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Summary

Keywords: anyons, fractional statistics, integer quantum Hall effect, metamaterials, synthetic
gauge fields, ultracold atoms, geometric phases, topological phases, Bose gases, hard-core
bosons.

In three spatial dimensions, particles are classified into bosons and fermions. Bosons have
integer spin and obey Bose-Einstein statistics, while fermions have half-integer spin and obey
Fermi-Dirac statistics. In two-dimensional systems, particles with properties continuously inter-
polating from bosons to fermions are theoretically allowed to exist and they are called anyons.
Anyons are characterized by a fractional spin, or more generally, by fractional quantum num-
bers. Apart from the fundamental interest, the main motivation for studying anyons comes from
their potential importance in fault-tolerant topological quantum computing.

The work presented in this thesis contributes to the study of less traditional schemes for
realization and manipulation of anyons. The first part focuses on new mechanisms for the
realization and signatures of anyons in non-interacting systems. We propose an experimental
realization of the original Wilczek’s model for Abelian anyons. This proposal is implemented
in two-dimensional electron gas placed in a perpendicular magnetic field which gives rise to the
integer quantum Hall effect. Then we present exact solutions of a model for synthetic anyons in
a non-interacting quantum many-body system. The model is represented by the Hamiltonian for
non-interacting electrons in two dimensions, in a uniform magnetic field, pierced with specially
tailored localized probes, solenoids with a magnetic flux that is a fraction of the flux quantum.
Here we show that synthetic anyons cannot be considered as emergent quasiparticles. The
second part of the thesis concentrates on a system of one-dimensional bosons coupled to syn-
thetic gauge fields. In particular, we investigate a system of strongly interacting bosons placed
on a one-dimensional ring pierced by a synthetic magnetic flux tube. An external localized
delta-function potential barrier is placed on the ring and we explore the Berry phase associated
to its adiabatic motion. The barrier produces a cusp in the density, where we show that the
corresponding missing charge cannot be identified as a quasihole. This result is associated with

the previous studies of synthetic anyons in non-interacting systems.
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Chapter 1

Introduction

1.1 Introduction to fractional statistics

Quantum statistics has a fundamental theoretical importance in the quantum mechanical view
of the world. Namely, the physical behaviour of collections of identical particles is governed
not only by interactions but also by the particle statistics. Identical particles are those particles
whose Hamiltonian is symmetric under exchange of one particle with the other, assuming they
have identical intrinsic properties [1]. Contrary to classical physics, where we can always fol-
low each particle at any time, in quantum mechanics there is no trajectory. Since one is not
able to track identical particles separately, they are considered to be indistinguishable. This
fact imposes definite symmetry requirements on the many-body wave function describing a
system of many identical particles under interchange of any two particles. In three dimensions
[(3+1)D] only two symmetries are possible and particles are classified into bosons and fermi-
ons depending on the statistics they obey. Bosons follow the Bose-Einstein and fermions the
Fermi-Dirac statistics [1]. While Fermi and Bose formulated their theories in terms of the occu-
pation number, i.e., the number of particles which may occupy the same energetic level, Dirac
reformulated this problem in terms of the structure of the many-body wave functions. The wave
functions turn out to be symmetric under permutations of identical bosons, and antisymmetric
under permutations of identical fermions. The symmetry requirements are closely connected
with the spin of the particles. According to the spin-statistics connection, bosons are particles
with integer spin and fermions with half-integer spin. This connection can be proved by relativ-
istic arguments [2], but in the frame of nonrelativistic quantum mechanics, it is accepted as an
empirical postulate.

For a long time, bosons and fermions have been considered to be the only reasonable possib-
ilities. This is true when particles move in at least three dimensions (3D), but in two dimensions
(2D) the situation becomes more intriguing. Namely, the quantum statistics turns out to be
a continuous interpolation between Bose-Einstein and Fermi-Dirac statistics. Particles which

obey any fractional statistics in between are called anyons [3-5]. This doctoral thesis deals with



anyons. If one incorporates the concept of the spin-statistics connection, it may be assumed that
anyons are represented by a fractional spin, i.e., by fractional quantum numbers. These special
cases for spin and statistics were understood in the 1970s, when Leinaas and Myrheim explained
that the root of the concept of fractional statistics lies in the special topological properties of
the configuration space of collections of identical particles [6]. Most of the great interest that
anyons have attracted recently derives from the fact that non-Abelian anyonic quasiparticles
of topological states of matter could become the building blocks of fault-tolerant topological

quantum computers [7, 8].

1.1.1 Exchange statistics

The concept of exchange statistics refers to the phase that a many-body wave function describ-
ing identical particles acquires when any two particles are adiabatically transported giving rise
to the exchange [9]. The wave function of two identical hard-core particles with definite angular
momentum is given as y(ry,r;). Hard-core condition implies that two or more particles cannot
occupy the same point in space. When one particle is moved around another by an azimuthal

angle A, as shown in Fig. 1.1, the wave function transforms in the following way:

l[/(r],l‘z) — I[//(I‘l,l‘z) = eieA(PlV(l‘],I‘z). (1.1)

AP
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1 P 2 1 Y’ 2

Figure 1.1: Particle 2 moves around particle 1 by an angle Ag.

The parameter 0 denotes the statistics of the particles. The definition where exchange stat-
istics is associated with the phase acquired by the wave function under permutation of the
particles, i.e., when all the quantum numbers of the particles are exchanged, is equivalent to the

first one in 3D, but in 2D these definitions are different.

1.1.2 Path integrals

The problem of quantum statistics and quantum motion can be studied from the perspective
of path integrals in quantum mechanics [10]. The probability amplitude for the system which
evolves from the configuration c at time ¢ to the configuration ¢’ at time ¢’ is represented by the

propagator [11]

P e = [ Geeh i/ LD Y S LD (1)

i) =eiclt)=¢ ail pashs



fc(,)zc.c(ﬂ)zcl Zc denotes the sum over all potential paths connecting space-time points ¢ at
time ¢ to ¢’ at time ¢’ and .Z(c,¢) the Lagrangian density for the N—particle system. M]‘f, is
the configuration space of N identical hard-core particles moving in d dimensions. Then the

propagator P(c’,t’;c,t) evolves the single-valued wave function y/(c,7) as

w(d 1) = / de(d 1 |e,) (.t y) = / deP(c,1'se,0w(et).
M¢ MG

N N

1.1.3 Quantum statistics

We continue to study the statistics by following [12]. Two points in MI‘\’, are ¢ and ¢’. One may
select ¢ = ¢’ and define loops in M]‘f,. If a continuous deformation converts one loop into the
other one, these two loops are homotopic or equivalent. One class consists of all homotopic
loops, while the set of all such classes forms the fundamental group ;. In the set 7y, if o and
o, refer to two classes with representatives ¢; and ¢, then a product o - & denotes the class
with the representative loop cjc. If one denotes the homotopic classes by o € m (M;\i,), the
amplitude P(c,’;c,t) in Eq. (1.2) can be decomposed into a sum of subamplitudes Py (c,t’;c,t),
which consists of contributions of homotopic loops, 1.e., the amplitude is split into contributions
from homotopically inequivalent path sectors labeled by elements on 7; (Ml‘f,). Specifically, the
amplitude takes the form [11]

Pc,i"se,t) = Y, x(a)Cqlc,t'sc,1), (1.3)

[04S¥/51 (M;\Il)

where y(a) represent complex weight factors. In order to have the usual rule for combining

probabilities

P(c",t";c,t) = / ; dc' (" " )t |e,t) = dc'p(c" 1", \P(\t;cet),

1
My My

the weights x (o) should satisfy for any a; and o

x(an)x(on) =x(ou-0p), with [x(on)l=1.

Interpretation of this statement is that the weight factors of partial amplitudes (o) form a
one-dimensional unitary representation of the fundamental group 7; (M 1”\1,) [11].

Therefore, we want to determine Mf\l, and its fundamental group [12]. We consider a system
of N identical hard-core particles in the Euclidean d-dimensional space R?. Cartesian product
of the one-particle spaces (R?)" specifies a configuration of a system. Hard-core requirement

implies that the generalized diagonal has to be eliminated

D={(ry,...ty) € RN :r; =rx forsome J#K}. (1.4)



Moreover, one should identify configurations which are different only in the ordering of the
particles because the particles are identical and indistinguishable. Therefore, we divide the
configuration space by the permutation group Sy for N identical particles and arrive at the

configuration space of our system

RHON—D
ME = R -D (1.5)
Sn
The fundamental group of this space is [13, 14]
Sy, if d>3
7 (Myy) = (1.6)
By, if d=2.

By is Artin’s braid group of N objects and the permutation group Sy is a finite subgroup [15,16]
of By.

In order to have a better understanding of this result, we limit our discussion to the case of
a two-particle system [6]. First we consider particles confined in two dimensions. The centre-
of-mass coordinate is R = 3 (r +r;) € R?, and the relative coordinate r = ry —r, € R? — {0},
where r; and r; represent the coordinates of two particles. We exclude the singular point 0 due
to the hard-core condition. The configuration space M% can be decomposed into a Cartesian
product

M3 =R 7.

of the center of mass space and relative space r% defining the two degrees of freedom of the
relative motion of the two particles. Now we look more closely at the topology of the con-
figuration space r%. If the difference of two configurations is only the ordering of the particle
indices, these configurations are indistinguishable. Therefore, the relative space r% is the plane
R? where the points r and —r are identified. This identification can be achieved if one cuts the
plane along a line s from the origin O and then fold it into a cone of half-angle /6. The relative
space r% is shown on Fig. 1.2.

In agreement with Eq. (1.1.3), one may categorize loops in M% by the number of times they
wind around the cone r%. If two loops ¢ and ¢’ differ in winding numbers, they are homotopically
inequivalent. Namely, since the tip of the cone is removed, one cannot continuously deform one

loop into the other. The spaces r% and R? x r% are infinitely connected, and
m (M3) = 7.2 By,

where Z is the group of integers under addition. B, allows a whole variety of 1D representations
and this represents the root of fractional statistics.
Now we put into a consideration the case of two particles in 3D. We introduce the center-of-

mass coordinate R € R3 and the relative coordinate r € r%, where r and —r are identified. For
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Figure 1.2: The manifold r% describing the relative coordinate of two identical particles in two
dimensions.

the configuration space MS we can write
3 __m3 3
M; =R’ xr;.

r% is the product of the semiinfinite line describing |r| and of the projective space &, which
defines the orientation of +r/|r|. &7, can be seen as the hemisphere where the opposite points

on the equator are identified.

Figure 1.3: The projective space 42, with the examples of contractible (c;) and non-contractible
(¢2) loops.

&7, is doubly connected. There are loops (c;) which can be contracted to a point by a
continuous transformation and those which cannot (c;), as shown in Fig. 1.3. Both curves ¢
and ¢; are closed loops since the two end points on the equator are identified. Since the square

of a non-contractible loop is contractible, no other classes are possible. Therefore,
M) =m (R xr3) =Z, =S
m(M3) = m(R° X ry) = Zp = S,

where Z; is the cyclic group of order 2, and one can only find bosons and fermions in 3D. Bo-

sons correspond to contractible loops, while fermions correspond to non-contractible loops. As



we have presented, the core of anyonic statistics is the braid group By instead of the permutation

group Sy. The following subsection will consider the braid group more closely.

1.1.4 Braid group

The braid group By on N strands, also known as the Artin’s braid group, is an infinite group
whose group operation is a composition of braids [15, 16]. It can be represented algebraically
in terms of generators o;, with 1 <i <N — 1. Two defining relations satisfied by the generators

o; of the braid group are
0i0;+10; = 0;4+10i0i+1 1 <i<N-—1, (1.7)

and

0;0; = 0;0; |i—j’ > 2.

Gfl denotes the inverse of o;, and 1 is identity. In order to describe the generators o;, we

represent the elements graphically. As shown in Fig. 1.4 (a), the generator o; acts on N ver-

(a) (

b)
llt()ll I I

1 2 T4 N-1 N 1 2 ¢t 1+1 N-1N

Figure 1.4: (a) Graphical representation of the elementary move o;. (b) Graphical representation

of the inverse generator Gi_l.

tical strands by braiding the i-th strand around the (i + 1)-st in a counterclockwise direction.

! which acts in a clockwise direction, while Fig. 1.5 represents

Fig. 1.4 (b) shows the inverse o;"
the braid relation in Eq. (1.7). We point out that generally Gl-z = 1. If the equality Giz =1 holds
for all 7, then the braid group By becomes the permutation group Sy. This difference between
Sy and By leads to the result that the permutation group is finite and the number of elements in

the group is |Sy| = N!. On the contrary, the braid group is infinite.

1.1.5 Anyons

The braid group By is the group of inequivalent paths that arise in the adiabatic transport of N
particles. Namely, the elements of the braid group By can be uniquely related to the topological
classes of paths which take N particles from positions 7y, ..., ry at time g to positions ry,...,ry

at time #;. Therefore, one can understand the diagrams of the braid group, such as diagrams in
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Figure 1.5: Graphical representation of the braid relation 6;0;10; = 0;110;0;+1.

Fig. 1.4 and Fig. 1.5, as they describe the time evolution of identical particles if one perceives
the strands as world-lines which begin at initial positions and end at final positions. The initial
time is at the bottom, while the final time is at the top. Generators of the braid group represent
exchanges of neighbouring particles. With this, each set of trajectories of N particles becomes
a braid. Group multiplication is defined as following one trajectory by another in time. We can
understand that Gicl._l =1 and Gl.N # 1, which is why any statistics is allowed in 2D.

Now we determine how the braid group operates on the states of the quantum system. A
1D representation is related to scalar quantum mechanics when the wave functions are one-
component objects. The 1D representation of the braid group By is given by

x(0) = e
for any i = 1,...,N — 1, where the phase 0 is a real parameter defined mod 2. 6 may be
any arbitrary number because of Giz # 1. Therefore, particles with any exchange statistics
governed by the braid group have been called anyons [3-5]. In the elementary move o;, the
wave function accumulates the phase 6 when the i-th particle is exchanged with the (i + 1)-st
in a counterclockwise manner. Specific cases of anyons with 8 = 0 and 7 correspond to bosons
and fermions. We point out that these representations are Abelian.

Exchange statistics described by higher-dimensional irreducible representations of the braid
group gives rise to non-Abelian anyons and non-Abelian braiding statistics [17]. Such repres-
entations appear when the wave functions are multiplets, i.e., when there is a degenerate set of
I quantum states. The i-th element of the braid group is represented by a (I x I)-dimensional
unitary matrix p(o;). Such matrix defines unitary transformation within the subspace of de-
generate ground states. If two matrices p(o;) and p(0;+1) do not commute, the particles obey
non-Abelian braiding statistics, and the braiding of particles gives rise to nontrivial rotations in

the degenerate Hilbert space.



1.1.6 Fusion of anyons

When N identical Abelian anyons with individual statistics 6 are brought close together, they
can be approximated as a single anyon with statistics N?6. Namely, if two such composite
anyons are rotated counterclockwise, there are N2 pairs of individual anyons. Each pair con-
tributes a phase ¢/®. An analogous analysis applies to the fusion of different Abelian anyons.
In general, since a system with anyonic particles provides various types of anyons, a complete
characterization of such a system includes also other possible higher particle types. Abelian
anyons composed by building successively larger composites of 8 particles obey the fusion rule
n’0 x m?0 = (n+m)?6. When considering non-Abelian anyons, different combinations of to-
pological quantum numbers are possible, and they are named fusion channels. If x represents

the fusion, we may formally write
Oa X Op = Y Mgy 0,
Cc

which means that, if a particle of type a fuses with the other of type b, the product may be
a particle of type ¢ when M;, # 0. Here ¢. symbolizes all anyons in a representative set,
while M, is called the fusion multiplicity of the occurence of anyon ¢.. The non-negative
integers M;, denote the fusion rules of the system. When considering Abelian anyons, the
fusion multiplicities are M, = 1 for single value of ¢, while M;;7 = 0 for all other ¢’ # c. In
case of non-Abelian anyons, there is always at least one a, b so that various fusion channels ¢
with M¢, # 0 arise. A broader review of fusion for non-Abelian anyons can be found in [7, 18].

In this thesis we focus on Abelian anyons.

1.2 Quantum mechanics of a charged particle in an electro-

magnetic field

1.2.1 Classical charged particle in an electromagnetic field

In the framework of classical electrodynamics, a charge ¢ of mass m behaves in an electromag-
netic field according to the spatial and temporal dependence of the electric E(r,7) and magnetic
B(r,t) fields, which satisfy Maxwell equations. The fields B and E can be defined in terms of
the vector potential A(r,) and scalar potential ¢ (r,?) as [19]

B=VxA (1.8)
JA
E=-V¢——. 1.9
90—, (1.9)
The potentials are not uniquely defined by these equations. Namely, we are free to impose extra

conditions on ¢ and A as long as E and B are unchanged. The fields E and B remain unchanged

8



if the potentials are transformed together using a scalar function y(r,z),

A—A =A+Vy (1.10)
9%
09 =05 (1.11)

This transformation is called a gauge transformation, and the invariance of the field under such

transformations gauge invariance. Lagrangian for a charge in an electromagnetic field is
R :
L(r,r)zimr —q¢ +gr-A. (1.12)

Euler-Lagrange equations lead to an equation of motion which depends only on the fields mi =

g(E+1 x B). Lagrangian in Eq. (1.12) gives the canonical momentum p,
p=ViL=7+qA, (1.13)

where 7 = mr represents the kinetic momentum. A Legendre transformation is used to obtain

the Hamiltonian for a charged particle in an electric and magnetic field

1
H(r,p) =pi—L = Sm(p—gA)* +q¢. (1.14)

This equation proposes the principle of minimal substitution - the Hamiltonian for a charged
particle of charge ¢ in an external electromagnetic field and an external potential V (r,#) can be

derived from the Hamiltonian for an uncharged particle by using the substitutions

p—pP—qA(r,t), V(r,t) = V(r,t)+qd(r,z). (1.15)

1.2.2 Quantum charged particle in an electromagnetic field

In quantum mechanics, the position r and canonical momentum p are related to the operat-
ors F and p. In order to make the transition to quantum mechanics, we perform the standard

substitution p = —ihVy, so that the quantization rule

(%), Pe] = ihd (1.16)
holds for any j,k € {x,y,z} [1]. The Schrodinger equation for a charged particle in an electro-
magnetic field is

Loy 1

ih— 2m[ ihV — qA(r,t)]"¥ +qo(r,t)v,

where y/(r,1) is the wave function, which is gauge dependent. Schrédinger equation is invariant

if one simultaneously applies the gauge transformation of the potential as in Eq. (1.11) and the

9



local phase transformation of the wave function
y(r,) = ¥(r,0) = M0y (r). (117)

1.2.3 Aharonov-Bohm phase

In classical electrodynamics, electromagnetic fields are the physical quantities affecting the
motion of a particle, while potentials A and ¢ are considered as unphysical. However, potentials
become basic parts of the physical formalism in quantum mechanics. In quantum mechanics
their presence can be directly measured even if particles have never passed through the place of
non-zero electromagnetic field.

This is the subject of the Aharonov-Bohm effect. Namely, if a quantum charged particle
travels along a path &7, such that the magnetic field is zero B =V x A = 0 and the vector

potential A is non-zero, the wave function obtains a phase [1]

q
== [ A-dr.
¢ h/@ ’

Originally, Aharonov and Bohm considered two electronic wavepackets encircling a mag-
netic field that is confined to an inaccessible and infinitely long flux line of magnetic flux & [20].
By using Stoke’s theorem, the wavepackets acquire a relative phase of

d
Oap = %, (1.18)

and this phase, known as the Aharonov—Bohm phase, can be observed through interference
effect when they close the loop. The Aharonov—Bohm phase is topological since it does not
depend on the shape, or more generally, geometric characteristics of the path. Provided that the
particle moves in a field-free region, it is determined only by its topological invariants. This
phase emphasizes the unique role of electromagnetic potentials in quantum mechanics. It is a
particular case of the Berry geometric phase acquired when a quantum system is adiabatically
transported around a cyclic circuit in the parameter space, which we additionally address in
Section 2.1.

1.3 Realizations of anyons

1.3.1 Wilczek’s anyons

In this section we consider the prototype for anyons introduced by Frank Wilczek. He proposed
a physical picture of a charged particle interacting with an infinitely long magnetic solenoid [3—
5]. This system has been named a cyon [21]. In the following, it will be shown that Wilczek’s

anyon may obey fractional statistics. In the framework of non-relativistic quantum mechanics,
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we consider a spinless particle of mass m and electric charge g. The particle is exposed to
the magnetic field B of a cylindrically symmetric, infinitely long and thin solenoid placed at
the origin and aligned along the z—axis where @ is the magnetic flux through the solenoid. If
one excludes the motion along the solenoid, the dynamics is confined to the xy-plane and the
particle, with the position vector r = xX + yy, orbits around the solenoid. In a symmetric gauge,

the vector potential A of the solenoid is given by

O -y X
A(r) = — X y 1.19
) =3z <x2+y2x+x2+y2y) ’ (19

where £ and § are the unit vectors. The magnetic field is B = ®3)(r). In order to find the
orbital angular momentum of a particle, we use the following physical argument. When there
is no current in the solenoid, the orbital angular momentum is quantized as an integer in units
I, € Z [3]. According to the Faraday’s law, when a current is slowly increased, the charged

particle will be exposed to the electric field

E=- ZXT.

2]
This produces the change in angular momentum [, = [r x (¢E)], = —5L®. Therefore, the total
change in angular momentum is Al, = —g®/2x. Accordingly, the quantized angular momenta
[, become

qd

lZ =m-— E, m e 7.

The same result can be obtained in a different way. Covariant angular momentum [, = —ifid /dz —

gAy generates rotations around z-axis. The vector potential (1.19) expressed in cylindrical co-

ordinates outside the solenoid is ®
Agy(r) = 1

and the azimuthal dependence of the electron wave function is y;, < e"? where n € Z because
of continuity. Then we have .y, = (n — q®/27)y,, confirming the previous conclusion.

