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SUMMARY

The topic of this thesis are two problems in the vertex operator algebra theory: determi-
nation of fusion rules and the orbifold problem. For the fusion rules problem we study
the example of Weyl vertex algebra, also known as the 3y ghost system. This is a non-
rational vertex algebra, hence we give a first proof of a Verlinde formula for non-rational
VOAs and confirm the Verlinde type conjecture given by D. Ridout and S. Wood in [70].
For the orbifold problem, we extend a theorem given in the Dong-Mason quantum Galois
theory paper [41], from the category of ordinary modules to the whole category of weak
modules. The proof given by Dong and Mason necessarily involves Zhu’s theory, and
therefore can not be extended to the category of weak modules. In particular, we study
the example of Whittaker modules for the Weyl vertex algebra and Heisenberg VOA.

In the first part of this thesis, we calculate fusion rules in the category of weight mod-
ules for the Weyl vertex algebra. Our proof is entirely vertex-algebraic and it uses the
theory of intertwining operators for vertex algebras and the fusion rules for the affine ver-
tex superalgebra L; (gl(1]|1)). Moreover, we explicitly construct the intertwining operators
involved. We also prove a general irreducibility result which relates irreducible weight
modules for the Weyl vertex algebra M to irreducible weight modules for L;(gl(1]1)).

In the second part of this thesis we prove a theorem on irreducible weak V-module
W and an automorphism g of finite order. Here either W o g’ 22 W for all i, in which
case W is an irreducible V(¢)—module, or W = W o g in which case W is a direct sum of
p irreducible V{¢'—modules. The key idea of our proof was to consider a “big” module
for the vertex algebra, constructed as a direct sum of modules @,;W o g’. Moreover,
we present a counterexample for the expansion of our theorem to the case of infinite-

dimensional group G for the irreducible Weyl algebra modules of Whittaker type.
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SAZETAK

U ovoj disertaciji prou¢avamo dvije teme teorije verteks-algebri: raCunanje pravila fuzije
te problem podalgebre fiksnih tocaka. Verteks-algebra za koju raCunamo pravila fuzije
je Weylova verteks-algebra ili By sistem. To je iracionalna verteks-algebra i na§ dokaz
je prvi dokaz Verlindeove formule za slucaj iracionalnih verteks-algebri te potvrdujemo
slutnju iznesenu u ¢lanku D. Ridouta i S. Wooda [70]. Za problem podalgebre fiksnih
tocaka proSirujemo teorem C. Donga i G. Masona iz njihova ¢lanka o kvantnoj Galoisovoj
teoriji [41], s kategorije jakih modula na cijelu kategoriju slabih modula. Dokaz iznesen
u [41] ne moZe se proSiriti na slabe module jer koristi Zhuovu teoriju. Svoj rezultat prim-
jenjujemo na Weylovu verteks-algebru, ali i Heisenbergovu algebru verteks-operatora te
za obje promatramo kategoriju Whittakerovih modula.

U prvom dijelu disertacije racunamo pravila fuzije u kategoriji teZinskih modula Weylove
verteks-algebre. Nas je dokaz potpuno uklopljen u teoriju verteks-algebri te koristi teoriju
operatora ispreplitanja verteks-algebri i pravila fuzije za afinu verteks-superalgebru L; (gl(1|1)).
Stovise, eksplicitno smo konstruirali operatore ispreplitanja koji se javljaju u iskazu.
Takoder, pokazali smo opceniti rezultat koji povezuje ireducibilne teZinske module Weylove
verteks-algebre M s ireducibilnim teZinskim modulima za L;(gl(1]1)).

U drugom dijelu disertacije dokazali smo teorem o ireducibilnim slabim V-modulima
W i automorfizmu g kona¢nog reda. Naime, pokazali smo dajeiliWog! 2 W, zasvei,iu
tom slu¢aju je W ireducibilan V{¢)—modul, ili je W = W o g, i u tom slucaju je W direktna
suma p ireducibilnih V(¢)—modula. Glavna ideja naSeg dokaza je bila konstruirati “veliki”
modul za verteks-algebru, tako da uzmemo direktnu sumu modula @; W o g’. Nadalje,
dajemo protuprimjer za proSirenje naseg teorema na slucaj beskonacno-dimenzionalne

grupe automorfizama G za ireducibilne Whittakerove module Weylove verteks-algebre.
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1. INTRODUCTION

The theory of vertex algebras is a modern mathematical theory with beginnings dating
back to the 1980s. It was then that Richard Borcherds (cf. [24]), inspired by 1. Frenkel,
J. Lepowsky and A. Muerman’s moonshine module %& (cf. [51]), proved the moonshine
conjecture on the Monster group proposed by J. H. Conway and S.P. Norton (cf. [25]).
For this proof he used new objects which he called vertex algebras. These new objects
were in fact a rigorous mathematical description of chiral algebras appearing in conformal
field theory. Since then the theory of vertex algebras flourished and many interesting
connections have been made to various other mathematical theories.

For example, there is a strong connection between vertex algebraic theory and the
number theory via the modular forms. If we take a vertex operator algebra V of central

charge ¢ such that V = P, Vi, where dim V,, < oo, and define

oo

ch[V](q)=¢ & ;}(dim Va)g",

where g = ¢***

, and Re(7)> 0, then for certain vertex algebras (e.g. for holomorphic
VOA:s), we will get a modular form.

We should also mention that vertex operators appeared in the mathematical literature
before the formal definition of a vertex algebra was given, in particular in the work of J.
Lepowsky and R. Wilson (cf. [63]), where they presented an explicit free-field realization
of the basic representation of the affine Lie algebra ;[(2)

There is also a connection of vertex algebra theory to the Langlands program. Namely,
vertex algebra theory can be a useful tool in the construction of some conjectural geomet-
ric Langlands correspondences (cf. [48]).

In this thesis we study two important problems of the vertex algebra theory: deter-

mination of fusion rules for a vertex algebra and the Orbifold subalgebras of vertex
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algebras and their Whittaker modules.

Fusion rules for vertex algebras

Fusion rules are defined in [50] as the dimension of vector spaces of intertwining opera-
tors. Fusion rules for rational vertex algebras can be obtained using the Verlinde formula,
proposed by physicists and proved by Y. Z. Huang in [57]. For non-rational vertex alge-
bras which have infinitely many irreducible modules, the determination of fusion rules is
still an open problem in most cases. A natural method would be to determine the cate-
gory of modules which are closed under fusion rules, and try to determine fusion rules in
that category. It is a recent trend that researchers first propose a Verlinde type formula,
although this procedure is still not completely rigourous. This way we can get some
conjectures which can then be verified. Since the Verlinde formula is based on modular
transformation of irreducible characters, it is necessary to consider weight modules with
finite-dimensional weight spaces. It turns out that this category should, as an addition to
the usual highest weight modules, also include the relaxed highest weight modules, which
appeared in the cases of Weyl vertex algebra and affine vertex algebras on non-integral
levels.

Let us mention some examples and recent progress in this direction.

1. The singlet vertex algebra .# (p) associated to (1, p)-modules for the Virasoro al-
gebras. The irreducible modules were classified in [8]. The Verlinde type conjecture
is presented in [29], and the case p =2 is proved in [15]. The fusion rules for p > 2
are still not determined. A vertex tensor category approach to to the representation

theory of singlet algebras was recently proposed in [28].

2. The affine vertex algebra L (s[(2)). The irreducible representations are classified
in [14]. The Verlinde type formula is presented in [31]. These fusion rules are
still unproved. Some intertwining operators predicted by the Verlinde formula are

constructed in [11].

3. Weyl vertex algebra. The Verlinde type formula is presented in [70]. The proof

is given in [16], and it is included in the Chapter 3 of this dissertation. A vertex

2



1.0.

tensor categorical approach to the representation theory of Weyl vertex algebra has

appeared in a recent preprint [21].

Orbifold subalgebras of vertex algebras and their Whittaker modules

Coset and orbifold constructions are two basic ways to construct new vertex algebras from
the given ones. In this thesis we are focused more on the orbifold constructions.

Orbifolds have long been an important part of mathematics and physics as generaliza-
tions of manifolds. However, recently a new meaning has been given to the word orbifold
as a part of the string theory. They were first introduced in [32], where the authors con-
structed new conformal field theories from the old ones by applying automorphisms.

Mathematically formulated, the idea of orbifold theory of vertex algebras is to take a
vertex algebra V and some group of its automorphisms G, and study the representation
theory of the fixed point subalgebra V. This theory was initiated in 1994 by C. Dong and
G. Mason in [41], and a rigorous mathematical foundation to the theory of rational orb-
ifold models in conformal field theory was given in [40]. However, the quantum Galois
theory established by Dong and Mason relies on the Z—gradation of modules in the rep-
resentation theory of the orbifolds, semi-simple action of the Virasoro algebra and uses
Zhu’s theory. Therefore, it cannot be applied to weak modules, such as the Whittaker
modules.

Whittaker modules originate from complex Lie theory, but recently they have become
a matter of great interest in the vertex operator algebra theory as well. Let V be a ver-
tex algebra and let £ be the Lie algebra associated to V or the Lie algebra of modes of
generating fields of V. Let n be a nilpotent subalgebra of £. Then Whittaker modules
are defined by using a Lie algebra homomorphism A : n — C, and there is no constraint
on the action of the Cartan subalgebra . Therefore, Whittaker modules are not weight
modules, and the Dong-Mason theory can not be applied to them.

Let us mention some examples and recent progress regarding the irreducibility of

Whittaker modules for vertex algebras.

1. Whittaker modules for affine vertex algebras. The case of affine Lie algebra 5/[; of

type Agl) with noncritical level is proved in [17]. A family of Whittaker modules
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—

for s[(2) and osp(1]2), and all irreducible degenarate Whittaker modules for Vi (sl,)

are constructed in [11].

