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ABSTRACT 

MACHINE LEARNING ASSISTED DETERMINATION OF LINEARLY 
INDEPENDENT SET OF GENERALIZED MOLECULAR COORDINATES 

Tea Ostojić 
 
 
Trajectory analysis can provide information on the complete conformational or configurational 
space of molecular systems and their reactivity. Numerical analysis of trajectories can be 
performed in any type of coordinate system, e.g. Cartesian coordinate system, internal or 
normal coordinates, etc. In some applications, various coordinate systems will hold redundant 
information due to the linear dependence. A set of molecular coordinates contains null-vectors 
that introduce numerical instabilities and noise in the processing. In the case of a larger number 
of defined coordinates, there is also a problem with storage and data processing. 

In this work, the procedure for constructing generalized and linearly independent set of 
internal molecular coordinates will be evaluated. Generalized internal coordinates are 
chemically intuitive and can be defined in a number of ways, for example: distances, angles or 
dihedral angles. By applying machine learning to molecular dynamics trajectory, a complete 
and linearly dependent set of generalized internal coordinate distances will be reduced to the 
linearly independent set that still contains all relevant information about conformational or 
configurational space, reactivity and molecular motion. Given procedure will be applied to the 
molecule of (R)-cinchonidine. 
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SAŽETAK 

ODREĐIVANJE LINEARNO NEZAVISNOG SKUPA GENERALIZIRANIH 
MOLEKULARNIH KOORDINATA PRIMJENOM STROJNOG UČENJA 

Tea Ostojić 
 
 

Analiza trajektorije može pružiti informacije o potpunom konformacijskom ili 
konfiguracijskom prostoru molekularnih sustava i njihovoj reaktivnosti. Numerička analiza 
trajektorija može se provesti u bilo kojem koordinatnom sustavu, npr. Cartesiusov koordinatni 
sustav, sustav internih ili normalnih koordinata, itd. No, u nekim aplikacijama različiti 
koordinatni sustavi zadržavaju suvišne informacije zbog linearne zavisnosti. Taj skup 
molekularnih koordinata sadrži nul-vektore koji onda uzrokuju numeričke nestabilnosti i 
numerički šum. U slučaju većeg broja definiranih koordinata također postoji i problem s 
pohranom te obradom podataka. 

U ovom će se radu razraditi postupak za kreiranje generaliziranog i linearno nezavisnog 
skupa internih koordinata. Generalizirane interne koordinate kemijski su intuitivne, a mogu se 
definirati na više načina, na primjer: međuatomne udaljenosti, kutovi ili diedarski kutovi. 
Primjenom strojnog učenja na trajektoriju molekularne dinamike, potpun i linearno zavisan 
skup generaliziranih internih koordinata međuatomnih udaljenosti reducirat će se na linearno 
nezavisan skup, ali skup koji još uvijek sadrži sve relevantne informacije o konformacijskom 
ili konfiguracijskom prostoru, reaktivnosti i gibanju molekula. Razrađeni postupak primijenit 
će se na molekulu (R)-cinhonidina. 
(83 stranice, 12 slika, 21 tablica, 31 literaturni navod, jezik izvornika: engleski jezik) 
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PROŠIRENI SAŽETAK 

Cinhonidin je derivat kinuklidina, a svrstava se u skupinu alkaloida. Alkaloidi su organski spojevi 

koji imaju atom dušika s bazičnim svojstvima u svojoj strukturi, a često se koriste u farmakologiji 

zbog dokazanih ljekovitih svojstava. Alkaloidi se dijele prema tipu heterocikličkog prstena u 

molekuli, a cinhonidin spada u skupinu kinolinskih alkaloida koji imaju kinolinsku jezgru. Osim 

kinolinske jezgre cinhonidin sadrži i kinuklidinsku jezgru. Cinhonidin se u prirodi može naći u kori 

i lišću biljaka Cinhone officinalis i Cinhone calisaye, koje su se koristile u narodnoj medicini još 

od 15. stoljeća, a u 17. stoljećuI cinhonidin i službeno pronalazi upotrebu u medicini. Ova skupina 

spojeva ima antiparazitska svojstva, a danas se izučava s ciljem razvoja lijekova za borbu protiv 

kroničnih opstruktivnih plućnih bolesti.II 

Valna funkcija Ψ(r,t) je funkcija koja sadrži sve informacije o promatranom sustavu, a 

ovisi o položaju svih čestica promatranog sustava i vremenuIII. Temeljna jednadžba kvantne 

mehanike je Schrödingerova jednadžba koja opisuje djelovanje operatora ukupne energije na 

valnu funkciju. Vremenski ovisna Schrödingerova jednadžba glasi: 

 𝑖ℏ
𝜕|𝛹(𝒓, 𝑡)⟩

𝜕𝑡
= 𝐻̂|𝛹(𝒓, 𝑡)⟩ (1) 

i sadrži sve informacije o sustavu i njegovoj propagaciji kroz vrijeme. Parcijalnom integracijom 

vremenski ovisne Schrödingerove jednadžbe može se doći do vremenski neovisne 

Schrödingerove jednadžbe koja opisuje stacionarno stanje sustava: 

 𝐻̂𝛹(𝒓) = 𝐸𝛹(𝒓) (2) 

u kojoj 𝐻̂ predstavlja operator ukupne energije, Ψ(r) valnu funkciju koja ovisi samo o 

položajima čestica u sustavu, a E pripadajuću energiju koja je ujedno i vlastita vrijednost 

operatora ukupne energije koji se naziva hamiltonijan. Operator ukupne energije može se 

rastaviti na operator kinetičke energije i operator potencijalne energije. Takva je jednadžba, 

osim za najjednostavnije sustave poput atoma vodika ili H2
+, analitički nerješiva pa je za njezino 

 
 
 
I J. Jaramillo-Arango, Bot. J. Linn. Soc. 53 (1949) 272–311. 
II J.-P. Starck, L. Provins, B. Christophe, M. Gillard, S. Jadot, P. Lo Brutto, L. Que ́re ,́ P. Talaga, M. Guyaux, 
Bioorg. Med. Chem. Lett. 18 (2008) 2675–2678. 
III D. J. Griffiths, D. F. Schroeter, Introduction to Quantum Mechanics, Cambridge University Press, United 
Kingdom, 2018 
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rješavanje potrebno koristiti aproksimacije. Najčešće korištena aproksimacija je Born-

Oppenheimerova aproksimacija, koja omogućava razdvajanje valne funkcije jezgri i valne 

funkcije elektrona promatranog sustava. Kako se masa elektrona i jezgara razlikuje za nekoliko 

redova veličine, posljedično se i brzine gibanja jezgara i elektrona značajno razlikuju. Elektroni, 

zbog manje mase u odnosu na masu jezgre, prema drugom Newtonovom zakonu, postižu puno 

veću akceleraciju i brzinu, a jezgre se gibaju znatno sporije u odnosu na njih. Elektroni se stoga 

praktički trenutno prilagođavaju maloj promjeni položaja jezgara nekog sustava, odnosno 

elektronska valna funkcija postaje parametarski ovisna o položajima jezgara. To omogućuje da 

se valna funkcija ne rješava simultano za sve čestice u sustavu nego se elektronska valna 

funkcija rješava za jedan položaj jezgara koji se u idućem koraku mijenja, a postupak rješavanja 

valne funkcije ponavlja se za svaku pojedinu konfiguraciju jezgara. Rezultat ovakvog postupka 

je ploha potencijalne elektronske energije. 

Ploha potencijalne energije (engl. Potential energy surface, PES) funkcija je potencijalne 

elektronske energije u ovisnosti o geometrijskom opisu položaja jezgaraIV. Ako su 

konformacije opisane Kartezijevim koordinatama, ploha potencijalne energije je 3N-

dimenzionalna funkcija, gdje N predstavlja broj jezgara u molekuli, a za njen bi prikaz bila 

potrebna (3N+1)-dimenzionalna hiperploha. Ako se konformacijska ploha razapinje internim 

koordinatama, ploha je (3N−6)-dimenzionalna funkcija za nelinearne sustave. Za njezin prikaz 

potrebna je (3N−5)-dimenzionalna hiperploha. U praksi je takve plohe gotovo nemoguće 

vizualizirati. Neke od metoda koje se koriste za pretragu konformacijskog prostora metode su 

sistematske pretrage, metode proizvoljnog pristupa i molekularna dinamika. 

Molekularna dinamika skup je računalnih metoda koji se koristi za simulaciju sustava koji 

se sastoji od interagirajućih čestica i propagira kroz vrijeme s očuvanjem svojstava sustavaV. 

Kao što je već spomenuto, rješavanje Schrödingerove jednadžbe za neki sustav je teško 

izvedivo, a ono se bez velikih pojednostavljenja može provesti samo na izrazito malim 

sustavima i tada se govori o kvantno-molekularnoj dinamici.  

Klasična molekularna dinamika podrazumijeva pojednostavljenje gibanja jezgara sustava 

koristeći Newtonove jednadžbe za njihov opis i polje sila. Klasična molekularna dinamika stoga 

 
 
 
IV A. R. Leach, Molecular Modelling: Principles and Applications, Pearson Education Limited, Dorchester, 2. 
izdanje, 2001. 
V D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge 
University Press, London, 2009. 
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slijedi Newtonove zakone gibanja. Stanje sustava definirano je u faznom prostoru 6N 

dimenzionalnosti, gdje N predstavlja broj čestica u nekom sustavu, a svaka je točka definirana 

položajem (tri prostorne koordinate x, y, z) i impulsima gibanja (u tri smjera px, py, pz). U takvom 

prostoru definira se trajektoriju, odnosno funkciju koja predstavlja evoluciju vektora X koji 

sadrži informacije o svakoj čestici: 

𝑿 = (𝑥1, 𝑦1, 𝑧1, 𝑝𝑥1, 𝑝𝑦1, 𝑝𝑧1, 𝑥2, 𝑦2, 𝑧2, 𝑝𝑥2, 𝑝𝑦2, 𝑝𝑧2, … , 𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 , 𝑝𝑥𝑁 , 𝑝𝑦𝑁 , 𝑝𝑧𝑁). (3) 

Semiklasična molekularna dinamika često se koristi u simulacijama smatanja proteina. 

Semiklasična molekularna dinamika također koristi Newtonove jednadžbe za opis gibanja 

jezgara, a iz potencijala se generiraju konzervativne sile iz kojih se numeričkom integracijom 

u određenom vremenskom intervalu računaju novi položaji i brzine jezgara. S obzirom na to da 

se radi o dinamici potrebno je krenuti od vremenski ovisne Schrödingerove jednadžbe i uvesti 

aproksimacije za njezino rješavanje. Kinetički dio hamiltonijana raspisuje se na kinetičku 

energiju jezgara i kinetičku energiju elektrona u sustavu, a potencijalni član na povoljne 

interakcije jezgara s elektronima i nepovoljne interakcije jezgara međusobno i elektrona 

međusobno: 

 𝐻̂ =
1

2𝑚𝑒
∑ 𝛻𝑖

2

𝑁

𝑖=1

+
1

2𝑀𝐴
∑ 𝛻𝑗

2

𝑀

𝐴=1

− ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

𝑁

𝑖=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

+ ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑁

𝐵>𝐴

𝑀

𝐴=1

 (4) 

gdje N predstavlja broj elektrona u promatranom sustavu, M broj jezgara, MA masu jezgre, me 

masu elektrona, a r i R udaljenosti između odabranih čestica. Uvođenjem aproksimacije 

zakočenih jezgara može se definirati tzv. elektronski hamiltonijan čiji izraz tada u atomskim 

jedinicama glasi: 

 𝐻̂el. =
1

2
∑ 𝛻𝑖

2

𝑁

𝑖=1

− ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

𝑁

𝑖=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

+ ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑁

𝐵>𝐴

𝑀

𝐴=1

 (5) 

odnosno vrijedi: 

 𝐻̂ = 𝑇̂𝑁(𝑹) + 𝑇𝑒̂(𝒓) + 𝑉̂𝑒,𝑁(𝒓, 𝑹) + 𝑉̂𝑁,𝑁(𝑹) + 𝑉̂𝑒,𝑒(𝒓) (6) 

gdje je R skup nuklearnih koordinata, a r skup elektronskih koordinata. Postojanje člana 

𝑉̂𝑒,𝑁(𝒓, 𝑹) ograničava da se u potpunosti separiraju jezgre od elektrona odnosno hamiltonijan 

prikazan jednadžbom (5) nije čisti elektronski hamiltonijan nego sadržava i tzv. mješoviti član 

koji opisuje interakcije elektrona i jezgara međusobno koji u realnim sustavima nije zanemariv. 

