Title Dinamika širenja zaraznih bolesti na kompleksnim mrežama
Title (english) Dynamics of contagious disease spreading on complex networks
Author Margareta Sigmund
Mentor Hrvoje Štefančić (mentor)
Mentor Matko Glunčić (komentor)
Committee member Matko Glunčić (predsjednik povjerenstva)
Committee member Hrvoje Štefančić (član povjerenstva)
Committee member Matko Milin (član povjerenstva)
Committee member Nikola Poljak (član povjerenstva)
Committee member Hrvoje Buljan (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Physics) Zagreb
Defense date and country 2021-09-22, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Physics
Abstract Pojavom pandemije virusa COVID-19, tema širenja zaraze postala je vrlo aktualna te dio svakodnevice prosječnog laika. Modeliranje širenja zaraze već je i ranije izazivalo velik interes raznih znanstvenih zajednica te je postalo područje multidisciplinarnog istraživanja budući da je zaintrigiralo matematičare, fizičare, biologe, sociologe i druge znanstvenike. U ovome ćemo radu sažeti najvažnije doprinose epidemiološkom modeliranju, općenita svojstva kompleksnih mreža te najznačajnije doprinose u problemu detekciji izvora zaraze na kompleksnim mreža. Također, razmotrit ćemo karakteristike prosječne udaljenosti promatranog vrha do svih zaraženih vrhova i njenog gradijenta na primjeru SIS modelu širenja zaraze na mreži malog svijeta. Dokazat ćemo da je gradijent prosječne udaljenosti promatranog vrha do svih zaraženih vrhova najveći za izvor zaraze, što ćemo provjeriti i na skupu podataka koji opisuju neku stvarnu mrežu. SIS model uvelike svojim karakteristikama podsjeća na dinamiku širenja koronavirusa (oporavljeni pacijent nakon nekog vremena ponovno postaje podložan novoj zarazi). Modeli homogenog miješanja tek aproksimativno opisuju širenje zaraze, stoga se u ovom radu promatra širenje zaraze SIS modelom na kompleksnim mrežama, konkretno na mrežama malog svijeta. Posebnost kompleksnih mreža jest vjeran prikaz raspodjele ljudi te njihovih interakcija, gdje su ljudi vrhovi grafa, a interakcije su veze medu vrhovima. Ovaj je rad usmjeren na problem detekcije izvora zaraze pri širenju zaraze po SIS modelu na mreži malog svijeta.
Abstract (english) With the appearance of the COVID-19 virus pandemic, the topic of the spread of the infection became very usual and part of the everyday life of an average man. Modelling the spread of the infection has already aroused great interest in various scientific communities and became an area of multidisciplinary research since it has intrigued mathematicians, physicists, biologists, sociologists, and other scientists. In this thesis, we summarize the most important contributions to epidemiological modelling, the general properties of complex networks, and the most significant contributions to the problem of detecting sources of infection on complex networks. Also, we will consider the characteristics of the average distance of the observed node to all infected ones and its gradient on the example of the SIS model infection spreading on the small-world network. We will prove that the gradient of the average distance of the observed node to all infected ones is the largest for the source of infection, which we will also check on a set of data describing a real network. The SIS model is very similar in its characteristics to the dynamics of coronavirus spread (a recovered patient after some time becomes susceptible to a new infection again). Homogeneous mixing models only approximately describe the disease spread, so in this paper, we observe the SIS model spreading of infection on complex networks, specifically on small-world networks. The peculiarity of complex networks is a possibility of correct representation of the distribution of people and their interactions, where people are the vertices of the graph, and the interactions are the connections between the vertices. This paper deals with the source detection problem in SIS model disease spreading on small-world networks.
Keywords
epidemiološki modeli
SIS model širenja zaraze
kompleksne mreže
problem detekcije izvora širenja zaraze
Keywords (english)
edipemiological models
complex networks
SIS model of disease spreading
source detection problem
Language croatian
URN:NBN urn:nbn:hr:217:782646
Study programme Title: Physics; specializations in: Research Course: Research Study programme type: university Study level: integrated undergraduate and graduate Academic / professional title: magistar/magistra fizike (magistar/magistra fizike)
Type of resource Text
File origin Born digital
Access conditions Embargoed access Embargo expiration date: 2022-09-22
Terms of use
Created on 2021-11-09 12:25:37