2. Whittaker modules for Heisenberg vertex operator algebra. In [71] it is proved that
any simple weak module for the Heisenberg vertex algebra orbifold M(1)" with at
least one Whittaker vector is isomorphic to some simple weak M (1)-module or to
some O-twisted simple weak M (1)-module. In [56], previous result is generalized

to Heisenberg algebras of higher rank.

3. Whittaker modules for Virasoro vertex operator algebras. In [69] irreducible Whit-

taker modules for the Virasoro algebra are classified.

Let us now present the contents of this thesis.

Chapter 2: Preliminaries

In this chapter we give basic definitions of the theory of vertex algebras necessary for
our work. The literature we follow in this chapter are monographies by J. Lepowsky, H.
Li (cf. [62]), V. Kac (cf. [58]) and E. Frenkel, D. Ben-Zvi (cf. [48]). We start with a brief
overview of formal calculus underlying the definition of a vertex algebra. Next we recall
the notion of vertex algebra and vertex operator algebra, the notion of weak and ordinary
vertex algebra modules, and vertex algebra automorphisms. Finally, we define universal
and simple affine vertex algebras.

Chapter 3: Fusion rules and intertwining operators for the Weyl vertex algebra

This chapter is joint work with D. Adamovi¢ and it is published in Journal of Mathe-
matical Physics [16].

The notion of fusion rules is one of the most important concepts both in the mathemat-
ical theory of vertex algebras, but also in its physical counterpart - conformal field theory.
In the language of theoretical physics, fusion rules determine which fields appear in the
operator product expansion of two primary fields, and in the language of mathematics
fusion rules determine the dimension of the space of intertwining operators between three
vertex algebra modules.

One of the deepest results in conformal field theory is the so called Verlinde formula.

It connects the local and global properties of the conformal field theory by establishing

4



1.0.

a relation between the modular S—matrix and the fusion algebra for the operator product
expansion on the sphere (cf. [72]). In mathematical language, fusion rules can be deter-
mined by using the Verlinde formula for rational vertex algebras, as was proved by Y. Z.
Huang [57]. However, so far there is no proof that fusion rules for non-rational vertex
algebras can be determined by using the Verlinde formula.

In this chapter we study the case of Weyl vertex algebra M, also known as the By sys-
tem in physics literature. This is a non-rational vertex algebra and it admits a category of
relaxed modules %, whose objects are Z.—graded modules. In this chapter, we construct
modules ,(7) from that category and discuss their irreducibility. However, contrary to
the case of rational vertex algebras, the category of Z—graded modules is not closed un-
der fusion. Therefore, it is natural to consider a larger category .%#, obtained by applying
the spectral flow automorphism ps. In their article [70], D. Ridout and S. Wood give a
conjecture on fusion rules for the category .%, and this is a Verlinde type conjecture for

fusion rules.

Our first main result of this chapter is proving this conjecture:

Main Theorem 1. Assume that A, u,A +u € C\ Z. Then we have:

pe, (M) X pr,(U(A)) = pe,+6,(U(R)), (1.1)

P, (UA)) X pry (U (1)) = pryots (UA + ) +poysy1 (UA+ 1), (12)

where U(A) is an irreducible weight module, and py, ¢ € Z, are the spectral flow auto-

morphisms defined by (3.8).

The fusion rule (1.1) is proved in Proposition 3.3.5, and it is a direct consequence of a
construction by H. Li (cf. [65]). The main contribution of our work is a vertex-algebraic
proof of (1.2) (cf. Corollary 3.6.4) which uses the theory of intertwining operators for
vertex algebras and fusion rules for the affine vertex superalgebra Ly (gl(1]1)).

We also prove a general irreducibility result which relates irreducible weight modules
for the Weyl vertex algebra M to irreducible weight modules for L;(gl(1|1)) (see Theorem
3.5.3).

Main Theorem 2. Assume that .4 is an irreducible weight M—module. Then A ® F is
a completely reducible L; (gl(1|1))-module.
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It is known that fusion rules can be determined by using fusion rules for the singlet ver-
tex algebra (cf. [15], [29]). However, we believe that our methods, which use L (gl(1|1)),
can be generalized to a wider class of vertex algebras.

In Section 3.2. we list some important basic definitions necessary to understand fusion
rules, such as the intertwining operators and fusion coefficients. We also give a very
important proposition (cf. 3.2.1) which allows us to produce a new intertwining operator
from an existing one via an appropriate vertex algebra automorphism.

In Section 3.3. we define the Weyl vertex algebra M. We list a family of Virasoro
vectors @, and a Heisenberg vector B for M. This way we can define the notion of a
weight module for M to be the one where the operators $(0) and L(0) act semisimply.
We give two proofs of an important lemma regarding the action of L(0) on the top level
of a graded M—module. One of the proofs of this lemma also uses Zhu’s theory. We prove
the first part of our Main theorem 1 by slightly modifying the proof by H. Li in [64].
We define spectral flow automorphisms on M. We construct a category %~ of irrreducible
weight modules for M. We describe a family of weight modules with infinite-dimensional
weight spaces, which are not in 7.

In Section 3.4. we construct intertwining operators appearing in the second part of our
Main theorem 1. For this purpose we introduce a subalgebra IT(0) of a lattice vertex su-
peralgebra Vy, into which M is embedded. Following [36], we construct one intertwining
operator in the category of I1(0)-modules, and restrict it to M. Then we obtain a second
intertwining operator using an automorphism of M.

In Section 3.5. we setup the necessary background for calculating the fusion rules. We
take Verma modules for the Lie superalgebra gl(1|1) and induce them to Verma modules
“///r’\s of level 1 for the simple affine vertex algebra of rank 1 associated to gl(1|1). We
obtain a result on fusion rules for L;(gl(1]|1))-modules 77” We tensor the M with the
Clifford vertex algebra F, and the zero level of this product is isomorphic to L;(gl(1|1)).

In Section 3.6. we finish the calculation of fusion rules for M. We prove the fusion
rules result in the category of modules for the tensor product M ® F, and then shift this
result to the category of modules for M by using a natural isomorphism of the spaces of

intertwining operators.
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Chapter 4: Irreducibility of modules of Whittaker type for cyclic orbifold vertex
algebras

This chapter is joint work with D. Adamovié, C.-H. Lam and N. Yu and it is published
in Journal of Algebra (cf. [12]).

In this chapter we study the orbifold problem of the theory of vertex algebras, a very
important tool in understanding their structure theory. In a nutshell, given a vertex algebra
V and some finite group of automorphisms G of V, one wants to draw conclusions on the
representation theory of the fixed-point vertex subalgebra V. Therefore, orbifold theory
provides new examples of vertex algebras by looking at the existing ones. Since it is
rather difficult to find nontrivial examples of vertex algebras, orbifold subalgebras are a
wonderful source of possibly interesting examples.

In their article [41], C. Dong and G. Mason founded the study of Galois theory for
vertex operator algebras, and as a key point in establishing this theory, they presented the

following result in orbifold theory:

Theorem 1.0.1 (cf. [41]). Let V be a vertex algebra, g be an automorphism of finite
primitive order, and V(¢ be the vertex subalgebra of fixed points under g of V. Let M be
an irreducible ordinary module for V such that it is not isomorphic to M o g'. Then M is

also an irreducible module for the subalgebra V(€).

This result has already proven useful in the construction of irreducible modules for
vertex algebras M(1)" and V;" (cf. [1-5,33-35,42-44]), and recently also for irreducible
modules for subalgebras of the triplet vertex algebra # (p) (cf. [13]).

It is natural to ask whether the Dong-Mason theorem holds for any weak V-module.
The proof presented by Dong and Mason cannot be extended to the case of arbitrary
weak modules since it necessarily involves Zhu’s algebra theory. However, in this chapter
we prove the complete extension of the Dong-Mason theorem to the weak modules, and
present an important application to the weak modules of Whittaker type.

Recently, Whittaker modules have been studied within the vertex operator algebra
theory in [17, 56, 71], and the latter two give a Lie theoretic proof of irreducibility of
some Whittaker modules for the Heisenberg vertex algebra orbifold. This was another

motivation for our work as we give a vertex algebraic proof of these statements, which
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can be applied more generally. Here we present only the result on non-twisted modules
and we study only basic examples of Heisenberg and Weyl vertex algebras. However, in
the future we expect to prove a more general result which would include twisted modules
and # —algebras.

Our first main theorem of this chapter is the following (see Theorem 4.5.3 for part (1)

and Theorem 4.6.3 for part (2)):

Main Theorem 3. Let W be an irreducible weak V—module and g an automorphism of

finite order p.

(1) Assume that W o g 2 W for all i. Then W is an irreducible v{¢)_module.

(2) Assume that W = W og. Then W is a direct sum of p irreducible V(¢ —modules.

The most convenient category of modules on which we apply our first main theo-
rem are the Whittaker modules for certain infinite-dimensional Lie algebras, due to being
uniquely described by their Whittaker function. Therefore, we have our second main

result (cf. Theorem 4.7.10):

Main Theorem 4. Let W be an irreducible weak V—module such that all W; = W o g’ are
Whittaker modules whose Whittaker functions A() = n — C are mutually distinct. Then

W is an irreducible weak V{¢)—module.

In particular, we construct a family of Whittaker modules M; (1, A) for the Heisenberg
vertex algebra, where A = (A, A41,...,4,,0,--+) is a sequence of elements of  with at

least one nonzero entry, and A,, = 0 for n > 0. (cf. Proposition 4.8.1):

Main Theorem 5. (1) Assume that g € O(¢) is of finite order such that A o g’ # A for
all i. Then M(1,A) is an irreducible M(1){¢'—module.

(2) Assume that A o 6 # A for any 2—cycle o € Sy. Then M(1,4) is an irreducible
M(1)'8)—module for any g € S;.

