k∗) the corresponding distribution of uncorrelated pairs. 
The latter is obtained by pairing identified particles of one event 
with particles from a different (“mixed”) event. In order to avoid 
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Table 1
Weight parameters of the individual components of the p–p and p–� correlation function. Misidentifications 
of particle species X are denoted as X̃ and feed-down contributions have the mother particle listed as a sub-
index. For the contributions in bold text, the correlation functions are modeled according to the interaction 
potential, while the others are assumed to be flat.

p–p p–�

Pair λ parameter (%) Pair λ parameter (%) Pair λ parameter (%)

pp 67.0 p� 46.1 p�+ ��0 0.5
p�p 20.3 p��− 8.5 p�+ ��0 1.0
p�p� 1.5 p��0 8.5 p̃� 0.3
p�+ p 8.5 p��0 15.4 p̃��− 0.1
p�+ p�+ 0.3 p�� 7.0 p̃��0 0.1
p�p�+ 1.3 p���− 1.3 p̃��0 0.1
p̃p 0.9 p���0 1.3 p�̃ 3.3
p̃p� 0.1 p���0 2.3 p��̃ 0.5
p̃p�+ 0.1 p�+ � 2.9 p�+ �̃ 0.2
p̃p̃ 0 p�+ ��− 0.5 p̃�̃ 0

any bias due to acceptance and reconstruction effects, only those 
events are mixed, for which the difference between the positions 
of the vertex in z direction is less than 2 cm and the numbers of 
global tracks within |η| < 0.8 differ by less than four. The normal-
ization factor N is calculated in the region k∗ ∈ [240, 340] MeV/c, 
where no femtoscopic signal is present and C(k∗) theoretically 
approaches unity. In the laboratory frame, the single-particle tra-
jectories of p–p and p–p pairs at low k∗ are almost collinear and 
hence have a �η and �ϕ∗ ∼ 0. Here, η refers to the pseudorapid-
ity of the track and ϕ∗ is the azimuthal track coordinate measured 
at 9 radii in the TPC, ranging from 85 cm to 245 cm, taking into 
account track bending because of the magnetic field. Due to detec-
tor effects like track splitting and merging [18] the reconstruction 
efficiency for pairs in same and mixed events differs. In order 
to avoid a bias in the correlation function, a close-pair-rejection 
(CPR) criterion is applied by removing p–p and p–p pairs fulfill-
ing 

√
�η2 + �ϕ∗2 < 0.01. For p–� and p–� pairs no rejection is 

considered.
A total number of 1.7 × 106 (1.3 × 106) p–p (p–p) and 0.6 ×

106 (0.5 × 106) p–� (p–�) pairs are found in the region k∗ <

200 MeV/c. The correlation functions of baryon–baryon pairs agree 
within statistical uncertainties with their antibaryon–antibaryon 
pairs [18,61]. Therefore in the following p–p denotes the combi-
nation of p–p ⊕ p–p and accordingly for p–�. The p–p and p–�

correlation functions were obtained separately in 7 and 6 mT in-
tervals, respectively, chosen such that the total amount of particle 
pairs is evenly distributed.

The theoretical correlation function is related to the two-
particle emitting source S(r∗) and wave function ψ( �r∗, �k∗) [5]. It 
can be written as

C(k∗) =
∫

d3r∗ S(r∗)|ψ( �r∗, �k∗)|2, (1)

where r∗ is the relative distance between the particle pair defined 
in the PRF. When fitting this function to the data in this analysis, 
the free parameters are solely related to S(r∗). The ψ( �r∗, �k∗) and 
the resulting C(k∗) can be determined with the help of the corre-
lation analysis tool using the Schrödinger equation (CATS) [62]. The 
framework was developed in order to model the correlation func-
tion in small systems, where the strong interaction can give rise to 
a particularly pronounced correlation signal. Therefore, ψ( �r∗, �k∗) is 
precisely calculated as the numerical solution of the single-channel 
Schrödinger equation, such that additionally to quantum statistics 
and Coulomb interactions the strong interaction can be included 
via a local potential V (r∗).