When the distance between the charged particle and the solenoid is reduced to zero, one may
consider this system as a single composite object - a charge-flux-tube composite, which can have
any fractional angular momentum. This angular momentum is called the spin of the charge-flux-
tube composite [3—-5]. Assuming there is a generalized spin-statistics connection, we expect
that these composites have fractional statistics due to the fractional angular momentum. In
order to determine its statistical properties, now we study the quantum mechanics of two such
composites. We assume that two such composites are described by a symmetric wave function

v, and such wave function ¥ is single-valued, i.e.,

Hy =Evy, (1.20)
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and
V(ry,rp) = y(ra,ry).

We suppose that the electrostatic forces are small and can be treated as a perturbation, 1.e.,
we consider the limit ¢ — 0, where g® is fixed. We neglect interactions between charges and
interactions between vortices. Now we slowly move one composite around the other on the
closed loop. According to Aharonov and Bohm [20], when the first particle moves around the

second solenoid on a closed loop I, a phase acquired by the wave function is

—exp( il [A-dr) =exp (4P
y—exp( zh/rAdr>—exp( h)

However, when the particles are rotated around each other, the same phase arises from the
motion of quantum-mechanical solenoid which orbits around a fixed charge. Therefore, the

total phase acquired by the wave function y(ry,rp) is

exp (—Zigq)) . (1.21)

Taking into account these assumptions and approximations, this system can be described by the

following Hamiltonian

2
1 2 2
H=—Y |pi—29) A(ri—rj)| , (1.22)
2m o J#

where the vector potential is

<I>2><(r,-—rj)

A = o T

From Eq. (1.21) and Eq. (1.1), one concludes that the statistics of the composite is

2gP
===
implying that Wilczek’s composites behave as anyons. The statistics v and the spin s of the
composite are related as v = 2s, satisfying the usual spin-statistics connection.
Now we show that fractional statistics can be described by complicated boundary conditions
which replace the effective interaction [22]. This is usually called the anyon gauge description
of fractional statistics. To eliminate the long-range vector potential between anyons, we perform

a singular gauge transformation so that

b
A—A'=A-VA(r,9), where A(r,@)= 7? (1.23)
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The gauge potential vanishes completely and the Hamiltonian (1.22) becomes

2 )
H=Y) —p-.
i:ZI S P;
The transformed wave function is
v = e—iqCI)(pu/ﬂhw, (1.24)

where @y, is the azimuthal angle of the relative vector r; —rp. The wave function y’ is multi-

valued and satisfies the boundary condition

v (ra, 1)) = e 4%y (r),1,). (1.25)

From Eq. (1.25) we see that ' carries an Abelian representation of the braid group, implying
that Y’ is an anyonic wave function. In the system of N composites, the transformed wave
function (1.24) becomes

v = ﬁe—iqq"f’w/ Ty, (1.26)

i<j

where @;; is the azimuthal angle of the relative vector r; —r;. This wave function may also be
written in a way which is more practical for applications. For each particle we introduce the
complex coordinates z; = x; + iy; and Z; = x; — iy;. One can notice that z;; = |z7 — z7|€'®”, so

Eq. (1.26) can be written as

v =[] —2) ™ f (2, 2), (1.27)

I1<J

9P/ i5 a single-valued function of the particle positions. In case

where f(z7,Z1) = WI1<s |21
when all the fields describing the solenoid and charged particle are bosonic, f(z7,7;) is sym-
metric in the pairs (z7,Z). On the contrary, if charged particle is fermionic, f(z7,Z;) is antisym-
metric. The general form of the wave function in Eq. (1.27) is the rule for many-body wave

functions following Vv statistics.

1.3.2 Physical realizations of anyons

So far we have demonstrated that anyonic braiding statistics is theoretically possible in 2D. Now
we present several candidates for physical realizations of particles with anyonic properties.
The most important anyonic physical objects are the quasielectron and quasihole excitations
of 2D systems of electrons in a strong magnetic field exhibiting the fractional quantum Hall
effect (FQHE) [23-25]. The manifestation of the FQHE is a plateau in the Hall conductivity

at 6 = ve®/h, where the filling factor v is a fraction. These plateaus of quantized resistance
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indicate where the 2D electron gas (2DEG) acts as an incompressible fluid, implying that all
charged excitations have a finite energy gap. For a fractional filling v = 1/m for m odd, the
charge of the quasielectron or a quasihole turns out to be ¢* = Fe/m, while the statistics of
these Abelian anyons is 0 = 1/m [26-28].

According to the theoretical predictions, non-Abelian anyons arise in FQHE at specific
filling fractions [29—40]. This was first discovered for the v = 5/2 state [29], while the following
work anticipated non-Abelian anyons at other filling fractions such as v = 12 /5 [30]. The braid-
ing properties of the non-Abelian quasiparticles were derived for filling fractions v = 5/2 [36]
and v = 12/5 [37]. This subject will be explained more thoroughly in the subsection 2.2.5.

Theoretical proposals of anyons based on emulating the FQHE have been reported in ul-
tracold atomic gases [41,42]. Moreover, it was shown that non-Abelian potentials which act
on ultracold gases with two hyperfine levels can lead to ground states with non-Abelian any-
onic excitations [43]. Different mechanisms to achieve FQH states of light have also been
proposed [44,45].

Apart from the systems inspired by the FQHE, there are other proposals of systems that
may be able to host fractional braiding statistics. Most of them are based on surface codes for
encoding quantum information in the collective state of interacting spins on a surface. Lattice
models include Kitaev toric code model defined on a 2D spin lattice [8,46] where the low en-
ergy excitations of the Hamiltonian can be Abelian or non-Abelian quasiparticles. This model
is a platform to perform topological quantum computing employing non-Abelian anyons. Phys-
ical constructions of this model were proposed using atomic [47-49] and molecular arrays [50].
The minimal variant of the model was experimentally achieved in ultracold atomic gases [51],
and with trapped ions applying dissipative pumping processes [52]. Fractional statistics of
anyonic excitations in the Kitaev toric model was demonstrated using a photonic quantum sim-
ulator [53, 54] and superconducting quantum circuits [55]. Anyons were observed in Kitaev
paramagnetic state of the honeycomb magnet RuCl3 [56]. There are also other methods to con-
struct spin lattice models, which encode the fusion rules of anyons [57,58]. In one such model,
known as the string-net model, Levin and Wen [59, 60] built an exactly solvable model of spins
which is a non-Abelian generalization of Kitaev’s toric code model. This model is a realiza-
tion of a non-Abelian phase supporting Fibonacci anyons, which allows universal topological
quantum computation. A simulation of this model by using nuclear magnetic resonance has
been reported [61].

Another paradigm od anyonic systems includes Majorana zero modes. Non-abelian anyons
called Ising anyons [62—64] appear as quasiparticles or defects supporting a Majorana zero
mode in several model systems which could be implemented in real many-body systems. Their
observation has been reported in solid state nanowire devices, as well as a proposal for their
manipulation in solid state system and cold atom-molecular system (for a review see [64]).

In addition to the localised excitations of an interacting quantum Hamiltonian, anyons can

arise as defects in an ordered system [65,66]. Some of these less traditional schemes for real-
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izing anyons in condensed matter experiments are worth mentioning [67-69]. It was proposed
that anyons could be synthesized by coupling weakly interacting electrons to a topologically
nontrivial background, or noninteracting electrons to topologically nontrivial external perturb-
ations [67-69]. Another scheme is by using topological defects in graphene [70].

Anyons [71-79] in 1D have also stirred up interest, especially in 1D optical lattices [76—
79]. In anyon-Hubbard model anyons emerge as low-energy elementary excitations [76—79]
from occupation-dependent hopping amplitudes, which could be realized by using laser-assisted

tunneling [76,78], or Floquet modulation [79].

1.3.3 Topological quantum computing

In recent years there has been a surge of interest in anyons, driven by the possibility of using
non-Abelian anyons as a resource for topological quantum computing [7,62, 80]. Namely, Kit-
aev proposed the idea that the Hilbert space of non-Abelian anyons can be seen as the collection
of qubits. In this perspective, the fusion and braiding operations of non-Abelian anyons are the
unitary operations that act as quantum gates [8]. The unitary transformations are determined
only by the topological class of the braid, and consequently, transformations are fault tolerant.
This topological immunity is protected by an energy gap in the system and a length scale. In
this scheme the information is not stored locally and the non-local state space is immune to
local perturbations. As a result, the qubit encoded there is topologically protected from errors.
It is immune to decoherence and other errors which damage calculations since this noise arises
from local interactions. This approach to fault-tolerant quantum computation where the unitary
quantum gates result from the braiding of non-Abelian anyons is known as topological quantum
computation [7, 62, 80]. However, there is still a lot to be done until experiments will manage
to precisely detect and manipulate anyons for fault tolerant quantum computation [7,62]. As a
consequence, it may be interesting to investigate some less conventional schemes for realization

and manipulation of anyons, and this is the primary focus of this thesis.

1.4 Objectives and results

The objective of this research is to investigate new proposals for realization and signatures
of anyons. In the first part of this thesis, we consider new mechanisms for the realization of
anyons in 2D non-interacting systems exhibiting the integer quantum Hall effect (IQHE). We
find that the original Wilczek’s model for anyons can be achieved in 2D electron gas placed in
a perpendicular magnetic field, which gives rise to the IQHE. Next, we present exact solutions
of a model for synthetic anyons in a non-interacting quantum many-body system and show that
these synthetic anyons cannot be considered as emergent quasiparticles. In the second part,
we turn to the 1D quantum many-body system. The contribution of this part is twofold. This

research explores the Berry phase in 1D quantum many-body models coupled to gauge fields,
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but also provides deeper understanding of synthetic anyons in non-interacting systems.

In Chapter 2, we explain the concept of the Berry phase and then we review the quantum
Hall effect, both integer and fractional. We describe the quasiparticles emerging in FQHE
which show anyonic behavior. In Chapter 3 we consider new mechanisms for the realization
and signatures of anyons. We propose an experimental realization of the original Wilczek’s
model for Abelian anyons, composites formed from charged particles and magnetic flux tubes.
This is proposed in a 2D electron system, exhibiting the IQHE, which is sandwiched between
two blocks of the high-u, material. As the signature of Wilczek’s anyons we propose a slight
shift of the resistivity at the plateau of the IQHE. Then, we present exact solutions of a model for
synthetic anyons in a non-interacting quantum many-body system. This model is represented
by the Hamiltonian for non-interacting electrons in two dimensions, in a uniform magnetic
field, pierced with solenoids with a magnetic flux that is a fraction of the flux quantum. We
show that these synthetic anyons cannot be considered as emergent quasiparticles. Chapter 4
deals with a system of 1D bosons coupled to synthetic gauge fields. We review the physics
of 1D interacting bosonic systems. We investigate a particular system of strongly interacting
bosons placed on a 1D ring pierced by a synthetic magnetic flux tube. An external localized
delta-function potential barrier is placed on the ring. We study the Berry phase associated to
the adiabatic motion of the delta-function barrier around the ring as a function of the strength
of the potential and the number of particles. We show that the barrier produces a cusp in the
density to which one can associate a missing fractional charge, and this missing charge cannot

be identified as a quasihole. Finally, in Chapter 5 we summarize.
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Chapter 2

Anyons and the quantum Hall effect

2.1 Berry phase

Berry phase is a subject which should be reviewed before we describe anyons in the quantum
Hall effect. The cyclic evolution of external parameters in physical system generates a phase
which depends only on the geometry of the path taken in parameter space, i.e., the phase does
not depend on the velocity at which different parts of the path are traversed. This phase is called
the geometric phase [81-83]. Geometric phase was predicted in different fields of physics [84],
and the most remarkable example comes from classical electromagnetism where Pancharatnam
studied consecutive changes in the polarization of a light beam transmitted through a sequence
of crystal plates [85]. The geometric phase was independently discovered by Longuet-Higgins
in the framework of molecular electronic degeneracies [86].

The idea of quantum geometric phase was generalized by Michael Berry in 1984 [87]. In
quantum system where the external parameters are slowly changing and which is exposed to a
cyclic adiabatic evolution, there is a nontrivial geometric phase that depends on the details of
the evolution path. This phase is called the Berry phase. It is an Abelian geometric phase, and it
refers to the adiabatic cyclic evolution of non-degenerate quantum states. In the following years,
the subject of geometric phase was further generalized. Namely, Wilczek and Zee removed the
restriction to non-degenerate states by studying a cycle which includes a set of N states that
are degenerate for all points on the cycle, yielding non-Abelian phases [88]. Furthermore,
Aharonov and Anandan removed the restriction to slow cycles by rephrasing the geometric
phase in terms of a circuit in the projective quantum Hilbert space of states, rather than of
the space of the Hamiltonian’s parameters [89]. Next step was a research explaining that the
evolution of the quantum system has to be neither cyclic nor unitary [90].

A classical analogue of the geometric phase is the Hannay angle [91]. Hannay studied the
case of non-chaotic dynamics, where motion for fixed parameters is oscillatory and described
by angles. When the parameters in the system are slowly cycled, final angle is different from

the one acquired when calculated from the instantaneous frequency. This difference is called
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the Hannay angle and it depends on the geometry of the cycle. An example of the Hannay angle

is the precession of a Foucault pendulum.

2.1.1 Derivation of the Berry phase

In the following, we will derive a general expression for a Berry phase in an adiabatic process.
First, let us consider a quantum system described by a Hamiltonian H = H(x, R), which depends
on two different kinds of variables [83,87]. The x are degrees of freedom of the system, while
R = (R, Ry, ...) represents the set of parameters describing the environment. We want to solve

the time-dependent Schrodinger equation
e
ih S |¥) = H(R)|9), @.1)

with the initial condition |¥) = |¥) forz = 0. For a fixed ¢, the Hamiltonian can be diagonalized

as

H(R)|yn(R)) = Eo(R) |y (R)), 22

where we obtain R-dependent orthonormal stationary states and energies, and we assume that
the spectrum is non-degenerate for all times. A system governed by cyclic adiabatic evolution
is characterized by a time-dependent set of parameters R(¢), which move adiabatically slowly
on the closed path C in the space of parameters. In the adiabatic assumption, the initial state is

a non-degenerate energy eigenstate of the Hamiltonian, i.e.,

Wo) = e[y, (R(0))), (2.3)

where ¢ is some phase. According to the adiabatic theorem, if the parameters are varied

sufficiently slowly, the system will remain in the instantaneous eigenstate, i.e.,
W) = Wy (R(1)). (2.4)

From the time-dependent Schrodinger equation, it follows that the instantaneous eigenstate will

accumulate the phase during such evolution,

t / / (t)
o) = v~ [ ERED i [y (R S ()

The second term represents the dynamical phase. The third term is characterized by the Berry

connection, which is defined as

(R) = iy (R)] [Vl R).
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Now we calculate the overlap of the state |¥(¢)) with the initial state |¥(). We have

(ol ¥ (1)) = @0 ) (y, (R(0)) |y (R(1)))- (2.5)

If we write (y, (R(0)) |y, (R(7))) = r(1)e'%) and (¥o|¥(¢)) = r(r)e'® ) for the phase of over-

lap, we obtain

o [TEMR@)) RO |
O, (1) = 8,(1) /0 e i [ o, (W RIVRY: (R)) -aR. 2.6)

Now we assume that there exists a time ¢t = 7 for which the Hamiltonian is the same as the
initial Hamiltonian, H(R(7)) = H(R(0)). This means that the system has returned to its initial
state. We allow that the initial and final parameters differ R(7) # R(0). The stationary states

will differ in these two times, but only by a phase, since they represent the same system,

¥a(R(7))) = ™[ y(R(0))),
with A, = 8,(7) and r(7) = 1. Consequentially, we will also have

W(1)) = ei(7n+¢d(7))|lpo>7

with ¢,(7) = — 5 ww being dynamical phase and
R(7)
0=, i [ ) (VR VRY(R) -dR, 2.7

which is called the geometric phase.

2.1.2 Invariance of the geometric phase

This geometric phase is invariant under the time reparameterization R(z) — R(f(¢)), meaning
that it does not depend on the velocity we go around the closed path, as long as the adiabatic
approximation holds. Moreover, it is invariant under arbitrary phase transformation of the sta-

tionary states. Let us use some other basis, which may or may not be single-valued in R,

W,(R)) = e*®)[y, (R)). (2.8)
Since

Ay = Ay +A(R(7)) - A(R(0)), (2.9)
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and

(¥, (R)|VRY,,(R)) = (¥u(R)|VR Y (R)) +iVRA(R), (2.10)

the two extra contributions cancel in the expression (2.7) for ¥, and the geometric phase re-
mains the same, i.e., ¥, = ¥,. Therefore, the Berry phase angle ¥, is gauge invariant. It must be
noted that the Berry connection is a gauge-dependent quantity, and consequently does not cor-
respond to an observable. However, the gauge invariant Berry phase angle represents a physical
observable [83].

2.1.3 Aharonov-Bohm phase

Previously mentioned Aharonov-Bohm effect shows that in quantum mechanics vector poten-
tials are physically relevant [20]. In the original paper by Aharonov and Bohm, this result was
obtained by solving the Schrodinger’s equation exactly for scattering in the flux line’s vector
potential [20]. However, Berry gave an alternative interpretation of the Aharonov-Bohm ef-
fect [87]. Aharonov-Bohm phase can be seen as a manifestation of Berry’s geometric phase
accumulated when a particle of charge ¢ confined to a box is transported around a line of mag-
netic flux ®.

The box is placed at position r = R and the flux line does not pass through it. When there is

no flux, i.e., A = 0, Hamiltonian of the particle is
H=H(p,t—R), (2.11)

where T is a position and P a conjugate momentum. The wave functions of states |n(R)) local-
ised around R are v, (r — R), while energies E, are independent of R. In the presence of flux,

states [n(R)) are solutions of the Schrddinger equation
H(p— gA(#),r — R)[n(R)) = E,[n(R)). 2.12)

It is easy to prove that this equation can be solved exactly if y;, is multiplied by Dirac phase

factor

r'=

W (r—R) = (r|n(R)) = exp (% r,:RrA(r') -dr’) va(r—R). 2.13)

Next we move the box around a circuit & which encloses the flux line and calculate the Berry

connection

) d
"(R) = i{y,(R)| 50 [W,(R)) = gA(R) /. (2.14)
In this case, the Berry connection is identified with the electromagnetic vector potential. This
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gives rise to the Berry phase, i.e., the Aharonov-Bohm phase,
1(C) = %]{ A(R)-dR = q®/h. (2.15)
Z

Here we recognize that the Aharonov-Bohm phase is topological because it does not depend on
the geometric properties of the path. It depends only on its topological invariants as long as the

particle moves in a region of zero field.

2.1.4 Berry phase as a holonomy

There is a strong connection between geometric phases and the topological structure made by a
Hilbert space .77 of the quantum system and the space of its parameters R. The name of this to-
pological structure is a vector bundle and it includes the manifold P, which denotes some region
of parameter space [92], contained within the space P x .. Bundle specifies the group of the
Hilbert spaces defined for particular values of R, where every space is related to the parameter
space P by the wave functions y(R) [92,93]. In geometry, a parallel transport of a tangent vec-
tor refers to the transport of the vector along the closed loop in the plane tangent to the surface
of the closed surface, where the vector is not allowed to rotate with respect to the normal [93].
An example is the dynamical evolution of the Foucault pendulum, where the tangent vector giv-
ing the direction of swinging of the pendulum undergoes a parallel transport along the circle. A
connection is an operation describing the way of transporting data such as vectors along a curve
in a parallel and consistent manner [93]. When the vector completes a full cycle, it may happen
that the vector points in a direction different from its original one. A name of this phenomenon
is a holonomy of the connection [93]. The geometric Berry phase precisely corresponds to the
holonomy in the Hermitian line bundle over the parameter space [92]. Connections provide a
particular way of parallel transport of the wave functions y(R) within a vector bundle, i.e., from
one Hilbert space in P x ¢ to another. The process of parallel transport is possible if a smooth
path between both spaces 7 is specified, and in quantum mechanics, ¥ is smooth because of
the adiabatic theorem. Parallel transport on a closed path maps a state y(R) to H(y,D)y(R),
where D is a connection and a linear map H(y, D) is the holonomy of the path. The holonomy
is the geometric phase acquired by y(R). Therefore, the Berry’s phase represents an important

example of holonomy identified in quantum mechanics [92].

2.2 The quantum Hall effect and anyons

This research is strongly related to the quantum Hall effect (QHE), and here we provide a short
review of some important concepts. The FQHE is the most relevant example of anyonic sys-
tems [23-25]. Namely, the quasiparticle and quasihole excitations of 2D systems of electrons

exhibiting the FQHE are the physical objects which may be described as anyons. In the follow-
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ing, we will focus on the application of anyons to the theory of the FQHE (for a review of the
QHE, see e.g. [94,95]).

Magnetic Field (T)

Figure 2.1: The dependence of the Hall resistance Ry, = V,/I, and the magnetoresistance
R, = Vi/I, of a 2D electron gas on the magnetic field (n = 52.333 x 10''ecm™2, T = 85mK).
The filling factors v are identified for the most important quantum Hall states. R,, shows plat-
eaus quantized to /1/(ve?) which are connected with the minima of vanishing R,,. From [J.
P. Eisenstein, H. L. Stormer, Science 248, 1510 (1990) [96]]. Reprinted with permission from
AAAS.

The IQHE [97, 98] and the FQHE [23,25] were discovered in the specific context of semi-
conductor heterostructures (IQHE in Si MOSFET [97] and FQHE in GaAs-AlGaAs [23] het-
erojunction), subjected to very strong magnetic fields (~ 10T or even more) while held at mil-
likelvin temperatures (~ mK). In this effect, a layer of electrons may be trapped at the interface
between two semiconductors, known as a heterojunction, or between a semiconductor and an
insulator. Conditions of the strong magnetic field and the low temperature block the motion
along the direction perpendicular to the layer and restrict dynamics to the plane. Electrons in
this layer can be described as a 2D gas with Coulomb repulsion.