Also, we we construct a family of Whittaker modules M; (A, u) where (A, u) € C" x

C" for Weyl vertex algebra:

Main Theorem 6 (cf. Theorem 4.9.3). Assume that A = (A, ) # 0. Then M (A, ) is

an irreducible weak module for the orbifold subalgebra M?%», for each p > 1.
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In Section 4.2. we recall the Dong-Mason theorem which we generalize.

In Section 4.3. we prove a technical result on cyclic vectors in a direct sum of non-
isomorphic weak modules for a vertex operator algebra. To prove this result, we use a
similar result for associative algebras and then we use the Lie algebra g(V) associated to
the vertex operator algebra to lift the associative algebra result to the vertex algebra case.
This will be a lemma for the order two case of our Main theorem 3.

In Section 4.4. we prove the case of automorphisms of order two of the first part of
our Main Theorem 3. The key idea is to consider a “big” module for the vertex algebra
constructed as a direct sum of both the V-module W and the V—-module W o 6, where 0
is an order two automorphism.

In Section 4.5. we prove the first part of our Main Theorem 3. The proof is a gen-
eralized proof of the one given in Section 4.4 and here we have an automorphism g of
arbitrary order p (not necessarily prime). We use a generalized version of the techni-
cal lemma from Section 4.3. and the “big” module is now a direct sum of p factors,
M=WydW @ H&W,_;, where W; =Wog i=0,1,---,p—1.

In Section 4.6. we prove the second part of our Main Theorem 3. For the proof we
use Schur’s Lemma and the fact that every irreducible weak V-module W is countable
dimensional.

In Section 4.7. we give some structural results on Whittaker modules. We recall the
Lie algebra g(V) associated to vertex algebra V and we discuss some cases in which it
is possible to replace it with a smaller Lie algebra (cf. 4.7.3). We define the standard
(universal) Whittaker £-module M; and modules of Whittaker type A. We show how the
Whittaker module of type A is uniquely determined by the function A. Finally, we prove
our main result 2.

In Section 4.8. we apply our main theorem 3 to the case of Heisenberg vertex algebra
and prove Main Theorem 5. We recall basic definitions regarding the Heisenberg Lie
algebra and Heisenberg vertex algebra and we prove irreducibility of certain Whittaker
modules M(1,1) as modules for the Heisenberg vertex algebra orbifold.

In Section 4.9. we apply our main theorem to the case of Weyl vertex algebra. We
recall basic definitions regarding the Weyl associative algebra with generators and rela-

tions and Weyl vertex algebra. We prove our Main Theorem 6 and we demonstrate how



1. Introduction

—

this result gives a construction of new irrreducible modules for affine Lie algebra sl(2)
associated to s[(2).

Chapter 5: New results on the structure of Whittaker modules for certain vertex
algebras

This chapter is based on a preprint (cf. [20]) and it is joint work with D. Adamovi¢.

In this chapter we continue where we left of in Chapter 4. We study irreducible Whit-
taker modules M1 (A, p) with non-trivial Whittaker functions for the Weyl vertex alge-
bra M as modules for its orbifold. However, in this chapter we consider the limit case
of infinite-dimensional group of automorphisms, and prove that irreducible Weyl vertex
algebra modules of Whittaker type are actually always reducible as M%-modules. There-
fore, this is a counterexample to the generalization of our work in Chapter 4 to infinite-
dimensional group of automorphisms.

Our main theorem of this chapter is the following (see Theorem 5.2.3):

Main Theorem 7.
(1) M;(A,p) is a reducible gl-module.

(2) My(A,p) is a reducible #] . .—module at central charge ¢ = —1.

The statement (2) of the main theorem will then imply that M; (A, ) is reducible also
as an M°—module.
In Section 5.1., we recall two important realizations of the Weyl vertex algebra orb-

ifold M°:
+ MO is isomorphic to the vertex algebra #/ , .-algebra at central charge ¢ = —1.

+ MY is isomorphic to the simple module for the Lie algebra g?l which is the central

extension of the Lie algebra of infinite matrices.

In Section 5.2. we introduce a Casimir element / of gA[, and we show it acts non-

trivially on Whittaker vectors wy ,. We use / to prove our main result.
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2. PRELIMINARIES

In this chapter we list all of the important basic definitions that appear in our work, such as
the definition of vertex algebras and vertex operator algebras, weak and ordinary modules
for vertex operator algebras and vertex algebra automorphisms. For more details and for
an overview of the structural theory of vertex algebras we refer the reader to monographies

J. Lepowsky, H. Li (cf. [62]), V. Kac (cf. [58]) and E. Frenkel, D. Ben Zvi (cf. [48]).

2.1. FORMAL CALCULUS

In this section we follow [62] to present the formal calculus necessary for defining a vertex
algebra.
Let x,y,2,20, ... denote the commuting formal variables.

We define several useful objects:

* Vizt= {Zae(CV(xZa ‘ Vo € V},

s V[z,z7 Y] = {Znez Vuz 1 ‘ Vp € V} formal Laurent series,
* V][] = {Z;":O vz ! ’ Vn € V} formal Taylor series,

* V(@) = { Bnczva?”

Laurent series,

v, €V, v, =0, for sufficiently negative n} truncated formal

e V[z] = {ZneZ V" ‘ vu €V, 3ng € Z>o, Yn > ngy, v, =0, } Taylor polynomials,
s V[z,z7 = {ZnEZ V" ‘ vp €V, ANEZ, Yn<N, v, = 0} Laurent polynomials.

* R(z1,22) rational function with poles z; =0, z =0 and z; = 25,

11



2. Preliminaries

- 1;, 2R(z1,z2) Laurent expansion for |z;| > |z2|, where 1, , is a linear operator

from rational functions to Laurent series,

- 1, :1R(21,22) Laurent expansion for |z5| > |z1].

We calculate

o oo m oo
P+t 1 y <Z£>m —y 2 _ Y B!
- 2 T - - 1 :
a—-22 1= ﬁ L p=p <1 m=0 Z’In—H m=0

Therefore,
1  _ gy m,—m—1
- 121722 21—22 Zm:() 5241 ’
1 oo m_—m—1
- lZz,Zl 21— - Zﬂ’l:O 2 ZZ :

In other words, we have two different power series expansions for a single rational

function, depending on the domain of the function.

Also,
1 o w m\ 1 _m—j
a1 g gt _m;] <J'>Z1 2 5 D
(oo} r _
and 1,5, (z1—22) = Z (l) (—l)lzq lzé € Czy,20. 2.2)
=0

The consensus on the notation is the following
(11— 22) =1, ,(z1—2), (2.3)
and we have that
(z1—2) =(—22+20) < reZs.
In general (if r ¢ Z>¢), we have that (z1 —22)" # (—z22+21)".

* 8(2) =Y, 77" Delta function, formal Laurent series

1 1 1 21
21— —Z22+21 2 (Zz> @4

Similarly,

12



2.2. Formal calculus

1 1 1.

@ -2 [t e %)
Let f € Clz1,22,2; 25 ).

‘We have

Fle,2)8(L) = £z21,20)8 (L) = f(z2,21)8(2L).

22 22 22

Lemma 2.1.1. Let m,n € Z>y, m > n. We have

where the n-th derivative is partial derivative over z;.

Definition 2.1.2. Let f(z) = Y v,2". Residue of f at z is defined as

Res f(z) =v_1 = zlm/yf(z)dz.

94(55'8(2),

(2.5)

(2.6)

Let f(z) € C((2)), g(z) € V((z)). Then f(z)g(z) is well-defined and we have

/ !

Res;(f (z)g(z)) = —Res;(f(2)g (2)).

2.7)

Lemma 2.1.3. (cf. [62]) Let f(z) € V{z}. We have the so called Taylor’s formula

% f(2) = f(z+70).

Lemma 2.1.4. (cf. [62])

(i) zp'8(A22) — 25! 5(=2t0) = ;15 (22),

(i) 25 6(15%) = 57 16(34).

13



2. Preliminaries

2.2. VERTEX ALGEBRA AND VERTEX

OPERATOR ALGEBRA

In this section we follow [62] in defining vertex algebra, vertex operator algebra and
related objects.
LetV=V'¢®VibeaZz /27Z—graded vector space. A vector v € VO (resp. v € VO is

called even (resp. odd). We write v =0if v € VO andv=1ifve Vvl

Definition 2.2.1. Vertex superalgebra is a triple (V,Y,1), where V =V @ V! is a Z/27—~

graded vector space, Y is a linear map,

Y:V — (End V)[[z,z '],

v Z vz " =Y (,2),

and 1 is a distinguished vector called vacuum vector, such that it satisfies the following

axioms on Zjy—homogeneous elements a,b € V:
« Y is a parity preserving, i.e. Y (a,2)b € Vt?((z)),
* Y(a,2)b=Y,czpanbz™" €V ((2)), i.e. ayb =0, for n > 0.
* (vacuum) Y (1,z) =1d, i.e. 1, = 6, 1 1d.

* (creation) Y (a,z)1 € (End V)([[z]] and lim,0Y (a,2)1 = a, ie. a,1 =0, n >0,

a_1=ada.
* [D,Y(a,2)] = ‘%Y(a,z), where D € End(V), defined by Da =a_;, fora € V.
* (locality) dn € Z>(, depending on a and b,

(z1—22)"[Y(a,z1),Y(b,z2)] = 0.

where [Y(a,z1),Y (b,z2)] is denotes the commutator if a or b are even, and super commu-
tator if g and b are odd.

IfV=v0 we say that V is a vertex algebra.

14



2.2. Vertex algebra and vertex operator algebra

Remark 2.2.2. We call Y (v,x) the vertex operator or a field. Therefore, we sometimes

call the mapping v — Y (v,x) the state-field correspondence.