Već spomenuta Born-Oppenheimerova aproksimacija dopušta da se prostorna valna funkcija 

zapiše kao umnožak nuklearne valne funkcije i elektronske valne funkcije koja parametarski 
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ovisi o položaju jezgara Ψ(r;R)χ(R), fiksiramo li položaj jezgara u sustavu tzv. elektronski 

hamiltonijan i elektronsku Schrödingerovu jednadžbu može se zapisati kao: 

 𝐻̂el. = 𝑇𝑒̂(𝒓) + 𝑉̂𝑒,𝑁(𝒓; 𝑹) + 𝑉̂𝑁,𝑁(𝑹) + 𝑉̂𝑒,𝑒(𝒓) (7) 

 𝐻̂el.𝛹(𝒓; 𝑹) = 𝐸𝑒𝑙. 𝛹(𝒓; 𝑹) (8) 

U aproksimaciji zamrznutih jezgara njihov položaj držimo konstantnim, potencijalni član 

𝑉̂𝑁,𝑁(𝑹) također je konstantan i može se izostaviti iz elektronskog hamiltonijana: 

 𝐻̂e. = 𝑇𝑒̂(𝒓) + 𝑉̂𝑒,𝑁(𝒓; 𝑹) + 𝑉̂𝑒,𝑒(𝒓) (9) 

 𝐻̂e.𝛹(𝒓; 𝑹) = 𝐸e. 𝛹(𝒓; 𝑹) (10) 

Uz pretpostavku da je spektar elektronskog hamiltonijana diskretan, a da su njegovi svojstveni 

vektori ortogonalni, ukupnu valnu funkciju može se zapisati kao: 

 𝛹(𝒓, 𝑹, 𝑡) = ∑ 𝛹𝑙

∞

𝑙=1

(𝒓; 𝑹)𝜒𝑙(𝑹, 𝑡) (11) 

gdje su 𝜒𝑘(𝑹, 𝑡) vremenski ovisni članovi ovakvog razvoja. Uvrštavanjem ovako zapisane 

ukupne valne funkcije u vremenski ovisnu Schrödingerovu jednadžbu, množenjem s lijeva 

𝛹𝑘
∗(𝑹; 𝒓), integracijom po svim prostornim koordinatama elektrona r dobivaju se sljedeći 

izrazi: 

 𝑖ℏ
𝜕𝜒𝑘

𝜕𝑡
= (− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2 + 𝐸𝑘(𝑹)) 𝜒𝑘 + ∑ 𝐶𝑘𝑙𝜒𝑙

∞

𝑙=1

 (12) 

 𝐶𝑘𝑙 = ∫ 𝛹𝑘
∗ (− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2) 𝛹𝑙𝑑𝒓 +

1

𝑀𝐴
(∫ 𝛹𝑘

∗(−𝛻𝐴)𝛹𝑙𝑑𝒓) (−𝛻𝐴) , (13) 

Ckl predstavlja kl-ti element pravog neadijabatskog sprezanja. U adijabatskoj se aproksimaciji 

koriste samo dijagonalni elementi: 

 𝐶𝑘𝑘 = ∫ 𝛹𝑘
∗ (− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2) 𝛹𝑙𝑑𝒓 (14) 

Niti jednom metodom ne može se u razvoju valne funkcije prema jednadžbi (14) uzeti 

beskonačan broj članova pa se ograničava na konačan broj realnih valnih funkcija, a radi 

pojednostavljenja zanemaruje se doprinos dijagonalnih članova Ckk iz čega slijedi: 

 𝑖ℏ
𝜕𝜒𝑘

𝜕𝑡
= (− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2 + 𝐸𝑘(𝑹)) 𝜒𝑘 (15) 

Valna funkcija 𝜒𝑘 opisuje se uvođenjem faktora amplitude Ak i faze Sk: 
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 𝜒𝑘(𝑹, 𝑡) = 𝐴𝑘(𝑹, 𝑡)𝑒𝑖𝑆𝑘(𝑹,𝑡) (16) 

Upravo se ovakav pristup, u kojem se vremenska ovisnost pripisuje samo klasičnom gibanju 

jezgara, a elektronska energija parametarski ovisi o njihovom položaju, koristi za reduciranje 

rješavanja vremenski ovisne Schrödingerove jednadžbe na rješavanje vremenski neovisne 

Schrödingerove jednadžbe. Ovakav se pristup još naziva i Born-Oppenheimerova molekularna 

dinamika (BOMD). Prelaskom na klasičnu sliku i povezivanjem s Newtonovim jednadžbama 

može se pokazati kako se jezgre gibaju u efektivnom potencijalu Vef.
BO koji je opisan plohom 

potencijalne energiju u Born-Oppenheimerovoj aproksimaciji, a vremenski se neovisna 

Schrödingerova jednadžba računa kvantno-kemijskom metodom za fiksan položaj jezgara. 

Upravo se taj dobiveni potencijal za fiksne položaje jezgara koristi za generiranje novih 

položaja u idućem iteracijskom koraku. Potencijal koji se koristi za generiranje novih položaja 

jezgara u molekularnoj dinamici nije analitički poznat pa se generiranje novih položaja jezgara 

vrši numeričkom integracijom. Najprije je potrebno definirati integracijski korak, koji ne smije 

biti predug kako se ne bi narušila vjerodostojnost dinamike (primjerice ukoliko je duži od 

vremena prosječne vibracije rezultati molekularne dinamike, neće poslužiti za izvođenje 

zaključaka o svojstvima sustava) niti prekratak kako sama simulacija i prikupljanje podataka 

za analizu ne bi iziskivalo preveliko komputacijsko vrijeme. Postoji niz algoritama za 

numeričku integraciju, a u kemiji se koriste oni koji imaju vremensku reverzibilnost. 

U ovom radu generirana je trajektorija (R)-cinhonidina od 5 000 000 točaka u Kartezijevim 

koordinatama (PM7 metoda, MOPAC2016VI) te interne koordinate, udaljenosti svih atoma 

međusobno za molekulu (R)-cinhonidina. Početne brzine dodijeljene su prema Maxwell-

Boltzmannovoj raspodjeli pri temperaturi od 1273,15 K, a temperatura je držana konstantnom 

skaliranjem brzina. Integracijski korak iznosio je 0,5 fs, a ukupno trajanje iznosilo je 2,5 ps. 

Trajektorija je, korištenjem mooneeVII programskog koda, prevedena u trajektoriju u internim 

koordinatama. Pronađeni su svi lokalni maksimumi u raspodjeli gustoće vjerojatnosti koji 

odgovaraju minimumima na plohi potencijalne energije. Na trajektoriju s različitim brojem 

točaka, 1000, 2000, s korakom od 1000 do 10 000 točaka te s korakom od 10 000 do 100 000 

točaka, primijenjen je algoritam strojnog učenja za dobivanje nezavisnog skupa generaliziranih 

 
 
 
VI MOPAC2016, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, 
HTTP://OpenMOPAC.net (2016) 
VII T. Hrenar, moonee, Code for Manipulation and Analysis of Multi- and Univariate Data, rev. 
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koordinata. Set internih molekularnih koordinata zapisan je u matričnom zapisu. U proceduri 

strojnog učenja korištena je QR dekompozicija za procjenu ranga matrice. Korištenjem metode 

izostavljanja jednog člana uzorka (engl. leave-one-row-out) ispitana je svaka interna 

koordinata. Ukoliko ona doprinosi rangu matrice, zadržana je, a ukoliko mu ne doprinosi, takva 

se uklanja iz matrice te je testirana njihova konvergencija. Konačan rezultat skup je koordinata 

koje su linearno nezavisne te se njima može opisati geometrija molekule bez gubitka značajnih 

svojstava ili redundantnih informacija. Osim skupa linearno nezavisnih koordinata praćeno je i 

vrijeme potrebno za izračun linearno nezavisnog seta koordinata. Za svaki skup linearno 

nezavisnih generaliziranih koordinata izračunati su platoi lokalnih maksimuma funkcije 

raspodjele vjerojatnosti u ovisnosti o broju koraka simulacije i dimenziji reduciranog prostora. 

Izračun strogih lokalnih maksimuma funkcije raspodjele vjerojatnosti proveden je prema već 

dobro uspostavljenom postupku objavljenom u prethodnom radu.VIII  

 

 
Slika I. Platoi lokalnih maksimuma u ovisnosti o ukupnom broju linearno nezavisnih 

unutarnjih koordinatnih udaljenosti za a) 1000, b) 2000, c) 3000, d) 4000 koraka simulacije. 

(nastavlja se)  

 
 
 
VIII K. Sović, T. Ostojić, S. Cepić, A. Ramić, R. Odžak, M. Skočibušić, T. Hrenar, I. Primožič, Croat. Chem. 
Acta 92 (2019) 259-267 
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Slika I. Platoi lokalnih maksimuma u ovisnosti o ukupnom broju linearno nezavisnih 

unutarnjih koordinatnih udaljenosti za e) 5000, f) 6000, g) 7000, h) 8000 koraka simulacije. 

(nastavlja se)  

 
Slika I. Platoi lokalnih maksimuma u ovisnosti o ukupnom broju linearno nezavisnih 

unutarnjih koordinatnih udaljenosti za i) 9000, j) 10 000, k) 20 000, l) 30 000 koraka 

simulacije. (nastavlja se)  
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Slika I. Platoi lokalnih maksimuma u ovisnosti o ukupnom broju linearno nezavisnih 

unutarnjih koordinatnih udaljenosti za m) 40 000, n) 50 000, o) 60 000, p) 70 000 koraka 

simulacije. (nastavlja se)  

 

 
Slika I. Platoi lokalnih maksimuma u ovisnosti o ukupnom broju linearno nezavisnih 

unutarnjih koordinatnih udaljenosti za q) 80 000, r) 90 000, s) 100 000 koraka simulacije, t) 

odgovara prikazu iz prethodnog radaVIII za usporedbu. 
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Nakon 80 000 točaka simulacije broj internih koordinata udaljenosti konvergirao je, uz male 

promjene u definiciji (Appendix). Na to, osim prikaza na slici I., ukazuju i gradijenti koji su bili  

vrlo mali.  Na slici I. q) – s)  dobiveni su platoi koji pružaju jednaku raspodjelu vjerojatnosti i 

isti konformacijski prostor kao u prethodnom radu (slika I. t). Plato se nalazi na 6 glavnih 

komponenti i 2 000 000 točaka simulacije. Iako prethodni rad pokazuje da reducirani prostor 

oko platoa već sadrži sve informacije o konformacijskom prostoru, kao dodatna sigurnost pri 

određivanju istog simulacija se provodi s nešto većim brojem koraka. 
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§ 1. INTRODUCTION 

The biggest challenge in molecular modelling is finding a certain way of figuring out the global 

minimum energy conformation. The distance geometry (DG) method was, firstly, used only for 

nuclear magnetic resonance (NMR) structural determination because it had big disadvantages 

in conformational analysis.1 DG methods were introduced by Crippen and Havel in 1970s. DG 

method is a method that enables converting the distance ranges into a set in Cartesian 

coordinates. The molecular systems can be described as a set of minimum and maximum 

interatomic distances between all pairs of atoms.1 The matrix defined by minimum and 

maximum interatomic distances contains the conformational space of a molecular system. The 

usual deterministic methods in conformational analysis have two big disadvantages. For 

example, in torsion search computational time grows exponentially with number of rotatable 

number of bonds in a molecule and granularity of a search. Another examples of distance 

geometry methods are the Monte Carlo method and molecular dynamics. In both, structures are 

generated from the first structure input.  

On the other hand, genetic algorithm and some other geometry methods are randomly and 

independently generating the conformations in conformational space of a molecular system.1 

Usually, there are some limitations of the models. In these types of algorithms, every structure 

is scored and based on its score, it is or is not included in a final conformational space. Usually, 

structures are scored using force-fields or another evaluation based on energy of a molecule.  

In 1997, D. C. Spellmeyer et al.1 developed two distance geometry methods for 

conformational analysis. They showed that DG methods can be used in conformational 

sampling and that these methods can be as good or even better than the other conformational 

sampling methods that are commonly used. They are also, relatively, computationally 

inexpensive. One of the developed methods was distance geometry molecular dynamics that is 

close to reduced-coordinate molecular dynamics method. This method had disadvantage of 

requiring an input of parameters for every type of system that is investigated. Another method 

that was developed is based on random guess of initial structure in Cartesian coordinates by 

generating 4D coordinates for each atom and refinement using DG error function. As mentioned 

before, distance geometry is widely applied to NMR data. In this work the application of DG 
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methods is discussed, and it is concluded that they give comparable sampling that is quite 

simple and fast. 
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§ 2. LITERATURE REVIEW 

2.1. Cinchonidine 
Cinchonidine is a derivative of quinuclidine and is classified as a group of alkaloids. This 

molecule is of particular interest for us due to the ongoing scientific project and it was already 

thoroughly investigated in previous work. Alkaloids are organic compounds, which have a 

nitrogen atom with basic properties in their structure and are often used in pharmacology due 

to its medical properties. Alkaloids are divided according to the type of heterocyclic ring in 

molecules, and cinchonidine belongs to the group of quinoline alkaloids with a quinoline 

nucleus (Fig. 1).  

 

 
Figure 1. Structures of quinoline, quinuclidine, (R)- and (S)-cinchonidine. 

 

Figure 1. presents structures of the aforementioned compounds. International Union of Pure 

and Applied Chemistry (IUPAC) names of shown compounds are: 1-benzopyridine, 

1-azabicyclo[2.2.2]octane, 
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(R)−[(2S,4S,5R)5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl](quinolin-4-yl)methanol and 

(S)−[(2S,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl](quinolin-4-yl)methanol, 

respectively. 

Cinchonidine can be found within the bark and leaves of the plants Cinchona officinalis and 

Cinchona calisaya, which have been used in alternative medicine since the 15th century, and 

later in the 17th century2 as aid in curing sicknesses in hospitals. This group of compounds has 

antiparasitic properties and is currently being studied with the aim of developing drugs to cure 

chronic obstructive pulmonary disease (COPD)3. Until 1940, cinchonidine was used as 

antimalarial drug but had some serious side effects on people’s health. Besides application in 

medicine, cinchonidine is used in organic synthesis as a starting material for the preparation of 

other quinuclidine derivatives. Especially, as a stationary phase for enantioselective 

chromatography and for directing chirality in syntheses. 

2.2. Conformational Analysis of Cinchonidine 
The conformational space of cinchonidine and its derivatives have been investigated by several 

methods in the past. Since the alkaloids from Cinchona have 5 stereocenters (Fig. 2), it is 

reasonable to expect variegated conformational behaviour.  

 

 
Figure 2. Cinchonidine’s five stereocenters. 

 

Some of these alkaloids are experimentally investigated using techniques such as Nuclear 

Magnetic Resonance Spectroscopy (NMR), Nuclear Overhauser Effect Spectroscopy (NOESY) 

in D6-acetone. Beside these experiments, computational investigation is done. One of the first 

computational methods was done in 1989 by Dijkstra et al.4 They have performed molecular 

mechanics (MM) calculations in vacuum with different force fields (MM2P and MMX). Later, 
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A. Vargas and A. Baiker5 used relativistic Hamiltonian with spin-orbit coupling included to 

investigate conformational space of these alkaloids on a Pt111 surface. Baiker et al. 

reinvestigated conformational space of this group of compounds using NOESY and DFT 

metadynamic. In 2019, cinchonine and cinchonidine and their protonated and methylated 

quaternary derivatives were investigated using molecular dynamics by K. Sović et al. 6  

In 2008, Baiker et al.5 used two different potentials for obtaining the potential energy 

surface of cinchonidine. They used BLYP functional with plane-wave basis sets using CPMD 

and B3PW91 functional with the Gaussian 6-311G(d,p) basis sets using Gaussian03. They 

obtained 11 conformers. The most stable conformer was conformer named Open(3). 