Residual correlations from impurities and feed-down of long-
lived resonances decaying weakly or electromagnetically [34] are 
taken into account by calculating the model correlation function 
Cmodel(k∗) as

Cmodel(k
∗) = 1 +

∑
i

λi(Ci(k
∗) − 1), (2)

where the sum runs over all contributions and with the method 
discussed in Ref. [41]. In particular the weights λi , which are listed 
separately for p–p and p–� in Table 1, are calculated from purity 
and feed-down fractions reported in Sec. 2.

To model the p–p (p–�) correlation function, residual correla-
tions due to the feed-down from p–� (p–�0 and p–�−) pairs are 
explicitly considered, while all other contributions are assumed to 
be flat. The residual correlations are modeled with CATS assum-
ing the same source radius as the initial particle pair and use 
theoretical descriptions of their interactions following Ref. [63,64]
for p–�− and Ref. [65–67] for p–�0. The models describing the 
p–� interaction will be discussed later in this section. The contri-
butions of these pairs to the p–p and p–� correlation functions 
have to be scaled by λi and their signal smeared via a decay 
matrix [41,68] which is built according to the kinematics of the de-
cay. Therefore, the residual signal of the initial pair is transformed 
to the momentum basis of the measured pair. Additionally, each 
contribution Ci is smeared to take into account effects of the fi-
nite momentum resolution of the ALICE detector. Except for the 
genuine correlations, these steps result in a Ci(k∗) ∼ 1 for all com-
binations, in particular due to the rather small λ parameters of 
most residual contributions as shown in Table 1. Either a constant 
or a linear baseline Cnon−femto(k∗) is included in the total fit func-
tion Cfit(k∗) = Cnon−femto(k∗) · Cmodel(k∗). The constant factor can, 
if necessary, introduce a slight correction of the normalization N . 
The linear baseline function extrapolates any remaining slope of 
C(k∗) in the normalization region, which may arise due to energy 
and momentum conservation [41,69], to the femtoscopic region. 
The default assumption is a constant, with Cnon−femto(k∗) = a.

The source function S(r∗) is assumed to have a Gaussian profile

S(r∗) = 1

(4πr2
0)3/2

exp

(
− r∗2

4r2
0

)
, (3)

where r0 represents the source radius. The best fit to the p–p
correlation function with Cfit(k∗) is performed in the region k∗ ∈
[0, 375] MeV/c and determines simultaneously all free parame-
ters, namely r0 and the ones related to Cnon−femto(k∗). The gen-
uine p–p correlation function is calculated by using CATS [62]
and the strong Argonne v18 potential [70] in S , P , and D waves. 
The systematic uncertainties on r0 associated with the fitting pro-
cedure are estimated by i) modifying the upper limit of the fit 
region to 350 MeV/c and 400 MeV/c, ii) replacing the normaliza-
tion Cnon−femto(k∗) = a by a linear function, iii) employing different 
models describing the residual p–� interaction as discussed later 
in the text, and iv) modifying the λ parameters by varying the 
composition of secondary contributions by ±20%, while keeping 
the sum of primary and secondary fractions constant.

3
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Fig. 1. The correlation function of p–p (left) and p–� (right) as a function of k∗ in one exemplary mT interval. Statistical (bars) and systematic (boxes) uncertainties are 
shown separately. The filled bands depict 1σ uncertainties of the fits with Cfit(k∗) and are obtained by using the Argonne v18 [70] (blue), χEFT LO [71] (green) and χEFT 
NLO [74] (red) potentials. See text for details.