Definition 2.2.3. Let V be a vertex algebra, @ be a vector in V and L(n) = ®,+1. We say
that o is the Virasoro or conformal vector if

I’lg—l’l

5n+m,()c>

[L(n), L(m)) = (n—m)L{n+m) + =~

that is, the linear operators associated to @ satisfy the relations for the Virasoro algebra.
Definition 2.2.4. A vertex algebra V is a conformal vertex algebra if:
(i) there exists a conformal vector @ €V,
(i) D=L(~1) = o,
(i) V =@®,cc V", VU =y eV | L0y =r}.

Definition 2.2.5. A vertex operator algebra (V,Y,1, ®) is a Z-graded vector space V = @,,cz V()

such that
s wit(v) =n, forv €V,
. dimV(n) < oo, forn € Z,
¢ and V(,) = 0 for n sufficiently small,
equipped with a linear map V ®V — V|[z,z~!]], or equivalently,

V — (EndV)[[z,z7"]]

v Y(vz) =) vz "1 (where v, € EndV),
ne

Y (v,z) denoting the vertex operator associated with v, and equipped also with two distin-
guished homogenous vectors 1 € Vg (the vacuum) and @ € V(3). The following condi-

tions are assumed for u,v € V:

* u,v = 0 for n sufficiently large (the lower truncation condition),
* Y(1,z) =1d,

15



2. Preliminaries

* Y(v,z)1 € V[[z]] and lim,_,oY (v,z)1 = v (creation property),

and the Jacobi identity holds

%8 ( on) Y(u,20)Y (v,22) — 25 '8 ( Zl) Y (v,22)Y (u,21)

—20

—5's ( 22ZO> Y (Y (u,20)V,22)-

Also, the Virasoro algebra relations hold (acting on V):

i(m3 —m)Spimo(tk V)1,

[L(m). L(m)] = (m—n)L(m+n) +

for m,n € 7, where

L(n) = @y forn € Zie., Y(w,2) = Y L(n)z ">
ne
and
kV eC,
L(O)y=nv = (wtv)vforn € Zandv € V,),

jzy(v,z) —Y(L(~1)v,2).

In other words, we say that a confomal vertex algebra is a vertex operator algebra if:
@) V =@z,
(i1) dim V,, < oo, for all n
(iii) there exists a large enough integer n € Z such that v = {0}, forall n <N.

Definition 2.2.6. Vertex subalgebra U C V is a D—invariant subspace, such that 1 € U
and

ayU={au|ucU}CU, acU.

In other words, (U,Y !U, 1) is a vertex algebra.

For any group G of automorphisms of V, we have the orbifold vertex algebra or the
fixed point subalgebra V6 = {v € V | g(v) =v, g € G}, which is a vertex subalgebra of
V. If G = (g) is cyclic, we write V(&) for VO,

16



2.3. Modules for vertex algebras and vertex operator algebras

2.3. MODULES FOR VERTEX ALGEBRAS AND

VERTEX OPERATOR ALGEBRAS

In this section we give the definition of weak and ordinary modules for vertex operator

algebras.

Definition 2.3.1. A weak V-module is a pair (W,Yy) where W is a complex vector

space, and Yy (+,z) is a linear map

Yw : V = End(W)[[z,z"]],

ar Yi(a,2) =Y anz ",
nez

which satisfies the following conditions for a,b € V and v € W:
* a,v =0 for n sufficiently large.
o Yw(l,z) = Iw.

* The following Jacobi identity holds:

_ 71—z _ 22—z
z0'5< - 2>Yw(a,Z1)Yw(b,Zz)—zol5< 2_201>Yw(b,zz)Yw(a,Z1)

=78 <Z1 ZZZ()) Y (Y (a,20)b, 22).

Let L(z) = Y(®,2) = Y,ez L(n)z7"~2. Note that every weak V—module is a module

for the Virasoro algebra generated by L(n), n € Z.

Definition 2.3.2. A weak V-module (W, Y ) is called an ordinary V—module if the fol-

lowing conditions hold:
» The L(—1)-derivative property: for any a € V,

P (L~ 1)a,2) = 5 ¥w(a,2)

* The grading property:
W =®gecW(a), W(a)={veW|L(00)y=av}

17



2. Preliminaries

such that for every o, dimW(a) < o0 and W(a + n) = 0 for sufficiently negative

nez.

Next, we define the notions of vertex algebra automorphism and vertex operator alge-

bra automorphism.

Definition 2.3.3. We say that g € Aurc(V) is an automorphism of a vertex algebra V if
glayb) =g(a),g(b) foralla,b eV, neZ.

Definition 2.3.4. We say that g € Autc (V) is an automorphism of a vertex operator al-
gebra V if

* g(anb) = g(a)ng(b) foralla,b € V,n € Z.
* g(0) =o.

In other words, a vertex algebra automorphism with an additional property of preserving

the conformal vector becomes a vertex operator algebra automorphism.
The following definition was introduced in [52]:

Definition 2.3.5. Vertex operator algebra is rational if it has finitely many irreducible

modules and every finitely generated module is completely reducible.

18



2.4. Affine vertex algebras

2.4. AFFINE VERTEX ALGEBRAS

In this section we define universal and simple affine vertex (super)algebras associated
to Lie (super)algebras. For more details see [58], [62]. Let g be a complex simple Lie
superalgebra with non-degenerate super-symmetric invariant bilinear form (-,-). Let g =
g ® CJ[t,t '] @ Cc be the associated affine Kac-Moody superalgebra. The commutation

relations on g are given by

pe(n), y(m)] = [x,y](n+m) +n(x,y) S ym,oc,

where x(n) = x®1", [c,§] = 0. Identify g with g ®¢°.
Consider the following Lie subalgebra p = g ® Clt] @ Cc of g. For any k € C, any

g-module U can be equipped with the structure of a p—module such that for v € U:
cv=kv, (gotClt])v=0.
Therefore, we have the following induced g—module:
Ny(k,U) = U (@) Qu(p) U,

where U(g) is the universal enveloping algebra of g. The module N3(k,U) is sometimes
called generalized Verma module.

In the special case where U = Cvy is a one-dimensional representation of g, we denote
V¥(g) = N(k,0),

and we say that V¥(g) is the universal affine vertex algebra associated with g at level k.
For any x € g, we defined the field
x(z) = Z x(n)z "1
nez

The fields {x(z) | x € g} are local on V¥(g), and applying the theorem on generating
fields (cf. [58], [62]), vk (g) becomes a vertex algebra, which we call the universal affine
vertex algebra of level k. When the level k is not critical, V*(g) has a unique irreducible
quotient, which we denote by L;(g).

The main example of affine vertex superalgebra appearing in this thesis is affine vertex

algebra L;(g) associated to the Lie superalgebra gl(1]1) in Chapter 3.
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3. FUSION RULES AND INTERTWINING
OPERATORS FOR THE WEYL VERTEX

ALGEBRA

3.1. INTRODUCTION

In the theory of vertex algebras and conformal field theory, determination of fusion rules
is one of the most important problems. By a result by Y. Z. Huang (cf. [57]) for a rational
vertex algebra, fusion rules can be determined by using the Verlinde formula. However,
although there are certain versions of Verlinde formula for a broad class of non-rational
vertex algebras, so far there is no proof that fusion rules for such algebras can be deter-
mined by using the Verlinde formula. One important example is the singlet vertex algebra
for (1, p)-models whose irreducible representations were classified in [8]. Verlinde for-
mula for fusion rules was also presented by T. Creutzig and A. Milas in [29], but so far the
proof was only given for the case p = 2 in [15]. We should also mention that the fusion
rules and intertwining operators for some affine and superconformal vertex algebras were

studied in [7], [11], [27] and [60].

In this paper we study the case of the Weyl vertex algebra, which we denote by M,
also called the B7 system in the physics literature. Its Verlinde type conjecture for fusion
rules was presented by S. Wood and D. Ridout in [70]. Here, we present a short proof of

Verlinde conjecture in this case. We prove the following fusion rules result:
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3.1. Introduction

Theorem 3.1.1. Assume that A,u,A + u € C\ Z. Then we have:

[ —_—

pu, (M) x pry(UR)) = iy, (UA)), 3.1)

P, (UA)) X pry(U(1)) = pryots (UA ) + Pyt (UA+ 1), (32)

where U(A) is an irreducible weight module, and py, ¢ € Z, are the spectral flow auto-

morphisms defined by (3.8).

The fusion rule (3.1) is proved in Proposition 3.3.5, and it is a direct consequence of
the construction of H. Li (cf. [65]). The main contribution of our paper is vertex-algebraic
proof of (3.2) which uses the theory of intertwining operators for vertex algebras and the
fusion rules for the affine vertex superalgebra Li(gl(1]1)).

We also prove a general irreducibility result which relates irreducible weight modules
for the Weyl vertex algebra M to irreducible weight modules for L;(gl(1|1)) (see Theorem
3.5.3).

Theorem 3.1.2. Assume that .4 is an irreducible weight M-module. Then 4/ Q@ F is a
completely reducible L (gl(1]|1))-module.

The construction of intertwining operators appearing in the fusion rules is based on
two different embeddings of the Weyl vertex algebra M into the lattice vertex algebra
I1(0). Then one IT(0)—intertwining operator gives two different M—intertwining opera-
tors. Therefore, both intertwining operators are realized as I1(0)—intertwining operators.
Once we tensor the Weyl vertex algebra M with the Clifford vertex algebra F, we can use
the fusion rules for L;(gl(1|1)) to calculate the fusion rules for M.

It is known that fusion rules can be determined by using fusion rules for the singlet ver-
tex algebra (cf. [15], [29]). However, we believe that our methods, which use L (gl(1|1)),
can be generalized to a wider class of vertex algebras. In our future work we plan to study

the following related fusion rules problems:

* Connect fusion rules for higher rank Weyl vertex algebra with fusion rules for

Ly (gl(n|m)).