The QHE shows that when the magnetic field varies at fixed electron density, the Hall res-
istance Ry, = V},/I, does not vary smoothly, as semiclassical theory predicts, but rather remains
constant over finite intervals as presented in Fig. 2.1. There are continuous intervals between

the plateaus. The Hall conductance oy, on the plateaus is

Oy =V— (2.16)

where the quantum number V is an integer for the IQHE [97,98] or a rational number with odd

denominator for the FQHE [23,25]. At the plateaus, the conductance tensor is off-diagonal,
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implying that a dissipationless transverse current flows in response to an applied electric field.
The Hall coefficient is expressed in terms of fundamental physical quantities, where it can
be shown that the quantization rule of the QHE is a topological quantization [99-102]. This
relation is experimentally observed with extremely high accuracy at the National Institute of
Standards and Technology with relative uncertainty of one part in 10'° [103]. The ratio /e is

known as the fundamental unit of resistance, called the von Klitzing constant (Rg) [104].

2.2.1 Landau levels

In order to understand the QHE, we recall the elementary quantum mechanics of charged
particles in a constant magnetic field. The Hamiltonian for a single electron of charge e confined

to 2D plane in a perpendicular magnetic field is given by

H= 5 b eAr).

The vector potential A is given by V x A = B = BZ and m;, denotes the band mass of the
electron. In the presence of a magnetic field, the continuous spectrum of a free particle breaks
up into discretely and equally spaced, highly degenerate levels known as Landau levels [1]. The
eigenenergies are E,, = ha.(n+ 1/2), where w. = eB/my;, denotes the cyclotron frequency, and
n=20,1,... the index of the Landau level.

In a symmetric gauge, A(r) = 1B x r, a basis of single-particle wave functions in the lowest
Landau level (LLL) is

_2
on(2) = f(2)e “5,
where z = x + iy is a complex coordinate for the electron, and f(z) any holomorphic function.

An unnormalized basis of LLL wave functions expressed in terms of monomials is

2

Vi =7"e 5, m=0,12,... (2.17)

These states are also the eigenstates of angular momentum. For samples of finite area A pierced

by magnetic flux BA, the number of states in each Landau level is

_eBA BA A
S 2wh Dy 2wl

where &y = 27fi/e is called the quantum of flux and Ip = \/W the magnetic length. In the
absence of disorder, the single-particle states are degenerate. If one considers many independent
electrons, the ground state is obtained by filling up the lowest energy single particle orbitals,
with the condition that no orbital is occupied by more than one electron as required by the Pauli

principle. The number of filled Landau levels is called the filling factor v and it plays a central
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role in the QHE. It is defined as N
v=-—= 2mi3n, (2.18)

where n = N/A is the electron density. One can prove that the filling factor is the quantum
number appearing in Eq. (6.3), using a rigorous derivation as in [94]. Since all combinations
of electrons in the highest partially filled Landau level have the same energy, the many-particle
ground state is infinitely degenerate. The special case is at an integral filling factor v = n, with

unique ground state which has a gap to excitations.

2.2.2 Integer quantum Hall effect

In 1980 von Klitzing discovered the IQHE [97]. This phenomenon emerges when V is in-
teger, i.e., an integer number of Landau levels is completely filled [97,98]. If the chemical
potential lies between the v-th and (v + 1)-th Landau levels, the Hall conductivity takes the
quantized value oy, = ve? /h while oy, = 0. The IQHE can be explained in the context of an
independent electron model and it becomes a manifestation of the previously explained Landau
quantization for non-interacting electrons in a magnetic field. In the absence of disorder, the
single-particle states in Landau levels are degenerate. The many-particle ground state is unique,
the system is incompressible and develops a gap to excitations. The many-particle wave func-
tion for non-interacting electrons is built as a Slater determinant, antisymmetrized product of
N single particle states y;(x), with i = 1,...,N [1]. When electrons are placed in the states
of the lowest Landau level Y ,, in Eq. (2.17), the resulting Slater determinant produces an

unnormalized state

Z(l) Zg ZR/

21 oz N |2 N 1,2
vizi,...ov) =1 c ~|exp —Z' ’|2 = H (zi —zj)exp —Z—' 1 )
: : U im1 4p 1<i<j<N -4
1 ~1 1

oo

(2.19)

The fully antisymmetric polynomial product factor is known as the Vandermonde determinant.
In this way, one can obtain the wave function for a completely filled LLL. Although the origin
of the IQHE is the opening of a gap, a periodic potential or a finite amount of disorder is needed
to build the plateaus. Namely, in the absence of disorder, the calculation of the current gives
the classical value of the Hall conductivity o = ne/B with no plateaus [18]. In the presence of
a periodic potential or disorder, Landau levels broaden into bands. There are extended states
at the centers of bands and localized states at all other places [94]. When the Fermi energy is
placed in the region of localized states, a change of the number of electrons only increases or
decreases the number of localized states which carry no current. The magnitude of the current is

frozen at the value corresponding to the full Landau level, as we can understand by introducing
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the impurities continuously from zero. Provided that no extended states cross the Fermi energy
when the impurity potentials are introduced, the current stays at the value when the impurities
are not present. Laughlin gave a more accurate explanation of the plateau. He demonstrated
that the Hall conductivity is quantized at oy = ne?/h when the Fermi level lies in the localized
states, where 7 is the number of extended bands under the Fermi level [98]. Thus, when the
chemical potential lies in the region of localized states between the centers of the v-th and

(v +1)-th Landau bands, the Hall conductance has the value oy, = ve? /h, while 0y, = 0.

2.2.3 Fractional Quantum Hall Effect

In 1982 Tsui, Stormer and Gossard discovered FQHE by observing a plateau at & = e?/3h [23].
Plateaus at new fractions r of quantum conductance were later observed in the neighborhood of

filling factor v ~ r. Observed plateaus occur in the following series of fractions

n
r= .
2pn+1

In addition to these fractions, the FQHE has also been detected at r = 5/2. According to the
IQHE, the plateau at ¢ = re® /h with fraction r arises because of the opening of a gap at v = r.
Therefore, there is a motivation to explain why the gaps emerge in a partially filled Landau level,
and why they emerge at certain series of odd-denominator fractions. When an integer number
of Landau levels is filled and the energy splitting between Landau levels iwp much larger than
the scale of the Coulomb energy e?/Ip, the neglect of Coulomb interactions is justified. How-
ever, when the electron density is such that the Landau level is only partially filled, Coulomb
interactions become important. While IQHE is achievable with independent electrons, gaps at
fractional filling factors are created because of interactions. Therefore, one should consider a
more complete problem of interacting electrons. In the absence of interaction, the ground state
of each partially filled Landau level is macroscopically degenerate. This degeneracy is broken
by Coulomb interaction between electrons, resulting in a spectrum of states with gaps at the
filling fractions where quantum Hall states are observed [94].

Laughlin made the first approach to the FQHE at filling fraction v = 1/m in 1983 [25].
When electrons interact through Coulomb repulsion, the ground state can be described precisely

by Laughlin’s variational wave function for v =1/m

N
2 /472
W =[i—z)"exp | =Y |zil*/415 | ,
i<j i=1
up to normalization. Laughlin wave function is known to be an exact ground state for a repulsive
ultra-short-ranged model interaction [94].
Here m is an odd integer, and therefore, v, is totally antisymmetric describing ordinary

fermions. If m is an even integer, this state can be considered as a quantum Hall state for
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bosons. The prefactor ¥, j(z; —z;)™ is analytic, implying that all particles are in the LLL. It
has a zero of order m when the points coincide (z; = z;), indicating that electrons favor to repel
each other in a way that is suitable to minimize the Coulomb interaction. These ground states
exist even when there is a disorder that is weak enough compared to the gap to excited states,
i.e., h@p > Ecoulomb > Vdisorder- It 1S important to note that Laughlin wave function represents
an incompressible quantum liquid, what is the essence of the FQHE [94].

Measurements of many fractions different from 1/m implied the presence of a more general
structure. In 1989 Jain suggested a theory of composite fermions [105]. A term composite
fermion refers to the bound state of an electron and an even number of the flux quanta. In
this theory, flux quanta, i.e., vortices, are absorbed by strongly interacting electrons in LLL,
transforming electrons into weakly interacting composite fermions in a reduced magnetic field.
Therefore, the fractional Hall conductivity is described as a manifestation of the IQHE of such

composite fermions [105-108].

2.2.4 Plasma analogy

The approach of plasma analogy gives numerous phenomenological results of the Laughlin

wave function [18,25]. In this approach quantum probability density |y;,|? is understood as a

Boltzmann distribution with potential energy U,,,

|lllm|2 = e_BUmJ

where

|2 —
U= —2m Lo (F3) + zlzZ\zf (220

i<j

One can recognize that the prefactor of y,, leads to the logarithmic terms of U,,, and the ex-
ponential to the last term. Potential of a 2D one-component plasma of particles with charge ¢

which move in a neutralizing background of density ng is

i —
Uptasma = —4" 3,10 g<| ’ |> + 57y qZZ\z,IZ (2.21)

i<j

Coulomb interaction in two dimensions between two particles of charge g is expressed in the
first term. The second term describes the interaction of the particles with the neutralizing back-
ground of constant density ny.

In the statistical mechanics 3 is inverse temperature. If in Eq. (2.20) we take B to take
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particular value of B = 2/m, the potential is then

2 |zi — 2 m 2
Un=-m")Y log l +— Yzl (2.22)
i<j B 4y 5

Since the forms of equations (2.21) and (2.22) are the same, we may look at U,, as the potential

of plasma of particles with charge ¢ = m in a neutralizing background of charge density

1

=—. 2.23
2wl (229

Po
In order to minimise the energy, the plasma tries to neutralize the background charge density.

The compensating density of particles n should be mn = py, i.e.,

1

= 2.24
" 27rl§m ( )

For a state at filling fraction v = 1 /m, this corresponds to the expected density, and it is constant.
Laughlin state m = 1 agrees with the wave function for a completely filled LLL in Eq. (2.19).
Therefore, by employing plasma analogy, we obtain the density in the v = 1 IQHE, n = 1/27/3.

2.2.5 Quasiparticles in the FQH state

Electrons in the FQH regime build an incompressible fluid state which allows localized ex-
citations [25]. In the FQH regime, electrons form an incompressible fluid state that supports
localized excitations [25]. Deviations from the density in Eq. (2.24) lead to the creation of loc-
alized quasiparticles, quasiholes and quasielectrons, with a gap in the spectrum that is related to
the energy cost of a quasiparticle. It can be shown that these excitations have fractional charge
and fractional statistics, implying that they are anyons.

In the simplest case, they can be obtained if we insert an infinitesimally thin flux-tube in
a nondegenerate state at a point zg and then adiabatically increase flux ¢ from zero to one
unit, =0 — ¢ = +¢do = £h/e, so that the system continues to be an instantaneous eigenstate
of the varying Hamiltonian [25]. This creates a vortex or an antivortex. Namely, because
of the Faraday law, the change of the flux results in a circular electric field around the point
zo0. Depending on the sign of @, the particles will move outwards or inwards, and negative or
positive charge will gather around zp. A gauge transformation can take care of the variation
of flux by one quantum ¢y, implying that the final state may be regarded as an excited state
of the initial Hamiltonian. Originally, it was shown that in the incompressible fluid at filling
v = 1/m described by y,,, the excitation is a quasihole or a quasielectron with charge ¢* =
Fve = Fe/m [25]. More generally, at v =n/(2pn+ 1), the value of the charge is |¢*| = ve =
e/(2pn+1) [94,106].

The wave function describing a quasihole excitation above the ground state y,, at filling
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v = 1/m with a quasihole at the point zq is given by
0 = JVhH( —20) Y, (2.25)

where .4}, is a normalization factor [25]. On the other hand, the wave function for the state at

v = 1/m with a quasielectron at 7 is

€20 — JVH (213 J ) Yin. (2.26)

The charge of the excitations of the FQHE can be obtained by applying the plasma analogy
directly to Eq. (2.25) and Eq. (2.26) [25]. For the quasihole wave function l//,ﬁ’zo, the plasma

potential energy is

(25 ) 2 s (21

i<j

In comparison with Eq. (2.22), we recognize an additional term. This term may be interpreted
as interaction of plasma with an impurity having charge 1. Since the charge of an electron in
plasma is ¢ = m, one concludes that the impurity carries 1/m of the charge of electron. In
order to preserve the charge neutrality in the system, mobile charges in plasma repel from the
impurity (or equivalently, we can define mobile hole charges in plasma which are attracted to the
impurity). Consequentially, the effects of the impurity cannot be observed at far distances and
this effect is called screening. The free energy of the plasma does not depend on the positions of
the impurities. In plasma with particles of charge m, the screening cloud will have a depletion
of 1/m particles, i.e., the compensating charge is —1/m. Therefore, each zy corresponds to a
quasihole with charge e* = —e/m [109].

The same result can be obtained by applying the concept of Berry phase in a method which
was proposed by Arovas, Schrieffer and Wilczek in 1984 [27]. This method computes also
the statistics of the quasiparticles. In this approach the charge of the quasihole is found by
calculating the Berry phase of the wave function l,l/szo as the quasihole position zg adiabatically
traverses a closed loop, and thereby encloses a flux ¢. When this phase is identified with the
Aharonov-Bohm phase, one can determine the charge of the quasihole.

This approach is also a method to determine the statistics of the quasiparticles. We examine
the state with a quasihole at the point zp and a quasihole at the point z;. The wave function is

then given as
YA = A, H(Zi —20)(zi —21) Yin-

We consider the case where the quasihole at zy adiabatically undergoes a closed loop and the
quasihole at z; remains fixed. First, one calculates the Berry phase if in its motion zy does

not encircle z;. Then, the Berry phase is found if the quasihole at z; is contained in the loop.
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The difference between these two phases may be interpreted as the statistical effect, where the
two quasiholes are exchanged twice. The statistics turns out to be 1/m, confirming that the
quasiparticles and quasiholes are Abelian anyons of fractional statistics v = 1/m. As may be
seen, the statistics is directly associated with the fraction of electrons composing a quasihole
or a quasielectron. The measurement of the fractional charge of quasiparticles in the v = %
Laughlin state was performed in resonant tunneling experiments [110], and in shot noise exper-

iments [111]. The measurement of the fractional braiding statistics has been reported [28, 110].

2.2.6 Non-Abelian anyons in FQHE

Now we review very briefly more complicated case of non-Abelian anyons in FQHE. The state
of v =15/2 Hall plateau is the first FQHE state assumed to be non-Abelian [29]. In 1991 Moore
and Read constructed the trial wave function for the state at v = 5/2 using a conformal field the-
ory [29]. This construction was generalized by Read and Rezayi to a sequence of non-Abelian
states, the sequence of spin polarized states at filling factors v =2+ k/(k+2) [30], and to other
non-Abelian states, which include spin-singlets states [31-33]. It was shown numerically that
v =5/2 and v = 12/5 ground states have a very good overlap with the exact ground states
obtained from the numerical diagonalization of small systems [34,35]. The braiding behavior
of quasiholes of the v =5/2 and v = 12/5 states was studied in depth in [36], as well as the
behavior of other states in the Read-Rezayi series in [37]. Since the Moore-Read state can be
mapped onto a p-wave superconductor of composite fermions [38], this enabled alternative ex-
plicit calculations of the non-Abelian exchange statistics of quasiparticles in this state in the

context of unpaired, zero-energy Majorana modes related to the vortex cores [39,40].
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Chapter 3
Proposals for realization of anyons

The work presented in this chapter has been published in the following papers:

e M. Todori¢, D. Jukié, D. Radi¢, M. Soljaci¢, and H. Buljan, Quantum Hall Effect with
Composites of Magnetic Flux Tubes and Charged Particles, Phys. Rev. Lett. 120, 267201
(2018).

e F. Luni¢, M. Todori¢, B. Klajn, T. Dubcek, D. Juki¢, H. Buljan, Exact solutions of a model
for synthetic anyons in noninteracting systems, Phys. Rev. B 101, 115139 (2020).

In the search for the physical realization of anyons, quasiparticle excitations in 2D interact-
ing many-body systems play a major role [7]. A paradigm of quasiparticles with fractional stat-
istics are excitations in the FQHE [23-28]. As explained in subsection 2.2, the manifestation of
both the IQHE and FQHE is a plateau in the Hall conductivity at ve? /h, where the filling factor
v is an integer for the IQHE, and a fraction for the FQHE. The key ingredients in the FQHE
are 2D electrons in a strong uniform magnetic field [23] and Coulomb interactions [24,25]. In
contrast, Coulomb interactions are not needed to explain the IQHE [97, 98]. Subsection 2.2
provides an overview of proposals for the realization of anyons. Some more recent examples
for realizing anyons include spin systems [8,46,51,56] and Majorana zero modes [62, 63]. We
emphasise a few examples of the condensed matter experiments for realizing and manipulating
anyons in a weakly interacting or noninteracting system [67-69]. However, there is still a long
way to go before experiments will be able to efficiently detect and manipulate anyons, espe-
cially for fault tolerant quantum computing [7,62]. Thus, there is an interest to explore some
less traditional schemes for realizing and manipulating anyons.

Motivated by the IQHE, in this chapter we consider new mechanisms for the realization and
signatures of anyons in non-interacting systems. In Section 6.3.1 we propose an experimental
realization of the original Wilczek’s model for anyons in 2D electron gas placed in a perpen-

dicular magnetic field, which gives rise to the IQHE. We show that the signature of anyons
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is a slight shift of the Hall resistance. In Section 3.2 we present exact solutions of a model
for synthetic anyons in a noninteracting quantum many-body system, which was considered
in [67,68]. Synthetic anyons occur when the noninteracting system is perturbed with specially
tailored localized probes. We show that the ground state is anyonic in the coordinates of the

probes.

3.1 Quantum Hall effect with composites of magnetic flux

tubes and charged particles

In this section we propose an experimental realization of the original Wilczek’s model for
(Abelian) anyons, composites formed from charged particles and magnetic flux tubes [3-5].
First, we propose a scheme for realizing charged flux tubes, in which a charged object with
an intrinsic magnetic dipole moment is placed between two semi-infinite blocks of a high-
permeability (u,) material, and the images of the magnetic moment create an effective flux
tube. This scheme is used in a particular system to develop a proposal for a realization of
Wilczek’s anyons. A 2D electron gas (2DEG) is placed in a perpendicular uniform magnetic
field, which gives rise to the IQHE [97,98]. Suppose that we sandwich the 2DEG between two
semi-infinite blocks of high-u, material, assumed to have a fast temporal response (in the cyclo-
tron and Larmor frequency range). The electron spins (i.e., magnetic dipole moments) will be
aligned due to the Zeeman effect, while the high-u, material will induce a flux tube attached
to each electron. For this system, we exploit the exact many-body wave function. We find a
signature of the presence of anyons in this system - the Hall conductance. The Hall resistance
at the plateau of the IQHE, which serves as a standard of electrical resistance [97, 103, 104],
would be slightly shifted. We discuss possible implementations of the proposed system, the
obstacles, and possible ways to overcome them. The quest for high-u, materials at high fre-
quencies, which is underway in the field of metamaterials, and the quest for anyons, are here

found to be on the same avenue.

3.1.1 Scheme for creating Wilczek’s composites

Our scheme for creating charged flux tubes involves two semi-infinite blocks of a high per-
meability (high-u,) material (i, > 1), which are separated by some distance d, and a charged
object with an intrinsic magnetic dipole moment. The object is located in the center of the slab
between the high-u, materials, and its magnetic dipole moment is perpendicular to the surface
of the blocks. Method of images was first introduced in the 19th century by Lord Kelvin in the
course of solving electrostatic problems. The application of the method of images is later ex-
tended to numerous problems in magnetostatics. Here we use the method of current images to

calculate the magnetic field of the magnetic dipole moment in the presence of high-permeability
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Figure 3.1: The scheme which gives rise to Wilczek’s flux-tube-charge composites. A charged
object with an intrinsic magnetic dipole (blue circle with a red arrow) induces an array of image
magnetic dipole moments within high-u, blocks (shaded gray), which can be interpreted as a
flux-tube-charge composite.

The image potential of one such magnetic moment, arising from the high-tt, material, cre-
ates an effective flux tube, thereby realizing a flux-tube-charge composite, as illustrated in
Fig. 3.1. The object could, for example, relate to an electron or a trapped ion, which have

intrinsic magnetic moments.

3.1.2 Realization of Wilczek’s anyons

We use this scheme in a particular system to develop a proposal for a realization of Wilczek’s
anyons. We propose to convert electrons into anyons by introducing an electron-electron (e —e)
vector potential mediated by the high-u, material. Our starting point is a 2DEG (in the z =0
plane) in a magnetic field By = ByZ (By < 0) exhibiting IQHE. We assume that the electrons
populate only the lowest Landau level; i.e., the filling factor is v = 1. The two semi-infinite
blocks of high-u, material with g, > 1 are then introduced in the region |z| > d /2, see Fig. 3.2.
The method of current images from classical electrodynamics models the influence of high-
L blocks on electrons and allows one to calculate the magnetic vector potential A(r) in the
|z| < d/2 slab due to the magnetic dipole moment of a single electron [19]. For a stationary
magnetic dipole m = mZ located at the origin, in the limit p, — oo, A(r) is identical to that of an
infinite array of magnetic moments deep within semi-infinite blocks. These virtual images are
equal in magnitude and direction to the original magnetic moment, and equally spaced by d, as

illustrated in Fig. 3.1. Thus, for r = |r| sufficiently larger than d, an array of magnetic moments
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can be viewed as a flux tube with A(r) ~ ®/27r@, where the flux is ® = yym/d. For a finite

value of U, the vector potential in the z = O plane is given by

rd u,—1>" 1 .
A(r) = .
(r) 4w ,Ei(lir-i-l (r2+n2d2)%¢

In order to estimate the validity of the approximation A (r)~®/27r¢, in Fig. 3.3 we plot

A:% ¢ A -dl as a function of r and p, (e < 0); the integral is taken around the circle of radius r
centered at the origin. Evidently, for t,=co, A is essentially a constant independent of r (except
for r<d), verifying that the flux &= § A - dl is concentrated close to the origin, and the approx-
imation is excellent. For finite values of u1, = 10*—10°, A changes very slowly over a large span
of values of r from d up to the mean free path /,, 7, in standard QHE samples [118], which
underpins the approximation in realistic circumstances. For concreteness, we plot Fig. 3.3 for
d=10 nm, and —A is plotted up to 10000 nm, but similar results are obtained for a span of
values d=10—100 nm. We assume that the medium has sufficiently fast response, so that this
picture is valid for a moving electron as well. This gives rise to the vector potential interactions

between the electrons. The viability of the proposal and approximations are discussed below.