In comparison to p–p, the theoretical models describing the 
p–� interaction are much less constrained since data from hy-
pernuclei and scattering experiments are scarce [41,71–74]. The 
femtoscopic fit is performed in the range k∗ ∈ [0, 224] MeV/c. The 
limited amount of experimental data leaves room for different the-
oretical descriptions of the p–� interaction. In the measurement 
this is accounted for by performing the fits twice, where the S
wave function of the p–� pair is obtained once from chiral ef-
fective field theory calculations (χEFT) at leading order (LO) [71]
and once from the one at next-to-leading order (NLO) [74]. The 
systematic uncertainties on r0 associated with the fit procedure 
are estimated by i) changing the upper limit of the fit region to 
204 MeV/c and 244 MeV/c, ii) replacing the normalization con-
stant Cnon−femto(k∗) = a by a linear function, and iii) modifying the 
λ parameters by varying R�0/� by ±20%.

The systematic uncertainties of the experimental p–p and p–�

correlation function take into consideration all single-particle se-
lection criteria introduced in the previous section, as well as the 
CPR criteria on the p–p pairs. All criteria are varied simultaneously 
up to 20% around the nominal values. To limit the bias of statis-
tical fluctuations, only variations with a maximum change of the 
pair yield of 20% are considered. To obtain the final systematic un-
certainty on the source size, the fit procedure is repeated for all 
variations of the experimental correlation function, using all possi-
ble configurations of the fit function. The standard deviation of the 
resulting distribution for r0 is considered as the final systematic 
uncertainty.

In Fig. 1 the p–p and p–� correlation functions of one rep-
resentative mT interval are shown. The grey boxes represent the 
systematic uncertainties of the data and correspond to the 1σ in-
terval extracted from the variations of the selection criteria. The 
resulting relative uncertainty of the p–p (p–�) correlation func-
tion reaches a maximum of 2.4% (6.3%) in the lowest measured k∗
interval. Unlike for meson–meson or baryon–antibaryon pairs, the 
broad background related to mini-jets is absent for baryon–baryon 
pairs [41,75]. The width of the fit curves corresponds to the 1σ
interval extracted from the variations of all the fits. In case of the 
p–p correlation function, this results in a χ2/ndf = 1.9. The fit of 
the p–� correlation function using χEFT calculations at LO yields a 
χ2/ndf = 0.91 while the fit using χEFT calculations at NLO yields 
a χ2/ndf = 0.67.

Each correlation function in every mT interval is fitted and the 
resulting radii are shown in Fig. 2. The central value corresponds 
to the mean estimated from the distribution of r0 obtained from 

Fig. 2. Source radius r0 as a function of 〈mT〉 for the assumption of a purely Gaus-
sian source. The blue crosses result from fitting the p–p correlation function with 
the strong Argonne v18 [70] potential. The green squared crosses (red diagonal 
crosses) result from fitting the p–� correlation functions with the strong χEFT 
LO [71] (NLO [74]) potential. Statistical (lines) and systematic (boxes) uncertainties 
are shown separately.

the systematic variations. The statistical uncertainties are marked 
with solid lines, while the boxes correspond to the systematic un-
certainties. The relative value of the latter is at most 2.4% for the 
radii extracted from p–p correlations and 8.3% and 5.7% for those 
extracted from p–� correlations using the NLO and LO calcula-
tions, respectively. The decrease of the source size with increasing 
mT is consistent with a hydrodynamic picture, however, the ex-
pected common scaling [16] of the different particle species is not 
observed for the two considered pair types. The two measurements 
show a similar trend that is shifted by an offset, indicating that 
there are differences in the emission of particles.

4. Modeling the short-lived resonances

The effect of short-lived resonances (cτ � 10 fm) feeding into 
protons and � baryons could be a possible explanation for the 
difference between the source sizes determined from p–p and 
p–� correlations, which was observed in Fig. 2. In the past, Bose-
Einstein correlations between identical pions, measured in heavy-
ion collisions, were interpreted in terms of a two-component 
source. It constitutes a core, which is the origin of primary par-