» Extend fusion ring with weight modules having infinite-dimensional weight spaces

(cf. Subsection 3.3.4) and possibly with irreducible Whittaker modules (cf. [12]).
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3.2. Fusion rules and intertwining operators

3.2. FUSION RULES AND INTERTWINING

OPERATORS

In this section we recall the definition of intertwining operators and fusion rules. More
details can be found in [52], [50], [37], [26]. We also prove an important result on the
action of certain automorphisms on intertwining operators. This result will enable us to
produce new intertwining operators from the existing one.

Let V be a conformal vertex algebra with the conformal vector @ and let Y (w,z) =
Y,czL(n)z7""2. We assume that the derivation in the vertex algebra V is D = L(—1).
A V-module (cf. [62]) is a vector space M endowed with a linear map Yj; from V to the
space of End(M)-valued fields

a—Yy(a,z) = Za —n—l
nez

such that:

1. YM(|O>,Z) = IM,

2. fora,beV,

2515<Z1Z0 )YM(a 21)Yu (D, zz)—z015<

=2 5(

)YM(b 22)Yu(a,z1)
—%

ZO>YM(Y(aaZO)ba22)-
22

M;
Given three V-modules M, M, M3, an intertwining operator of type (cf.
M M,

[50], [S2])isamap/:a—1(a,z) =Y,z afn)zf’“l from M to the space of Hom(M,,M3)-

valued fields such that:

1. fora €V, b e M, c € M,, the following Jacobi identity holds:

— 11— g 3
"0 Y a2l (b 2)e — 28 () 16,22V (@)

—20
=25 6( P )I(YM](a,Zo)b,Zz)C,

2. forevery a € My,

i](a, 2).

HL(-Da2) =+
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

We let / ( ) denote the space of intertwining operators of type ( Ms Mz)’ and set
M
N =dimr [
’ M| M,

When N%f ., 18 finite, it is usually called a fusion coefficient.
Assume that in the category K of L(0)-diagonalizable V-modules, irreducible modules

{M; | i € I}, where I is an index set, have the following properties
. My o g )
(1) foreveryi,jel, NMi’Mj is finite for any k € [;
2) NAA,;I" M; = = 0 for all but finitely many k € I.

Then the algebra with basis {e; € I} and product

eji-ej= ZNM M,k
is called the fusion algebra of V, K.

Let M, M, be irreducible V-modules in K. Given an irreducible V-module M3 in K,
we will say that the fusion rule

M x My = M;j (3.3)

holds in K if N 11“,[413 w, = 1 and NAlfll ., = 0 for any other irreducible V-module R in K which
is not isomorphic to M3.

We say that an irreducible V-module M is a simple current in K if M| is in K and, for
every irreducible V-module M> in K, there is an irreducible V-module M3 in K, such that
the fusion rule (3.3) holds in K (cf. [37]).

Recall that for any automorphism g of V, and any V-module (M, Y(+,z)), we have a
new V—module M o g = M$, such that Mé = M as a vector space and the vertex operator
Y3 is given by Y35 (v,z) := Ya(gv, z), for v € V. Namely, the only axiom we have to check

is the Jacobi identity, and we have:

(2 22—
z015( ” >Y1§(a,zl) (b, zz)fzol5( = )Yﬁ(b,&)Yﬁ(a,a)

211

>YM ga, Zl)YM(gb ZQ) *ZO 15( )YM(gb,Zz)YM(ga,Z1)

> Y(ga,z0)gb,z2)

ol
e
(3

az ZO)Y (a,20)b,22).
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3.3. Fusion rules and intertwining operators

Therefore, M$ is a V—module. The following proposition shows that automorphism g also

produces a new intertwining operator.

Proposition 3.2.1. Let g be an automorphism of the vertex algebra V satisfying the

condition
o —g(w),0—g (o) € Im(D). (3.4)

Let My, M,, M3 be V-modules and (-, z) an intertwining operator of type ( M, M ) Then

we have an intertwining operator /8 of type (MQ/[Mg), such that I8(b,z;) = 1(b,z1), for all
1 2

b € M,. Moreover,

Ml My NM3

M M5

Proof. We have:

zgla(“Z_ZZ)YAg (a,21)I%(b, 12)6—2013(%) $(b,22)Y5, (a,21)c

2 —11

YM3(ga z1)I(b, 12)0—1015( ) (b,22)Ym,(ga,z1)c

I(YM1 (ga Zo)b Zz)

](Y]\(g;l (aaZO)baZZ)C'

Il

I

0

—_

=%}

2 o

—_

N|N

) =)

N
\_/\_/\_/

ZL g—n2

nez
Since g(®) = @+ Dv for a certain v € V, we have that

g(@)o = ay+(Dv)o = @y = L(—1).
This implies that L(—1)8 = L(—1). Hence for a € M; we have
d d
—7 — 718
dZ (a,Z) dZ (a Z)

Therefore, I8 has the L(—1)—derivation property and /¢ is an intertwining operator of type

Mg
( Mg Mg )

B(L(=1)%a,z) = I¥(L(=1)a,z) = I(L(=1)a,z) =

Remark 3.2.2. If V is a vertex operator algebra and g an automorphism of V, then
g(w) = o and the condition (3.4) is automatically satisfied. In our applications, g will
only be a vertex algebra automorphism such that g(®) # @, yet the condition (3.4) will

be satisfied.
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3.3. THE WEYL VERTEX ALGEBRA

3.3.1. The Weyl vertex algebra
The Weyl algebra o/ is an associative algebra with generators
a(n),a*(n) (neZz)
and relations
[a(n),a"(m)] = 8yimo, la(n),a(m)] = [a"(m),a"(n)] =0 (n,m € Z). (3.5)
Let M denote the simple Weyl module generated by the cyclic vector 1 such that
an)l=a"(n+1)1=0 (n>0).
As a vector space,
M = Cla(—n),a*(—m) | n >0, m > 0].
We set a:=a(—1)1, a* :=a*(0)1. There is a unique vertex algebra (M,Y, 1) (cf. [48],
[59], [47]) where the vertex operator map is

Y : M — End(M)[[z,z”"]]

such that
Y(a,z) =a(z), Y(a*,z)=a"(2),

a(z)=Y a(m)z""", a'(z) =), a* ()"

nez nez
In particular we have:

Y(a(—1)a*(0)1,z) = a(z)"a*(z) +a*(z)a(z) ",

where

a(z)t = Z a(n)z" 1, a(z)” = Z a(n)z " 1.

n<-—1 n>0
Let B :=a(—1)a*(0)1. Set B(z) =Y (B,2) = Lpez B(n)z "~ L. Then B is a Heisenberg
vector in M of level —1. This means that the components of the field (z) satisfy the

commutation relations

[B(n),B(m)] = —nSymo (n,m € Z).
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3.3. The Weyl vertex algebra

Also, we have the following formula
B(n)a(m)] = —a(n-+m), [B(n),a*(m)] = a*(n-+m).
The vertex algebra M admits a family of Virasoro vectors
ou = (1 - wa(~1)a*(~1)1— pa(~2)a"(0)1 (4 €C)
of central charge ¢, =2(6u(p—1)+1). Let

(7)) = Y(@u,z) = Z L”(n)z*”*Z_
nez

This means that the components of the field L(z) satisfy the relations

3

[LH (), LI ()] = (= m)LH (m+-1) "5 B e
For u = 0, we write @ = @y, L¥(n) = L(n), ¢ = c¢y. Then ¢ = 2. Clearly
oy =0—up(-2)1.
Since (B(—2)1)o = (D)o, we have that
L*(—1)=L(-1), foreveryueC. (3.6)
For n,m € Z we have
[L(n),a(m)] = —ma(n+m), [L(n),a"(m)] = —(m-+n)a"(n+m).

In particular,

[L(0),a(m)] = ~ma(m), [L(0),a* (m)] = —ma’ (m).

Therefore, the vertex algebra M is Zx>o—graded:

M= @ M), L(0)|M(¢)={]1d.
leZ>0

We say that M—module W = @ ey, W ({) is Z>o—graded if for v € M(r):
vaW () CW({l+r—m—1).

(In the terminology of [38], this means that W is admissible M—module.)
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

Lemma 3.3.1. Assume that W = @y, W(¢) is a Z>o—graded M-module. Then
L(0)=0 onW(0).

Proof. Since W is Zx>o—graded with top component W (0), the operators a(n),a*(n) must

act trivially on W(0) for all n € Z~. Since

L) = (' @)a() = T Lime ™™
we have
L(0) = ;n(a*(—n)a(n) —a(—n)a*(n))=0 (on W(0)).
The Lemma holds. u

Recall that the first Weyl algebra A; is generated by x, d; with the commutation rela-

tion [dy,x] = 1. It is isomorphic to a subalgebra of & generated by a(0) and a*(0).

Remark 3.3.2. Let us recall that the Zhu’s algebra A(M) is defined as a quotient A(M) =
M/O(M), where O(M) is the subspace of M spanned by elements of the form

1 wtu
uov = Res; <Y(u,z)(z+>v) ,

2
for a homogeneous u € M and any v € M. One can show that Zhu’s algebra A(M) = A;.
Let us prove that [®] = 0 in A(M). This way we will have a second proof of Lemma 3.3.1.

We calculate:

1 0
a*oa:ResZ<(Z+ ) Y(a*,z)a>

ZZ
=Res; | Y}, a*(n)az "2
nez

=a*(—1a(-1)1

Therefore, @ € O(M), and on the quotient A(M) we have [®w] = 0. By [73, Theorem

2.1.2.] we have that [®] acts on W(0) as o(®), where o(a) = a,,(4)—1, for a € M. Since
o(w) = wy—1 = o) =L(0),
it follows that L(0) acts trivially on W (0).
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3.3. The Weyl vertex algebra

Definition 3.3.3. A module W for the Weyl algebra o is called restricted if the following

condition holds:
» For every w € W, there is N € Z>( such that

a(n)w=a*(n)w=0, forn>N.