 

 
Figure 3. Cinchonidine conformation: Open(3).5 

 

K. Sović et al. confirmed on high level of the theory, that the lowest energy conformer is the 

one labelled as Open(3). In mentioned work, simulations were performed using on-the-fly 

calculations of forces in each point of the simulation. All simulations were performed using 

PM7 Hamiltonian in MOPAC20167 using the program qcc8. After obtaining the trajectory with 

5 million steps, principal component analysis (PCA) was conducted with Nonlinear Iterative 

Partial Least Square (NIPALS) algorithm implemented in moonee9 to reduce the 

dimensionality. Probability distributions were generated in the reduced space and its maxima 

were taken as initial guesses for the optimization. Strict local maxima (SLM) of probability 

distribution indicates that the points around the molecule spend the most time in a simulation 

that is equal to strict local minima on potential energy surface (PES). All the maxima were 

optimized using B3LYP-D3 functional and 6-311++G(d,p) basis set with D3 version of 

Grimme’s dispersion using Gaussian1610 and clustered. The simulations and analysis were 

performed in Cartesian coordinate system. For the cinchonidine molecule that was used in this 
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work as well, namely as a test molecule, four conformers with the abundance over the 5% were 

obtained. Local strict maxima plateau was reached at approximately 2 million points in the 

simulations with first 4 principal components.  

 
Figure 4. Four most stable conformers of cinchonidine with abundance of at least 5% at T = 298.15 K 

and p = 101325 Pa (B3LYP-D3/6-311++G(d,p) theory).6 

 

Accordingly, in this work, new procedure for conformational analysis of Cinchona alkaloids 

using the generalized internal coordinate distances is developed. 
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§ 3. THEORETICAL SECTION 

3.1. Conformational Analysis 
Conformation is a 3-dimensional arrangement of atoms and groups of molecules that can be 

obtained by rotation around single (sigma) bonds. Chemical and physical properties of 

molecules are associated with their conformation. Potential energy surface (PES) is a function 

of potential electronic energy depending on the geometric description of the molecule.  

 
Figure 5. Example potential energy surface model.11 

 

Figure 5. presents an example of potential energy surface, it presents the energy dependence on 

two torsion angles defined for bonds around which the rotation can occur. If the relative energy 

is dependent on only one parameter, it is known as one-dimensional function potential energy 

curve.  

Conformational analysis shows high importance in analysing chemical reactions and 

active/binding sites of molecules where reactions occur. Different conformations of a system 

have different energies, often the minima of potential energy surface indicate the conformations 

of molecules that can be biologically active. In screening molecules for biological activity and 

their properties conformational analysis can significantly reduce the spent time. Usually, the 

goal of conformational analysis is to find a minima of potential energy surface and 

corresponding conformation, which is in that case called conformer. Some of the methods used 
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to search for conformational space are systematic search methods, random or stochastic 

methods and molecular dynamics. 

Systematic search methods are methods by which the conformational space is searched 

within predictable changes in the conformation of a molecule. The most known systematic 

search method is grid-search, which is performed by systematically rotating atoms or groups 

around rotatable bonds for a certain amount of torsion angle. In this method, while generating 

new conformations, the bond length in the molecule and the angles between the bonds are kept 

constant. The disadvantage of this method is that the number of structures increases 

exponentially with increasing number of rotatable bonds in the molecule (so-called 

combinatorial explosion).12 Each of the obtained conformations in this way can be subjected to 

optimization algorithm, but usually not all of them make sense.  

Random methods are methods in which the new conformation in each step of calculation is 

generated randomly. The simplest algorithm is based on unsystematic change in Cartesian 

coordinates of atoms or the torsional angles of rotatable bonds. The obtained structure is 

minimized and taken as the initial structure for a new iteration during which a new conformation 

is again generated randomly. The iterative process is repeated for a certain number of steps or 

until it gives new conformations.  

Molecular dynamics is a method used to simulate a system, propagating over time, of 

interacting particles. The trajectory is the result of a simulation of molecular dynamics and it is 

analysed to obtain the full conformational space of the observed system. The trajectory analysis 

of the system can be performed in any coordinate system, for example the Cartesian coordinate 

system. The use of a Cartesian coordinate system is not suitable for larger systems due to 

unnecessary information that causes problems with data processing and storage. If the 

conformations are described in a Cartesian coordinate system, the surface of potential energy 

is a 3N-dimensional function where N represents the number of nuclei in the molecule and a 

(3N + 1)-dimensional hyperplane would be required to represent it. If the conformations are 

defined by internal coordinates, the surface is a (3N – 6)-dimensional function for nonlinear 

systems and a (3N – 5)-dimensional hyperplane would be required to represent it. In practice, 

hyperdimensional planes are impossible to visualize, so various methods are used, to generate 

conformations, that allow the dimensionality of the potential energy surface to be reduced. Such 

a set of coordinates contains null vectors; therefore, they are linearly dependent. 
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After obtaining the PES, all the minima are to be found. The minima can be local or global. 

Global minimum represents the conformer that has the lowest energy in the full conformational 

space, while the local minima represent all the other minima of PES function. Usually, the 

search is performed by finding critical points of the function and analysing the matrix of other 

derivatives at that critical point. The critical point is a point for which gradient of a function is 

null vector: 

 𝛻𝐸(𝒒𝟏, … , 𝒒𝟑𝐍) = (
𝜕𝐸

𝜕𝒒𝟏
, … ,

𝜕𝐸

𝜕𝒒𝟑𝐍
) (17) 

After finding the critical point, the eigenvalues of the matrix of second derivatives, so-called 

Hessian matrix, are obtained by calculating second derivatives of the function at that point and 

the matrix is diagonalized. In a diagonalized matrix, diagonal elements represent eigenvalues 

of a matrix. If all eigenvalues are greater than zero, that point represents the minima of a 

function.  

If some eigenvalues are negative, while other are positive, these points are called saddle points 

in which function has minima in one dimension, and maxima in others. Depending on the 

number of eigenvalues that are less than zero it is called nth order saddle point. Molecular 

geometries in these points are called transition state structures and are especially important in 

the study of chemical reactions. They can indicate the mechanism of forming the certain species 

or conversion from one to another structure. This process is often difficult to carry out. The 

PES that we get from mentioned methods is not analytic function, therefore numerical methods 

are needed to find these points.  

Another possibility is to do a statistical analysis of trajectories. The procedure for all local 

maxima in the probability distribution of the molecular geometry coordinate can be done. In 

molecular dynamics simulation it is expected that, during the simulation run, the molecule 

would statistically spend more time in and around the minima points on the PES. This 

assumption leads us to the conclusion that maxima points in the probability distribution of 

molecular geometry coordinates are equivalent to minima points in PES function. The 

advantage of this method is that it does not depend on the structure or connectivity of the 

molecule. It can be applied for the determination of the conformational space for the cyclic and 

noncyclic molecules without any postprocessing of the trajectory data.13 Again, the problem is 

high dimensionality, and it should be reduced as much as possible without losing data important 

for interpretation. The most used method for that is principal component analysis (PCA) which 

is based on preserving most of the variance as in the initial data, where the variables are 
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correlated. The procedure is performed by calculating a vector that is a linear combination of 

vectors of correlated variables, in such a way that the variance for the processed data is 

maximal. The covariance matrix is calculated, and it gives the covariance between each pair of 

elements of a given vector. Diagonal elements of the matrix contain information on the variance 

of each variable separately, and on the non-diagonal elements are information on the covariance 

between two variables each other. The variance is maximized using LaGrange multipliers 

method which gives the vectors and its eigenvalues. These vectors represent principal 

components vectors. The greatest eigenvalue is associated with first principal component (PC1) 

and it describes the greatest percentage of variance. Usually, first 3 or 4 eigenvalues and their 

co-associated vectors (PC) are taken. All together, they describe enough of the variance in initial 

data so no essential information about system is lost.  

Instead of using Cartesian coordinates, usually generalized coordinates are used. 

Generalized molecular coordinates are usually selected to provide the minimal number of 

independent coordinates that define the configuration of a system. For instance, they can be 

defined as changes in bond lengths, bond angles and torsion angles. For chemists, generalized 

coordinates are intuitive and often easier to use. However, in a set of molecular generalized 

coordinates, the null vectors are still present and coordinates are linearly dependent on each 

other. 

In this work, a procedure for generating generalized molecular coordinates at each point of 

simulation of ab initio molecular dynamics will be developed. Machine learning algorithms 

will be applied to determine eigenvalues of the matrix of generalized molecular coordinates and 

eliminate linearly dependent molecular coordinates. The minimal set of generalized molecular 

coordinates that will contain all relevant information abound molecular motion will be obtained. 

In that way, repetitive information that cause problems mentioned above will not be present in 

the end. From the resulting set of generalized molecular coordinates, it is possible to get 

information about conformational or configurational space and reactivity of molecules. 

3.2. Molecular Dynamics 
Molecular dynamics is a set of computational methods used to simulate a system of interacting 

particles and propagate over time.14,15 While simulating the system, properties of the system 

should be preserved. Solving the Schrödinger equation for a system is difficult to do. It can be 

carried out without large simplifications only on extremely simple and small systems, so it is 

possible to conduct quantum molecular dynamics. For different systems other types of 
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molecular dynamics are used. The group of methods that use Newton’s equations to describe 

the motion of nuclei and use a force field to describe potentials at molecular level is called 

classical molecular dynamics. If instead of the force field, Schrödinger equation is calculated 

to generate the required potential in each step of the simulation, the group of methods is called 

semiclassical molecular dynamics. Ab initio molecular dynamics unifies approximate ab initio 

electronic structure theory and classical molecular dynamics.14  

We should start from the time dependent Schrodinger equation and standard Hamiltonian14: 

 𝑖ℏ
𝜕

𝜕𝑡
𝛹({𝒓𝑖}, {𝑹𝐴}, 𝑡) = 𝐻̂𝛹({𝒓𝑖}, {𝑹𝐴}, 𝑡) (18) 
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 (19) 

   

for the electronic {𝒓𝑖} and nuclear {𝑹𝐴} degrees of freedom, in which N is the number of 

electrons in a system, M number of nuclei, MA mass of nuclei, me mass of electron, r and R 

distance between particles. 

 Using the clamped nuclei approximation16, the following equations for Hamiltonian in 

atomic units are obtained:  

 𝐻̂ =
1

2𝑚𝑒
∑ 𝛻𝑖

2

𝑁

𝑖=1

+ 𝐻̂𝑒𝑙 (20) 
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 (21) 

or in the other way: 

 𝐻̂ = 𝑇̂𝑁({𝑹}) + 𝑇𝑒̂({𝒓}) + 𝑉̂𝑒,𝑁({𝒓}, {𝑹}) + 𝑉̂𝑁,𝑁({𝑹}) + 𝑉̂𝑒,𝑒({𝒓}) (22) 

in which R is the set of nuclear coordinates, and r is the set of electronic coordinates. The term 

𝑉̂𝑒,𝑁(𝒓, 𝑹) does not allow us to separate electron from the nuclei. The Hamiltonian written as 

in equation (20) is not pure electronic Hamiltonian because of mixed term describing 

interactions between electrons and nuclei. In real systems that term cannot be ignored. Born-

Oppenheimer approximation allows us to separate nuclei and electron17, therefore, to write the 

spatial wave function as a product of the nuclear wave function and the electronic wave function 

which parametrically depends on the position of the nucleus. If we fix the position of the nucleus 

in the so-called electronic Hamiltonian, the electronic Schrödinger equation can be written as: 
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 𝐻̂el = 𝑇𝑒̂({𝒓}) + 𝑉̂𝑒,𝑁({𝒓}; {𝑹}) + 𝑉̂𝑁,𝑁({𝑹}) + 𝑉̂𝑒,𝑒({𝒓}) (23) 

 𝐻̂el𝛹({𝒓}; {𝑹}) = 𝐸𝑒𝑙 𝛹({𝒓}; {𝑹}) (24) 

Term 𝑉̂𝑁,𝑁(𝑹) is constant so it can be excluded as following:17 

 𝐻̂el = 𝑇𝑒̂({𝒓}) + 𝑉̂𝑒,𝑁({𝒓}; {𝑹}) + 𝑉̂𝑒,𝑒({𝒓}) (25) 

 𝐻̂el𝛹({𝒓}; {𝑹}) = 𝐸el 𝛹({𝒓}; {𝑹}) (26) 

If we assume that the spectrum of Hamiltonian is discrete and the eigenfunctions are 

orthonormalized, we can write:14 

 ∫ 𝛹𝑘
∗({𝒓𝑖} {𝑹𝐴})𝛹𝑙({𝒓𝑖} {𝑹𝐴}) 𝑑𝒓 =  𝛿𝑘𝑙 (27) 

in which dr means integration over all i, all electron positions. Wave function can be written 

as:  

 𝛹({𝒓𝑖} {𝑹𝐴}, 𝑡) = ∑ 𝛹𝑙

∞

𝑙=1

({𝒓𝑖}; {𝑹𝐴})𝜒𝑙({𝑹𝐴}, 𝑡) (28) 

The terms 𝜒𝑙({𝑹𝐴}, 𝑡) can be observed as time-dependent expansion coefficients. 