Figure 3.2: A 2DEG in a uniform magnetic field By (in the IQHE state) is sandwiched between
two blocks of high-u, material (shaded grey). Dipole magnetic moments of the electrons (illus-
trated as red arrows) are aligned with By and behave as Wilczek’s flux-tube-charge composites.

If an electron encircles a fixed solenoid of flux ®, its wave function accumulates the Aharonov-
Bohm phase exp(ie® /), but the same phase arises also from a quantum-mechanical solenoid
orbiting around a fixed charge. Thus, the e — e vector potential mediated by the high-, material
is equivalent to that of a charge interacting with twice the flux in one flux tube [21,119], that is,

the interaction is 2eA(r; —r;), where

(DfX(I‘i—I‘j)

= >\t J/ 3.1
21 |r,~—rj|2 ( )

A(ri—r;))
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In the presence of a magnetic field, the electron energies of the up and down spins split due to the
Zeeman effect. In large magnetic fields, large energies are needed to flip the spin; restricting to
low energies, we can neglect electrons with magnetic moments opposite to that of the magnetic
field. Under the assumptions and approximations stated above, the system is described by the

Hamiltonian ;

1
H=) —|p—eAp(rj))—2e) A(ri—rj)|", 3.2
l'Z] 2171 () i jz?gl j (3.2)

with the symmetric gauge vector potential Ay = %Bo x r for the constant magnetic field.
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Figure 3.3: Parameter —A= — en ! $A -dl as a function r/d, for three values of L,;
d=10 nm.

Electron-electron vector potential in Eq. (3.2) is eliminated by a singular gauge transforma-
tion,

W (re,.m) =[Je Pt w(ry,....r), (3.3)

i<j

where ¢;; is the azimuthal angle of the relative vector r;—r; and y({r;}) is the fermionic wave
function in the regular gauge. The ground state of the Hamiltonian (3.2), in the singular gauge
is [113,115-117]

VilaHah) =@ -z)"exw(= 0 Z\zll (34)

i<j
where we have introduced complex coordinates z;=x;—iy;, the magnetic length [g=+/—7/eBy,
and the statistical parameter ¢=1+A. The energy of this state is E=nhw./2, where ®,= —
eBy/m is the cyclotron frequency. Here we assumed that the electrons in the initial IQHE

system, which we started with, populate only the LLL.
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3.1.3 Signature of anyons

In the following, we demonstrate that the Hall conductance for this state is

1 €2
oy — ——. 3.5
H="" (3.5)

To calculate the Hall conductance in this system, we use the Laughlin pumping argument
in the Corbino ring geometry [18,98]. Suppose that we introduce an infinitely thin solenoid at
z =0, and adiabatically increase the flux from 0 up to ®y = —27#/e (one flux quantum). The

state (3.4) adiabatically evolves into

v, ({zHa}) = [ [ @ —z0) v ({ziHz}), (3.6)
which is an eigenstate of the system with the same energy. In this process, charge ¢* is pumped
from the solenoid (at z = 0) to the edge of the ring. It can be calculated from the single particle
densities, po for the state in Eq. (3.4), and pq o for the state in Eq. (3.6). The calculation is
performed analytically in the thermodynamic limit N — oo by using the plasma analogy, first
introduced by Laughlin [25] (see Refs. [120, 121] for details),

1

Pa(x,y) = M

and
1

proter) = 5 (5 =380 ).

Evidently, the missing charge at z =0 is ¢* = ¢/, which yields

=gl 1
h ah
for the Hall conductivity. Thus, before we place the two high-u, blocks in the system, the
initial value of the Hall conductivity is ve?/h with v = 1 by assumption. After placing the
blocks, which induce the e — e vector potential, the Hall conductivity at the plateau shifts from
v=1tol/a=1/(1+A)=~1—A. The shift -A is plotted in Fig. 3.3, and it has the value
10°7—107°. Despite the fact that the shift is small, Aoy ~ 1077 x €2 /h, measurements indicate
that the value of the quantized Hall resistance can be reproduced within a relative uncertainty
of one part in 10'° [103], meaning that the shift in the Hall conductance could be detectable
as the signature of Wilczek’s anyons. In addition, we note that as the e — e vector potential is
introduced (a flux tube with flux & is adiabatically attached to every electron), according to the
adiabatic principle developed by Greiter and Wilczek [114], the system remains gapped; i.e.,

incompressible quantum Hall states remain incompressible.
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3.1.4 Implementation of the system

Now we discuss possible implementations of this system, the obstacles, and possible routes
to overcome them. We have assumed that the e — e vector potential picture is valid also for
electrons moving in the 2DEG, even though it was derived for static electrons. In the clas-
sical picture, electrons exhibiting the Hall effect move in circular orbits with the cyclotron
frequency, giving rise to oscillating fields that material should respond to. In the quantum pic-
ture, electrons are in the Landau level states. Recent experiments [122] have demonstrated that
the currents corresponding to electrons promoted in Landau level states oscillate at cyclotron
(w, = —eB/m*) and Larmor frequencies (2 = —eB/2m*), depending on the particular state;
here m* is the effective mass of electrons. Therefore, we conclude that the demanded high-p,
material should have a strong magnetic response in the frequency range corresponding to cyclo-
tron motion. A typical system for the QHE is the interface of a GaAs/AlGaAs heterojunction
where m* = 0.067m, [123], and the frequencies are in the terahertz range. Unfortunately, the
magnetic response of most conventional materials is beginning to tail off in the gigahertz re-
gion [124]. A few natural magnetic materials that respond above microwave frequencies have
been reported, but the magnetic effects in these materials are typically weak (see Ref. [125] and
references therein).

These restrictions can in principle be overcome by using metamaterials, artificial structures
which can be constructed to have a strong effective magnetic response L. sr( @) at high frequen-
cies (ranging from gigahertz to terahertz) [124—126]. Another advantage of using metamaterials
in this context is that their response is usually not broadband. Therefore, a high-1t, metamaterial
at terahertz frequencies is likely to have low response (or none) at zero frequency (for example,
see Ref. [127]) and would not be affected by the constant magnetic field used to create the IQHE
state. One possible route for constructing a desirable metamaterial could be photonic doping,
recently used to construct a material with effective U,y — o [127] for polarization where the
magnetic field is parallel to the surface (here we demand that the magnetic field be perpendic-
ular to the surface). The characteristic scale of the building constituents of the metamaterial
should be smaller than the magnetic length /g, so that the concept of the effective macroscopic
permeability remains valid. Another possibility to overcome the obstacle of fast material re-
sponse is to reduce the Fermi velocity and thereby the cyclotron frequency by involving heavy
fermion materials, in which electrons have a large enough effective mass. The cyclotron fre-
quency scales as 1/m*; thus, to bring the cyclotron frequency down to the gigahertz range, by
using typical numbers from above, the effective mass of the electrons should be m* ~ 10%m,.

An important parameter, which should be tuned to get the desired effect, is the distance
between the high-i, materials d. The flux tube approximation A (r) ~ ®/2xr¢ for the vector
potential of an electron, which is illustrated in Fig. 3.3, is excellent already for r > d. We find
that for values of i, ~ 10* and larger, it is excellent up to r ~ [, 7., and more (this depends on

u). It gives rise to the e — e interactions in Eq. (3.1). Hence, the average separation between
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electrons should be greater than d for Eq. (3.1) to apply. In standard IQHE experiments, the
electron density is 10'' — 10'? so that the average separation is of the order of 20 nm, but in
principle it could be larger. For larger values of d (say d ~30-60 nm), the flux tube approx-
imation is even better at scales from d to [, r,. However, the shift in the Hall conductivity
Aoy , which is the signature of the effect, scales as 1/d. Thus, we must find an appropriate
value for d smaller than the average separation between electrons, and small enough for the
effect to be measurable, but large enough to be possible to sandwich a thin material with IQHE
between two blocks of high-u, material. This is a viable task according to the parameters used
in Fig. 3.2. Moreover, assuming one could tune d in an experiment, a measurement yielding
Aoy ~ 1/d would be a clear evidence of Wilczek’s anyons in this system. Since the area of the
IQHE sample is finite and V - B = 0, when r — o, —A — (. Thus, the high-u, materials should
have a large aspect ratio (height much larger than the square root of the area) to properly steer
the magnetic streamlines.

We note that a promising possibility to observe Wilczek’s flux tubes is to engineer 2D ma-
terials [128]. To this end, we propose to intercalate a metallic monolayer between two lay-
ers of hexagonal boron nitride (h-BN); this could be Li, K, Na or some other metallic mono-
layer [129, 130]. The density-functional theory calculations for an h-BN-Li—-h-BN monolayer
show structural stability and a parabolic band dispersion [131]. The principle of intercalation
is here very similar to such intercalation in graphite, which has been extensively studied [132].
The h-BN—metallic monolayer-h-BN structure can in principle be sandwiched between two
blocks of the high-ut, material, thus constituting a candidate for observing anyons according to
our scheme. Another route could be to grow a metallic monolayer on the film of a semicon-
ductor as in Ref [133], and to place it between the high-p, blocks (the semiconductor should be
sufficiently pure not to conduct). Viable paths could also be conceived with layered dichalco-
genides [128].

For concreteness, our theoretical analysis above is based on the QHE with electrons in
a 2D parabolic band. The most famous 2D material—graphene—has a conical band struc-
ture [134-136]. However, graphene sandwiched between two blocks of high-u, material could
also be a candidate for exploring (Wilczek-Dirac type) anyons according to the present proposal.
Although the quantum Hall effect in graphene is distinctive, as it occurs at half-integer filling
factors [134, 135], the Landau-level wave functions for low-energy electrons in graphene have
the same mathematical structure as in the 2DEG (up to the coefficients that enter these wave
functions [136]). Thus, we conjecture that the signature of Wilczek’s flux tubes in this system
would also be a small shift of the resistance at the plateau. Graphene also has the possibility
to be strained [137] and induce effective gauge fields, which is an additional useful degree of

freedom when tinkering with this system.
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In conclusion, we have proposed a scheme for creating flux-tube-charge composites, which
employs a material with high magnetic permeability u,. Thus, advances in developing high-
U, metamaterials could lead to novel ways for creating anyons. We have calculated the Hall
conductivity for a 2DEG in the IQHE regime, sandwiched between two semi-infinite blocks
of high-u, metamaterial with a fast temporal response, and found that the Hall resistance at
the plateau would exhibit a small but detectable shift, which is to some extent a striking con-
sequence because it serves as a standard of electrical resistance [97,103,104]. Finally, we would
like to note that the quest for anyons is of broad interest and underway in many systems includ-
ing ultracold atomic gases [41,43,51], photonic lattices [138] and quantum spin liquids [56].
Our scheme for creating charged flux tubes has potential to be used in other systems such as
trapped ions. Here we have addressed Abelian anyons. We believe that further studies inspired
by this proposal could yield schemes for realizing non-Abelian anyons for topological quantum

computing [7].

38



3.2 Exact solutions of a model for synthetic anyons in a non-

interacting system

In the context of some less traditional schemes for realizing and manipulating anyons, let us
mention a few examples of the condensed matter experiments for realizing and manipulating
anyons in weakly (or noninteracting) system. It was proposed that anyons could be synthesized
by coupling weakly interacting (or noninteracting) electrons to a topologically nontrivial back-
ground (or topologically nontrivial external perturbations) [67-69]. In Refs. [67, 68], anyons
are proposed in a system of an artificially structured type-II superconducting film, adjacent to a
two-dimensional electron gas (2DEG) in the IQHE with unit filling fraction [67,68]. A peri-
odic array of pinning sites imprinted on the superconductor will structure an Abrikosov lattice
of vortices [67]. Anyons are bound by vacancies (interstitials) in the vortex lattice, which carry
a deficit (surplus) of one-half of a magnetic flux quantum [67]. In Ref. [69] anyons were pro-
posed in integer QHE magnets [69]. Magnetic vortices in this system are topologically stable
and have fractional electronic quantum numbers yielding anyonic statistics. Anyons were also
proposed by using topological defects in graphene [70].

In this section we study a theoretical model for synthetic anyons in a noninteracting quantum
many-body system. We present exact solutions of a model for synthetic anyons, which was
considered in Refs. [67,68]. Synthetic anyons can occur in a noninteracting system when it is
perturbed with specially tailored localized probes, which supply the demanded nontrivial topo-
logy in the system. The model is represented by the Hamiltonian for noninteracting electrons in
two dimensions, in a uniform magnetic field, pierced with solenoids with a magnetic flux that is
a fraction of the flux quantum. In a potential experimental realization of the model, there should
be a mechanism fixing the flux in all solenoid probes to an identical value for these perturbations
to represent synthetic anyons. We find analytically the ground state of the model when only the
lowest Landau-level states are occupied. We calculate the statistical parameter by using the
Berry phase, and show that the ground state is anyonic in the coordinates of the probes. These
results are confirmed numerically. We show that these synthetic anyons cannot be considered
as emergent quasiparticles. The fusion rules are discussed for different microscopic realizations

of the fusion process.

3.2.1 Ground-state wave function

In our theoretical model we consider N, noninteracting spin-polarized electrons in 2D con-
figuration space (in the xy plane), in a uniform magnetic field Bo = V x Ag = BpZ, where
Ap(r) = Bg x r/2 is the vector potential in the symmetric gauge (By > 0). The system is per-
turbed with N very thin solenoids at locations 0, = 1, x& + 1N, x¥. The vector potential of each
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solenoid is
P £ x(r—1m)

2w r-m G7)

Ay(r) =

where @ is the magnetic flux through a solenoid. The Hamiltonian representing the model is

then
1

N, 2 N,

Z > < —qAo(r;) — ZAk r; ) + ZIV(rj)7 (3.8)
j=1 j=

where V (r) is zero for r < Ry, and infinite otherwise; ¢ < 0 (m) is the electron charge (mass,
respectively). The system is illustrated in Fig. 3.4(a). We assume that the Fermi level is such
that only the states from the lowest Landau level (LLL) of energy /g /2 are populated (wp =
—qgBy/m), and we assume they are all populated. The many-body ground state of this system
is denoted by w({z;},{Z;}; {mk},{Mk}), where z; = x; +iy; and Z; = x; — iy; are the electron

coordinates, and 1 = My + Ny and Mg = M, — Ny are the probe coordinates in complex

(a) (b)
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Figure 3.4: Sketch of the model. (a) We explore a 2DEG in a magnetic field By, on a disc of
radius Ry,qy. The solenoid probes with flux ®, pierce the 2DEG at positions 7); (coordinates are
in complex notation). (b) The contour path of one probe, which adiabatically traverses a closed
loop in space; we are interested in the Berry phase accumulated along such paths. Illustration
of the contours corresponding to 7;, (c), and ¥, (d).

In this section we demonstrate that the ground state wave function with energy N, fiwp /2 is
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given by

1 Ne N
y = [Tz — el ™% =

VZHEMe} {Mk})
N, e .
X [H(zi —zj)] exp (— E’lf) , (3.9)
i=1 B

i<j

where Igp = \/—h/Boyq is the magnetic length, o = ® /Dy, &y = —27h/q is the flux quantum,
and Z({M},{N«}) accounts for normalization. We consider o € (0, 1); results for fractional

values outside of the (0, 1) interval are easily deduced.
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Figure 3.5: Sketch of the energy scales and the spectral flow for just one probe. (a) A probe is
centered in the system, its flux is such that 0 < a = ®/®y < 1. (b) As « is increased, there is
a spectral flow as illustrated. The Fermi energy Er is always set such that only the LLL states
are populated.

For the clarity of the presentation, we first present what happens with the system when only

one probe is placed in the system, and subsequently what happens when two probes are inserted.

For a single probe, the single particle states of the system at the LLL energy are given by

l//m=|z—n|“z—n2mexp<—z—), m=0,1,2,.... (3.10)

There is one state localized at the position of the probe, with energy fiwp(1+20a)/2 in between
the LLL and the first excited Landau level:

_|Z—n|2+ﬁz—n2)_

. . o
Vis=|z—1| CXP( e

Suppose that one introduces the solenoid probe at some point in time, and adiabatically in-

creases the flux through it. As « increases from zero to one, there is a spectral flow illustrated
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in Fig. 3.5; one state from the LLL rises in energy and starts flowing towards the first Landau
level. When a = 1, this flux is just gauge, and the energies map back onto those at o¢ = 0. This
scenario is well known from studies of the QHE [18]. Here we assume that the flux is fixed
at some value «, and the Fermi energy is between LLL energy and iiwg(1 +2a)/2; thus, this
localized state is not populated. The many-body ground state is constructed by inserting all
LLL states in a Slater determinant; it is given by Eq. (3.9) for N = 1.

For the case of two probes, the single particle states of the system at the LLL energy are

Y = le=m| %z—m| "z—mz—m
_ |z|?
x7"exp| ——5 | ,m=0,1,2,... 3.11

p ( 412 (3.11)
Now there are two localized states in between the LLL and the first excited Landau level. We
did not find analytical expressions for these states but they are visible in numerical calculations.
The energies of these localized states are in the gap, between the LLL and the first excited LL.
They increase with increasing alpha and join the first excited LL. when o =1 as expected. The

many-body ground state is given by Eq. (3.9) for N = 2.
Now we generalize our results for any number of the probes N. To this end, we employ the

following singular gauge transformation:

v =v [] [I expliae;):; (3.12)

1<i<N, 1< j<N

here ¢;; denotes the argument of z; — 1 = |z; — 1| exp(i¢;;). In this gauge, the vector potential
of the probes is A} = 0 everywhere except at the positions of the probes, and the Hamiltonian
H'is given by Eq. (3.8) with Ay replaced by A} = 0. It is straightforward to verify that y’ is an
eigenstate of H' with energy Nwg/2, and hence the ground state.

It should be pointed out that in the limit &¢ — O the wave function 3.9 does not approach the
IQHE ground state with all LLL states filled, but rather it becomes an IQHE state with N of the
LLL states left empty. Namely, the localized states which appear at the position of the probes
for a > 0 are not included in the Slater determinant used to construct the ground state 3.9, as
discussed above. For @ = 0 they enter the LLL, but since they were not used in constructing
3.9, the wave function 3.9 does not approach the IQHE ground state (with all LLL states filled)
in the limit & — 0. Strictly speaking, Eq. 3.9 is the ground state for & € (0, 1), provided that
only the LLL states are filled; it is not the ground state for o = 0 and all LLL states filled.

In a potential experimental implementation of the proposed system, one should not popu-
late the localized states such as y;g. With this state populated, the ground state is no longer
anyonic in the coordinates of the probes. For this state to remain empty, the temperature must
be sufficiently low such that kT < hwpo, which is difficult to obtain for small o«. However,

an additional localized repulsive scalar potential at the location of the probes (e.g., the delta
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function potential), which may be present naturally depending on the realization, would lift the

energies of the localized states to remedy this issue.

_2mq
l%- 7 Y K
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Figure 3.6: The single-particle densities (cross sections) of the ground states with one probe (at
r =0) and two probes (at r = 0 and 5.264/p). The flux through the probes is given by o = 0.7.
The horizontal dashed line depicts the density of an infinite system.

In Figure 3.6 we illustrate the single particle density (cross section) for the system with
one and two probes. Clearly, the single particle density has a cusp-like dip at the position
of a probe, i.e., a missing electron charge Ag. It is tempting to identify the composite of a
missing electron charge Ag and the probe with flux ® with Wilczek’s charge-flux-composite
anyons [139], however, a careful analysis of the Berry phase below shows that this is not the
case.

To end this section, let us mention that when calculating the single-particle states of the
LLL, which enter the Slater determinant used to construct the ground state (3.9), one encounters

a spurious single particle state of the form

2
Vepur = || %exp (—%) ; (3.13)
which, although normalizable, has divergent density. The form (3.13) corresponds to a system
with a single probe centered at the origin. A more careful analysis shows that this state is, in
fact, not an eigenstate of the Hamiltonian and should not be used in the construction of the
Slater determinant. If this state was physical and present in the ground state, the ground state
would not be anyonic in the coordinates of the probes. In that case, however, the aforementioned
additional localized repulsive scalar potential at the location of the probes could be used to lift
it in energy and remove it from the ground state. We should note that in Ref. [67] this spurious
state was used to construct the many-body ground state, and as a result the ground state from

Ref. [67] is in fact not anyonic.
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3.2.2 Anyonic properties of the wavefunction - calculation of the Berry

phase

Here we calculate the Berry phase as one of the probes undergoes adiabatically a closed loop
in space as illustrated in Fig. 3.4(b). The Berry phase depends on how many other probes are
contained in the loop. More specifically, following the calculation of Arovas et al. [27], we
calculate the Berry phase when a single probe is within the loop (call it v;,, see Fig. 3.4(c)),
and when all of the other probes are outside of the loop (call it 7,,, see Fig. 3.4(d)). The
difference between the two phases is the statistical phase, which we find to be ¥s = Yin — Your =
2w(a— 1), where o0 = ®/Py; this result means that in the coordinates of the external probes,

the wavefunction y is anyonic when « is fractional.