Definition 3.3.4. A module W for the Weyl vertex algebra M is called weight if the
operators 3(0) and L(0) act semisimply on W.

3.3.2. Automorphisms of the Weyl algebra

Denote by Aut(gz/%\) the group of automorphisms of the Weyl algebra /. For any f €

Aut(@, and /—module N, one can construct &/—module f (N) as follows:

f(N):=N as vector space, and action is x.v= f(x)v (v €N).

—

For f,g € Aut(«7), we have

(fog)(N) =g(f(N)). (3.7

For every s € Z the Weyl algebra </ admits the following automorphism

ps(a(n)) =a(n+s), ps(a’(n)) =a’(n—s). (3.8)

Then py is an automorphism of </ which can be lifted to an automorphism of the vertex
algebra M. Automorphism p; is called spectral flow automorphism.

Assume that U is any restricted module for </ Then ps(U) is also a restricted module
for 7 and ps(U) is a module for the vertex algebra M.

Let % be the category of weight M—modules such that the operators (n), n > 1, act
locally nilpotent on each module N in J#". Applying the automorphism py to the vertex
algebra M, we get an M—module ps(M), which is a simple current in the category .#". The

proof is essentially given by H. Li in [65, Theorem 2.15] in a slightly different setting.

Proposition 3.3.5. (cf. [65]) Assume that N is an irreducible weight M-module in the
category % . Then the following fusion rules hold:

Ps; (M) X Psy (N) = Psy+s; (N) (Sl 82 € Z)- (3.9)
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

Proof. First we notice that if N is an irreducible M—module in .#", we have the following

fusion rule
M xN=N. (3.10)

Using [65], one can prove that ps(M) is constructed from M as:

(pS(M)7YS('7Z)) = (M7Y(A(_SB7Z)'7Z))7

where
oV
A(v,z) :==7"exp (Z r,'i(—z)_”) ) (3.11)
n=1"_
Note that in our case v = —sf3, and vo = —sf3(0) acts semisimply on M with integer
values.

The </—action on ps(M) is uniquely determined by

ps(a(z)) = Y ps(a(i))z " = Za(z),

i€Z
ps(a’(z)) = Y ps(a" (D)) =z"%a"(2).
i€Z
Assume that V;, i = 1,2,3 are irreducible modules in J#. By [65, Proposition 2.4]

from an intertwining operator /(-,z) of type ( va N,)» one can construct intertwining oper-

psz (N3)

ator s, (-, z) of type (N1 Ps, (N>

)), where
Iy, (v,2) :=I(A(=s2B,2)v,2) (v €Np).

Take Ny = M, N, = N, and using skew-symmetry, we conclude that
dimI( Ps(N) ) —1,
ps,(N) M
and using (3.10) the fusion rules py, (N) x M = p;, (N).
Applying argument as above we get
dimI( Par-ts: (N2) > _1,
psz (N> pS[ (M)

and the fusion rules py, (N) X py, (M) = pg,+5,(N).

Applying skew symmetry again, we get fusion rules (3.9). The proof follows. |
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3.3. The Weyl vertex algebra

Consider the following automorphism of the Weyl vertex algebra

g: M-—-M

*

ar —a*, a*+—a

Assume that U is any M—module. Then U¢ = U o g is generated by the following fields

As an JZZmodule, U$ is obtained from U by applying the following automorphism g:
a(n) — —a*(n+1), a*(n) »a(n—1). (3.12)
This implies that
g=p_100=00p (3.13)
where o is the automorphism of o/ determined by
a(n) — —a*(n), a*(n) — a(n). (3.14)

The automorphism g is then a vertex algebra automorphism of order 4.
Denote by oy the restriction of ¢ of the A;. Using (3.12)-(3.14) we get the following

result:
Lemma 3.3.6. Assume that W is an irreducible M—module. Then
WE=pi(a(W)).
Proof. We have that as an /—module:
W8 = (p_100)(W).
Since p_j 0 0 = 6 o py, by applying (3.7) we get:
W& =(cop1)(W)=pi(c(W)).

The proof follows. u

31



3. Fusion rules and intertwining operators for the Weyl vertex algebra

3.3.3. Weight modules for the Weyl vertex algebra.

Recall the definition of weight M—module from Definition 3.3.4 and the definition of the
first Weyl algebra from Subsection 3.3.1. Clearly, the vertex algebra M is a weight M-

module. We will now construct a family of weight modules.

 Forevery A € C,

has the structure of an A;—module.
* U(A) is irreducible if and only if A € C\ Z.

* Note that a(0),a*(0) generate a subalgebra of the Weyl algebra, which is isomor-
phic to the first Weyl algebra A;. Therefore U(A) can be treated as an Aj—module
by letting a(0) = dy, a*(0) = x.

* By applying the automorphism oy on U (A ) we get

Indeed, letz_; 1 = F(;ﬁiil)’ where u € C\ Z. Then

xH xH

0p(a(0)).2p = Y = *NW = ~HZp-1.

xH—2 xH—2

o0(a”(0))-2- = (1~ iy = =) =5 00

* Define the following subalgebras of o
-0 = Cla(n),a*(m) | n,m € Zsq),
Ao =Cla(—n),a*(—n) | n € Zz1].

* The Aj—module structure on U(A) can be extended to a structure of Jz/f;()—module
by defining
a(n)|U(k):a*(n)|U(x)EO (n>1).
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3.3. The Weyl vertex algebra

* Then we have the induced module for the Weyl algebra:

UA)= %®-W;o U(A)
which is isomorphic to
Cla(—n),a"(=n) |n > 1] 2 U(A)

as a vector Space.

Proposition 3.3.7. For every A € C\ Z, U(A) is an irreducible weight module for the
Weyl vertex algebra M.

Proof. The proof follows from Lemma 3.3.1 and the fact that E(\f) is a Z>p—graded
M-module whose top component is an irreducible module for Aj. ]

Applying Lemma 3.3.6 we get:

Corollary 3.3.8. Forevery A € C\Z and s € Z we have

I

U =pUR), (P @A) = p(U(A)).

3.3.4. More general weight modules

A classification of irreducible weight modules for the Weyl algebra o is givenin [53]. Let
us describe here a family of weight modules having infinite—dimensional weight spaces.

Take A, € C\ Z. Let
U(A,u) :x%xg((:[xhx%xfl,x;l].

Then U(A,u) is an irreducible module for the second Weyl algebra A, generated by
di,d2,x1,x2. Note that Ay can be realized as a subalgebra of o generated by d, =
a(1),0, =a(0),x; =a*(—1),x; =a*(0). Then we have the irreducible ./—module m
as follows. Let 4 be the subalgebra of ﬂ/f\generated by a(i),a*(j), i >0,j > —1. Con-
sider U(A, 1) as a ZA—module such that a(n), a*(m) act trivially for n > 2, m > 1. Then
by [53],

UA ) = @5U(A )
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

is an irreducible .2/—module. As a vector space:

UA,p) = Cla(—n—1),a*(—m—2) | n,m € Zso] @U(A, )

=~ " (0)*a*(—1)“Cla(—n—1),a*(—m) | n,m € Zy).

Since U(A, i) is a restricted /—module we get:

Proposition 3.3.9. m is an irreducible weight module for the Weyl vertex algebra
M.

One can see that the weight spaces of the module m are all infinite-dimensional

with respect to ($(0),L(0)). In particular, vectors
a(=1)"a* (0 2"a* (= 1D)* " m € Lo,
are linearly independent and they belong to the same weight space.

Remark 3.3.10. Note that modules m are not in the category %, and therefore

Proposition 3.3.5 can not be applied in this case.
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3.4. The vertex algebra I1(0) and the construction of intertwining operators

3.4. THE VERTEX ALGEBRA I1(0) AND THE
CONSTRUCTION OF INTERTWINING

OPERATORS

In this section we present a bosonic realization of the weight modules for the Weyl vertex

algebra. We also construct intertwining operators using this bosonic realization.

3.4.1. The vertex algebra I1(0) and its modules

Let L be the lattice
L=Zo+7ZB, (a,a) =—(B,B)=1, (a,B)=0,

and Vi, = My, (1) ® C[L] the associated lattice vertex superalgebra, where M g(1) is the
Heisenberg vertex algebra generated by fields ¢ (z) and (z) and C|[L] is the group algebra
of L.

We have the following vertex subalgebra of V;:
I1(0) = My g(1) @ C[Z(a + B)] C V.

By [6], [47] we see that there is an injective vertex algebra homomorphism f: M —
I1(0) such that
fla) = e*P, f(a") = —a(-1)e P,

Note that since M is a simple vertex algebra, a homomorphism f must be injective. We

identify a,a* with their image in I1(0). We have (cf. [47])
M= Kern(o) eg.

Let us recall some useful formulas in lattice vertex algebras (cf. [58], [62]) which we
will apply on vertex algebra IT(0) and its modules. Let ¥ € Z(ot+ ). Then
j<o J >0 J
DM (2) - AR (2)Y (€7, 2) :

n!---n

Y(h' (=i — 1) W (—n,—1)®e",2) =



3. Fusion rules and intertwining operators for the Weyl vertex algebra

The Virasoro vector @ is mapped to

o=a(~1)a* (-1 = F(a(~17 ~a(~2) ~ B(-17+ B(-2))1
Note also that
8(0) = ~a(-2)a* = @y = 3 (@(~1)* ~a(~2) - B-17 ~ B2 (u=1)
Since
I1(0) = ClZ(a+ B)| @ My g(1) (3.15)

is a vertex subalgebra of V;, for every A € C and r € Z,
I,(2) = C[rB + (Z+A) (0 + B)] @ M g (1) = T1(0).ePTA(@+F)

is an irreducible I1(0)—module.