4
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Fig. 3. A sketch representing the modification of r∗
core into r∗ (dash-dotted lines), due to the presence of resonances (gray disks), decaying into the particles of interest (blue 

disks). The coordinate system is determined by the rest frame of the two daughters and consistent with Eq. (1), where k∗ represents their momenta (solid blue lines). The 
blue dotted lines represent the remaining decay products, which are assumed to be single pions. In case of a primordial particle in the initial state instead of a resonance, 
the latter is not considered (�s∗

res,i = 0).

ticles, and a halo, which is the origin of pions produced by the 
decay of resonances [76]. In a detailed investigation of MC sim-
ulations of heavy-ion collisions the source sizes were extracted 
from π–π pairs for systems both with and without the presence 
of these contributions, and indeed differences of about 1 fm were 
found [35,77]. Similar effects are expected to arise for baryons, 
since short-lived resonances such as � and N∗ decay mainly into a 
baryon and a pion. The exponential nature of the decay is reflected 
in the appearance of exponential tails in the source distribution 
and an effective increase of the source size. Inspired by this pic-
ture, a source distribution for baryons is built starting from two 
components: a Gaussian core and a non-Gaussian halo.

In this work, the resonance yields are taken from the statistical 
hadronization model (SHM) [78]. Since this study aims at quanti-
fying the effect of strongly decaying resonances on the source dis-
tribution, in the following only primordial particles and secondary 
decay products of short-lived resonances will be considered. Ac-
cording to the SHM, the amount of primordial protons (� baryons) 
are only Pp = 35.8% (P� = 35.6%) [79], implying that the effect of 
the secondaries is substantial. For protons, 57 different resonances 
with lifetimes 0.5 fm < cτ < 13 fm are considered. Relative to the 
total number of protons, 22% originate from the decay of a �++
resonance, 15% from the decay of a �+ resonance, and 7.2% from 
a �0 resonance. The remaining secondary protons originate from 
heavier N∗ , � and � resonances, which contribute individually 
with less than 2%. Similarly, secondary � baryons stem from 32 
considered resonances with lifetimes 0.5 fm < cτ < 8.5 fm. Most 
prominently �∗+ , �∗0, and �∗− are each the origin of 12% of all 
� baryons, while decays of heavier N∗ , �, and � resonances indi-
vidually contribute with less than 1%. The weighted average of the 
lifetimes (cτres) of the resonances feeding into protons (� baryons) 
is 1.65 fm (4.69 fm), while the weighted average of the masses 
is 1.36 GeV/c2 (1.46 GeV/c2). Although the amount of secondaries 
is similar for protons and � baryons, there is a significant differ-
ence in the mean lifetime of the corresponding resonances, which 
is much longer for the �. Qualitatively this will imply a larger ef-
fective source size for p–�, as observed in Fig. 2.

In the following the source function S(r∗) is constructed includ-
ing the effect of short-lived resonances, assuming that all primor-
dial particles and resonances are emitted from a common Gaussian 
source of width rcore. Consequently, the particles studied in the fi-
nal state can either be primordials or decay products of short-lived 
resonances. For a pair of particles there are four different scenarios 
regarding their origin, the frequency of each given by P1 P2, P1 P̃2, 

P̃1 P2 and P̃1 P̃2. Here P1,2 are the fractions of primordial parti-
cles and P̃1,2 = 1 − P1,2 the fractions of particles originating from 
short-lived resonances. The total source is

S(r∗) = P1 P2 × S P1 P2(r
∗) + P1 P̃2 × S P1 P̃2

(r∗)

+ P̃1 P2 × S P̃1 P2
(r∗) + P̃1 P̃2 × S P̃1 P̃2

(r∗). (4)

To evaluate S(r∗), the required ingredients are the fractions 
of primordial and secondary particles, and the individual source 
functions corresponding to the possible combinations for the par-
ticle emission. Depending on the average mass and lifetime of the 
resonances feeding to the particle pair of interest, each of these 
scenarios will result in slightly different source sizes and shapes. 
These composite source functions are difficult to compute ana-
lytically, however, a simple numerical evaluation, outlined in the 
following, allows to iteratively build the full source distribution 
S(r∗) for a given rcore. The primordial emission of particles with 
a relative distance r∗

core is randomly sampled from a Gaussian with 
width equal to rcore. The resulting particles are then, based on the 
probabilities P1,2 and P̃1,2, assigned to be either primordial parti-
cles or resonances. The resonances are propagated and their decays 
are simulated. For simplicity it is assumed that each decay pro-
duces one proton (�) and one pion. It was checked that including 
three-body decays at this stage would have a negligible effect on 
the extracted radii.