1 Plasma analogy First we consider a normalized state with N probes given by (3.9). Us-
ing the plasma analogy, normalization factor Z({n;},{7x}) can be interpreted as the partition
function of the 2D one-component plasma (electrons) at {z;} at an inverse temperature 3 = 2,
interacting with charged impurities (probes) at 7, [18,25]. The potential energy for this system

is given by

2 |2k — 2]
Ul _4122|Z’| Zlo( I )

k<l

()

In the thermodynamical limit (large V), the partition function Z can be obtained by using the

(3.14)

saddle-point technique, where the particles are driven into configuration which has the min-
imum energy [120, 121]. For N — oo, sum over particles becomes a continuous distribution,
which equals the electron density. Minimizing the energy and using a%z’l = 18%(z), one ob-

tains the density of particles

!2
l\)
T MN

p(z) = (1-a 2(z—m;). (3.15)

We can recognize two contributions p(z) = po + 0p(z). The first one is constant and corres-
ponds to the density in the case of the IQHE, while the second one describes the charge depletion
at positions of the probes. In the presence of impurities, the charges rearrange themselves to
cluster around the impurity by accumulating an equal and opposite charge so that its effects
cannot be noticed at far distances. In order to describe the plasma with impurities, one includes
the energy cost between the impurities and the constant background charge, and the Coulomb

energy between different impurities. Corrected potential energy and partition function should
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be independent of the positions 7;. This leads us to the result for the normalization factor:

Z:Cexp< 2Zlog 2771| 12 Zm |2>

k<l B k

2 Berry phase In order to find the statistics of the probes, we pick one of the probes, for

example 1, and move it on a closed path C = dS. After traversing the path, the wave function

1
Y= ﬁ%
acquires a phase shift given by the Berry phase
eiY:eXp (—i?{,;zfmqut,;zfmdﬁl), (3.16)
C

where @7, is holomorphic and .7, anti-holomorphic Berry connection:

_ i, 9 i d
%(n,n)z—?x!%m E%(logZ),
_ i d
%(n,n)z——<x!3—\x> E%(logz).

Calculation of the Berry phase proceeds as in [27]. The braiding phase corresponds to the
difference of the Berry phases for closed paths with and without another probe enclosed by it.
When 7, is taken around the closed path C, contributions from the normalization factors, i.e.,
partition function Z, cancel each other. Derivatives of the unnormalized wave function y are

given as

Taking the definition of the charge density

x|26 zi—2)|x), (3.17)
one obtains @ 5 @
o Pz 0 — 2 I A
L fd + /d fd P
12/ ¢ C mz—m : 2 ¢ c mZ—m
If we denote the integral
I Zfdm/dzz—p(z) , (3.18)
c Z—M
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we have
y=i(aRe /- 7).

Concerning the contribution of py in Eq. (3.18), if 711 is integrated in anticlockwise direction,
only values of z inside this loop (z € S) contribute —27i to the integral. Then we can evaluate
the surface integral, where we use the relationship between the charge and the magnetic flux &g
in S for the v = 1 IQH state. In order to find the contribution of the second term dp(z) , first
we evaluate the surface integral and obtain a non-vanishing contribution from 1; # 1. Contour
integral then evaluates to —27i only if 7; is inside the closed path of 717;. This leads us to the

result

D
/out = —271715;

()
Fin=—2mi— +27i(1 — o).
D

Let us denote the mean number of electrons inside the contour as (n)c. Thus, when 1 traverses
a path where it does not encircle any other probe the Berry phase is
@y

Your = 277:(1)0 = 27[<n>C,0ut-

On the other hand, if another probe is inside the loop, the Berry phase sums up to

o
Yin = 21— —27(1 — &) = 27(n)C in-
b, '

The statistical phase is the difference between these two cases:
¥Ys = 2”(<”>C,in - <n>C,oul) = 271'(06 - 1)'

Thus, ¥s mod 27 is equal to 2woc. Let us briefly comment on the fact that Ag — —q as o0 — 0,
and Aq — 0 as a — 1, which may seem awkward at first sight. This is related to our discussion
in the previous section on the behavior of the wave function 3.9 as o — 0. When constructing
the wave function 3.9, we do not populate the localized states which appear at the position of
the probes for o > 0. Therefore, as o > 0, they are not in the Slater determinant, leaving a
hole of charge Aq = —q at the position of the probe. When o — 1, the localized states at the
position of the probe enter the first LL. (which is empty anyhow by assumption); however, the
corresponding state in the LLL below is now filled, yielding Ag = 0, as the spectrum has flown

back to itself when o flows from zero to one.
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Figure 3.7: Two probes at opposite radii 177 and 7, are exchanged leading to an exchange phase
m(a—1).

From the viewpoint of the relative coordinate, when one of the probes encircles the other
probe, this corresponds to a double exchange of the two probes illustrated in Fig. 3.7. Thus, we
conclude that if we exchange two of the probes adiabatically along a path illustrated in Fig. 3.7
(with no other probes within the closed contour) the exchange phase accumulated by the wave
function will be (o — 1). This means that the wave function y is anyonic in the coordinates

of the probes, with the statistical parameter given by 0 = m(ot — 1).

3.2.3 Gauge invariance

We end this section by a note on the gauge invariance of the Berry phase calculated along the
closed path C. The wave function ¥ in Eq. (3.9) is a single-valued function of the positions
of the external probes 7, provided that the normalization Z(my, ) is also chosen to be a
single-valued function of 7. In contrast, the singular gauge wave function ¥ in Eq. (3.12) is
a multivalued function of 1. Equation (3.16) for calculating the Berry phase yields different
results when naively used for ¥ and y'. However, the Berry phase calculated along a closed
path must be independent of the gauge used. This issue is resolved by noting that Eq. (3.16)
should be used only for single-valued wave functions (that is Y in our case). If one wishes
to calculate the Berry phase in the singular gauge by using the multivalued wave function v/,
there is an additional term that should be included in the Berry phase formula [see Eq. (5.12) in
Ref. [141] which ensures gauge invariance. We note that our results differ from Refs. [67,68],

which have used multivalued wave functions and Eq. (3.16) to calculate the Berry phase.

3.2.4 Synthetic anyons are not emergent quasiparticles

From the illustration of the single-particle density in Fig. 3.6 we see that at the position of every
solenoid probe there is a cusplike dip, i.e., a missing electron charge, which is found to be Ag =
—q(1 — o) from the single-particle density. We have already noted that it is tempting to identify

the composite of a missing electron charge Ag, and a solenoid with flux & with Wilczek’s
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charge-flux-composite anyon [4,5]. Now we show that such an interpretation is erroneous.
When a probe traverses a closed path C, the system acquires the Berry phase ¥ = 27w (n)¢. Let
us try to calculate the missing charge by a different route using the Aharonov-Bohm phase,
and by assuming that we are dealing with a charge-flux-composite. To this end, let us denote
the missing charge ¢*, and check whether we obtain the same result as with the single-particle
density. When the charge ¢* traverses the path C, it will acquire the Aharonov-Bohm phase
q*Pc/h, where ¢ = (n)c Py is the total magnetic flux within the path C (we have assumed
unity filling of the LLL). To obtain the Berry phase, we should include the Aharonov-Bohm
phase acquired by the solenoid with flux a® that circulates around the charge ¢(n)c, which is
equal to ¢(n)ca®y/h. By identifying

*P, n)cod
q c+(]< >C 0

= 2 =
’y 7r<n>c h h ?

we find
¢ =—q(1+a)#Ag=—q(l —a).

This difference may come as a surprise, because an equivalent calculation for anyons in the
FQHE yields identical expressions for the missing charge from the single-particle density and
from the Aharonov-Bohm calculation of g*.

To understand the obtained result, first we note that the external solenoid probe acts as a ladle
that stirs the electron sea around, and the Aharonov-Bohm phase depends on the movements of
the electrons in the sea, and not of the missing charge. When the missing charge corresponds
to the quasiparticle, as in the FQHE, then ¢* = Ag because the motion of (quasi)holes uniquely
corresponds to the motion of the electron sea. However, the missing charge here is not a quasi-
hole, and we cannot interpret the missing charge attached to the solenoid probe as Wilczek’s
charge-flux-tube composite. One way to understand this difference is to assume that the elec-
tron sea is a superfluid, and the Aharonov-Bohm phase acquired by stirring the ladle would be

Z€10.

3.2.5 Fusion rules of synthetic anyons

The conclusion of the previous section has impact on the fusion rules of synthetic anyons. The
fusion rule states that the exchange phase I's of a particle formed by combining » identical any-
ons with exchange phase s is I's = n?7¥s. The fusion rules depend on the physical microscopic
process which corresponds to the fusion.

For example, suppose that we have N = 4 solenoid probes in the system with flux o®y, i.e.,
we have two pairs of probes. Next, we slowly bring together (merge) two of the solenoids from
each pair, thereby forming a system with N = 2 solenoid probes with flux 2a®,. This system
is identical to the one we have explored with o replaced by 2a¢ mod 1. Thus, the exchange

phase changes from 7(c — 1) to [(2aemod1) — 1]. This is not the exchange phase 227 (a — 1)
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expected from fusing two anyons. This is related to the fact that we cannot interpret the missing
charge attached to a solenoid probe as Wilczek’s charge-flux-tube composite, because in that
case the standard fusion rules would be applicable.

Let us now consider the fusion process as pairing the solenoids two by two in the following
manner. Suppose that we have two pairs of probes, i.e., N = 4 solenoid probes, with flux ad,
in the system located at {1, 7M2,M3,N4}. The wave function y is given by (3.9). Two solenoids
are paired so that they remain separated by a small constant vector. For each pair we use center-

of-mass and relative coordinates

m+nmn n—mn
X = Xr:
¢ 2 2
YC:T)3+774, y, = B T4
2 2

If we encircle the first pair of solenoids at X, along a circle of radius R around the second pair

at Y., which is held static, this process can be described as
X' (0)=Y,+Re® =Y.+ A,

where A is a complex coordinate which moves around the closed path C = 95, a circle of radius

R. Then the coordinates of the first pair are moved according to
=Y +X+A, n=Y.—X,+A.
The Berry phase acquired in this process is given by

) 2r 0
F=l/o do(y|=ov).

Since the normalization factor of the wave function is single-valued in 0, it does not contribute
to the Berry phase for a closed path. Taking into account the expression for the charge density

and the result

dni, di

de  do’
we obtain

qufdxg/ﬁ%[p&%+'xdl
C 2 — nl Z— n2
—Hfﬁ(g:Q/f{P@phMi}
C 2 Z— nl Z— nz

Denoting

/:fdz/d%{ Pl . PQ) ] (3.19)

/ /
=M =M
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the Berry phase is then

I=i(aRe # — 7).
Regarding the contribution of pg in Eq. (3.19), when A is integrated anticlockwise, only values
of z inside this path contribute —47i to the integral. After this, one calculates the surface integral
and uses the relationship between the charge and the magnetic flux g for the v = 1 IQH state.

Concerning the contribution of dp(z), first the surface integral is evaluated. This gives us the

result

1 1
7t 7t
-1 M4—1

o
=—4mi—> —(1—a) ¢ dA
7 '@, ( ) [n3

1 1
/ + /A
m—1, MNa—M
Evaluating the contour integral, we obtain
P
J = —47i— +87i(1 — ),
Dy
and, finally, the Berry phase is
D
=4z~ +8n(a—1).
D

We can recognize the Aharonov-Bohm phase and the statistical phase I's = 8(c — 1) which

confirms the fusion rule for anyons.

3.2.6 Experimental realization

It might be interesting to discuss a potential experimental realization, and pertinent challenges,
of Hamiltonian (3.8) in ultracold atomic gases. Ultracold atomic gases have been experiment-
ally realized in two dimensions [142,143], and a viable path (although not a simple one) for im-
plementing IQHE states with ultracold atoms is to employ synthetic magnetic fields [144—147].
The missing ingredients are solenoid-like probes. The synthetic vector potential of a solenoid
can in principle be achieved with vortex laser beams nonresonantly interacting with two-level
atoms [148]. Namely, by exploring Eq. (7) in Sec. II of Ref. [145], one finds that a vortex
beam interacting with a two-level atom can yield the Berry connection which corresponds to
the vector potential of a solenoid. The vortex phase ensures proper direction of the vector po-
tential; however, to obtain the proper ~ 1/r dependence one must in addition properly adjust
the detuning and the intensity of the laser. An additional challenge along this path would be to
ensure that the synthetic magnetic flux through every solenoid is identical, so that an exchange
of any of the two lasers would depend on the unique statistical parameter (otherwise localized

perturbations at the probes could not be referred to as synthetic anyons). The advantages of
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ultracold atomic systems are long coherence times and the possibility to relatively easily braid

the laser probes.

In conclusion, we have presented exact solutions of a model for synthetic anyons in nonin-
teracting many-body systems. The key ingredients in the model are specially tailored external
potentials (that could correspond to some external localized probes), which supply the deman-
ded nontrivial topology in the system. The Hamiltonian representing the model is that of nonin-
teracting electrons in a uniform magnetic field (in the IQHE state), and the probes are solenoids
with a magnetic flux that is a fraction of the flux quantum. The Fermi level is such that only
the lowest Landau-level states are occupied; the localized states which appear at the position of
every probe, with energy in the gap, are assumed to be empty. We have found the ground state of
this system, and demonstrated that it is anyonic in the coordinates of the probes, when the flux
through solenoids is a fraction of the flux quantum a®. The statistical parameter of synthetic
anyons is 6 = w(a — 1). We have shown that these synthetic anyons cannot be considered as
emergent quasiparticles, and that they cannot be interpreted as Wilczek’s charge-flux-tube com-
posites. This observation has consequences on the fusion rules of these synthetic anyons, which

depend on the microscopic details of the fusion process.
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Chapter 4

Berry phase for a Bose gas on a

one-dimensional ring

The work presented in this chapter has been published in the paper:

e M. Todorié, B. Klajn, D. Juki¢, and H. Buljan, Berry phase for a Bose gas on a one-
dimensional ring, Phys. Rev. A 102, 013322 (2020).

One-dimensional (1D) quantum many-body systems have intrigued mathematicians and
physicists for almost a century. Bethe determined an exact solution to the 1D Heisenberg
model of a spin—% chain employing an ansatz for the wave function [149]. Many exact solu-
tions to other theoretical 1D models accompanied this one, including solution introduced by
Girardeau [150] which describes an impenetrable Bose gas. Simple 1D models whose solutions
could not be found exactly were explored in detail by effective approaches particularly fitted for
one dimension. An important example is the model introduced by Lieb and Liniger [151] which
describes a system of identical Bose particles in 1D interacting via §-function interactions of
strength c.

These solutions were considered as nothing more than mathematical curiosities that are
not of crucial importance for the real 3D world. However, recent technological progress in
trapping ultracold atomic gases led to the experimental realization of many (quasi-)1D models
and this revived the interest in studying the theoretical 1D models [152-155] (for a review
see Ref. [156]). In experiments, ultracold atoms are loaded in tight, transversely confined,
effectively 1D atomic waveguides, where transverse excitations are strongly suppressed [152—
155]. These atomic gases are characterized by the Lieb-Liniger (LL) model [151] of contact
interactions of arbitrary strength c. In the case of infinite interaction strength (¢ — o), such
bosonic particles may be described by the Tonks-Girardeau (TG) model [150]. The TG regime

has been experimentally achieved [153—155] with atoms at low temperatures and linear densities
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and with strong effective interactions [157-159]. In the limit of weak interaction, LL. model can
be described by Gross-Pitaevskii (GP) theory [160].

In this chapter Section 4.1 introduces basic concepts needed to realize and describe 1D
quantum many-body systems. In Section 4.2 we focus on a particular system of strongly inter-
acting bosons placed on a 1D ring pierced by a synthetic magnetic flux tube. On the ring there
is an external localized delta-function potential barrier. We study the Berry phase associated to
the adiabatic motion of the delta-function barrier around the ring. This research is related to the
research on synthetic anyons in a noninteracting system in Section 3.2. The barrier produces a
cusp in the density and the corresponding missing charge (missing density) cannot be identified
as a quasihole. This result confirms the result in Section 3.2 that synthetic anyons cannot be

considered as emergent quasiparticles.

4.1 One dimensional bosons

4.1.1 Experimental techniques

We briefly present the experimental techniques for realization of low-dimensional models in ul-
tracold atomic systems. The invention of the laser enabled the development of effective methods
for cooling and trapping of atomic vapors. The methods have been developing for more than
three decades and they are based on manipulating neutral atoms with various optical (laser)
and magnetic fields [161]. Nowadays the gases can be cooled down even to the temperatures
in the nano-kelvin regime. An important progress occured in 1995 with the achievement of
Bose-Einstein condensates (BECs) in 3D systems of ultracold atoms [162-164].

A standard method to make the motion of the atoms effectively 1D or 2D is by creating an
optical potential [165—168] that produces tight confinement by freezing out motion in one or two
directions. Let us consider two oppositely directed laser beams, each with the same frequency.
The interference of two beams produces the potential that has the form of a static standing wave,
with the wave vector equal to the difference of the wave vectors of the two beams. Neutral atoms
in an electric field gain dipole moments that are determined by their polarizability. Optical
dipole traps depend on the interaction between an induced dipole moment in an atom and an
external electric field. There is an interaction of atoms with a radiation field. One can show
that the dipole force on atoms is attractive if the laser frequency is red-detuned and repulsive
in the case of a blue-detuned laser. The interference between two counter-propagating beams
will create an external periodic potential acting on the atom. When the intensity of the laser
light field is strong enough, implying a large amplitude of the potential, so that the probability
of hopping of atoms from one minimum to the neighbouring one is supressed, the 3D gas of
atoms develops into a system of many decoupled 2D disk-like trapping potentials.

A 2D optical lattice can be created when two orthogonal standing waves are superimposed.

Atoms are confined to an array of 1D potential tubes, in which the atoms can only move along
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the weakly confining axis of the potential tube, thus realizing 1D quantum behaviour. The
radial motion is totally eliminated for low-enough temperatures. A 3D optical lattice for atoms
is produced by three orthogonal optical standing waves. Atoms can also be trapped by using
atom chip traps [169, 170], where the magnetic fields trap atoms close to the surface. This trap
is based on the magnetic potential, i.e., coupling of atoms with spin and the magnetic field.
A magnetic field is created by a microfabricated structure of the chip, consisting of tiny wires
carrying electric currents. If one superimposes an external uniform field perpendicular to the
wire axis, this produces a local minimum of the total magnetic field along the line parallel to
the wire. The field minimum traps atoms in states with spin antiparallel to the magnetic field,

which are called low-field seeking spin states.

4.1.2 Interactions between atoms

Interaction between two neutral atoms at large separation is dominated by the van der Waals at-
traction, which is the result of electric dipole-dipole interaction between atoms [161]. The form
of interaction is —ot/ 1%, where r is the atomic separation. For small separations the interactions
are dominated by a strong repulsive core due to the overlap of electron clouds. We introduce
a model potential [161] describing this system which has van der Waals form ~ 1/r% at large
distances, and is cut off at short distances by an infinitely hard core of radius r,:
U(r)=o for r<r., U(r) = —% for r>re.
r

The core radius is not a realistic representation of the short-distance behaviour of the potential,
but it can provide an insight into the main features of scattering of two neutral atoms at low
energies. In general, collisions in ultracold regime occur in the channel with the lowest angular
momentum, for bosons the scattering is of the s-wave (I = 0). In the low-energy limit, the
two-body collision problem is totally determined by the s-wave 3D scattering length a, and
the scattering amplitude f(k) = —a/(1 + ika). It can be shown that this is the exact scattering
amplitude at arbitrary values of k for the Huang’s pseudopotential [157]

_dmh*a_, | 0

V() = T8 ()5 (rvlr)). @)

where y is the wave function of the relative motion of two atoms and M, their reduced mass.
Therefore, at low temperatures, two-body interactions in ultracold gases may be described by
a pseudopotential, where the scattering length a is usually taken as an experimentally found
parameter. The interaction is repulsive for positive and attractive for negative scattering lengths
a. Let us consider two-body collisions between cold atoms confined transversally by an atom
waveguide or highly elongated "cigar"-shaped atomic trap [157]. The system can be described

within the pseudopotential approximation and the waveguide potential is replaced by an axially
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symmetric 2D harmonic potential of a frequency @, . If kg7 < iiw | and E;; < hiw |, where Ej;
is the interaction energy per particle, atoms are in the ground state of transversal potential and
the system becomes effectively 1D. In this case it can be shown [157] that pseudopotential (4.1)

leads to the effective contact interaction
Vit (xi,x7) = g1p6 (xi — x;), 4.2)
where g1p is the effective coupling strength:
gip = 2h2ama? (1 —Ca/V2a,)]™!

Here a| = \/W is the transverse oscillator width and C = 1.4603 [157]. Using the effect
of Feshbach resonance, it is possible to tune the scattering length by varying the strength of
an applied magnetic or electric field, and consequently change the atomic interactions [161].
Moreover, since the effective interaction depends also on the strength of transversal confine-
ment, when the system is in a weakly interacting mean-field regime for some value of @, , then
by increasing @, , the system may be brought to the strongly interacting Tonks-Girardeau re-
gime (g;p — o) [157]. Different regimes of 1D bosonic gases are usually characterized by a
non-dimensional parameter Y = mgp/ h2n1 D, Where n1p is atomic density. For y < 1 the gas is

in the mean-field regime, while for v > 1 in a strongly interacting regime [151, 153-155, 157].

4.1.3 Lieb-Liniger model

The simplest nontrivial model of interacting bosons in the continuum is the one introduced by
Lieb and Liniger [151]. This model describes a system of N identical bosons in 1D, which inter-
act through a d-function potential of strength g;p. For the Lieb-Liniger model, the Hamiltonian

is given by N
h 0
H:—zmza 2+g1025 X;j). (4.3)

i=1 i<j
We can parametrize the interaction strength in this model using the interaction parameter ¢ =
mgip /hz. Therefore, ¢ = 0 corresponds to free bosons, while ¢ — +oo is the hard-core or
Tonks-Girardeau limit [150]. As shown by Lieb and Liniger [151], the model can be solved
for all values of interaction strength ¢ by employing the Bethe ansatz. One can see the Bethe’s
wavefunction as the factorization of the scattering of the N particles in the gas into a series of
two particle scattering events. A set of quasimomenta determine the eigenstates. If one sets
periodic boundary conditions, the behavior of quasimomenta is governed by a set of transcend-

ental Bethe equations. Its eigenfunctions are of the form

WB(x1,. ZA )e! Lnkpumn,
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or x; <xp < --- < xy where the P’s are the N! possible permutations of the set {1,...,N}, k,
are momenta and A(P) are coefficients. A broader review of the Lieb-Liniger model, which is
beyond the scope of this dissertation, can be found in Ref. [171]. Our research deals with two
regimes of the Lieb-Liniger model - Tonks-Girardeau limit (¢ — +o0) and weakly interacting

limit ¢ < 1 described by the Gross-Pitaevskii theory. In the following we review these models.