‘We have

L(O)erﬁ-i-(n—t-/l)(a-i-ﬁ) _ 1 ;r(r+2(n+)L))erﬁ—k(n-i-?t)(a-i-ﬁ)’
and for u =1
Lﬂ(o)erﬁJr(nJr?L)(OHﬁ) — —%r(l +r+2(n—|—l))erﬁ+("+l)(a+ﬁ),
For s € Z we have the following operator I
[esﬁ] —10P e Hom(I1,(A),I1,44(A)) (reZ).

Lemma 3.4.1. We have:
[Py = py(®).[e*F ),

where ® € sz/fjv eIl (A).

Proof. Letv € I1,(A). Using explicit lattice realization we have:

a(n)[ePly = [Pla(n+(B,sB))v = [ePla(n—s)v,

a(m)efly = [ePla*(n+(=B,sB))v = [eP)a* (n+s)v.
The proof follows. u
! [esﬁ} can also be interpreted as the coefficient of the constant term of the intertwining operator of type
( I, 45(2)) )
I15(0) T(A)/°
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3.4. The vertex algebra I1(0) and the construction of intertwining operators

Proposition 3.4.2. Assume that { € Z, A € C\ Z. Then as M—modules:

(1) My(A) = p_g11(U(=2)),
(2) T(A)8 = py(U(R)).

Proof. Assume first that ¢ = 1. Then IT;(—A) is a Z>(—graded M—module whose lowest

component is
I (=2)(0) =C[p+(Z—A)(a+B)|=U(Q).

As a vector space
I, (—A)(0) = spanc{E; | i € Z}, E; = PH{-A+iloth)
We have

a(O)Ei — eg+ﬁeﬁ+(fl+i)((x+ﬁ) — eﬁ+(fl+i+l)(a+ﬁ) =Ei\. (3.16)

a*(0)E; = Res.z 'a*(2)E;
= Reszz_]Y(—a(—l)e‘a_ﬁ,z)Ei
= —Reszz o e %P ,2) 1 E;

= —Res,z~ 1(06 7a7ﬁ71)+y(€7aiﬁ7z)a(z)i)

= —Res,z < Z jilY(efaiﬁ,Z) e B ZOC z e 1) i
j<0
= Y a-e s PE-e g Pa(O;
>0
= —(—)L—I—i)El;l = (A —i)Ei71~
(3.17)

Using (3.16) and (3.17) we conclude that as Aj—modules
I (—2)(0) = 03 (U (—1)) = 0p(U(—2)) = U(A).

(Here we used the fact that 6§ = —Id and that o3 (U(—A)) X U(-1).)
Now Lemma 3.3.1 and Corollary 3.3.8 imply that IT; (—A) is an irreducible M—module
isomorphic to 5(7)
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

Next we prove that the module IT;(—A) is obtained from IT;(—A) by applying the
spectral flow automorphism p_s, . Set N =1II;(—A). Then N is in the category .#. We

have the linear isomorphism
[e VP N — T, (—2).
Using Lemma 3.4.1 we get
PP A — p (@), (@ U (7))

which implies that N = p,_;(ITy(—A)) as M-modules. Since py_; is invertible, we con-
clude that ITy(—A) = p_s1(N). 2
Using Corollary 3.3.8 we get

WA = (p-en(U(=A) = piop-r1(U(=2))

— po(U(=2)) = p(U(R)).

The proof follows. u

3.4.2. Construction of intertwining operators

Proposition 3.4.3. For every ¢1,/, € Z and A, u € C there exist non-zero intertwining

operators of types

- —

<Pf1+621(U(7L+M))> ( pey o, (U(A + 1)) >

pe,(U(X)) pe, (U ()

in the category of weight M—modules.

(3.18)
pe,(U(R)) pe, (U (1))

Proof. By using explicit bosonic realization, as in [36], one can construct a unique non-

zero intertwining operator /(+,z) of type

HS1+S2 (A‘I + A’Z) )
3.19
(Hnanlnxb> G-19

The same claim can be proved using results from [65]. As before we have that

(ps(N),X5(+,2)) = (N, Y (A(=sB,2)",2))

where A(v,z) is given by (3.11). By [65, Proposition 3.4] we have that

(Me(=2), Y1, (-2 (-,2)) == (N, Yy (A((€ = 1), 2) - 2)).

This proves that IT¢(—A4) = p_g41(N).
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3.4. The vertex algebra I1(0) and the construction of intertwining operators

in the category of I1(0)-modules such that

S1PHM(OFB) 2B M (atB) _ ,(s1+52)B+(Aa+22) (o+B)
’

where v € C is given by

v = —(siB+A(o+B),s28+(a+p))—1

= 514+ 59241 + 51850 — 1.

By restriction, this gives a non-trivial intertwining operator in the category of weight M-
modules. Taking the embedding f : M — I1(0) and applying Corollary 3.4.2, we conclude

the operator (3.19) gives the intertwining operator of type

( ponstU-hi=A) )
Poat1(U(=21) Py (U(=22)))

which for /| = —s; + 1, lp = —sp + 1, A = —A;, 4 = —A; gives the first intertwining
operator. By using action of the automorphism g and Corollary 3.4.2 we get the following

intertwining operator

Ps; (U()Ll )) Ps, (U(}LZ))

which for /1 = 51, {5 = 53, A = A1, L = A, gives the second intertwining operator. [ |

( Porrs(U (M +22)) )

Remark 3.4.4. Intertwining operators in Proposition 3.4.3 are realized on irreducible

I1(0)-modules. This result can be read as
HZ[ (A) X Hﬂz(u) 2 Hfl-‘r[z—l(z' +|"’l’) +H51+52(2’ +u)

In the category of M—modules, we have non-trivial intertwining operators

H£1+€2*1(;L +‘u)> 3.20
<nm> M, (n) ) 20

which are not IT(0)—intertwining operators.

Remark 3.4.5. Note that (M,Y,1) is a conformal vertex algebra with the conformal
vector

® = a(—1)a*(—1)1.
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

Note that the intertwining operators (3.18) satisfy the L(—1)-derivative property. In-
tertwining operators (3.19) satisfy this property by using the lattice realization as be-
fore, and intertwining operators (3.20) satisfy it by Proposition 3.2.1, using the facts that
g(w) = wy and L*(—1) = L(—1), for u = 1. Moreover, using relation (3.6) we see that
the L* (—1)—derivation property holds for every u € C, for all intertwining operators con-

structed above.
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3.5. The vertex algebra Ly (gl(1|1)) and its modules

3.5. THE VERTEX ALGEBRA L(gl(1|1)) AND

ITS MODULES

3.5.1. On the vertex algebra L;(gl(1|1)).

We now recall some results on the representation theory of gl(1|1) and QJ/[(I\\I) The
terminology follows [30, Section 5].
Let g = gl(1]1) be the complex Lie superalgebra generated by two even elements E,

N and two odd elements W+ with the following (super)commutation relations:
¥t W) =E, [E,¥F] = [E,N] =0, [N,¥*] = £¥*.

Other (super)commutators are trivial. Let (-,-) be the invariant super-symmetric bilinear

form such that
Y ¥ )=—(¥Y,¥") =1, (NE)=(E,N) = 1.

All other products are zero.

—

Let g = gl(1|]1) = g® C[t,t~!] + CK be the associated affine Lie superalgebra with

the commutation relations

pe(n),y(m)] = [x,y](n+m) +n(x]y) 8am 0K,

where K is central and for x € g we set x(n) =x®1¢". Let Ly(g) be the associated simple
affine vertex algebra of level k. One can show that the universal affine vertex algebra
associated to g is simple if k = 0. Therefore, every restricted g—module at non—zero level
k is a module for L;(g).

Let 7, be the Verma module for the Lie superalgebra g generated by the vector v,
such that Nv,.s = rv,s, Ev,s = sv,5. This module is a 2—dimensional module and it is
irreducible iff s # 0. If s = 0, ¥, has a 1-dimensional irreducible quotient, which we

denote by «7,.
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

We will need the following tensor product decompositions:

Ml ®52{"2 = JZfrﬁr"za fQ{rl ®7/r2,sz = Zri+r,s0 (321)
7/?1751 ® 7/’2,52 = Vritrysi+s, D %1+r271,51+sz (51 + 52 7é 0)7 (3.22)
Vi1 @ Vy—s1 = Pritrss (3.23)

where &, is the 4—dimensional indecomposable module which appears in the following
extension
0—=7.0— P — V—10—0.
Let ”12 s denote the Verma module of level 1 induced from the irreducible g[(1|1)-module
Yrs. If s ¢ Z, then “/7” is an irreducible L;(gl(1]1))-module. If s € Z, ”ZS is reducible
and its structure is described in [30, Section 5.3].
By using the tensor product decomposition (3.22) we get the following result on fusion

rules for L; (g)-modules:
Proposition 3.5.1. Let ry,r,s1,52 € C, 51,582,851 + 52 ¢ Z. Then

47/\
dim1</\ Sl )gl.
%1731 %27S2

Assume that there is a non-zero intertwining operator

( %3 »3 >
/Vrl »S1 %2 »2

in the category of Lj(g)-modules. Then s3 =s;+sp and r3 =rj+ry,0rr3=r;+r,— 1.
Recall that the Clifford algebra is generated by y(r), y*(s), where r,s € Z + %, with
relations
[w(r), v ()] = 8r450,
[w(r),w(s)] =[w"(r),y"(s)] =0, forall 1,s.