Fig. 3 is a schematic representation of the source modification, 
which in vector form is given as:

�r∗ = �r∗
core − �s∗

res,1 + �s∗
res,2, (5)

where �s∗
res,1(2) is the distance traveled by the first (second) reso-

nance. This is linked to the flight time tres, which is sampled from 
an exponential distribution based on the lifetime of the resonance 
τres:

�s∗
res = �β∗

resγ
∗

restres = �p∗
res

Mres
tres, (6)

where �p∗
res is the momentum and Mres the mass of the corre-

sponding resonance. For the one-dimensional source function S(r∗)
the absolute value r∗ = |�r∗| needs to be evaluated. Given the defi-
nitions in Eq. (5) and Eq. (6), the required ingredients are r∗

core, the 
momenta, masses and lifetimes of the resonances, as well as the 
angles formed by the three vectors �r∗

core, �s∗
res,1 and �s∗

res,2.
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Fig. 4. The source functions for p–p (blue circles) and p–� (red open circles), gener-
ated by folding the exponential expansion due to the decay of the respective parent 
resonances with a common Gaussian core with rcore = 1.2 fm (dashed black line). 
Additionally shown are fits with Gaussian distributions (dotted lines) to extract the 
effective Gaussian source sizes.

The masses and lifetimes of the resonances are fixed to the 
average values reported above. The remaining unknown parame-
ters, the momenta of the resonances and their relative orientation 
with respect to �r∗

core, are related to the kinematics of the emission. 
In this work, the EPOS transport model [80] is used to quan-
tify these parameters, by generating high-multiplicity pp events 
at 

√
s = 13 TeV and selecting the produced primordial protons, 

� baryons and resonances that feed into these particles. Since the 
yields of the heavier resonances are over-predicted by EPOS, they 
are weighted such that their average mass Mres reproduces the 
expectation from the SHM. The source function S(r∗) is built by 
selecting a random r∗

core and a random emission scenario based 
on the weights P1,2, which are known from the SHM. A random 
EPOS event with the same emission scenario is used to determine 
�p∗

res,1(2) and their relative direction to �r∗
core. To obtain r∗ the res-

onances are propagated, using Eq. (5) and (6), and the k∗ of their 
daughters is evaluated. Only events with small k∗ are relevant for 
femtoscopy, thus, if the resulting k∗ > 200 MeV/c, a new EPOS 
event is picked. The above procedure is repeated until the resulting 
S(r∗) achieves the desired statistical significance.

With this method, the modification of the source size due to 
the decay of resonances is fixed based on the SHM and EPOS, 
while the only free fit parameter is the size rcore of the primor-
dial (core) source. This procedure is used to refit the p–p and 
p–� correlation functions. The uncertainties are evaluated in the 
same way as in the case of the pure Gaussian source. Additional 
uncertainties due to short-lived resonances decaying into protons 
(� baryons) are accounted for by repeating the fit and altering the 
mass by 0.2% (0.6%) and the lifetimes by 2% (13%) [56]. When com-
paring the individual fits of the correlation functions in one mT
interval with the ones assuming a pure Gaussian source the result-
ing χ2 is found to be similar. This implies that each system can 
still be described by an effective Gaussian source, albeit loosing 
the direct physical interpretation of the source size. This property 
becomes evident from Fig. 4, in which the different source func-
tions, used to describe the mT bin plotted in Fig. 1, are shown. 
As expected, after the inclusion of the resonances, the same core 
function results in different effective sources for p–p and p–�. The 
Gaussian parametrization yields an almost equivalent description 
of the source function up to about r∗ ∼ 6 fm, while for larger 
values the new parametrization with inclusion of the resonances 
shows an exponential tail. Since most of the particles are emit-
ted at lower r∗ values, the corresponding correlation functions are 
similar. However, one major difference with the new approach is 
the resulting source size, as the Gaussian core is more compact 
than the effective sources. The resulting mT dependence of rcore
measured with p–p and p–� pairs is shown in Fig. 5. The relative 