4.1.4 Tonks-Girardeau model

The Tonks-Girardeau model describes impenetrable 1D Bose gas, corresponding to the limit
¢ — +oo. We study a system of N identical Bose particles in 1D geometry. The system is
exposed to an external potential V (x). The infinitely strong contact repulsion between the bo-
sons imposes a constraint that the bosonic many-body wave function must vanish when the
two particles are in contact. As first pointed out by Girardeau [150], this constraint can be

implemented by writing the wave function as follows
WB(x1,x2,...,xn5,2) =0 if x;=x;, 1<i<j<N. (4.4)

Furthermore, the wave function yp should satisfy the Schrodinger equation

K 92
_%a_x;

i%zz

J=1

+V()Cj)] YB. 4.5)

Fermi-Bose mapping connects the Tonks-Girardeau bosonic wave function yp and an antisym-
metric many-body wave function yr, which describes a gas of noninteracting spinless fermions
in 1D. Let us consider a solution of Eq. (4.5) yr(x1,x2,...,Xxy,t), which is antisymmetric when

two coordinates x; and x; are exchanged. Unit antisymmetric function is defined as

S(XI,XZ,...,XN): H Sgn<xi_xj)7

1<i<j<N

where sgn(x) is the algebraic sign of the coordinate difference x = x; —x;, i.e., itis +1(—1) if

x > 0(x < 0). In Fermi-Bose mapping, the wave function

II/B(X],Xz, . ,xN,t) = S(xl,xz, - ,xN)l//F(xl,xz, - ,xN,t) (4.6)

satisfies Eq. (4.5), hard-core constraint in Eq. (4.4), and has Bose symmetry since the function
S(x1,...) compensates the sign change of yr(x,...) when any two particles are exchanged.
Therefore, it represents a solution of the Tonks-Girardeau model in arbitrary external potential
V(x), which is a sum of one-body external potentials.

This can be proved in the following way. We consider the N—dimensional configuration

space. The surfaces x; = x; divide the configuration space into N! disjoint regions. In every
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permutation sector, the function § is constant, and equal to either +1 or -1. As a result yp
satisfies the Schrodinger equation throughout the allowed portion of configuration space [all
|x; —x;| > 0(i # j)1, if yr obeys it. The boundary condition is satisfied because of the Pauli
exclusion principle set on yr. The Bose symmetry of yp is provided by an antisymmetric
function S. Thus, we conclude that Y is a solution of the Schrédinger equation satisfying Bose
statistics, having the same energy as Wr, and satisfying the same boundary condition.

Very often the fermionic wave function W can be constructed as the Slater determinant,

1 N
WF(XI,...,XN,Z‘)— \/]W det (I,Um(xj,t)), (47)

m,j=1
where y,,(x,t) are N orthonormal single-particle wave functions satisfying a set of uncoupled
single-particle Schrodinger equations.

2 32
I a&% = {_h_a_—l—‘/(x):| llfm(x,t), m= 1,...,N. (4.8)

As aresult, because of the Fermi-Bose mapping, the many-body problem of strongly interacting
bosons in 1D is equivalent to solving the single-particle equations (4.8). We point out that the
above proof cannot be generalized to systems of particles which move in higher dimensions.
Namely, it is not possible to construct generalization of the function S in more than one di-
mension since one cannot separate the configuration space into disjoint regions by hyperplanes
x; = xj. In two or more dimensions one can hold all particles but one fixed and move the re-
maining particle about throughout the box containing the system without encountering any of
the fixed particles. On the contrary, in one dimension the motion of one particle is blocked by
the presence of other particles.

The construction of the many-body wave function through the Fermi-Bose mapping in Eq. (

4.6) may also be used in the eigenvalue equation

N hz 82
; ama TV )| Ve =Eve
where E denotes the energy of an eigenstate.
Due to the property |S(x1,...,xy)|> = 1, single-particle density of two systems is the same

since ]1//3|2 |l//p|2 It is 1mp0rtant to notice that Fermi-Bose mapping gives exact solutions
for an arbitrary external potential V' (x). On the other hand, for the Lieb-Liniger model [151]
it gives exact solutions when there is no external potential, i.e., when it is zero in the region
with atoms (infinite line, half-infinite line, infinitely deep box [172]). The only exception is the
linear potential [173].
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4.1.5 Gross-Pitaevskii equation

In the regime of weak interaction, i.e., when ¢ < 1, the wave function of the system described
by the Hamiltonian should not differ greatly from the case when there is no interaction, i.e.,
from noninteracting bosonic 1D gas. At temperature 7 ~ 0 K noninteracting 1D bosonic gas
is in the state of Bose-Einstein condensate (BEC) [161]. For a fully condensed system, all
particles are in the same single particle state. We assume that in the case of weak interactions
all atoms occupy the same state and we use a Hartree or mean-field approach [161]. Atoms are
placed on the x-axis and this system is described by the Hamiltonian in Eq. (4.3). The wave
function is a symmetrized product of the single-particle wave functions @ (x) and we write the

wave function of the N-particle system as

¢ (xi)- (4.9)

YB(x1,%2,...,%5) =

-

|> = 1. Now we use a vari-

The normalization of the wave function ¢(x) is given as [ dx|¢(x)
ational approach and assume that the condensate wave function is y(x) = v/N¢(x), and the
i

according particle density n(x) = |y(x)|=. We can neglect terms of the order of 1/N what is

valid for large atom numbers, and find the energy functional for the N-particle wave function

2
Eyy) = [ax (3 5 WOR - VEIWOIP+ Senlv ).

A solution for the wave function can be found by minimizing the energy functional under vari-
ations of y with the constraint that the total number of particles [ dx|y(x)|*> = N stays con-
stant [174]. This is achieved with the Lagrange multiplier i, which is the chemical potential

ensuring constancy of the particle number. One writes E — N = 0, and this gives

2 2
(- o+ V) a0l W) = ),

This equation is called Gross-Pitaevskii equation (GPE). It is a type of nonlinear Schrodinger
equation, where the total potential consists of the external potential V (x) and a non-linear term

gip|y(x)?
that the eigenvalue is the chemical potential u, and not the mean energy per particle E /N, what

which describes the mean-field potential of the other atoms. Here, one can notice

would be the case for linear equation. It has been shown that the GPE is very successful in
describing the behaviour of BEC [174].

4.1.6 Synthetic gauge fields with ultracold atoms

Atoms as electrically neutral particles are not able to directly create magnetic phenomena. How-

ever, the core of many interesting phenomena, such as the gauge invariance, or the quantum
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Hall and Aharonov-Bohm effects, is the coupling of charged particles to the electromagnetic
fields. Moreover, it has been shown that magnetism is an important direction in the search
for intriguing topologically ordered phases [175]. Therefore, it is of great interest to look for
strategies how to create synthetic gauge fields for neutral atoms. The first synthetic magnetic
fields were achieved in rapidly rotating BECs. Here, the Coriolis force mimicks the Lorentz
force. [176, 177]. Another idea is to put the atomic gas in a specially tailored laser field. Be-
cause of the atomic interactions with light, laser field behaves as an artificial magnetic field
for neutral atoms [145, 147]. The root of this method is the analogy between the Aharonov-
Bohm phase [140] and the Berry phase [87] acquired when an atom undergoes adiabatically
a closed loop in the tailored laser field [145]. Furthermore, synthetic magnetic fields can also
be created in optical lattices. Such methods engineer the complex tunneling matrix elements
between lattice sites [178—180], where the nontrivial phases of the complex tunneling paramet-
ers are described as Peierls phases. These methods involve shaking of the optical lattice [178],
laser assisted tunneling which realizes the Harper Hamiltonian in tilted lattices [179-181] or

periodical modulation of optical honeycomb lattice which realizes the Haldane model [182].

4.2 Berry phase for a Bose gas on a 1D ring

The developments of synthetic gauge fields for ultracold atoms have opened the way for invest-
igating topological states of matter in these systems [145, 147, 176-183]. The single-particle
topological phenomena are well understood [147,183]. However, strongly interacting quantum
systems coupled to gauge fields can yield intriguing correlated topological states of matter,
which are difficult to understand [175]. It is natural to ask whether exactly solvable models
coupled to gauge fields can provide some insight. We are interested in 1D quantum particles
on a ring, which is pierced with a synthetic magnetic flux-tube (in this geometry the pertin-
ent gauge field cannot be gauged out), and explore the Berry phase [87] as the quantum gas
is stirred around the ring with an external local potential. This geometry is readily found in
atomtronics - emerging field in quantum technology seeking for ultracold-gas analogs of elec-
tronic devices and circuits [184]. An important example of an atomtronic circuit is provided by
a Bose-Einstein condensate flowing in a ring-shaped trapping potential, which can be realized
using different methods [185—-190]. Such systems interrupted by one or several weak barriers
and pierced by an effective magnetic flux, have been studied in analogy with the supercon-
ducting quantum interference devices (SQUIDs) [186, 191-199]. In particular, in system with
weak barriers and weak atom-atom interaction, hysteresis effects have been evidenced [193].
The persistent current phenomenon has been theoretically characterized for 1D bosons in this
geometry, for all interaction and barrier strengths [200]. Studies of the Aharonov-Bohm (AB)
effect [20] for the density excitations propagated through the ring predicted the absence of the

AB oscillations for all interaction regimes [194, 195,201]. The presence of disorder leads to
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crossover from AB to Al’tshuler-Aronov-Spivak oscillations, investigated in the presence of
bosonic interaction [202]. This configuration can also serve to study the dynamics of vortices
in a quantum fluid [196]. For stronger interactions and higher barriers, Bose gas confined to
a ring shaped lattice, has shown the emergence of the effective two-level system of current
states, suggesting it to be a cold-atom analog of qubit [197, 198]. Moreover, the study of bo-
sonic Josephson effect in this geometry, has shown that strongly correlated 1D bosonic system
exhibits the damping of the particle-current oscillations [199,203].

In this section we study a system of strongly interacting one-dimensional (1D) bosons on
a ring pierced by a synthetic magnetic flux tube. By the Fermi-Bose mapping, this system is
related to the system of spin-polarized non-interacting electrons confined on a ring and pierced
by a solenoid (magnetic flux tube). On the ring there is an external localized delta-function po-
tential barrier V(¢) = g6(¢ — ¢p). We study the Berry phase associated to the adiabatic motion
of delta-function barrier around the ring as a function of the strength of the potential g and the
number of particles N. The behavior of the Berry phase can be explained via quantum mechan-
ical reflection and tunneling through the moving barrier which pushes the particles around the
ring. The barrier produces a cusp in the density to which one can associate a missing charge
Aq (missing density) for the case of electrons (bosons, respectively). We show that the Berry
phase (i.e., the Aharonov-Bohm phase) cannot be identified with the quantity Ag /7% § A - d1. This
means that the missing charge cannot be identified as a (quasi)hole. We point out to the con-
nection of this result and our studies of synthetic anyons in noninteracting systems. In addition,
for bosons we study the weakly-interacting regime, which is related to the strongly interacting

electrons via Fermi-Bose duality in 1D systems.

4.2.1 Berry phase for one particle on a ring

We start by considering a particle confined on a ring of radius R, containing a localized delta-
function potential barrier somewhere on the ring. This particle can be a boson of a synthetic
charge ¢ subjected to a synthetic gauge field of a solenoid carrying flux & placed in the center
of a ring, or an electron of electric charge g coupled with a vector potential of a solenoid with
a magnetic flux ®. In the rest of the paper we will refer to g and ® as to charge and flux, and
we will not distinguish the electric (i.e., real) from the artificial charge and flux which can be

engineered in ultracold atomic gases. This system is described by the Hamiltonian

. 2
H:—(————T) +25(0 dv). (4.10)

where ¢ € [—x, xr]. In order to simplify calculation, we introduce the dimensionless parameters
a = q®/h, g = (2mR?/h?*)g > 0, and dimensionless energy € = (2mR>/h?)E. Our task is to
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solve time-independent dimensionless Schrodinger equation

2
- [(%—ia) —g5(¢—¢0)] y=¢ey. “1D)

For ¢ # ¢y, the delta term vanishes. Thus, for ¢ € [—7, @) we have

v, = AeTIVET®)9 | p-ilVEta)d

and for ¢ € (¢, ],
Y, = CeiVET®)9 4 po-i(Ve-a)o,

For the whole domain we write

v ="0(¢— )y +06(¢— o)y (4.12)

Next, we impose boundary conditions: continuity of the wave function y;(—7x) = y,.(+7x),
continuity of its derivative y](—m) = v, (47), and continuity of the wave function at ¢. This

leads us to the result

Y = X (HVEOET ) Gin (7 (\/E — 1))
e VRO T sin 7/ + ),

and

Y =N O (TIVETT W) in[1(\/E — )]
1o iVE(D-T— %) sin[m(v/€ + 05)])7

where .4 is the normalization constant:

N =[2m(1 —cos2macos2m/e

N sin27\/€
2m\/€

The energy € can be found by integrating Eq. (4.11) around ¢y, which yields y.(¢o) — y;(¢o) =

) (4.13)

(cos2mor — cos2m\/€)) | 172,

gy (¢o), i.e., an implicit equation for the energy:

sin27\/€
2/

Note that for & =0, 1,2,... the energy spectrum is mapped onto itself, which means that these

COS2ma — cos2M\/E =g (4.14)

cases are related by a simple gauge. Therefore it is sufficient to consider flux in the domain
ac0,1].
We are interested in the Berry phase [87] ¥ when the delta-function travels adiabatically
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around the ring: @9 — @o + 2. The Berry phase is

+n + b
y=a+i| do [ dowSow. (4.15)
- - dPo

where A denotes the phase difference of the wave function when parameter ¢ is at the endpoints
of a closed path [87,205]. Namely, the wave function is a single-valued function of the variable
¢, but multivalued in the parameter ¢y. The phases of the wave function at endpoints +7 differ

as
l//((I’O - +7'L') _ pmia
V(¢ =—7)

i.e., A =2mo. By calculating the derivatives, we obtain

Y

y=2ma — (2n.N)?\/esin2wosin2mw/€. (4.16)
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Figure 4.1: The Berry phase as a function of the barrier height g for one particle on a ring.
The parameter o describing the flux through the ring is @ = 0.3 and o = 0.6. Horizontal lines
denote the asymptotic value of the Berry phase ¢® /i = 2mo for g — oo.

The dependence of the Berry phase on the height of the potential barrier is shown in Fig. 4.1.
For the vanishing barrier, Eq. (4.14) and Eq. (4.16) give Yy =0 when o < 0.5, and y = 27 when
o > 0.5. Both results describe vanishing Berry phase, as expected. As the potential barrier
becomes stronger, the Berry phase increases (decreases) for a < 0.5 (o > 0.5, respectively).
In the limit of infinitely strong potential barrier g — oo, the Berry phase saturates at the value
Y =2no = q®/h. This result is equal to the Aharonov-Bohm (AB) phase [140] acquired when

one particle of charge g circles around the solenoid carrying flux ®.
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Results shown in Fig. 4.1 can be explained through the phenomena of quantum-mechanical
tunneling and reflection. As the barrier moves, in the classical sense it pushes the particle; the
particle can tunnel through, or be reflected from the barrier. Thus, the whole probability density
(i.e., the whole charge of the particle) will generally not make a full circle around the ring, but
only a part of it. The Berry phase is the AB phase acquired by the amount of probability density
that encircled the flux tube. The particle probability density reflected from the moving barrier,
also moves around the flux tube and acquires the AB phase. In contrast, the probability density
that tunneled through the barrier does not contribute to the AB phase. For the infinite barrier
there is total reflection, i.e., one particle of charge ¢ moved around the flux &, resulting in the
phase g® /.

Finally, we generalize our result and consider a situation where the solenoid of flux ® is
inside the ring, but at the distance r < R from the center of the ring. It can be shown that
the wave function yg for a displaced solenoid is related to the wave function ¥ by a gauge

transformation,

Wk = Yexp {io arctan (ii—:tang) — %] 1.

Energy remains the same as in Eq. (4.14); the Berry phase in Eq. (4.16) is also unchanged since
the additional gauge factor does not depend on ¢g. Thus, our previous analysis is generally valid

for a particle on ring threaded by a flux tube anywhere inside the ring.

4.2.2 Berry phase for strongly interacting bosons on a ring

Now we consider a system of N indistinguishable bosons interacting via point-like interactions
in the same configuration, described by the Lieb-Liniger model [151] with an additional gauge

term:

Xl d g\
H_Z [% (—Ea—@—ﬁ> +g5(¢i—¢o)]

e ), 8(¢i—9;)

1<i<j<N

4.17)

Here cp is the effective 1D interaction strength. By varying cp, the system can be tuned from
the weakly interacting regime described by the mean field theory, up to the strongly interacting
TG regime with infinitely repulsive contact interactions c¢jp — oo. In the TG limit, the interac-
tion term of the Hamiltonian can be replaced by a boundary condition on the many-body wave
function [150, 156]

Yr6(91,¢2,....0n,2) =0 if ¢ =¢;
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for any i # j. Now, the Hamiltonian becomes
N1/ ind g \*
H=Y |5 (~%as o) +85(6— )|
i=1

The bosonic wave function W7 satisfying the boundary condition and the Schrédinger equation
is related to the fermionic wave function Wr, which describes a system of N noninteracting

spinless fermions through the Fermi-Bose mapping [150]:

Yro= [] sen(¢;—o)¥r. (4.18)

1<j<I<N
Here, Wr is given by the Slater determinant,

1
Yr = mdet[‘lfk(%,f)],

where vy (¢,7) denote N orthonormal single-particle wave functions obeying a set of uncoupled
single-particle Schrodinger equations

oy |1 ind q@\
ih—= = [% <_§%_2n—R) +g5(¢—¢0)] Vi (4.19)

The eigenfunctions of the single-particle Schrodinger equation are given in Eq. (4.12) with
normalization constant in Eq. (4.13). The energies of the single-particle states are given by Eq.
(4.14); bosons in the TG gas occupy states from the lowest energy state up to the N-th energy
state.

We study now the Berry phase arising when the barrier potential is set into adiabatic anti-
clockwise rotation around the ring. The Berry phase is

+ a
Yy=A+i dgo(¥Yra| Son ¥rs), (4.20)
- 0

where A is the phase difference of the wave function at the endpoints [?,205], which is for N
particles given by
A=N2ra.

The second term in Eq. (4.20) is calculated by using the fact that

(Wrg|d/d¢o|¥ra) = (¥r|d/d¢o[¥F),

1.e., one has to calculate the Berry phase for the Slater determinant wave function. This problem

was studied in detail in [206,207], where it was shown that the Berry phase is a sum over the
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Figure 4.2: Berry phase for N Tonks-Girardeau bosons as a function of the strength of the
barrier g for & = 0.3 (upper plot) and @ = 0.6 (lower plot). The insets show the energy of the

highest occupied single-particle state as a function of g.
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Berry phases of single-particle states

N r+m P
r=a+i [ dontl gl

In the previous section, we have already solved the one particle case in Eq. (4.16), which leads

to

N
y=N2ma— Y (2wA;) /€ sin2mosin 27/, (4.21)

n=1
The dependence of the Berry phase in Eq. (4.21) on the strength of the potential barrier g is
illustrated in Fig. 4.2, for different N and . We do not plot the phase modulo 27 for clearer
view. For g = 0, the Berry phase is zero or an integer of 27. By increasing the barrier strength,
the Berry phase monotonically increases for & = 0.3 (decreases for o¢ = 0.6), and saturates at
the value
y=N2mo =Ng®P/h (4.22)

in the limit g — c. This is the AB phase collected when N particles of charge ¢ circle around
the solenoid with flux ®. Results in Fig. 4.2 can again be interpreted through the tunneling and
reflection of the particle density from the moving barrier, in the same fashion as for a single-
particle.

Here we take into account that single-particle states that contribute to the Berry phase (4.21)
have different energies, and consequently different transmission probabilities. In the inset of
Fig. 4.2 we plot the highest single-particle energy contributing to the Berry phase. For large g

this energy saturates, confirming the behavior of the Berry phase on the plot.

4.2.3 Missing density (missing charge) is not an emergent quasiparticle

The single-particle density of TG gas described by Eq. (4.18) is givenas n(¢) = Y&, |w|? [150].
In Fig. 4.3 we show the single-particle density when an impenetrable delta barrier is placed at
¢o = 0. At the position of the barrier, there is a cusp in the density. For a sufficiently large
number of particles, one can define a missing synthetic charge Ag for the system of TG bosons,
or the missing electric charge Ag for noninteracting electrons on the Fermi side of the mapping.

We calculate the missing charge in the thermodynamic limit, N — oo, R — oo, N/27R = 7.
The coordinate space is now x = R@ € (—oo,00). If there is no barrier, the particle density is
uniform and equal to 7. For simplicity, suppose that we insert an impenetrable barrier with

g — o at x = 0. In this limit, it is straightforward to calculate the single particle density,

sin (277ipx)

4.23
27X ( )

i(x) = fp —

The missing charge is
Ag=gq / [7i(x) — fig)dx = —g. (4.24)
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Figure 4.3: Single-particle density for & = 0.3, N =45 particles and infinite barrier g = oo. Inset
shows magnified view of single-particle density and horizontal blue line at (N +1/2)/2x.

Thus, the barrier induces density fluctuations which carry fractional charge —g/2.

In order to shed more light onto this result, we return to the geometry of the (finite) ring. For
N particles on the ring, in the absence of the barrier, the angular density is no = N /2. We then
insert an impenetrable barrier at ¢g = 0. The energy of the k-th single-particle state for g = oo is

£=k*/4,k=1,2,..., and the single particle density is

N 5 N1
n(9) = Y Il =) 5_(1—coskg)
k=1 k=1

The density n(¢) integrated over the ring gives N particles, i.e., the number of particles on
the ring is unchanged after we insert the delta barrier. The first term in Eq. (4.25), i.e., (N +
1/2)/2m, corresponds to the uniform density of N + 1/2 particles, and the second term gives
density fluctuations of the missing (—1/2) charge, in agreement with the fact that the number
of particles does not change after insertion of the barrier. This is supported with the inset
in Fig. 4.3, where we show the single-particle density n(¢), and the horizontal line at (N +
1/2)/2m, which goes through the center of the density oscillations away from the barrier.