The next step is multiplication of the equation (28) with 𝛹𝑘
∗({𝒓𝑖} {𝑹𝐴}) from the left side and 

integration over all electronic coordinates. The result is a set of coupled equations:14 

 𝑖ℏ
𝜕𝜒𝑘

𝜕𝑡
= (− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2 + 𝐸𝑘({𝑹𝐴})) 𝜒𝑘 + ∑ 𝐶𝑘𝑙𝜒𝑙

∞

𝑙=1

 (29) 

 𝐶𝑘𝑙 = ∫ 𝛹𝑘
∗ (− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2) 𝛹𝑙𝑑𝒓 +

1

𝑀𝐴
(∫ 𝛹𝑘

∗(−𝛻𝐴)𝛹𝑙𝑑𝒓) (−𝛻𝐴) , (30) 

in which 𝐶𝑘𝑙 is non-coupling operator. The first shown term is a matrix element from nuclei's 

kinetic energy operator and the second one depends on their momenta.14 In adiabatic 

approximation only diagonal elements are used: 

 𝐶𝑘𝑘 = ∫ 𝛹𝑘
∗ (− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2) 𝛹𝑙𝑑𝒓 (31) 

If the electronic function is real, the second term in equation (29) equals zero. That leads us to 

the decoupling from the set of coupled equations (29) and (30):14 

 𝑖ℏ
𝜕𝜒𝑘

𝜕𝑡
= [− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2 + 𝐸𝑘({𝑹𝑨}) + 𝐶𝑘𝑘({𝑹𝑨})] 𝜒𝑘 (32) 

In practice, additional approximations can be used, for example limiting the number of terms 

𝜒𝑙({𝑹𝐴}, 𝑡) in equation (27) and neglecting the 𝐶𝑘𝑘 terms, we get: 
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 𝑖ℏ
𝜕𝜒𝑘

𝜕𝑡
= [− ∑

1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2 + 𝐸𝑘({𝑹𝑨})] 𝜒𝑘 (33) 

The equation (32) is called Born-Oppenheimer approximation16. The following step in 

molecular dynamics is approximating nuclei as a classical part particle. That approximation 

will allow to use Newton’s equations of motion. The Born-Oppenheimer approximation can be 

used in almost all physical situations, so it will be used for the following derivation. In smaller 

number of cases Born-Oppenheimer approximation is not valid, which are not going to be 

considered in this work.  

To get semiclassical mechanics from quantum mechanics, the wave function should be 

written as in terms of an amplitude factor Ak and a phase Sk, which are both considered to be 

real and 𝐴𝑘  >  0 in this polar representation: 

 𝜒𝑘({𝑹𝑨}, 𝑡) = 𝐴𝑘({𝑹𝑨}, 𝑡)𝑒𝑖𝑆𝑘(𝑹,𝑡) (34) 

After inserting equation (34) to equation (33) and separating real and imaginary parts, the 

following equations are obtained:14 

 
𝜕𝑆𝑘

𝜕𝑡
+ ∑

1

2𝑀𝐴

𝑀

𝐴=1

(𝛻𝐴𝑆𝑘)2 + 𝐸𝑘 = ℏ2 ∑
1

2𝑀𝐴

𝑀

𝐴=1

𝛻𝐴
2𝐴𝑘

𝐴𝑘
 (35) 

 
𝜕𝐴𝑘

𝜕𝑡
+ ∑

1

2𝑀𝐴

𝑀

𝐴=1

(𝛻𝐴𝐴𝑘)(𝛻𝐴𝑆𝑘) + ∑
1

2𝑀𝐴

𝑀

𝐴=1

𝐴𝑘(𝛻𝐴𝑆𝑘)2 = 0 (36) 

The equation (36) is multiplied by 𝐴𝑘  from the left: 

 
𝜕𝐴𝑘

2

𝜕𝑡
+ ∑

1

2𝑀𝐴

𝑀

𝐴=1

(𝐴𝑘
2𝛻𝐴𝑆𝑘) = 0 (37) 

 
𝜕𝜌𝑘

𝜕𝑡
+ ∑ 𝛻𝐴 𝑱𝑘,𝐴

𝑀

𝐴=1

= 0 (38) 

in which 𝜌𝑘  is nuclear probability density, and  𝑱𝑘,𝐴 is associated current density: 

 𝜌𝑘 = |𝜒𝑘|2 = 𝐴𝑘
2 (39) 

  𝑱𝑘,𝐴 =
𝐴𝑘

2(𝛻𝐴𝑆𝑘)

𝑀𝐴
 (40) 

This relation does not depend on ℏ2. If we take classical limit in observation, which implies 

that ℏ → 0, one term from equation (35) equals zero: 
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𝜕𝑆𝑘

𝜕𝑡
+ ∑

1

2𝑀𝐴

𝑀

𝐴=1

(𝛻𝐴𝑆𝑘)2 + 𝐸𝑘 = 0 (41) 

This equation can be written in Hamilton–Jacobi formulation: 14  

 𝜕𝑆𝑘

𝜕𝑡
+ 𝐻𝑘({𝑹𝑨}{𝛻𝐴𝑆𝑘}) = 0 (42) 

with the classical Hamilton function: 

 𝐻𝑘({𝑹𝑨}, {𝑷𝑨}) = 𝑇({𝑷𝑨}) + 𝑉𝑘({𝑹𝑨}) (43) 

{𝑹𝑨} represents the set of generalized coordinates, and {𝑷𝑨} their conjugate canonical 

momenta. The energy for given system is conserved: 

 𝑑𝐸𝑘
𝑡𝑜𝑡

𝑑𝑡
= 0 (44) 

 𝜕𝑆𝑘

𝜕𝑡
= −(𝑇 + 𝐸𝑘) = −𝐸𝑘

𝑡𝑜𝑡 = 𝑐𝑜𝑛𝑠𝑡. (45) 

Following the classically defined Hamilton function (equation (42)), it is concluded that: 

 𝑷𝑨 = 𝛻𝐴𝑆𝑘 = 𝑀𝐴

 𝑱𝑘,𝐴

𝜌𝑘
 (46) 

Newtonian equations of motion with Hamiltoni-Jacobi equation (40) leads us to: 

 𝑑𝑷𝑨

𝑑𝑡
= −𝛻𝐴𝐸𝑘 (47) 

 𝑑2𝑹𝑨(𝑡)

𝑑𝑡2
= −𝛻𝐴𝑉𝑘

𝐵𝑂({𝑹𝑨(𝑡)}) (48) 

for each decoupled electronic state k. The nuclei move in an effective potential 𝑉𝑘
𝐵𝑂, called 

Born-Oppenheimer potential, which is given from potential energy surface obtained by solving 

Schrödinger equation for kth state and given nuclear configuration as described above.14 The 

potential obtained by calculating the interactions of all particles of the observed system for fixed 

nuclei positions is used to generate the next nuclei positions. It is independent of the numerical 

integration step used in simulation. This variant of ab initio molecular dynamics is called 

“Born-Oppenheimer molecular dynamics”16. 

 

3.2.1. Numerical integration 
Because the potential used to generate new nuclei positions in molecular dynamics is not 

analytically known, generation of new nuclei positions is done by numerical integration. The 

first step in solving this problem is defining an integration step, by which new nuclei positions 

will be generated. If the defined step is too small, the duration of calculation will be too long. 
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In opposite, when the integration step is too large, the credibility of molecular dynamic 

simulation is compromised. For instance, if the integration step is longer than time of one 

average vibration, molecular dynamics simulation will be useless for obtaining the properties 

of studied system. The generated nuclei positions with defined integration time step can be 

expressed as a set: 

  
{𝑹𝐴(0)}, {𝑹𝐴(0 + 𝛥𝑡}, {𝑹𝐴(2𝛥𝑡)}, {𝑹𝐴(3𝛥𝑡)}, ⋯ , {𝑹𝐴(𝑛𝛥𝑡)} (49) 

in which 𝑹𝐴(0) is a set of vectors defined from nuclei positions at the beginning of simulation, 

𝛥𝑡 is integration step, and n is the number of steps for which the calculation will be proceeded. 

From the equation (49) it is obvious that higher the n and 𝛥𝑡 it will result with longer 

computational time for simulation. There are many algorithms for numerical integration which 

have property of time reversibility. Time reversibility allows us to go back to previous steps 

after some time of calculating. If we calculate nuclei positions in 𝑡 = 0, 𝑡 = 𝛥𝑡, 𝑡 = 2 𝛥𝑡, 𝑡 =

3 𝛥𝑡 and so on, it is possible at some step of the simulation to go back to previous steps, for 

example 𝑡 = 2 𝛥𝑡. The total time of molecular dynamics simulation for smaller systems is 

usually around 1 femtosecond (fs). The integration step is between 0,5 fs and 20 fs.  

The most algorithms are based on developing the positions of nuclei into Taylor series. The 

Taylor series of a function is an infinite sum of terms that are expressed in terms of the function's 

derivatives at a single point18. The algorithms that are using Taylor series in numerical 

integrations do not possess time reversibility.  

The most used algorithm with time reversibility is Verlet-Störmer algorithm19 (VS 

algorithm). VS algorithm uses positions and accelerations at time t and previous positions at 

time t − Δt to generate new positions at time Δt + t. The positions of nuclei at these moments 

are expressed as Taylor series at time t: 

 𝒓𝑨(𝑡 + Δ𝑡) = 𝒓𝑨(𝑡) + Δ𝑡 𝒗𝑨(𝑡) +
1

2
(Δ𝑡)2𝒂𝑨(𝑡) + ⋯ +

1

𝑛!
(Δ𝑡)𝑛

𝑑2 𝒓𝑨(𝑡)

𝑑 𝑡𝑛
 (50) 

 𝒓𝑨(𝑡 − Δ𝑡) = 𝒓𝑨(𝑡) − Δ𝑡 𝒗𝑨(𝑡) +
1

2
(Δ𝑡)2𝒂𝑨(𝑡) − ⋯ +

1

𝑛!
(Δ𝑡)𝑛

𝑑2𝒓𝑨(𝑡)

𝑑 𝑡𝑛
 (51) 

In general, only first three terms are taken into the calculation. Equations (50) and (51) are 

summed up: 

 𝒓𝑨(𝑡 + Δ𝑡) = 2𝒓𝑨(𝑡) − 𝒓𝑨(𝑡 − Δ𝑡) + (Δ𝑡)2𝒂𝑨(𝑡) (52) 
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and the equation for calculating nuclei positions at 𝑡 + Δ𝑡 from positions at 𝑡 and 𝑡 − Δ𝑡 is 

obtained. The equation (52) does not have velocities of nuclei, which can be calculated from 

difference in nuclei positions and time interval: 

 𝒗𝑨(𝑡) =
𝒓𝑨(𝑡 + Δ𝑡) − 𝒓𝑨(𝑡 − Δ𝑡)

2Δ𝑡
 (53) 

For better calculation of the velocities, the equation (50) and (51) should be considered by 

deriving the function that express position of nuclei in time.  

 𝒗𝑨(𝑡 + Δ𝑡) = 𝒗𝑨(𝑡) +  Δ𝑡𝒂𝑨(𝑡) +
1

2
 𝒗𝑨(Δ𝑡)2𝒃𝑨(𝑡) + ⋯ (54) 

 𝒗𝑨(𝑡 − Δ𝑡) = 𝒗𝑨(𝑡) −  Δ𝑡𝒂𝑨(𝑡) +
1

2
 𝒗𝑨(Δ𝑡)2𝒃𝑨(𝑡) − ⋯ (55) 

By repeating the same procedure explained for getting 𝒓𝑨(𝑡 + Δ𝑡), after summing up equations 

(54) and (55), velocities are: 

 𝒗𝑨(𝑡 + Δ𝑡) = 2 𝒗𝑨(𝑡) − 𝒗𝑨(𝑡 − Δ𝑡) + (Δ𝑡)2𝒃𝑨(𝑡) (56) 

The third term in equation (56) is derivative of acceleration and sometimes it can be excluded. 

The velocities are important factor in monitoring the fluctuations in total kinetic energy through 

simulation. 20 Usually, the initial velocities for particles at 𝑡 = 0 are manually defined for each 

particle, or randomly based on the temperature of simulation. If the temperature is used for 

assigning initial velocities, Maxwell Boltzmann distribution of velocity components is used: 

 𝜌(𝑣𝑥,𝑖) =
1

√2𝜋𝜎2
𝑥,𝑖

𝑒

−𝑣𝑥,𝑖
2

2𝜎2
𝑣,𝑖 (57) 

 𝜌(𝑣𝑦,𝑖) =
1

√2𝜋𝜎2
𝑦,𝑖

𝑒

−𝑣𝑦,𝑖
2

2𝜎2
𝑣,𝑖 (58) 

 𝜌(𝑣𝑧,𝑖) =
1

√2𝜋𝜎2
𝑧,𝑖

𝑒

−𝑣𝑧,𝑖
2

2𝜎2
𝑣,𝑖 (59) 

in which T represents thermodynamic temperature at which simulation is performed, mi the 

mass of the individual nucleus, and kb Boltzmann constant.  

Variance 𝜎𝑣,𝑖
2  is given as: 

 𝜎𝑣,𝑖
2 =

𝑘𝑏𝑇

𝑚𝑖
 (60) 

In addition to determining initial velocities, the total angular momentum is set to zero in order 

to avoid system translation in space during the simulation. The stability of simulation is hard to 

follow since the error is induced to calculation from velocities obtained in this way. Molecular 
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dynamics simulation stability can be followed by calculating Root Mean Square factor (RMS 

factor) for energy. If there are fluctuations in RMS factor, simulation is not stable, so properties 

or/and procedures used in simulation should be changed. 

The variant of the Verlet-Störmer algorithm that gives better results and ability to follow 

the simulation stability is Beeman’s algorithm. Beeman’s algorithm in prediction of nuclei 

positions is using the term with velocities: 

 𝒓𝑨(𝑡 + Δ𝑡) = 𝒓𝑨(𝑡) +  𝒗𝑨(𝑡)Δ𝑡 +
1

6
(4𝒂𝑨(𝑡) − 𝒂𝑨(𝑡 − Δ𝑡))(Δ𝑡)2 (61) 

  𝒗𝑨(𝑡 + Δ𝑡) =  𝒗𝑨(𝑡) +
1

6
(2𝒂𝑨(𝑡 + Δ𝑡) + 5𝒂𝑨(𝑡) − 𝒂𝑨(𝑡 − Δ𝑡))Δ𝑡 (62) 

The disadvantage of Beeman’s algorithm is increasing the time of computation.  

3.3. Machine Learning  
Machine learning21 (ML) is a field of computer science that uses statistical techniques to give 

computers the ability to learn with data, without being explicitly programmed. ML has many 

sub fields. Some sub fields are statistical learning methods, neural networks, computational 

learning theory, and data mining.22 The advantage of ML algorithms is the capability of 

machine or software to improve its performance through experience. A typical ML model learns 

the knowledge from data it is exposed to and then applies it to new problems. There are three 

types of machine learning: supervised ML, unsupervised ML, and reinforcement learning.  