Fig. 5. Source radius rcore as a function of 〈mT〉 for the assumption of a Gaussian 
source with added resonances. The blue crosses result from fitting the p–p correla-
tion function with the strong Argonne v18 [70] potential. The green squared crosses 
(red diagonal crosses) result from fitting the p–� correlation functions with the 
strong χEFT LO [71] (NLO [74]) potential. Statistical (lines) and systematic (boxes) 
uncertainties are shown separately.

systematic uncertainty is at most 2.6% for the core radii extracted 
from p–p correlations and 8.4% and 6.2% for those extracted from 
p–� correlations using the NLO and LO calculations, respectively. 
In contrast to a Gaussian source, the new parametrization of the 
source function provides a common mT scaling of rcore for both 
p–p and p–�. This result is compatible with the picture of a com-
mon emission source for all baryons and their parent resonances.

5. Summary

The results for p–p and p–� correlations in high-multiplicity 
pp collisions at 

√
s = 13 TeV demonstrate a clear difference in the 

effective proton and � source sizes if a simple Gaussian source 
is assumed. A new procedure was developed to quantify for the 
first time the modification of the source function due to the ef-
fect of short-lived resonances. The required input is provided by 
the statistical hadronization model and the EPOS transport model. 
The ansatz is that the source function is determined by the con-
volution of a universal Gaussian core source of size rcore and a 
non-Gaussian halo. The former represents a universal emission re-
gion for all primordial particles and resonances, while the latter is 
formed by the decay points of the short-lived resonances. This pic-
ture is confirmed by the observation of a common mT scaling of 
rcore for the p–p and p–� pairs in high-multiplicity pp collisions, 
with rcore ∈ [0.85, 1.3] fm for mT ∈ [1.1, 2.2] GeV/c2. Compared to 
the values obtained when an effective Gaussian parametrization is 
used, the overall values are significantly decreased by up to 20%.

The measurement of the core size of a common particle-
emitting source, corrected for the effect of strong resonances, will 
allow for direct comparisons with theoretical models. Addition-
ally, detailed studies of the mT dependence of the core radius will 
enable complementary investigations of collective phenomena in 
small collision systems.

On the other hand, the assumption of a common core source, 
modified by the resonances feeding to the particle pair of inter-
est, allows for a quantitative determination of the effective source 
for any kind of particle pair. First of all, it enables high-precision 
studies of the interaction potentials of more exotic baryon–baryon 
pairs [41,42,44] that rely on two-particle correlation measurements 
in momentum space and use the p–p correlation as a reference 
to fix the emission source. It is also relevant for coalescence ap-
proaches addressing the production of (anti) (hyper) nuclear clus-
ters. A crucial next step is to investigate the applicability of the 
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new method for meson–meson and baryon–meson correlations. If 
the same mT scaling is observed as for baryons, this will provide 
an even more precise quantitative understanding of the common 
particle-emitting source. In any case, such a study will shed fur-
ther light on the production mechanism of particles and will be a 
valuable input for transport models.
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S. Panebianco 137, P. Pareek 50,141, J. Park 61, J.E. Parkkila 126, S. Parmar 100, S.P. Pathak 125, B. Paul 23, 
H. Pei 6, T. Peitzmann 63, X. Peng 6, L.G. Pereira 70, H. Pereira Da Costa 137, D. Peresunko 88, G.M. Perez 8, 
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