Note that we cannot use a formula analogous to (4.24) to calculate the missing charge on
the ring, simply because [ fﬂ [n(¢) —npldp = 0, i.e., the number of particles does not change as
we insert the delta barrier. One could try to resort to a formula such as fip;* [n(¢) —noldo =0,
i.e., to integrate over a region around the density dip induced by the barrier, but it is difficult
to unambiguously define the region of integration [—¢*,¢*| because the decay of the density

oscillations is algebraic, i.e., without a scale. However, the thermodynamic limit allows for

67



an unambiguous calculation of the missing charge via Eq. (4.24), because in this limit (N +
1/2)/2nR = N/2nR = fiy.

It may be tempting to interpret the obtained missing fractional charge as a fractional qua-
siparticle. When the delta barrier moves around the ring, one may consider the Berry phase
(or Aharonov-Bohm phase for electrons) as the phase acquired by the motion of the missing
charge. If the missing charge was caused by a quasiparticle excitation, this picture would be
correct, however, this is not the case. The Berry phase acquired for a barrier with g = oo is
Ng®/h. On the other hand, the AB phase acquired by the motion of the missing charge around
the ring is Ag®/h. Since Ag®/h # Ng®/h modulo 27, we conclude that one cannot interpret
the Berry phase as the motion of the missing charge, but rather as the movement of the particles
reflected from the barrier as it pushes them around the solenoid. The cusp in the density cannot
be considered as a quasiparticle.

While this conclusion seems clear and perhaps obvious in this 1D system, we find that it
provides insight into studies of braiding of fractional fluxes in 2D electron gases in magnetic
fields [67,204]. More specifically, consider a 2D electron gas in a magnetic field in the IQH
state. When this system is pierced with flux-tubes carrying fractional fluxes, it can be shown
that braiding of fractional fluxes has anyonic properties [204]. One can ask whether the missing
charge around these fluxes behaves as a quasiparticle [67] or not [204]. We have found, in
consistency with this report, that the missing charge around these fluxes cannot be considered

as a quasiparticle [204].

4.2.4 Berry phase for weakly interacting bosons on a ring

Now we turn to the weakly interacting regime described by the Gross-Pitaevskii theory (e.g.,

see Ref. [174]). The GP equation for our problem is given by

1 ih 0 o \?
%(—%%—;ﬁ> V+g0(9—¢o)y

+cipN|y)Py = ny(9: o),

(4.26)

where 1 is the chemical potential. Without loss of generality, we assumed that the solen-
oid is placed in the center of the ring. The effect of interactions is contained in a non-linear
mean field term. We are interested in the behavior of the Berry phase in dependence of the
strength of the mean field interaction c;pN. We calculate the Berry phase numerically fol-
lowing Ref. [205]. The delta barrier is approximated as a rectangular potential barrier. The
evolution parameter, angle ¢, is discretized to obtain a set of T equidistant points denoted
by ¢o(t). The wave function y(¢; dy(¢)), corresponding to the barrier position at @y(¢), is the

lowest single-particle eigenstate found by diagonalization of Eq. (4.26). The overlap at two
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different points is M (k,1) = (y(@;¢o(k))|w(¢;do(1))), and the product
U=M(0,1)M(1,2)..M(T,0)
gives the Berry phase

Y = —arg(U).

Note that 7y is the Berry phase per particle since we discuss now the mean field regime. The
mean-field many-body wave function is given by ny:l v (0i; ¢o), from which we find the Berry
phase Yy = N%.
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Figure 4.4: Berry phase per particle as a function of c¢ipN calculated in the mean field regime.
Results are shown for two values of the flux: o« = 0.3 and @ = 0.6, and two different barriers
corresponding to g = 10 and g = 50.

In Fig. 4.4 we show the dependence of the Berry phase per particle on the strength of the
effective potential c|p/V, for different barrier strengths. With the increase of ¢;p/N, the chemical
potential increases as well. This means that, effectively, increase of ¢;pN should lead to the

same trend in the behavior of the Berry phase as the decrease of the barrier strength g, since the
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states with higher energy tunnel more easily through the barrier. We see that this is indeed the
case by comparing Fig. 4.1 and Fig. 4.4. For a = 0.3 (¢ < 0.5), the Berry phase per particle
Y/N decreases with the increase of ¢;pN; the same trend occurs when g is decreased for a single
particle at o = 0.3 as depicted in Fig. 4.1. For & = 0.6 (& > 0.5), we see that y/N increases with
the increase of ¢1pN; the same trend occurs when g is decreased for a single particle at o« = 0.6.
This is consistent with the interpretation of the Berry phase via reflection and transmission of

the particles through the moving barrier.

In conclusion, we have studied the Berry phase in a system of interacting 1D bosons on a
ring, with an external localized delta-function potential on the ring, and a synthetic solenoid
threading the ring. We have calculated the Berry phase associated to the adiabatic motion of
the delta-function potential around the ring. Results are shown for a single particle, for the
impenetrable Tonks-Girardeau bosons (where identical results hold for noninteracting spinless
electrons via Fermi-Bose mapping), and interacting bosons in the Gross-Pitaevskii mean field
regime. The behavior of the Berry phase can be explained via quantum mechanical reflection
and tunneling through the moving barrier which pushes the particles around the ring. For an
impenetrable barrier, the Berry phase is given by Ng®/h, where ¢ is the synthetic charge of
one particle, ® is the flux through the solenoid, and N is the number of particles. These results
provide insight into systems of BECs in toroidal traps used in the context of atomtronics. In
addition, our results provide insight into the interpretation of the Berry phase obtained when
fractional fluxes piercing a 2D electron gas in the IQH state are braided [204]. An infinite
barrier expels the particle density away from itself, leading to a cusp in the density profile, to
which one can associate a missing density, i.e., a missing charge Aq. We have shown that the
Berry phase cannot be identified with the quantity Ag/% § A - dl, which shows that the missing

density (charge) cannot be identified as a (quasi)hole.
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Chapter 5
Conclusions

In three spatial dimensions particles are classified into bosons and fermions depending on
whether they obey the Bose-Einstein or the Fermi-Dirac statistics. The many-body wave func-
tion is symmetric under permutations of identical bosons, but antisymmetric under permutations
of identical fermions. According to the spin-statistics connection, bosons are particles with in-
teger spin, while fermions are particles with half-integer spin.

In 2D systems, new possibilities for statistics and spin arise. The quantum statistics is not
limited to the Bose-Einstein and the Fermi-Dirac cases, but rather it is a continuous interpolation
between bosons and fermions. Particles with any statistics in between are called anyons [3-5].
They are characterized by a fractional spin, or more generally by fractional quantum numbers.
The emergence of anyons arises from the peculiar topological properties of the configuration
space of collections of identical 2D particles [6].

The paradigmatic realization of anyons is found in the FQHE [23,25] where localized qua-
siparticle excitations have a fractional elementary charge [25] and statistics [26, 27]. Other
systems realizing anyons are spin systems (quantum spin-liquids) which realize the Kitaev
model [8] and systems supporting Majorana zero-modes [62,63]. Apart from the fundamental
motivation for exploring anyons, non-Abelian anyonic excitations hold potential for technolo-
gical advances, since they could be used for robust topological quantum computation [7, 8]. A
lot of work needs to be done before experiments will be able to efficiently detect and manipulate
anyons, especially for fault tolerant quantum computing [7].

In the present thesis we contribute to the study of less traditional schemes for realizing and
manipulating anyons. We have proposed an experimental realization of the original Wilczek’s
model for anyons in 2D electron gas placed in a perpendicular magnetic field, which gives rise
to the IQHE. Moreover, we have presented exact solutions of a model for synthetic anyons
in a non-interacting quantum many-body system, which was considered in [67, 68]. We have
shown that synthetic anyons cannot be considered as emergent quasiparticles. Following this
research, we have studied a system of strongly interacting bosons placed on a 1D ring pierced

by a synthetic magnetic flux tube. On the ring there is an external localized delta-function
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potential barrier and we have explored the Berry phase associated to its motion. The barrier
produces a cusp in the density and we have shown that the corresponding missing charge cannot
be identified as a quasihole.

In Chapter 1, we have reviewed the quantum statistics and introduced the concept of frac-
tional statistics and anyons. We have explained topological properties of the configuration space
of collections of identical particles, showing a crucial difference between 2D and 3D. The fun-
damental group of this space in 2D is the braid group, which is the root of anyonic statistics.
The braid group governs the exchange statistics of anyons. We have explained Abelian and non-
Abelian anyons and fusion of anyons. After the behaviour of a charged particle in an electro-
magnetic field and Aharonov-Bohm phase has been described, we have presented the prototype
of anyons, Wilczek’s charge-flux-tube composite. We have reviewed different physical realiza-
tions of anyons and described topological quantum computation, an approach to fault-tolerant
quantum computation.

In Chapter 2, we have reviewed the Quantum Hall Effect, which is the most prominent
system hosting anyons. First, we have explained the concept of the geometric phase and derived
the Berry phase when a time-dependent set of parameters is moving align a certain closed path
in the parameter space. We have interpreted Aharonov-Bohm effect in the light of the Berry
phase and defined the Berry’s phase as an important example of holonomy. Afterwards, we have
described the Quantum Hall Effect, both integer and fractional, and explained the quasiparticles
emerging in the FHQ state which behave as Abelian or non-Abelian anyons.

In Chapter 3 we have considered new mechanisms for the realization and signatures of
anyons in non-interacting systems. We have proposed an experimental realization of the original
Wilczek’s model for Abelian anyons, composites formed from charged particles and magnetic
flux tubes. First, we have proposed a scheme for realizing charged flux tubes, in which a charged
object with an intrinsic magnetic dipole moment is placed between two semi-infinite blocks of
a high-permeability u, material, and the images of the magnetic moment create an effective
flux tube. A 2D electron gas (2DEG) is placed in a perpendicular uniform magnetic field,
which gives rise to the IQHE. Then we have sandwiched the 2DEG between two semi-infinite
blocks of high-u, material, assumed to have a fast temporal response. For this system, we have
found the exact many-body wave function. We have discussed possible implementations of
the proposed system, the obstacles, and possible ways to overcome them. We have shown that
the signature of anyons is a slight shift of the Hall conductance which can be experimentally
measured. Afterwards, we have presented exact solutions of a model for synthetic anyons in
a non-interacting quantum many-body system, which was considered in [67, 68]. This model
is represented by the Hamiltonian for non-interacting electrons in 2D, in a uniform magnetic
field, pierced with solenoids with a magnetic flux that is a fraction of the flux quantum. We
have found analytically and numerically the ground state of the model when only the LLL
states are occupied. We have calculated the statistical parameter using the Berry phase and we

have shown that the ground state is anyonic in the coordinates of the probes. We have shown
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that these synthetic anyons cannot be considered as emergent quasiparticles.

Chapter 4 focuses on a system of 1D bosons coupled to synthetic gauge fields. Namely,
strongly interacting quantum systems coupled to gauge fields can yield intriguing correlated
topological states of matter which are difficult to understand. In this light, we asked whether ex-
actly solvable 1D quantum many body models coupled to gauge fields can provide some insight
into strongly correlated states. In particular, the research presented in this chapter is aimed at
deeper understanding of synthetic anyons in noninteracting systems. We have begun by review-
ing the physics of 1D interacting bosonic systems. We have explained experimental techniques
for realization of 1D models in ultracold atomic systems and how such systems can be theor-
etically described using the Lieb-Liniger model, Tonks-Girardeau model and Gross-Pitaevskii
equation. We have discussed how synthetic gauge fields can be achieved in ultracold atomic
systems. Then, we have investigated a particular system of strongly interacting bosons placed
on a 1D ring pierced by a synthetic magnetic flux tube. An external localized delta-function
potential barrier has been placed on the ring. We have studied the Berry phase associated to the
adiabatic motion of the delta-function barrier around the ring as a function of the strength of
the potential and the number of particles. The system of strongly interacting bosons has been
related to the system of noninteracting spinless fermions. We have shown that the quantum
mechanical reflection and tunneling through the moving barrier explains the behavior of the
Berry phase. Finally, we have shown that the barrier produces a cusp in the density to which we
have associated a missing charge Ag (missing density) for the case of electrons (bosons). One
might interpret the obtained missing fractional charge as a fractional quasiparticle. However,
we have shown that the missing charge cannot be identified as a (quasi)hole. We point out that
this result is related to the studies of synthetic anyons in noninteracting systems [204], where
we have shown that local perturbations in the density around the flux tubes cannot be identified

as emergent quasiparticles.
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Poglavlje 6

Prosireni sazetak

6.1 Uvod

Kvantna statistika ima fundamentalnu teorijsku vaznost u kvantno-mehanickom pogledu na svi-
jet. Naime, fizikalno ponaSanje skupine identi¢nih Cestica nije odredeno samo interakcijama,
vec i statistikom Cestica. Identi¢ne Cestice su one Cestice ¢iji je hamiltonijan simetri¢an prilikom
zamjene Cestica uz pretpostavku da Cestice imaju ista intrinzi¢na svojstva [1]. U kvantnoj me-
hanici identi¢ne su Cestice neraspoznatljive. Ta Cinjenica uvodi odredene simetrijske zahtjeve
na ukupnu visecesti¢nu valnu funkciju koja opisuje sustav mnostva identi¢nih Cestica prilikom
zamjene bilo koje dvije Cestice. U tri prostorne i jednoj vremenskoj dimenziji [(3+1)D] postoje
samo dvije moguce simetrije 1 Cestice su klasificirane kao bozoni 1 fermioni ovisno o tome prate
li Bose-Einsteinovu ili Fermi-Diracovu statistiku [1]. ViSeCesti¢na valna funkcija jest simetri¢na
prilikom permutacije identi¢nih bozona te antisimetricna prilikom permutacije identi¢nih fer-
miona. Znacajno je da su simetrijski zahtjevi blisko povezani sa spinom Cestica. Prema teoremu
spina 1 statistike, bozoni su Cestice s cjelobrojnim spinom, dok su fermioni Cestice s polucje-
lobrojnim spinom [2]. Dugo vremena smatralo se da su bozoni i fermioni jedine mogucénosti
statistike. To vrijedi za Cestice koje se gibaju u najmanje tri dimenzije (3D), ali u dvije dimenzije
(2D) situacija postaje zanimljivija. Naime, kvantna statistika postaje neprekidna interpolacija
izmedu Bose-Einsteinova i Fermi-Diracova slu¢aja. Cestice koje slijede necjelobrojnu statistiku
koja se javlja izmedu ta dva slucaja zovu se anyoni i tema su ove disertacije [3—5]. Primjenom
teorema o spinu 1 statistici, moZe se zakljuciti da su anyoni karakterizirani necjelobrojnim spi-
nom, ili opéenitije, necjelobrojnim kvantnim brojevima. Nove mogucénosti spina i statistike
objasnili su Leinaas 1 Myrheim koji su prepoznali podrijetlo koncepta necjelobrojne statistike
u neobi¢nim topoloSkim svojstvima konfiguracijskog prostora skupine identi¢nih Cestica [6].
Veliki interes za anyonima dolazi od ¢injenice da ne-Abelove anyonske kvazicestice topoloSkih
stanja materije mogu postati gradevni elementi topoloskih kvantnih racunala koji su otporni na
greske (fault-tolerant) [7,8]. Kvantna informacija bi u ovakvim sustavima bila topoloski za-

StiCena 1 otporna na perturbacije iz okoline. Napominjemo da se pojam statistike na zamjenu
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odnosi na fazu koju viseCesti¢na valna funkcija koja opisuje identi¢ne Cestice dobije kad su bilo
koje dvije Cestice adijabatski pomaknute 1 pritom zamijenjene [9].

Statistika se moZe prouciti s formalne toCke glediSta [12]. Neka Ml‘f, oznacava konfiguracij-
ski prostor skupine N identi¢nih neprobojnih Cestica u d-dimenzionalnom euklidskom prostoru

R?. Konfiguracijski prostor ovog sustava jest

ROV —A

d

(6.1
Dvije su petlje ekvivalentne ili homotopne ako se jedna moze dobiti iz druge kontinuiranom
deformacijom. Jedna klasa sastoji se od svih homotopnih petlji, a skup svih takvih klasa zove
se fundamentalna grupa ;. Petlje koje pripadaju dvama razliitim elementima 7; (M]‘\l,) ne
mogu biti povezane kontinuiranim transformacijama. S tocke glediSta path integrala u kvant-
noj mehanici, moze se pokazati da amplituda propagatora postaje suma doprinosa pojedinih
klasa, pri cemu doprinosi imaju razliCite teZine. Tezinski faktori parcijalnih amplituda tvore
jednodimenzionalnu (1D) unitarnu reprezentaciju fundamentalne grupe m; (Ml‘f,) [11]. Potraga
za fundamentalnom grupom tog prostora predstavlja standardni problem u algebarskoj topolo-

giji [13,14], a citirani je rezultat

(Md) SN, ako d > 3 (6 2)
V3| N) — .
BN, ako d= 2,

pri emu Sy oznacava permutacijsku grupu, a By braid grupu N objekata.
Braid grupa By mozZe se algebarski predstaviti preko generatora o;, gdje je 1 <i <N — 1.
Generatori zadovoljavaju dvije definirajuce relacije o; braid grupe 0;0;+10; = 0;+10;0;4+] za

1, element identiteta je

i=1,...,N—-2i0;0; =0j0; za |i— j| > 2. Inverz o; oznaCava se s G;
1, a centar By generiran je s (07 ...0x_1)". Bitno je napomenuti da opéenito vrijedi Giz # 1.

Braid grupa By predstavlja grupu neekvivalentnih krivulja koje se javljaju u adijabatskom
transportu N Cestica. TopoloSke klase krivulja koje vode ove Cestice of pocetnih polozaja
Ry,...,Ry uvremenu #; do konaCnih poloZaja Ry,...,Ry u vremenu 7 jednoznacno se poduda-
raju s elementima braid grupe By. Stoga se dijagrami braid brupe mogu interpretirati kao opis
vremenske evolucije identi¢nih Cestica. Da bismo definirali kvantnu evoluciju sustava, promo-
trimo kako braid grupa djeluje na stanja kvantnog sustava. Najjednostavniji mogudéi slucaj je
1D reprezentacija povezana sa skalarnom kvantnom mehanikom, koja je dana kao

x(0i) =€

zasvei=1,...,N —1, gdje je faza 0 realni parametar poistovjecen sa statistikom. Kako op-
¢enito vrijedi 612 =# 1, 0 je bilo koji (eng. any) proizvoljni broj. Stoga se Cestice s bilo kojom

statistikom zamjene definiranom braid grupom nazivaju anyoni. Ako u elementarnom pokretu
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o; jedna Cestica napravi zatvorenu petlju oko druge, valna funkcija dobiva fazu 26. Posebni
slucajevi anyona, 8 = 0, 7 predstavljaju bozone i fermione. 1D reprezentacija je Abelova jer re-
doslijed operacija nije vazan. Ako je statistika zamjene opisana viSedimenzionalnim ireducibil-
nim reprezentacijama braid grupe, imamo ne-Abelove anyone i ne-Abelovu braiding statistiku.
Takve se reprezentacije javljaju kad su valne funkcije multipleti, odnosno postoji degenerirani

skup / kvantnih stanja. Element braid grupe predstavljen je sa / x [ unitarnom matricom.

6.2 Realizacije anyona

Ciklicka evolucija vanjskih parametara u fizikalnom sustavu vodi na ukupnu evoluciju koja
ukljuCuje fazu, a ovisi jedino o geometriji puta koji se prelazi u parametarskom prostoru, tj.
faza je neovisna o brzini prelaska razliCitih dijelova puta. Stoga se ova faza zove geometrijska
faza [81-83]. Koncept kvantne geometrijske faze generalizirao je Michael Berry 1984. go-
dine [87]. U bilo kojem kvantnom sustavu sa sporo varirajuim vanjskim parametrima koji
je podvrgnut ciklickoj adijabatskoj evoluciji, valna funkcija nakuplja netrivijalnu geometrijsku
fazu koja ovisi o detaljima evolucijskog puta, a naziva se Berryjeva faza. Berryjeva faza pred-
stavlja vazan primjer holonomije u kvantnoj mehanici [92]. Aharonov-Bohm efekt predstavlja
fenomen u kojem vektorski potencijal ima fizikalno znacenje iako odgovara iS¢ezavajuéem elek-
tromagnetskom polju [20]. U tom efektu valna funkcija kvantne Cestice naboja g koja se giba
duz krivulje € na kojoj magnetsko polje iSCezava, no vektorski potencijal A # 0, poprima fazni
pomak ¢ = % JoA-dr[1]. Uradu [87] Berry je pokazao da Aharonov-Bohm faza predstavlja
manifestaciju Berryjeve geometrijske faze.

Frank Wilczek uveo je prototip anyona, objekt koji se sastoji od nabijene Cestice koja intera-
gira s beskonacno dugom zavojnicom (solenoidom) [3-5]. Kad je gibanje duZ solenoida zane-
mareno, dinamika se odvija u ravnini i sustav je podvrgnut zakonima 2D svijeta. Razmotrimo
nerelativistiCku Cesticu bez spina, mase m i elektricnog naboja g koja se giba u magnetskom
polju B beskonacno duge, tanke, cilindri¢no simetri¢ne zavojnice koja prolazi kroz ishodiste
1 usmjerena je duz z-osi, a @ je tok kroz zavojnicu. Da bi se odredila statisti¢ka svojstva tog
kompozita, proucavamo kvantnu mehaniku sustava takvih dviju Cestica koji je opisan jednoz-
nacnom, simetricnom valnom funkcijom . Postupnim pomicanjem jednog kompozita oko
drugog po punoj petlji, prema Aharonov-Bohm efektu [20], ukupna faza koju valna funkcija y
nakupi prilikom rotacije od 27 iznosi exp (—2ig®/h).