Supervised ML23 is when computer learns a model from labelled data (called training data). 

Training data allow machine to make predictions about new unseen data. It is called supervised 

ML because for the labelled training data outputs are already known. The model learning can 

be carried out using discrete class or continuous class labels. If using discrete class, it is called 

classification and for continuous regression ML. 

Unsupervised ML23 is the opposite of supervised ML. The input for unsupervised ML 

algorithms is unlabelled data or data of unknown structure. Output data are not provided so 

these types of algorithms are trying to find some regularities in input data. Often data contain 

patterns which lead to extracting the meaningful data as output. Most widely used technique is 

clustering, which allows grouping data into piles that have meaningful information. 

Reinforcement learning24 is used in systems where output is a sequence of actions. For 

reaching the goal, sequence of correct actions is important, since one single action means 

nothing. Reinforcement algorithm learns from past actions that led to caused goal. Sometimes, 



§ 3. Theoretical Section 18 

Tea Ostojić Diploma Thesis 

reinforcement learning can be considered as supervised ML. There are some examples of 

possible applications in the following tables.  

 
Table 1. Types of ML and their application.25 

supervised ML unsupervised ML reinforcement ML 

classification dimensionality reduction 

o gaming 

o finance sector 

o manufacturing 

o inventory management 

o robot navigation 

o fraud detection 

o e-mail spam 

detection 

o diagnostics 

o text mining 

o face recognition 

o big data 

o image visualization 

image classification image visualization 

o regression 

o risk assessment 

o score prediction 

o clustering 

o biology and chemistry 

o city planning 

o targeted marketing 

 

3.3.1. Linear (In)dependence of Vectors 
A set of vectors is linearly dependent if there is at least one vector from that set which can be 

written as a linear combination of others. If there is no vector that can be written as a linear 

combination of the other vectors, the set is linearly independent. Two vectors are linearly 

independent if they are satisfying equation26: 

 au + bv = 0 (63) 

in which u and v are vectors, a and b being constants. Usually, vectors are written in matrix 

representation as: 

 𝒖 = [
𝑥
𝑦] (64) 

 𝒗 = [
𝑧
𝑞] (65) 

After putting equations (63) and (64) into equation (62): 

 [
𝑥
𝑦] + [

𝑧
𝑞] = [

0
0

] (66) 

the homogenous system of equations is given. There are multiple methods that can be used for 

solving this type of equations. The most used method is Gaussian elimination, which implies 

the reduction of Gauss matrix. The Gauss matrix can be written as: 
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 [
𝑥 𝑧
𝑦 𝑞 

0
0

] (67) 

When matrix is reduced, the set of vectors is linearly independent if the matrix does not contain 

null vectors.  

The other possible method to find out if the set of vectors is independent is to find inverse 

matrix of initial matrix of vectors.27 Between the initial matrix and its inverse matrix, the 

following equation is valid: 

 𝑴−1𝑴 = 𝑴𝑴−1 = 𝑰 (68) 

in which M represent the initial matrix, 𝑴−1 its inverse, and I identity matrix. For the identity 

matrix, diagonal elements are equal to 1, and non-diagonal to 0. If the determinant of matrix 

equals zero, it is not possible to find its inverse matrix, so the set of vectors is linearly dependent. 

Also, for calculating the inverse matrix, initial matrix should be square n × n. Linear dependence 

of vectors is explained on a 2-dimensional problem, but all mentioned equations are valid for 

vectors with higher dimensionality. The main problem of this method is that it requires the 

square matrix. 

 

3.3.2. Eigendecomposition of the Matrix 
One of the most widely used matrix decomposition is called eigendecomposition27, in which a 

matrix is decomposed into a set of eigenvectors and eigenvalues.28 If we have a square matrix 

A, eigenvector of matrix A is nonzero vector v: 

 𝑨 𝒗 =  𝜆 𝒗 (69) 

The scalar λ is called eigenvalue and it is corresponding to eigenvector v. Any rescaled vector 

sv has the same eigenvalue as v. Usually, unit eigenvectors are looked for. If we suppose that 

matrix A has n linearly independent eigenvectors with corresponding eigenvalues λ1, λ2, …, λn, 

we can concatenate all the eigenvalues into a new matrix V with one eigenvector per column: 

 𝑽 = [𝒗(1), 𝒗(2), … , 𝒗(𝑛) ] (70) 

Also, we can concatenate eigenvalues in same way: 

 𝝀 = [𝜆1, 𝜆2, … , 𝜆𝑛]𝑇 (71) 

The eigendecomposition of A is then: 

 𝑨 = 𝑽 diag(𝝀)𝑽−1 (72) 

Constructing matrices with eigenvectors and their eigenvalues enables us to stretch space in 

desired direction. It is not possible to decompose every matrix into eigenvectors and 

eigenvalues, sometimes the decomposition exists but it is harder to be obtained because it 
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involves complex rather than real numbers. Every symmetric matrix can be decomposed using 

only real valued eigenvectors and eigenvalues: 

 𝑨 = 𝑸 𝜦 𝑸𝑇 (73) 

where Q is orthogonal matrix composed of eigenvectors od A, Λ is a diagonal matrix of 

eigenvalues. 

The eigendecomposition for symmetric matrices may not be unique. If two or more 

eigenvectors have the same eigenvalue, then any set of orthogonal vectors lying in their span 

are eigenvectors with that values.28 By convention, entries of eigenvalues are sorted in 

descending order and the eigendecomposition is unique only if all the eigenvalues are unique. 

 

3.3.3. Singular Value Decomposition 
Singular Value Decomposition (SVD)28 is another way of factorizing a matrix into singular 

vectors and singular values. Every real matrix has an SVD, which is not true for 

eigendecomposition. If the matrix is not a square matrix, the eigendecomposition is not defined, 

but SVD can still be calculated. Procedure is like eigendecomposition (equation (71)), but 

instead of diag (λ), matrix is used: 

  𝑨 = 𝑼 𝑫 𝑽𝑇 (74) 

Matrix A is an m × n matrix, U is m × m, D is m × n and V is n × n matrix. The matrices V and 

U are defined to be orthogonal matrices, D is defined to be a diagonal matrix. The diagonal 

elements of matrix D are known as the singular values of matrix A. The columns or V are called 

right-singular vectors. The SVD of A can be interpreted in the terms of the eigendecompositions 

of functions of A.  

 

3.3.4. The Moore-Penrose Pseudoinverse 
Matrix inversion is not defined for matrices that are not square. The following equation should 

be solved: 

 𝑨 𝒙 =  𝒚 (75) 

If dimension of matrix A is m × n and m>n relation is valid, pseudoinverse of matrix28 A is 

defined as: 

 𝑨+ = lim
𝛼→0

(𝑨𝑻𝑨 + 𝛼𝑰)−1 𝑨𝑇 (76) 

Algorithms for calculating pseudoinverse are usually based on equation: 

 𝑨+ = 𝑽 𝑫+ 𝑼𝑇 (77) 
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V, D and U are the SVD of A, and the pseudoinverse D+ of a diagonal matrix D is obtained by 

taking the reciprocal of its nonzero elements then transposing of the resulting matrix. For 𝑛 >

 𝑚, solving the equation provides one of the many possible solutions. 

 

3.3.5. Principal Component Analysis 
Principal Component Analysis (PCA) is a tensor decomposition method, often used in data 

reduction, classification and grouping of observations and modelling relationships that may 

exist between variables.29 It is a descriptive method that provides geometric representation. 

Also, it is the most used method in a process of data mining since it is quite simple and non-

parametric method.29 Data mining implies transformation of raw information to useful 

information. Usually, the data obtained in scientific experiments are clouded, redundant and 

unclear. That makes people unable to see the connections between individual variables. 

Methods that can reduce dimensionality and/or group data are needed to solve that problem. 

They can extract something hidden in data that can lead us to a better and correct conclusion.  

The first assumption in PCA is linearity.30 It limits the re-expressing data as a linear 

combination of its basis vectors. Every next vector of a basis set needs to be perpendicular to 

the previous one. 

First, we assume that our original data is written as matrix X and the goal of the PCA 

procedure is to change the basis set of X as: 

 𝑷𝑿 = 𝒀 (78) 

where P is matrix that transforms the X into matrix Y. Matrix P is matrix that is geometrically 

stretching and rotating matrix X into matrix Y. The rows of P are new basis vectors, the principal 

components of X. That can be expressed as: 

 [

𝒑𝟏

⋮
𝒑𝒎

] [𝒙𝟏 ⋯ 𝒙𝒏] = [

𝒑𝟏 ⋅ 𝒙𝟏 ⋯ 𝒑𝟏 ⋅ 𝒙𝒏

⋮ ⋱ ⋮
𝒑𝒎 ⋅ 𝒙𝟏 ⋯ 𝒑𝒎 ⋅ 𝒙𝒏

] (79) 

Each column of Y is yi: 

 𝒚𝒊 = [

𝒑𝟏 ⋅ 𝒙𝒊

⋮
𝒑𝒎 ⋅ 𝒙𝒊

] (80) 

The jth coefficient of yi represents projection on the jth row of P. 

To obtain the best choice of a basis set, the noise in measurement data needs to be low in 

any basis set. The noise minimization can be done by maximizing the variance. We can define 

signal-to-noise ratio as a ratio of variance of signal and variance of noise. Higher signal-to-
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noise ratio means high precision measurement. Therefore, the noise minimization can be done 

by maximizing the variance of the signal.30 

The other problem that appears is redundancy. This problem can be solved by calculating 

the covariance matrix. Covariance matrix can be expressed as: 

 𝑪𝑿 =
1

𝑛
𝑿𝑿𝑻 (81) 

where n is the number of samples. Each column of X corresponds to a set of measurements from 

one particular trial. CX is a sqaure matrix (m × m), in which ijth element is the dot product 

between the vector of the ith measurement type with the vector of the jth measurement type. The 

next step is decomposing the covariance matrix into its eigenvectors and eigenvalues. 

 𝑪𝒀 = 𝑷𝑪𝑿𝑷𝑻 (82) 

In a manipulated covariance matrix, all non-diagonal elements should be equal to zero, so the 

Y is decorrelated. The easiest way to do that is to assume that, while decomposing, all basis 

vectors are orthonormal. The first vector of a basis set is chosen in a m-dimensional space, along 

which the variance in X is maximized. Next vectors of a basis set are chosen to represent the 

maximum of variance in X but with orthonormality condition to all previously chosen vectors 

of a basis set. The procedure is repeated until most of the variance of X is described by basis 

set vectors. Usually, 90% of the variance is enough to describe the initial data without important 

losses. The vectors of final basis sets are called Principal Components (PCs).  

 
Figure 6. An example of PCA analysis result. 
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Figure 6. shows the result of PCA for the data that was depending on three variables (χ1, χ2 and 

χ3). The PCA analysis reduced the dimension so the data is described by two principal 

components. First one that describes the biggest part in variance is called the first PC, next one 

the second PC and so on. A graphical representation of data in principal components basis set 

can be a visual indication for grouping data according to some properties. This type of graphical 

representation is called score-plot. 

 

3.3.6. QR Decomposition 

The QR decomposition of factorization of an 𝑛 ×  𝑚 matrix A assumes the following form: 

 𝑨 = 𝑸𝑹 (83) 

where Q is an n × n orthogonal matrix, and R is: 

 𝑹 = 𝑸𝑻𝑨 (84) 

and has zeros on elements below its diagonal. If n is equal or greater than m, then it can be 

written as: 

 𝑸𝑻𝑨 = [
𝑹𝟏𝟏

0
] (85) 

where R11 is an n × n upper triangular matrix.  

If it contains linearly independent columns, it can be factored as: 

 𝑨 = [𝒒𝟏 ⋯ 𝒒𝒏] [
𝑹𝟏𝟏 ⋯ 𝑹𝟏𝒏

⋮ ⋱ ⋮
𝟎 ⋯ 𝑹𝒏𝒏

] (86) 

In opposite, for m greater than n, QR decomposition of A is: 

 𝑸𝑻𝑨 = [𝑹𝟏𝟏 𝑹𝟏𝟐] (87) 

In equation (87) all diagonal elements Rii are non-zero and most definitions require Rii greater 

than zero. That makes Q and R unique. Q is m × n with orthonormal columns. If the A is square 

matrix than Q is orthogonal and equal to I matrix. Q and R are called Q- and R-factors. The 

most known methods to calculate Q and R are Gram–Schmidt process, Householder 

transformations, or Givens rotations. 

In case of using Gram-Schmidt process, first the matrix Q is calculated. The matrix Q is 

orthonormal, by rules of Gram-Schmidt process. The matrix R is then calculated from matrices 

Q and A by following equation (84). The Householder transformations are transformations that 

take a vector and reflect it about some (hyper)plane. Matrix Q is used in a way that all 

coordinates, but one, disappear. It is used multiple times until upper triangular form is obtained. 
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Givens rotations are used to zero elements in the subdiagonal of the matrix, forming the R 

matrix. The orthogonal Q matrix is concatenation of all the Givens rotations. All mentioned 

methods have their own advantages and disadvantages.  
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§ 4. EXPERIMENTAL SECTION 

4.1. Ab initio Molecular Dynamics Simulation 
Molecular dynamics run of 5 000 000 steps was simulated using on-the-fly calculations of 

forces. The forces were calculated using the PM7 method implemented in MOPAC2016.7 To 

ensure adequate sampling of the phase space, initial velocities were selected from Maxwell 

distribution at 1273.15 K. The temperature was kept constant during the simulations using a 

velocity scaling algorithm. The step size was 0.5 fs and total length of simulation was 2.5 ps. 

This total simulation length was sufficient for full conformational analysis, which is confirmed 

by the calculation of strict local maxima plateaus. 

These points represented a sampling space from which the initial guess structures for 

conformational analysis were extracted. This extraction was performed by finding all strict local 

maxima in the probability distribution of the molecular geometry coordinates. To be more 

precise, it was reasonable to expect that, during the molecular dynamics run, the molecule 

would statistically spend more time in and around the minima points on the potential energy 

surface and that, consequently, the probability distribution for the molecular structures in these 

areas of the phase space would have a strict local maximum. In fact, the search for strict local 

minima on a potential energy surface is equivalent to the search for strict local maxima in a 

probability distribution of molecular geometry coordinates. And these coordinates can be 

defined in any possible way. 