MozZe se pokazati da postoji ekvivalentan opis necjelobrojne statistike gdje je efektivna in-
terakcija zamijenjena kompliciranim rubnim uvjetima. Da bi se eliminirao dugodoseZni vek-
torski potencijal izmedu anyona, provodi se singularna bazdarna transformacija tako da je A’ =
A — VA(r, ) = 0. Hamiltonijan postaje hamiltonijan slobodnih Cestica, a transformirana valna
funkcija je ' = exp(—ig®@2/7h)y, gdje je @12 azimutalni kut relativnog vektora ry — r».

Valna funkcija Y’ je viSezna¢na i zadovoljava rubni uvjet ¥/ (rp,r;) = exp (—ig®/h) ¥/ (r1,17).
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Iz ovog se moZe vidjeti da ¥’ ima Abelovu reprezentaciju braid grupe, te predstavlja anyonsku
valnu funkciju.

Cjelobrojni kvantni Hallov efekt IQHE [97,98] i FQHE [23, 25] otkriveni su u posebnom
kontekstu poluvodickih heterostruktura (IQHE u Si MOSFET [97] i FQHE u GaAs-AlGaAs [23]
heterospoju), koji se nalazi u jakim magnetskim poljima(~ 10T) i niskim temperaturama(~
mK). Sloj elektrona zatocen je na plohi izmedu dvaju poluvodica, tj. heterospoju, ili izmedu
poluvodica i izolatora. Niska temperatura i jako magnetsko polje zamrznu gibanje duZ smjera
okomitog na sloj te se bitna dinamika odvija se u ravnini. Elektroni se u tom sloju mogu ideali-
zirati kao 2D elektronski plin (2DEG) s Coulombovom interakcijom. Osnovno opaZanje QHE
jest to da dok se magnetsko polje mijenja na fiksnoj elektronskoj gustoci, Hallov otpor ostaje
konstantan na konacnim intervalima - platoima. Platoi su razdvojeni intervalima kontinuiranog

ponaSanja. Vrijednost Hallove vodljivost 0y, na platoima jest
2

Oy = vz, (6.3)
gdje je kvantni broj v cijeli broj za IQHE [97,98] ili razlomak za FQHE [23,25]. Pokazuje se
da v odgovara faktoru popunjenja Landauova nivoa. Na platoima je tenzor vodljivosti nedija-
gonalan, Sto upucuje na nedisipativan transverzalni tok kao odgovor na primijenjeno elektricno
polje. Hallov koeficijent izraZen je preko fundamentalnih fizikalnih veli¢ina i pokazano je da je
kvantizacijsko pravilo za QHE topoloska kvantizacija [99-102]. Ova relacija eksperimentalno
je opaZena s iznimno visokom precizno$éu, relativna nepouzdanost je 10719 [103].

Postoji nekoliko kandidata za fizikalnu realizaciju Cestica s anyonskim svojstvima. Naj-
vazniji fizikalni objekti koji se mogu opisati kao anyoni su kvazielektronska i kvaziSupljinska
pobudenja 2D sustava elektrona u jakom magnetskom polju koji pokazuje FQHE [23-25]. Pla-
toi kvantiziranog otpora pokazuju gdje se 2DEG ponaSa kao nekompresibilni fluid, Sto znaci
da sva nabijena pobudenja imaju konacni energijski procjep. Kod FQHE, za faktor popunjenja
v = 1/m za neparan m, za naboj kvazielektrona ili kvaziSupljine pokazuje se da je ¢* = 1/m,
dok je statistika ovih Abelovih anyona 6 = 1/m [26-28]. Opcenitije, na v =n/(2pn+1) vri-
jednost naboja je |e*| = ve = ¢/(2pn+ 1) [94,106]. Teorija predvida da se ne-Abelovi anyoni
pojavljuju u FQH na posebnim frakcijama popunjenja [29—40], pri ¢emu je prvo otkrice origi-
nalno napravljeno za v = 5/2 stanje [29]. U ultrahladnim atomskim plinovima napravljeni su
teorijski prijedlozi anyona temeljeni na oponasanju FQHE [41,42]. Drugi primjer sustava koji
mogu imati anyonsku statistiku jest Kitaevljev model definiran na 2D spinskoj reSetci [8, 46]
gdje niskoenergijska pobudenja Hamiltonijana mogu biti Abelove ili ne-Abelove kvazicestice.
Ovaj model predstavlja platformu za izvodenje topoloskog kvantnog racunanja. Nadalje, slje-
dedi primjer anyonskih sustava uklju¢uje Majorana zero modove. Ne-Abelovi anyoni imena
Isingovi anyoni [62-64] pojavljuju se kao kvaziCestice ili defekti koji podrzavaju Majorana
zero mod.

Posljednjih godina javio se veliki interes za anyonima zbog moguénosti koristenja takvih
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objekata u topoloskom kvantnom racunanju [7, 62, 80]. Naime, Kitaev je pokazao ideju da
bi se Hilbertov prostor ne-Abelovih anyona trebao promatrati kao skup kubita, pri ¢emu su
operacije na ne-Abelovim anyonima unitarne operacije koje se ponasaju kao kvantna vrata [8].
U ovoj shemi informacija nije pohranjena lokalno, te je nelokalni prostor stanja neprobojan na
lokalne perturbacije, Sto kubit Cini topoloski zasti¢enim od pogresaka. Ovaj pristup kvantnom
racunanju otpornom na greSke (fault tolerant) pri Cemu se unitarna kvantna vrata dobiju iz

braiding operacija ne-Abelovih anyona poznato je kao topolosko kvantno racunanje [7, 62, 80].

6.3 Prijedlozi realizacije anyona

Rad predstavljen u ovom odjeljku objavljen je u sljede¢im radovima:

e M. Todori¢, D. Jukié, D. Radi¢, M. Soljacié¢, and H. Buljan, Quantum Hall Effect with
Composites of Magnetic Flux Tubes and Charged Particles, Phys. Rev. Lett. 120, 267201
(2018).

e F. Luni¢, M. Todori¢, B. Klajn, T. Dubcek, D. Juki¢, H. Buljan, Exact solutions of a model
for synthetic anyons in noninteracting systems, Phys. Rev. B 101, 115139 (2020).

U potrazi za fizikalnom realizacijom anyona, kvazicCesticna pobudenja u 2D interagiraju-
¢im viSeCesticnim sustavima igraju glavnu ulogu [7]. Primjer kvaziCestica s necjelobrojnom
statistikom su pobudenja u FQHE [23-28]. Kljuc¢ni sastojci u FQHE su 2D elektroni u jakom
jednolikom magnetskom polju [23] 1 Coulombove interakcije [24,25]. S druge strane, Coulom-
bove interakcije nisu potrebne za objaSnjenje IQHE [97,98]. Neki noviji primjeri realizacije
anyona ukljucuju spinske sustave [8,46,51,56] i Majorana zero modove [62,63]. Zanimljivi su
i eksperimenti u polju kondenzirane materije u slabom ili neinteragiraju¢em sustavu [67—69].
Medutim, dug je put prije nego ¢e eksperimenti biti u moguénosti u¢inkovito detektirati i mani-
pulirati anyonima, posebno za kvantno raCunanje otporno na greske [7,62]. Stoga postoji interes
za istrazivanjem nekih manje tradicionalnih shema za realizaciju i manipulaciju anyonima.

Motivirani IQHE, ovdje razmatramo nove mehanizme realizacije i potpisa anyona u nein-
teragiraju¢im sustavima. Prvo predlazemo eksperimentalnu realizaciju originalnog Wilczekova
modela anyona u 2DEG smjeStenom u okomitom magnetskom polju koji pokazuje IQHE. Po-
kazujemo da je potpis anyona blagi pomak Hallova otpora. Nadalje predstavljamo egzaktna
rjeSenja modela sintetickih anyona u neinteragiraju¢em kvantnom viseCesticnom sustavu, koji

je razmatran u [67,68]. Pokazujemo da je osnovno stanje anyonsko u koordinatama proba.

6.3.1 Kvantni Hallov efekt s kompozitima zavojnica i nabijenih Cestica

U ovom radu predlazemo eksperimentalnu realizaciju originalnog Wilczekova modela Abelovih
anyona, kompozita nabijenih Cestica i cijevi odredenog magnetskog toka [3—-5]. Prvo predla-

Zzemo shemu realizacije nabijenih zavojnica, u kojoj je nabijeni objekt s intrinzicnim magnet-
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skim dipolnim momentom smjesten izmedu dvaju polubeskonacnih blokova materijala s vi-
sokom permeabilnosti (u,), a slike magnetskog momenta stvaraju efektivnu magnetsku cijev.
Ova shema dalje se koristi u odredenom fizikalnom sustavu kako bi se dobio prijedlog realiza-
cije Wilczekovih anyona. Polazi$na tocka jest 2D elektronski plin (2DEG) smjeSten u okomito
jednoliko magnetsko polje koji pokazuje IQHE [97,98]. Pretpostavimo da smjestimo 2DEG
izmedu dvaju polubeskonacnih blokova magnetskih materijala s velikom permeabilno$¢u p,,
za koje se pretpostavlja da imaju brz vremenski odgovor (u podrucju ciklotronske i Larmo-
rove frekvencije). Elektronski spinovi (tj. magnetski dipolni momenti) bit e poravnati zbog
Zeemanova efekta, dok ¢e materijal s velikom permeabilno$¢u u, inducirati magnetsku cijev
pridruZzenu svakom elektronu. Za ovaj sustav koristimo egzaktnu mnogocesti¢nu valnu funk-
ciju. Pronalazimo potpis prisutnosti anyona u ovom sustavu - Hallovu vodljivost. Hallov otpor
na platou IQHE, koji sluZi kao standard elektricnog otpora [97, 103, 104], bit ¢e blago pomak-
nut. Diskutiramo moguce implementacije predlozenog sustava, prepreke, i moguce nacine da
ih prevladamo. U ovom radu potraga za materijalima s velikim u, na visokim frekvencijama

koja je u tijeku u polju metamaterijala i potraga za anyonima nalaze se na istom putu.

6.3.2 Egzaktna rjeSenja modela sintetickih anyona u neinteragirajuc¢em

sustavu

U kontekstu manje tradicionalnih shema realizacije 1 manipulacije anyona, vrijedi istaknuti ne-
koliko primjera eksperimenata u kondenziranoj materiji, gdje je predloZena sintetizacija anyona
vezanjem slabo interagirajucih (ili neinteragirajucih) elektrona na topoloski netrivijalnu poza-
dinu (ili topoloski netrivijalne vanjske perturbacije) [67—69]. U ovom radu proucavamo teorijski
model sintetickih anyona u neinteragiraju¢em kvantnom viSecesti¢nom sustavu. Predstavljamo
egzaktna rjeSenja modela sintetickih anyona, koja su razmotrena u [67, 68]. Sinteticki anyoni
mogu se javiti u neinteragiraju¢em sustavu kad je perturbiran posebno skrojenim lokaliziranim
probama, koje daju trazenu netrivijalnu topologiju sustava. Ovaj model predstavljen je Hamil-
tonijanom neinteragirajucih elektrona u 2D, u jednolikom magnetskom polju, kojeg probadaju
zavojnice s magnetskim tokom koji je razlomak kvanta toka. U potencijalnoj eksperimentalnoj
realizaciji modela, trebao bi postojati mehanizam koji fiksira tok u svim probama na identi¢nu
vrijednost za ove perturbacije da bi predstavljale sinteticke anyone. Trazimo analiticki osnovno
stanje modela kad su popunjena samo stanja najnizeg Landauova nivoa. Racunamo statisticki
parametar koriste¢i Berryjevu fazu i pokazujemo da je osnovno stanje anyonsko u koordinatama
proba. Ovi rezultati potvrdeni su numericki. Iz rjeSenja nalazimo da se oko svake probe nalazi
nedostatak elektronskog naboja Ag. Pokazujemo da se ovaj nedostatak naboja ne moze identifi-
cirati s konceptom kvaziCestica tako $to pokazujemo da % ¢ A - dl ne odgovara Aharonov-Bohm
fazi nakupljenoj kad proba prelazi petlju u prostoru. Kao posljedica toga Sto se sinteti¢ki anyoni
ne mogu smatrati kvaziCesticama, diskutirana su fuzijska pravila za razli¢ite mikroskopske re-

alizacije fuzijskih procesa.
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6.4 Berryjeva faza za Boseov plin na jednodimenzionalnom

prstenu

Rad predstavljen u ovom poglavlju objavljen je u sljede¢em radu

e M. Todori¢, B. Klajn, D. Juki¢, and H. Buljan, Berry phase for a Bose gas on a one-
dimensional ring, Phys. Rev. A 102, 013322 (2020).

1D kvantni viSeCesti¢ni sustavi podrucje su interesa matematicara i fizicara vec Citavo sto-
ljece. Bethe je odredio egzaktno rjeSenje za 1D Heisenbergov model spina % koristeci pretpos-
tavku za valnu funkciju [149]. Nakon toga uslijedila su mnoga egzaktna rjeSenja drugih teorij-
skih 1D modela, ukljucujuéi rjeSenje Girardeaua koje opisuje neprobojni Boseov plin [150].
Jednostavni 1D modeli Cija se rjeSenja ne mogu naci egzaktno detaljno su istraZzeni ucinkovi-
tim pristupima posebno prilagodenima jednoj dimenziji. Bitan primjer je model koji su uveli
Lieb i Liniger, a koji opisuje sustav identi¢nih Boseovih Cestica u 1D koje interagiraju preko
interakcija oblika 8- funkcije jakosti c. Ova rjeSenja nisu smatrana ni¢im vise od matematicke
znatiZelje koja nije vazna za stvarni 3D svijet. Medutim, nedavni tehnoloski napredak u zato-
¢enju ultrahladnih atomskih plinova vodio je do eksperimentalne realizacije mnogih kvazi-1D
modela, $to je oZivjelo zanimanje za proucavanje teorijskih 1D modela [152-155] (za pregled
polja vidi [156]).

U eksperimentima, ultrahladni atomi stavljaju se u uske, transverzalno zatocene, efektivno
1D atomske valovode, gdje su transverzalna pobudenja jako potisnuta [152—155]. Ovi atom-
ski plinovi karakterizirani su Lieb-Liniger modelom [151] kontaktnih interakcija proizvoljne
snage ¢. U sluCaju beskonacne snage interakcije (¢ — o), takve se bozonske Cestice mogu
opisati Tonks-Girardeau modelom [150]. Fermi-Boseovo mapiranje povezuje Tonks-Girardeau
bozonsku valnu funkciju s antisimetricnom viseCesticnom valnom funkcijom koja opisuje plin
neinteragirajucih fermiona bez spina u 1D. Tonks-Girardeau reZim eksperimentalno je postig-
nut [153-155] s atomima na niskoj temperaturi i linearnim gusto¢ama, te s jakim efektivnim in-
terakcijama [157-159]. U granici slabe interakcije, LL model mozZe se opisati Gross-Pitaevskii
teorijom [160].

Atomi kao neutralne Cestice ne mogu izravno proizvesti magnetske fenomene, no srzZ mno-
gih zanimljivih fenomena, ukljucujuéi baZzdarnu invarijantnost ili kvantni Hallov efekt, jest ve-
zanje nabijenih Cestica i elektromagnetskih polja. Zanimljivo je, stoga, istraZiti strategije stvara-
nja sintetickih bazdarnih polja za neutralne atome. Prva sinteticka magnetska polja postignuta
su u brzo rotiraju¢im Bose-Einsteinovim kondenzatima, gdje Coriolisova sila igra ulogu Lo-
rentzove sile [176, 177]. Druga ideja je smjeStanje atomskog plina u posebno skrojeno lasersko
polje, gdje se zbog atomskih interakcija sa svjetlom, lasersko polje ponasa kao umjetno magnet-
sko polje za neutralne atome [145, 147]. Nadalje, sinteticka magnetska polja mogu se postici u
optickim reSetkama, gdje se kreiraju kompleksni matri¢ni elementi tuneliranja izmedu stranica
reSetke [178-182].

80



Razvoj sintetickih bazdarnih polja otvorio je put istraZivanju topoloskih stanja materije u
ultrahladnim atomskim sustavima [145,147,176—183]. Jednocesti¢ni topoloski fenomeni dobro
su objasnjeni [147, 183], medutim, jako interagirajuci kvantni sustavi vezani za baZzdarna polja
mogu voditi na zanimljiva korelirana topoloSka stanja materije koja je teSko razumjeti [175].
Prirodno je stoga pitati mogu li egzaktno rjesSivi modeli vezani za bazdarna polja dati neki

dublji uvid u takva stanja.

6.4.1 Berryjeva faza za Boseov plin na 1D prstenu

U ovom radu proucavamo sustav jako interagiraju¢ih 1D bozona na prstenu koji probada sinte-
ticka zavojnica. Preko Fermi-Bose mapiranja, ovaj sustav povezan je sa sustavom neinteragi-
rajucih elektrona polariziranog spina zatocenih na prstenu koji probada zavojnica. Na prstenu
postoji vanjska lokalizirana potencijalna barijera oblika delta funkcije V(¢) = g6(¢ — ¢p). Pro-
ucavamo Berryjevu fazu pridruZenu adijabatskom gibanju barijere delta funkcije oko prstena
kao funkciju jakosti potencijala g i broja Cestica N. Ponasanje Berryjeve faze moZe se objasniti
preko kvantno mehanic¢kog reflektiranja i tuneliranja kroz barijeru koja se giba i gura Cestice
oko prstena.

Barijera proizvodi nedostatak u gustoci kojem se moZe pridruZiti nedostatak naboja Ag (ne-
dostatak gustoce) za slucaj elektrona (bozona). Pokazujemo da se Berryjeva faza (tj. Aharonov-
Bohm faza) ne moze poistovijetiti s veli¢inom Ag/% § A - dl. Ovo znaci da se nedostatak naboja
ne moze identificirati kao (kvazi)Supljina. Ukazujemo na poveznicu ovog rezultata 1 istraZivanja
sintetickih anyona u neinteragiraju¢im sustavima. Konacno, za bozone prou¢avamo slabo inte-
ragirajudi reZzim, koji je povezan s jako interagiraju¢im elektronima preko Fermi-Bose dualnosti

u 1D sustavima.

6.5 Zakljucak

U tri prostorne dimenzije Cestice se klasificiraju kao bozoni i fermioni ovisno o tome slijede li
Bose-Einsteinovu ili Fermi-Diracovu statistiku. Prema vezi spina i statistike, bozoni su Cestice
cjelobrojnog spina, dok su fermioni Cestice polucjelobrojnog spina. U dvije dimenzije kvantna
statistika moZe biti neprekidna interpolacija izmedu bozonske i fermionske, a Cestice s takvom
statistikom zovu se anyoni [3-5]. Karakterizirani su necjelobrojnim spinom. Moguénost pos-
tojanja anyona posljedica je neobi¢nih topoloskih svojstava konfiguracijskog prostora skupine
identi¢nih 2D Cestica [6]. Vaznu fizikalnu realizaciju anyona predstavljaju lokalizirana kvazi-
CestiCna pobudenja u FQHE [23,25]. Druge realizacije anyona ukljucuju spinske sustave koji
podrZavaju Kitaevljev model [8] i sustave koji podrzavaju Majorana zero modove [62, 63]. Po-
red fundamentalne motivacije istraZivanja anyona, ne-Abelova anyonska pobudenja mogu se
koristiti za robusno topolosko kvantno racunanje [7, 8].

Ova disertacija proucava nove sheme realizacije 1 manipulacije anyona. U prvom dijelu
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predloZeni su novi mehanizmi realizacije i potpisa anyona u neinteragirajuéim sustavima. Prvi
prijedlog jest eksperimentalna realizacija originalnog Wilczekova modela Abelovih anyona,
kompozita tvorenih od nabijenih Cestica i magnetskih zavojnica u 2D elektronskom plinu koji
je smjeSten u okomitom magnetskom polju te pokazuje IQHE. Realizacija kompozita temelji se
na tome da je nabijeni objekt s intrinzicnim magnetskim dipolnim momentom smjeSten izmedu
dva polubeskonacna bloka magnetskog materijala velike permeabilnosti, pri ¢emu slike mag-
netskog momenta stvaraju efektivnu zavojnicu. Pokazali smo da je potpis anyona blagi pomak
Hallove vodljivosti koji se moze eksperimentalno mjeriti. Drugi prijedlog prezentira egzaktna
rjeSenja modela sintetickih anyona u neinteragiraju¢em kvantnom viseCesticnom sustavu, koji
je razmatran u [67,68]. Ovaj model predstavljen je hamiltonijanom sustava neinteragirajuéih
elektrona u dvije dimenzije u jednolikom magnetskom polju, koji probadaju zavojnice s mag-
netskim tokom koji je razlomak kvanta magnetskog toka. Pronasli smo analiticki i numericki
osnovno stanje modela, a koriStenjem Berryjeve faze izraCunali smo statisti¢ki parametar i po-
kazali da je osnovno stanje anyonsko u koordinatama proba. Pokazano je da se sinteti¢ki anyoni
ne mogu smatrati kvazicesticama.

Drugi dio usmjeren je na 1D sustav bozona vezanih za sinteticka baZzdarna polja. Motiva-
cija jest u tome $to jako interagirajuéi kvantni sustavi vezani na bazdarna polja mogu voditi
do zanimljivih koreliranih topoloSkih stanja materije koja je teSko razumjeti. Pitanje je stoga
mogu li egzaktno rjesivi 1D kvantni viSeCesticni modeli vezani za bazdarna polja dati neki uvid
u jako korelirana stanja. ToCnije, ovdje nas zanima dublje razumijevanje sintetickih anyona u
neinteragirajuéim sustavima. Proucili smo sustav jako interagiraju¢ih bozona smjeStenih na 1D
prstenu koji je proboden sintetickom zavojnicom. Na prstenu postoji vanjska lokalizirana bari-
jera oblika d-funkcije. IstraZzena je Berryjeva faza koja se javlja zbog gibanja barijere. Barijera
stvara nedostatak naboja u gustoci, a pokazano je da se odgovarajuci nedostatak naboja ne moze
poistovjetiti s kvaziSupljinom. Taj rezultat povezan je s proucavanjem sintetickih anyona u ne-

interagiraju¢im sustavima za koje je pokazano da se ne mogu smatrati kvaziCesticama [204].
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