Because the dimensionality of this search for strict local minima problem is of the order 3N 

(or 3N–6 if the search is performed in the space of internal coordinates), where N is the number 

of atoms in the molecule, it was reasonable to make a reduction of the problem to fewer 

dimensions. All molecular dynamics simulations were performed using the quantum chemistry 

code qcc.8 

4.2. Machine Learning Determination of Internal Coordinate Distances 
The trajectory of (R)-cinchonidine in the Cartesian coordinates was transformed to trajectory in 

all possible internal coordinate distances. The (R)-cinchonidine has 44 atoms, and the number 

of all possible generalized internal coordinate distances between all atoms is 946. This 

corresponds to the number of all atom pairs (44
2

) that can be selected in a molecule. The file 
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with the definition of all 946 internal coordinate distances was also generated. The 

transformation was carried out using the moonee program code.9 

The progressive machine learning algorithm was applied on a given trajectory using the 

different number of points. Number of points was gradually increased, starting from 1000 to 10 

000 points (with a chunk of 1000 points), and from 10 000 to 100 000 points (with a chunk of 

10 000 points) to determine the total number of generalized coordinates and the real time of 

calculation. These generalized coordinates will be linearly independent and appropriate for 

defining a molecule’s geometry. 

Different sets of molecular geometries in internal coordinate distances representation were 

written in matrices and ranks of these matrices were determined. Determination of ranks was 

performed by QR decomposition where the lead factors in decomposed matrices were taken 

into account for rank determination. By using leave-one-row-out method through the distance 

dimension of matrices, all significant rows for the description of molecular geometries were 

determined. If the row with the values obtained from a specific distance definition does not 

contribute to the overall rank, iterative application of machine learning was utilized in such a 

way that this row was deleted from the following calculation. If this row contributes to the rank, 

it was kept in the matrix and in the following calculation. 

In this way, the most optimal representations of distances for different lengths of simulation 

were determined and then tested for convergence. As previously described, lengths of 

simulation were selected starting from 1000 and continued up to 10 000 by a 1000-point step. 

Investigation of intermediate gradients provided information about overall increase of the 

number of defined distances, and at that point the chunk was increased to 10 000 and scanned 

up to the 100 000 points of simulation, where convergence was obtained. 

4.3. Calculation of Strict Local Maxima Plateaus 
To confirm the adequacy of the present set of generalized internal coordinate distances, strict 

local maxima plateaus were used. SLM plateaus were calculated by the well-established 

procedure described in previously published work.6,13,31 After loading up of already calculated 

trajectory described in Cartesian coordinates, trajectory was recalculated using the newly 

defined internal coordinates distances determined with the procedure described in 4.2. An 

iterative machine learning procedure consisting of principal component analysis and the search 

for strict local maxima was utilized to identify the area of SLM-plateau. Initially, PCA was 

calculated for one chunk of trajectory (250 000 points) and SLM were plotted. Length of the 
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trajectory was increased for an additional chunk of 250 000 points and the procedure was 

repeated until the convergence was achieved. The workflow diagram of the procedure is 

presented in Scheme 1. 

 
 

Scheme 1. Calculation of strict local maxima plateau using the tensor decomposition of molecular 

dynamics trajectories. 
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4.4. Computational Resources 
All calculations were conducted on a low-cost workstation equipped with Intel(R) Core(TM)2 

Duo processor with two cores operating at 3.00 GHz. Since most of the coded procedures is 

parallelized, both cores were used where possible. Total memory of the workstation was 8 Gb, 

which was not sufficient in some cases causing the paging and consequently – slowing down 

the calculation. This was particularly noticeable with the bigger sizes of trajectory. For this 

reason, the real time of computation was not available for the trajectory sizes bigger that 30 000 

points. 
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§ 5. RESULTS AND DISCUSSION 

5.1. Ab initio Molecular Dynamics Simulation 
Ab initio molecular dynamics simulation of (R)-cinchonidine was previously conducted and a 

total of 5 000 000 steps was simulated.7 Forces on all atoms were calculated on-the-fly using 

the PM7 method implemented in MOPAC2016. Since the final results given in Ref. 7 present 

the full conformational space of (R)-cinchonidine, phase space was adequately covered. This 

was achieved by sampling of the phase space using the velocity scaling in molecular dynamics 

simulation that kept the temperature of 1273.15 K during simulation. Step size was 0.5 fs 

ensuring smooth transitions in the potential energy surface. Total length of simulation was 

2.5 ps, which was excessive according to the SLM-plateau criteria, but this guaranteed 

sufficient sampling for determination of generalized linearly independent set of internal 

coordinate distances. 

5.2. Generalized Internal Coordinate Distances 
Extensive machine learning calculation was applied on the determination of linearly 

independent set of internal coordinate distances. Exact representation in Cartesian coordinates 

for (R)-cinchonidine molecule was already established in our previous work,6 but determination 

of adequate and the most optimal set of distances for description of molecular structure is still 

an open problem. Determination of internal coordinate distances from the full MD trajectory is 

one possibility, although not quite feasible due to the large number of trajectory points (5 000 

000). For the molecule in question, this task is achievable, but for larger molecules (N > 100), 

memory demands are too high. It was reasonable to expect that there must be a point in the 

simulation after which the set of internal coordinate distances remains more or less constant – 

providing satisfactory description of the molecular geometry. 

The strategy for determination of linearly independent set of internal coordinate distances 

was the following:  

1. determine the set of internal coordinate distances in dependence on the simulation length, 

and 

2. check each set using the tensor decomposition and comparison to already known exact 

results obtained in Cartesian coordinates6 
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The set of distances was firstly determined for the 1000 points, then 2000 etc. The chunk 

size was 1000 points until the limit of 10 000 points of simulation was reached. Then the chunk 

size was increased to 10 000 and procedure was continued until the convergence in the 

number and the definition of internal coordinate distances was reached.  

For each investigated length of simulation, the number and the definition of internal 

coordinate distances was determined and saved. Obtained results are summarized in Table 2, 

whereas definition of all internal coordinate distances is presented in Tables A1–A19. 

Table 2. Total number of linearly independent internal coordinate distances after applying machine 

learning algorithm on various (R)-cinchonidine trajectory lengths. 

Label N(points) 
N(internal 
coordinate 
distances) 

Numerical gradient of 
N(internal coordinate 

distances) 
t / min 

a) 1000 43 0.0430 5.2 

b) 2000 58 0.0150 14.5 

c) 3000 68 0.0100 26.9 

d) 4000 79 0.0110 37.4 

e) 5000 82 0.0030 47.3 

f) 6000 87 0.0050 58.6 

g) 7000 93 0.0060 69.0 

h) 8000 99 0.0060 93.9 

i) 9000 112 0.0130 86.5 

j) 10 000 118 0.0060 96.6 

k) 20 000 144 0.0026 241.2 

l) 30 000 155 0.0011 377.0 

m) 40 000 166 0.0011 - 

n) 50 000 170 0.0004 - 

o) 60 000 201 0.0031 - 

p) 70 000 211 0.0010 - 

q) 80 000 219 0.0008 - 

r) 90 000 220 0.0001 - 

s) 100 000 220 0.0000 - 
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For a very short length of simulation of 1000 points, a total of 43 linearly independent 

generalized internal coordinate distances was obtained (Table 2). These 43 distances represent 

the best possible linearly independent description of (R)-cinchonidine molecular geometry 

expressed in the set of internal coordinate distances for this simulation length (Table A1). 

Increase in the length of simulation to 2000 points resulted in a total of 58 determined internal 

coordinate distances. Since the increase in the number of coordinates was significant, the size 

of the investigated trajectory was further increased by the chunk of 1000 points. 

 

 
Figure 7. Total number of linearly independent internal coordinates determined for (R)-cinchonidine. 

 

Monitoring the progress in the size of the set of generalized internal coordinate distances was 

evaluated by calculating numerical gradients of the total number of coordinates. 

Approximately, when the size of simulation trajectory reached 10 000 points, gradients were 

low enough indicating that the chunk size should be increased (Table 2 and Figure 8). 
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Figure 8. Numerical gradients of the total number of linearly independent internal coordinates 

determined for (R)-cinchonidine. 

 

After point 80 000, the total number of internal coordinate distances converged. Gradients were 

also very low, indicating the convergence in the number of the internal coordinate distances 

(Figs. 7 and 8). 

Analyzing the progress of machine learning procedure for removing the linear dependency 

among all defined internal coordinate distances in the molecular dynamics trajectory, an 

interesting fact can be observed. In the set of all possible 946 defined distances, various 

distances present linear combinations of some other distances. Selection of the linearly 

independent set of distances is biased by the definition order. One can see that from the Fig. 9 

where the progress of the removal process is presented for two cases. The first one (Fig. 9a) is 

for the initial size of the trajectory (1000 points), and the second one is for the size of the 

trajectory where the set of internal coordinate distances was converged (80 000 points, Fig. 9b). 

Majority of the distances firstly defined are removed from the set due to the linear dependency. 

But the same could be expected if the order of the internal coordinate distances is reversed 

(because the firstly defined coordinates in this new order are now linearly dependent on the 

others, later defined coordinates). 
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Figure 9. Machine learning progress of the linear dependency removal of internal coordinate distances 

in the molecular dynamics trajectory (a) 1000 points, b) 80 000 points), and sorted diagonal values of 

matrix R. 

On Fig. 9c, the sorted diagonal values, for the size of the trajectory where the set of internal 

coordinate distances was converged (80 000 points), are presented. The complexity of the rank 
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determination criteria can be observed from this figure. Majority of the diagonal entries have 

absolute value very near the zero, making it very difficult to determine the proper rank of the 

matrix. 

The graphical representation of real time of computation on a number of different trajectory 

lengths is shown on Fig. 10. Linear dependence on the total number of points was expected, 

and it was obtained for points up to the 30 000. After that point, the lack of server memory 

caused disk swapping during the QR decomposition that influenced the computational time and 

these values were not representative. This did not stop the calculation, just slowed it down, but 

the obtained timings were unrealistic. 

 

 
Figure 10. Real time of computation for determination of linearly independent internal coordinate 

distances. 

 

5.3. Strict Local Maxima Plateaus 
To confirm that obtained converged set of distances is indeed a completely linearly independent 

set of internal coordinates suitable for complete representation of the molecular structure, for 

each determined set of distances, plateau of strict local maxima in dependence of number of 

simulation steps and dimension of reduced space was calculated (Fig. 11.).13 
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For 43 distances determined from the first 1000 points in the simulation, plateau was not 

obtained (Fig. 10a), which was a clear evidence that this set was not appropriate for the 

description of (R)-cinchonidine molecular structure. As expected, for the next investigated size 

of the trajectory (2000 points), SLM-plateau was still not noticeable (Fig. 10b). The same 

results were obtained for the cases up to 80 000 points (Figs. 10c–10p), where the SLM-plateau 

can be observed. This also corresponds to the convergence in the total number of determined 

linearly independent internal coordinate distances (Fig. 7 and 8). 

 

 
Figure 11. Plateaus of strict local maxima in dependence on the total number of linearly independent 

internal coordinate distances (labels a–s follow classification given in Table 2, label t corresponds to 

the exact representation and is given for comparison). 
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Figure 11. Plateaus of strict local maxima in dependence on the total number of linearly independent 

internal coordinate distances (labels a–s follow classification given in Table 2, label t corresponds to 

the exact representation and is given for comparison). (Continuation) 

 
Figure 11. Plateaus of strict local maxima in dependence on the total number of linearly independent 

internal coordinate distances (labels a–s follow classification given in Table 2, label t corresponds to the 

exact representation and is given for comparison). (Continuation) 
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Figure 11. Plateaus of strict local maxima in dependence on the total number of linearly independent 

internal coordinate distances (labels a–s follow classification given in Table 2, label t corresponds to 

the exact representation and is given for comparison). (Continuation) 

 
Figure 11. Plateaus of strict local maxima in dependence on the total number of linearly independent 

internal coordinate distances (labels a–s follow classification given in Table 2, label t corresponds to the 

exact representation and is given for comparison). (Continuation) 
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An increase in the number of distances (and slight changes in definition (see Appendix)) 

resulted in a fully converged set. These fully converged sets are visible on Figs. 10q–10s. 

Compared to the exact representation calculated in Cartesian coordinates (Fig. 10t),6 it is clear 

that these sets produced the same probability distribution and subsequently the same full 

conformational space. Plateau starts at the dimensionality 6 of the reduced space and 

approximately 2 000 000 points in the simulation. Just to be on the safe side, slightly longer 

sampling space is usually used, although all previous calculation shows that the reduced space 

near the plateau already contains information about the full conformational space of the 

compounds.  
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§ 6. CONCLUSION 

A general procedure for constructing generalized and linearly independent set of internal 

coordinate distances was established and tested for (R)-cinchonidine. This is a molecule of 

particular interest for us due to the ongoing scientific project and it was already thoroughly 

investigated. The set was built from a trajectory data obtained by ab initio molecular dynamics 

simulation. Full length of the trajectory was 5 000 000 steps and was computed using on-the-

fly calculations of forces by PM7 method implemented in MOPAC2016. The temperature was 

held constant during the simulation using velocity scaling at 1273,15 K. 

The most important distances between atom pairs were determined from the points in the 

trajectory. The length of the trajectory was firstly scanned by 1000 and then by 10 000 points 

until convergence in the distance coordinates was reached. For each specific length of the 

trajectory, a machine learning algorithm was applied to eliminate linearly dependent 

coordinates among all possible defined distances. The algorithm used leave-one-row-out 

method coupled with the rank determination to select those matrix rows (distances) that do not 

contribute to the overall matrix rank. The optimal representation of distances for different 

lengths of simulations were determined and tested for convergence by checking the plateaus of 

strict local maxima and conformational space of (R)-cinchonidine. 

The total number of defined distances in a linearly independent set converged to 220 after 

the 80 000 points with only slight changes in definition of coordinates compared to the previous 

sets (70 000 and 60 000). Calculation of strict local maxima plateaus confirmed the 

convergence, and it provided the same results when compared to the exact representation 

determined in our previous work. Strict local maxima plateau was reached using 6 principal 

components and 3 000 000 points in simulation providing the same probability distribution and 

the same conformational space as in the exact representation. 
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§ 7. LIST OF ABBREVIATIONS AND SYMBOLS  

BOMD Born-Oppenheimer Molecular Dynamics 

COPD  Chronic Obstructive Pulmonary Disease 

DG  Distance Geometry 

DFT  Density Functional Theory 

IUPAC International Union of Pure and Applies Chemistry 

ML  Machine Learning 

MM  Molecular Mechanics 

NIPALS Nonlinear Iterative Partial Least Squares 

NMR  Nuclear Magnetic Resonance Spectroscopy 

NOESY Nuclear Overhauser Effect Spectroscopy 

PCA  Principal Components Analysis 

PCn  n-th Principal Component 

PES  Potential Energy Surface 

RMS factor Root Mean Square factor 

SLM  Strict Local Maxima 

SVD  Singular Value Decomposition 

VS  Verlet – Störmer algorithm 
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§ 9. APPENDIX 

Table A1. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 1000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 1000  
1 2 1 25 9 19 9 40 10 29 
1 7 1 32 9 24 9 41 10 31 
1 8 1 34 9 25 9 42 10 33 
1 9 9 11 9 28 9 43 41 44 
1 10 9 12 9 30 9 44 42 43 
1 19 9 14 9 32 10 11 42 44 
1 21 9 15 9 34 10 20 43 44 
1 22 9 16 9 38 10 26  
1 24 9 17 9 39 10 27  

 

Table A2. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 2000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 2000  
1 2 8 43 13 16 36 44 39 40 
1 3 8 44 16 17 37 38 39 44 
1 10 9 10 16 19 37 39 40 41 
8 34 9 43 16 20 37 40 40 42 
8 35 9 44 16 27 37 41 40 43 
8 36 10 16 16 38 37 43 40 44 
8 37 10 23 36 37 37 44 41 42 
8 38 10 25 36 38 38 39 41 43 
8 39 10 27 36 40 38 40 42 43 
8 40 11 12 36 41 38 41 43 44 
8 41 11 15 36 42 38 43  
8 42 13 15 36 43 38 44  
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Table A3. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 3000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 3000  
1 3 8 43 10 43 36 37 38 44 
1 4 8 44 15 38 36 40 39 40 
1 6 9 10 15 39 36 41 39 43 
1 9 9 20 15 40 36 42 39 44 
1 10 9 23 15 41 36 44 40 41 
8 33 9 27 15 42 37 38 40 42 
8 34 9 36 15 43 37 39 40 44 
8 35 9 40 16 17 37 40 41 42 
8 36 9 41 35 38 37 41 41 43 
8 37 9 43 35 39 37 43 41 44 
8 38 9 44 35 40 37 44 42 43 
8 39 10 36 35 41 38 39 43 44 
8 40 10 37 35 42 38 40  
8 41 10 41 35 44 38 43  

 
Table A4. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 4000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 4000  
1 2 8 34 10 34 36 38 38 43 
1 7 8 35 10 36 36 39 38 44 
1 8 8 36 10 37 36 40 39 40 
1 9 8 37 10 41 36 41 39 41 
8 18 8 38 10 42 36 42 39 42 
8 19 8 39 10 43 36 43 39 43 
8 21 8 40 34 44 36 44 39 44 
8 22 8 41 35 36 37 38 40 41 
8 25 8 42 35 37 37 39 40 43 
8 26 8 43 35 38 37 40 40 44 
8 28 8 44 35 39 37 41 41 42 
8 29 9 22 35 40 37 43 41 43 
8 30 9 23 35 41 37 44 41 44 
8 31 9 34 35 43 38 39 42 43 
8 32 9 35 35 44 38 40 43 44 
8 33 9 36 36 37 38 41  
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Table A5. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 5000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 5000 
7 42 8 31 9 43 36 39 39 41 
7 43 8 32 9 44 36 40 39 42 
7 44 8 33 10 27 36 41 39 43 
8 10 8 34 10 34 36 43 39 44 
8 11 8 35 34 41 36 44 40 41 
8 15 8 37 34 43 37 38 40 42 
8 16 8 38 34 44 37 39 40 43 
8 17 8 39 35 36 37 40 40 44 
8 19 8 40 35 37 37 41 41 42 
8 21 8 41 35 38 37 43 41 43 
8 22 8 42 35 39 37 44 41 44 
8 25 8 43 35 40 38 39 42 43 
8 26 8 44 35 41 38 40 42 44 
8 27 9 23 35 43 38 41 43 44 
8 28 9 25 35 44 38 42  
8 29 9 26 36 37 38 44  
8 30 9 27 36 38 39 40  

 
Table A6. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 6000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 6000  
6 44 8 30 9 43 36 38 38 44 
7 43 8 31 9 44 36 39 39 40 
7 44 8 32 10 23 36 40 39 41 
8 9 8 33 10 28 36 41 39 42 
8 13 8 34 10 31 36 42 39 43 
8 14 8 35 10 34 36 43 39 44 
8 15 8 36 10 41 36 44 40 41 
8 18 8 37 10 42 37 38 40 43 
8 19 8 38 10 43 37 39 40 44 
8 21 8 39 11 44 37 40 41 42 
8 22 8 40 35 38 37 41 41 43 
8 23 8 41 35 39 37 42 41 44 
8 24 8 44 35 40 37 43 42 43 
8 25 9 19 35 41 37 44 42 44 
8 26 9 20 35 42 38 39 43 44 
8 27 9 38 35 43 38 40  
8 28 9 41 35 44 38 41  
8 29 9 42 36 37 38 43  
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Table A7. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 7000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 7000  
1 2 8 26 9 38 35 43 38 41 
1 5 8 27 9 40 35 44 38 43 
6 33 8 28 9 41 36 37 38 44 
6 35 8 29 9 42 36 38 39 40 
6 44 8 30 9 43 36 39 39 41 
7 43 8 31 10 22 36 40 39 42 
8 9 8 32 10 23 36 41 39 43 
8 11 8 33 10 31 36 42 39 44 
8 14 8 35 10 42 36 43 40 41 
8 16 8 36 10 43 36 44 40 43 
8 17 8 37 10 44 37 38 40 44 
8 18 8 38 34 44 37 39 41 42 
8 19 8 39 35 36 37 40 41 43 
8 20 8 40 35 37 37 41 41 44 
8 21 9 26 35 38 37 42 42 43 
8 22 9 27 35 39 37 43 42 44 
8 23 9 28 35 40 37 44 43 44 
8 24 9 32 35 41 38 39  
8 25 9 37 35 42 38 40  
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Table A8. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 8000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 8000  
3 21 8 33 33 34 35 39 37 44 
6 33 8 34 33 35 35 40 38 39 
6 34 8 35 33 36 35 41 38 40 
6 35 8 38 33 37 35 42 38 41 
6 37 8 39 33 40 35 43 38 43 
6 38 8 40 33 41 35 44 38 44 
6 39 8 44 33 42 36 37 39 40 
6 40 9 23 33 43 36 38 39 42 
6 43 9 25 33 44 36 39 39 43 
8 12 10 42 34 35 36 40 39 44 
8 14 10 43 34 36 36 41 40 41 
8 16 32 33 34 37 36 42 40 43 
8 17 32 34 34 38 36 43 40 44 
8 19 32 36 34 40 36 44 41 42 
8 20 32 38 34 41 37 38 41 43 
8 23 32 40 34 42 37 39 41 44 
8 26 32 41 34 44 37 40 42 43 
8 27 32 42 35 36 37 41 42 44 
8 28 32 43 35 37 37 42 43 44 
8 29 32 44 35 38 37 43  
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Table A9. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 9000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 9000  
1 2 30 43 32 42 35 36 37 44 
3 5 30 44 32 43 35 37 38 39 

29 31 31 32 32 44 35 38 38 40 
29 32 31 33 33 34 35 39 38 41 
29 33 31 34 33 35 35 40 38 43 
29 34 31 35 33 36 35 41 38 44 
29 39 31 36 33 37 35 42 39 40 
29 40 31 37 33 38 35 43 39 41 
29 41 31 38 33 39 35 44 39 42 
29 42 31 39 33 40 36 37 39 44 
29 43 31 41 33 41 36 38 40 41 
29 44 31 42 33 42 36 39 40 42 
30 31 31 43 33 43 36 40 40 43 
30 32 31 44 33 44 36 41 40 44 
30 33 32 33 34 35 36 42 41 42 
30 34 32 34 34 36 36 43 41 43 
30 35 32 35 34 37 36 44 41 44 
30 36 32 36 34 38 37 38 42 43 
30 37 32 37 34 39 37 39 42 44 
30 39 32 38 34 40 37 40 43 44 
30 40 32 39 34 41 37 41  
30 41 32 40 34 43 37 42  
30 42 32 41 34 44 37 43  
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Table A10. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 10 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 10 000  
28 40 30 39 32 39 34 42 37 42 
28 41 30 40 32 40 34 43 37 43 
28 42 30 41 32 41 34 44 37 44 
28 43 30 42 32 42 35 36 38 39 
28 44 30 43 32 43 35 37 38 40 
29 30 30 44 32 44 35 38 38 42 
29 31 31 32 33 34 35 39 38 43 
29 32 31 33 33 35 35 40 38 44 
29 33 31 34 33 36 35 41 39 40 
29 34 31 35 33 37 35 42 39 41 
29 38 31 36 33 38 35 43 39 42 
29 39 31 37 33 39 35 44 39 44 
29 40 31 38 33 40 36 37 40 41 
29 41 31 40 33 41 36 38 40 42 
29 42 31 41 33 42 36 39 40 43 
29 43 31 42 33 43 36 40 40 44 
29 44 31 43 33 44 36 41 41 42 
30 31 31 44 34 35 36 42 41 43 
30 32 32 33 34 36 36 43 41 44 
30 33 32 34 34 37 36 44 42 43 
30 34 32 35 34 38 37 38 42 44 
30 36 32 36 34 39 37 39 43 44 
30 37 32 37 34 40 37 40  
30 38 32 38 34 41 37 41  
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Table A11. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 20 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 20 000  
2 41 29 31 31 35 33 44 37 41 
2 42 29 32 31 36 34 35 37 42 
2 43 29 33 31 37 34 36 37 43 
2 44 29 34 31 38 34 37 37 44 
3 5 29 35 31 39 34 38 38 39 
3 7 29 36 31 40 34 39 38 40 

27 33 29 37 31 41 34 40 38 41 
27 34 29 38 31 42 34 41 38 42 
27 36 29 39 31 43 34 42 38 44 
27 38 29 41 31 44 34 43 39 40 
27 39 29 42 32 33 34 44 39 41 
27 40 29 43 32 34 35 36 39 42 
27 42 29 44 32 35 35 37 39 43 
27 43 30 31 32 36 35 38 39 44 
27 44 30 32 32 37 35 39 40 41 
28 29 30 33 32 38 35 40 40 42 
28 30 30 34 32 39 35 42 40 43 
28 31 30 35 32 40 35 43 40 44 
28 32 30 36 32 41 35 44 41 42 
28 33 30 37 32 42 36 37 41 43 
28 34 30 38 32 43 36 38 41 44 
28 37 30 39 32 44 36 39 42 43 
28 38 30 40 33 34 36 40 42 44 
28 39 30 41 33 35 36 41 43 44 
28 40 30 42 33 36 36 42  
28 41 30 43 33 37 36 43  
28 42 30 44 33 40 36 44  
28 43 31 32 33 41 37 38  
28 44 31 33 33 42 37 39  
29 30 31 34 33 43 37 40  
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Table A12. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 30 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 30 000  
1 2 28 34 30 40 33 39 37 38 
2 19 28 35 30 41 33 41 37 39 
2 21 28 36 30 42 33 42 37 40 
2 22 28 37 30 43 33 43 37 41 
3 4 28 38 30 44 33 44 37 42 

26 38 28 40 31 32 34 35 37 43 
26 39 28 41 31 33 34 36 37 44 
26 40 28 42 31 34 34 37 38 39 
26 41 28 43 31 35 34 38 38 40 
26 42 28 44 31 36 34 39 38 41 
26 43 29 30 31 38 34 40 38 42 
26 44 29 31 31 40 34 41 38 43 
27 28 29 32 31 41 34 42 38 44 
27 29 29 33 31 42 34 43 39 40 
27 30 29 34 31 43 34 44 39 41 
27 31 29 35 31 44 35 36 39 43 
27 32 29 36 32 33 35 37 39 44 
27 33 29 37 32 34 35 38 40 41 
27 34 29 39 32 36 35 39 40 42 
27 35 29 40 32 37 35 40 40 43 
27 36 29 41 32 38 35 41 40 44 
27 37 29 42 32 39 35 42 41 42 
27 38 29 43 32 40 35 43 41 43 
27 40 29 44 32 41 35 44 41 44 
27 41 30 31 32 42 36 37 42 43 
27 42 30 32 32 43 36 38 42 44 
27 44 30 33 32 44 36 39 43 44 
28 29 30 34 33 34 36 40  
28 30 30 35 33 35 36 41  
28 31 30 36 33 36 36 42  
28 32 30 37 33 37 36 43  
28 33 30 38 33 38 36 44  

 
  



§ 9. Supplement xxiv 

Tea Ostojić Diploma Thesis 

Table A13. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 40 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 40 000  
1 2 27 43 30 34 33 34 36 43 
1 6 27 44 30 35 33 35 36 44 
2 9 28 29 30 36 33 36 37 38 
2 11 28 30 30 37 33 37 37 39 
2 12 28 31 30 38 33 38 37 40 
2 13 28 32 30 39 33 40 37 41 
2 14 28 33 30 40 33 41 37 42 
2 15 28 34 30 41 33 42 37 43 
2 17 28 35 30 42 33 43 37 44 
2 19 28 36 30 43 33 44 38 39 
2 22 28 37 30 44 34 35 38 40 
2 40 28 39 31 32 34 36 38 41 
2 42 28 40 31 33 34 37 38 42 
2 44 28 41 31 34 34 38 38 43 
3 4 28 42 31 35 34 39 38 44 
3 11 28 43 31 36 34 40 39 40 
3 12 28 44 31 37 34 41 39 41 
3 13 29 30 31 39 34 42 39 42 
3 14 29 31 31 40 34 43 39 43 
3 16 29 32 31 41 34 44 39 44 
3 17 29 33 31 42 35 36 40 41 
3 19 29 34 31 43 35 37 40 42 
27 29 29 35 31 44 35 38 40 43 
27 30 29 36 32 33 35 39 40 44 
27 31 29 37 32 34 35 40 41 42 
27 32 29 38 32 36 35 41 41 43 
27 33 29 40 32 37 35 42 41 44 
27 34 29 41 32 38 35 44 42 43 
27 35 29 42 32 39 36 37 42 44 
27 36 29 43 32 40 36 38 43 44 
27 38 29 44 32 41 36 39  
27 40 30 31 32 42 36 40  
27 41 30 32 32 43 36 41  
27 42 30 33 32 44 36 42  
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Table A14. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 50 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N (points) = 50 000 
1 2 27 35 30 31 32 41 36 38 
1 6 27 36 30 32 32 42 36 39 

25 37 27 38 30 33 32 43 36 40 
25 38 27 39 30 34 32 44 36 41 
25 39 27 41 30 35 33 34 36 42 
25 40 27 42 30 36 33 35 36 43 
25 41 27 43 30 37 33 36 36 44 
25 42 27 44 30 38 33 37 37 38 
25 43 28 29 30 39 33 39 37 39 
25 44 28 30 30 40 33 40 37 40 
26 27 28 31 30 41 33 41 37 41 
26 28 28 32 30 42 33 42 37 42 
26 29 28 33 30 43 33 43 37 43 
26 31 28 34 30 44 33 44 37 44 
26 32 28 35 31 32 34 35 38 39 
26 33 28 37 31 33 34 36 38 40 
26 34 28 38 31 34 34 37 38 41 
26 35 28 39 31 35 34 38 38 43 
26 36 28 42 31 36 34 39 38 44 
26 37 28 43 31 37 34 40 39 40 
26 38 28 44 31 38 34 41 39 41 
26 39 29 30 31 39 34 42 39 42 
26 40 29 31 31 40 34 43 39 43 
26 41 29 32 31 41 34 44 39 44 
26 42 29 33 31 42 35 36 40 41 
26 43 29 34 31 43 35 37 40 42 
26 44 29 35 31 44 35 38 40 43 
27 28 29 36 32 33 35 39 40 44 
27 29 29 37 32 34 35 40 41 42 
27 30 29 39 32 35 35 41 41 43 
27 31 29 41 32 36 35 42 41 44 
27 32 29 42 32 37 35 43 42 43 
27 33 29 43 32 38 35 44 42 44 
27 34 29 44 32 39 36 37 43 44 
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Table A15. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 60 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N (points) = 60 000  
1 2 25 26 26 32 27 36 28 44 30 37 32 35 34 37 36 41 40 41 
1 6 25 28 26 33 27 37 29 30 30 38 32 36 34 38 36 42 40 42 
2 27 25 29 26 34 27 38 29 31 30 39 32 37 34 39 36 43 40 43 
2 35 25 30 26 35 27 40 29 32 30 40 32 38 34 40 36 44 40 44 
2 39 25 31 26 36 27 41 29 33 30 42 32 39 34 41 37 38 41 42 
2 43 25 32 26 37 27 42 29 34 30 43 32 41 34 42 37 39 41 43 
2 44 25 33 26 38 27 43 29 35 30 44 32 42 34 43 37 40 41 44 
3 4 25 34 26 39 27 44 29 36 31 32 32 43 34 44 37 41 42 43 

24 27 25 35 26 40 28 29 29 37 31 33 32 44 35 36 37 42 42 44 
24 28 25 36 26 41 28 30 29 38 31 34 33 34 35 37 37 43 43 44 
24 29 25 37 26 42 28 32 29 39 31 35 33 35 35 38 37 44  
24 30 25 38 26 43 28 33 29 41 31 36 33 36 35 39 38 39  
24 31 25 39 26 44 28 34 29 42 31 37 33 37 35 40 38 40  
24 33 25 41 27 28 28 35 29 43 31 38 33 39 35 41 38 41  
24 34 25 42 27 29 28 36 29 44 31 39 33 40 35 42 38 42  
24 36 25 43 27 30 28 37 30 31 31 40 33 41 35 43 38 44  
24 37 25 44 27 31 28 38 30 32 31 41 33 42 35 44 39 40  
24 38 26 27 27 32 28 39 30 33 31 42 33 43 36 37 39 41  
24 39 26 28 27 33 28 40 30 34 31 43 33 44 36 38 39 42  
24 43 26 29 27 34 28 42 30 35 31 44 34 35 36 39 39 43  
24 44 26 31 27 35 28 43 30 36 32 34 34 36 36 40 39 44  
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Table A16. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 70 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N (points) = 70 000  
1 2 24 33 25 39 26 43 28 34 29 44 31 40 33 42 36 38 39 42 
1 6 24 34 25 40 26 44 28 35 30 31 31 41 33 43 36 39 39 43 
2 5 24 35 25 41 27 28 28 36 30 32 31 42 33 44 36 40 39 44 
2 6 24 36 25 42 27 29 28 37 30 33 31 43 34 35 36 41 40 41 
2 8 24 37 25 43 27 30 28 38 30 34 31 44 34 36 36 42 40 42 
2 13 24 38 25 44 27 31 28 40 30 35 32 34 34 37 36 43 40 43 
2 14 24 39 26 27 27 32 28 42 30 36 32 35 34 38 36 44 40 44 
2 15 24 40 26 28 27 33 28 43 30 37 32 36 34 39 37 38 41 42 
2 24 24 43 26 29 27 34 28 44 30 38 32 37 34 40 37 39 41 43 
2 29 24 44 26 30 27 36 29 30 30 40 32 39 34 41 37 40 41 44 
2 35 25 26 26 31 27 37 29 31 30 41 32 41 34 42 37 41 42 43 
2 37 25 27 26 32 27 38 29 32 30 42 32 42 34 43 37 42 42 44 
2 38 25 28 26 33 27 39 29 33 30 43 32 43 34 44 37 43 43 44 
2 39 25 29 26 34 27 40 29 34 30 44 32 44 35 36 37 44  
2 40 25 31 26 35 27 41 29 35 31 32 33 34 35 37 38 39  
2 44 25 32 26 36 27 42 29 36 31 33 33 35 35 38 38 40  
3 5 25 33 26 37 27 43 29 37 31 34 33 36 35 39 38 41  
3 6 25 34 26 38 27 44 29 38 31 35 33 37 35 40 38 42  
3 7 25 35 26 39 28 29 29 40 31 36 33 38 35 41 38 43  

24 28 25 36 26 40 28 31 29 41 31 37 33 39 35 42 38 44  
24 29 25 37 26 41 28 32 29 42 31 38 33 40 35 44 39 40  
24 30 25 38 26 42 28 33 29 43 31 39 33 41 36 37 39 41  
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Table A17. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 80 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N (points) = 80 000  
1 2 23 42 25 30 26 36 27 42 29 35 31 33 33 34 35 37 38 39 
1 11 23 43 25 31 26 37 27 43 29 36 31 34 33 35 35 38 38 40 
1 12 23 44 25 32 26 38 27 44 29 37 31 35 33 36 35 39 38 41 
1 13 24 26 25 33 26 39 28 29 29 38 31 36 33 37 35 40 38 42 
2 16 24 27 25 34 26 40 28 30 29 40 31 37 33 38 35 41 38 43 
2 17 24 29 25 35 26 41 28 31 29 41 31 38 33 39 35 42 38 44 
2 21 24 30 25 36 26 42 28 32 29 42 31 39 33 40 35 44 39 40 
2 22 24 31 25 37 26 43 28 33 29 43 31 40 33 41 36 37 39 41 
2 24 24 32 25 38 26 44 28 34 29 44 31 41 33 42 36 38 39 42 
2 27 24 34 25 39 27 28 28 35 30 31 31 42 33 43 36 39 39 43 
2 29 24 35 25 40 27 29 28 36 30 32 31 43 33 44 36 40 39 44 
2 36 24 36 25 41 27 30 28 37 30 34 31 44 34 35 36 41 40 41 
2 37 24 37 25 42 27 32 28 38 30 35 32 33 34 36 36 42 40 42 
2 38 24 38 25 43 27 33 28 40 30 36 32 34 34 37 36 43 40 43 
2 39 24 39 25 44 27 34 28 41 30 37 32 35 34 38 36 44 40 44 
2 40 24 42 26 27 27 35 28 43 30 38 32 36 34 39 37 38 41 42 
2 42 24 43 26 28 27 36 28 44 30 39 32 37 34 40 37 39 41 43 
2 44 24 44 26 29 27 37 29 30 30 40 32 40 34 41 37 40 41 44 
3 4 25 26 26 30 27 38 29 31 30 42 32 41 34 42 37 41 42 43 
3 5 25 27 26 33 27 39 29 32 30 43 32 42 34 43 37 42 42 44 
3 7 25 28 26 34 27 40 29 33 30 44 32 43 34 44 37 43 43 44 

23 41 25 29 26 35 27 41 29 34 31 32 32 44 35 36 37 44  
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Table A18. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 90 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N (points) = 90 000 
1 2 23 41 25 29 26 35 27 42 29 36 30 44 32 43 35 36 37 44 

1 11 23 42 25 30 26 36 27 43 29 37 31 32 32 44 35 37 38 39 
1 12 23 43 25 31 26 37 27 44 29 38 31 33 33 34 35 38 38 40 
1 35 23 44 25 32 26 38 28 29 29 39 31 34 33 35 35 39 38 41 
2 16 24 26 25 33 26 40 28 30 29 40 31 35 33 36 35 40 38 42 
2 17 24 27 25 34 26 41 28 31 29 41 31 36 33 37 35 41 38 43 
2 20 24 28 25 35 26 42 28 32 29 42 31 37 33 38 35 43 38 44 
2 21 24 29 25 36 26 43 28 33 29 43 31 38 33 40 35 44 39 40 
2 22 24 30 25 37 26 44 28 34 29 44 31 39 33 41 36 37 39 41 
2 24 24 31 25 38 27 28 28 35 30 31 31 40 33 42 36 38 39 42 
2 27 24 32 25 39 27 29 28 36 30 32 31 41 33 43 36 39 39 43 
2 29 24 34 25 41 27 30 28 37 30 33 31 42 33 44 36 40 39 44 
2 36 24 35 25 42 27 32 28 38 30 34 31 43 34 35 36 41 40 41 
2 37 24 36 25 43 27 33 28 39 30 35 31 44 34 36 36 42 40 42 
2 38 24 37 25 44 27 34 28 40 30 36 32 34 34 37 36 43 40 43 
2 39 24 38 26 27 27 35 28 41 30 37 32 35 34 38 36 44 40 44 
2 42 24 39 26 28 27 36 28 44 30 38 32 36 34 39 37 38 41 42 
2 44 24 43 26 29 27 37 29 31 30 39 32 37 34 40 37 39 41 43 
3 4 24 44 26 30 27 38 29 32 30 40 32 39 34 41 37 40 41 44 
3 5 25 26 26 32 27 39 29 33 30 41 32 40 34 42 37 41 42 43 
3 7 25 27 26 33 27 40 29 34 30 42 32 41 34 43 37 42 42 44 

3 10 25 28 26 34 27 41 29 35 30 43 32 42 34 44 37 43 43 44 
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Table A19. The set of linearly independent generalized coordinates as a result of machine learning 

algorithms performed on trajectory with 100 000 points for a (R)-cinchonidine molecule. 

The set of linearly independent generalized coordinates for trajectory with N(points) = 100 000 
1 2 23 41 25 28 26 34 27 42 29 34 31 32 32 42 35 36 37 44 
2 16 23 42 25 29 26 35 27 43 29 35 31 33 32 43 35 37 38 39 
2 17 23 43 25 30 26 36 27 44 29 36 31 34 32 44 35 38 38 40 
2 20 23 44 25 31 26 37 28 29 29 37 31 35 33 34 35 39 38 41 
2 21 24 26 25 32 26 38 28 30 29 38 31 36 33 35 35 40 38 42 
2 22 24 27 25 33 26 39 28 31 29 39 31 37 33 36 35 41 38 43 
2 24 24 29 25 34 26 41 28 32 29 40 31 38 33 37 35 43 38 44 
2 27 24 30 25 35 26 42 28 33 29 41 31 39 33 40 35 44 39 40 
2 29 24 31 25 36 26 43 28 34 29 42 31 40 33 41 36 37 39 41 
2 36 24 32 25 37 26 44 28 35 29 43 31 41 33 42 36 38 39 42 
2 37 24 34 25 38 27 28 28 36 29 44 31 42 33 43 36 39 39 43 
2 38 24 35 25 39 27 29 28 37 30 31 31 43 33 44 36 40 39 44 
2 39 24 36 25 40 27 30 28 38 30 32 31 44 34 35 36 41 40 41 
2 40 24 37 25 41 27 32 28 39 30 34 32 33 34 36 36 42 40 42 
2 44 24 38 25 42 27 33 28 40 30 35 32 34 34 37 36 43 40 43 
3 4 24 39 25 43 27 34 28 41 30 36 32 35 34 38 36 44 40 44 
3 5 24 40 25 44 27 35 28 43 30 37 32 36 34 39 37 38 41 42 
3 7 24 42 26 27 27 36 28 44 30 38 32 37 34 40 37 39 41 43 
3 10 24 43 26 28 27 37 29 30 30 39 32 38 34 41 37 40 41 44 
23 38 24 44 26 29 27 38 29 31 30 42 32 39 34 42 37 41 42 43 
23 39 25 26 26 30 27 39 29 32 30 43 32 40 34 43 37 42 42 44 
23 40 25 27 26 33 27 41 29 33 30 44 32 41 34 44 37 43 43 44 
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