(3.24)

Note that the commutators (3.24) are actually anticommutators because both y/(r) and
y*(s) are odd for every r and s.
The Clifford vertex algebra F' is generated by the fields
| I
y@) =Y yin+)"

nez

Ve = L vty

nez
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3.5. The vertex algebra Ly (gl(1|1)) and its modules

As a vector space,
F = /\({l//(r),l//*(s) { r,s <O})

Let Vzy be the lattice vertex algebra associated to the lattice Zy = Z, (y,y) = 1. By
using the boson—fermion correspondence, we have that F' = Vz,, and we can identify the

generators of the Clifford vertex algebra as follows (cf. [58]):

vi=e y'=e"

Now we define the following vertex superalgebra:
SIN0) =II(0)®F C VL& F = Vi 17y,
and its irreducible modules
ST, (A) =TI, (A) ® F = STI(0).e"P+A(0+h),
Let Z = M ®F. Using [58, Section 5.8] we define the vectors
W= P — g (— )y, W= —a(—1)e * P = ¥ (0)
Ei=y+B N= 3 (1)
Then the components of the fields

X2)=YX,2)=Y X(m)z "', Xe{¥" ¥ EN}
nez
satisfy the commutation relations for the affine Lie algebra g = m sothat M Q@ F is

a g—module of level 1. (See also [10] for a realization of g;/[(i|\1) at the critical level).

The Sugawara conformal vector is

We—o = F(N(-DE(=1)+E(=1)N(-1) = ¥H(-1)¥ (-1)+
(- (-1 +E(-1))1 (3.25)
= (B +y(=D))r(=1) = B(=1) +a(-1)(a(-1)+p(-1) +7(-1))

—3((a(=1)+B(=1) +7(=1))* + (a(=2) + B(~2) +7(-2)))
+3(B(=1)+7(=1))* +3(B(-2) +7(~2))
= j(a(=1)?~a(-2) = B(~1)*+y(~1)%)

= a)C:,mL%y(—l)2 (a)C:,lzw%)
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

3.5.2. Construction of irreducible L; (g)-modules from irreducible M—modules.

Let Li(g) be the simple affine vertex algebra of level 1 associated to g.
We have the following gradation:
U =@Px", E0)|y =LI1d.
We will present an alternative proof of the following result:
Proposition 3.5.2. (cf. [58]) We have:
Li(g) = %° = KerysrE(0).

Proof. Let Ly(g) be the vertex subalgebra of % ° generated by g. Assume that L;(g) #
%°. Then there is a subsingular vector v, ¢ C1 for g of weight (r,s) such that for n > 0:

P (0)v,s € Li(g), X(n)ves€Li(g), Xe€{E,N,¥*}

E(0)vys = sv5, N(O)vys = 1vys.

In other words, v, is a singular vector in the quotient U0 = O /Li(g). Since E(0)

acts trivially on %°, we conclude that s = 0. Recalling the expression for the Virasoro

conformal vector (3.25), we get that in 279:
L=0(0)v50 = (@e—0)1750 = SN(0)E(0) — E(0) + E(0)2)v;0 = 0.

This implies that v, has the conformal weight 0 and hence must be proportional to 1. A
contradiction. Therefore, %% = L;(g). Since % is a simple vertex algebra, we have that

Li(g) = Li(g). m

We can extend this irreducibility result to a wide class of weight modules. The proof

is similar to the one given in [9, Theorem 6.2].

Theorem 3.5.3. Assume that .4 is an irreducible weight module for the Weyl vertex
algebra M, such that $(0) acts semisimply on .4

N =@ 4, BO)N'=sld (AcC).

SEZA+A
Then ./ ® F is a completely reducible L; (g)-module:

N RF =P L(N) ZL(N)={ve ¥/ QF |[EQ)y=(s+A)},

SEZ
and each .Z;(N) is irreducible L;(g)-module.
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3.6. The vertex algebra Ly (gl(1|1)) and its modules

Proof. Clearly .%;(N) is a %°(= Li(g))-module. It suffices to prove that each vector
w € Z(N) is cyclic. Since A4 ®F is a simple %/-module, we have that ZZ .w = .4 Q F.
On the other hand, A4 ® F is Z—graded %/ —module so that

U ZN)C ZLos(N), (rs€l).

This implies that % ".w C %, s(N) for each r € Z. Theferore % °.w = .Z,(N). The proof
follows. u

As a consequence we get a family of irreducible L (g)-modules:

Corollary 3.5.4. Assume that A, u € C\ Z. Then for each s € Z we have:

(1) Z(U(A)) is an irreducible L; (g)-module,

-

(2) Z(U(A,p)) is an irreducible L; (g)—-module.

We will prove in the next section that .Z( ITUT)) are irreducible highest weight mod-
ules. But one can see that ,%(Uf(l\,u/)) have infinite-dimensional weight spaces. A de-
tailed analysis of the structure of these modules will appear in our forthcoming papers

(cf. [19]).
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

3.6. THE CALCULATION OF FUSION RULES

In this section we will finish the calculation of fusion rules for the Weyl vertex algebra M.

We will first identify certain irreducible highest weight g—modules.

Lemma 3.6.1. Assume that ,n € Z, A € C, A +n ¢ Z. Then e BV +A+n)(atB) jg 5
singular vector in STI,(4) and
2\ (BN A+ (a+B) o
U(d).e =7 i (3.26)

L(0)e" BN+ (A a+p) _ %(1 29 (n4 A BN @B) (397

Proof. By using standard calculation in lattice vertex algebras we get for m > 0

Wt (m)e BHN+A4m(atB)  —  atBty r(By)+A+math) — o
Y (4 1) BV +HAAn(0B) (_a(_l)efafﬁfg ler(ﬁ+7)+(l+n)(a+ﬁ) —0,
m+
(m)er (B+1)+A+n)(a+B) _ —(ﬂ, + I’l)5m Oer(ﬁ+}/)+(l+n)(a+ﬁ)’
N(m)e BHN+Asmla+h)  _ %(2r+ A +n)5m7oer(ﬁ+7)+(l+n)(a+ﬁ)‘

Therefore ¢"(B+7)+(A+n)(a+B) i a highest weight vector for § with highest weight (r +
2(A+n),—A —n) with respect to (N(0), E(0)). This implies that U (g) is isomorphic to a

certain quotient of the Verma module “// 1 . Butsince, A +n¢7Z, 7/ 1

+5(A+n),—A—n +5(A+n),—A—n
is irreducible and therefore (3.26) holds. Rela’uon (3.27) follows by applying the expres-

sion ® = L(a(—1)? —a(=2) = B(—1)>+y(—1)%):
L(0)e B+ (Atn) (@)

- %((“ )2 — (A +n—+r)2+ 2+ (A+n)) e Brn+Atn(ath)

_ %@ ) (nt ) BN @)

Theorem 3.6.2. Assume that r € Z, A € C\ Z. Then we have:
(1) SII,(A) is an irreducible M @ F—module,
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3.6. The calculation of fusion rules

—

(2) SII,(A) is a completely reducible gl(1]|1)-module:

ST, (L) = @ U(g).e'BHn+A+s)(ath)

SEZ

i~ @77 ) (3.28)

1
7 r+5(A+s),—A—s

Proof. The assertion (1) follows from the fact that IT,(A) is an irreducible M—module (cf.
Proposition 3.4.2). Note next that the operator E(0) = 3(0) + 7(0) acts semi—simply on
MQR®F:

MeF=@PMeF)Y, (MaF)¥={yeMoF|EQ0)y=—sv}.
SEZ

In particular, (M ® F)() 22 L; (g) (cf. [58] and Proposition 3.5.2). But E(0) also defines
the following Z—gradation on STI,(1):

SIT(A) = @ SIL(A)Y,  SIL(A)Y = {v € SIL(1)| E(0)v = (—s — A)v}.

SEZ

Applying Theorem 3.5.3 we see that each STI,(A)(®) is an irreducible (M & F)(©) 2 L, (g)-
module. Using Lemma 3.6.1 we see that it is an irreducible highest weight g—module with

highest weight vector ¢"(B+Y)+(A+s)(@+B) The proof follows. |

Theorem 3.6.3. Assume that A;,A>,A1 + A, € C\Z, ry,rp,r3 € Z. Then

. SHr3 (13)
d““’(snr. (A1) snm(zz)) =t

Assume that there is a non-zero intertwining operator of type
< ST, (A3) )
STL,, (A1) STL,, ()
in the category of M ® F—modules. Then A3 =A1+ A and r3s=r;+ry,orr3=r;+r;— 1.
Proof. Assume that I is an non-zero intertwining operator of type
< SII,,(A3) >
SIL,, (A1) ST, (A2) )
Since STI,(A) are simple M ® F—modules, we have that for every s;,s, € Z:
[(en BN+ hts)(@tB) oy ora(B+y)+(ats)(a+h) £
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3. Fusion rules and intertwining operators for the Weyl vertex algebra

Here we use the well-known result which states that for every non-trivial intertwining op-
erator / between three irreducible modules we have that I(v,z)w # 0 (cf. [36, Proposition
11.9]). Note that ¢/i(B+7)+4(@+B) i 4 singular vector for § which generates L; (g)-module

—

| = 1,2. The restriction of /(- n
r;+%l,-,—7t,-’l , e restriction of /(+,z) o

a 2
F43 AL~ ® ra45ia, o

gives a non-trivial intertwining operator

o~

SII,,(A3) )
A3 AL A Vrz—i—%lz,—lz
in the category of L (g)-modules. Proposition 3.5.1 implies that then

— —

v or ¥V
rAr 3 A+ Aa)— = rAr 3 (A Aa)— 1~ A~

has to appear in the decomposition of STI,,(A3) as a Li(g)—module. Using decomposition

(3.28) we get that there is s € Z such that
ri+nrn-+ %(ll Jr).z) =r3+ %(7@ +S), M- =—-A3—s (3.29)

or

I’1—|—I’2—1—|—%(ll+ﬁq):I’3—|—%(l3+s), —11—12:—13—.5‘. (3.30)
Solution of (3.29) is

Ms+s=2 Jrlz, r3=ri+r,
and of (3.30) is
M+s=M+A, mn=r+rn-1

Since STI,(A3) = SII,(A3 +s) for s € Z, we can take s = 0. Thus, A3 = A; + A, and
r3 =r; +ry or r3 =ry +rp — 1. This way we prove that there is a linear embedding

1( ST, (%) ><—>1<AVA’3’£ >
Snrl(kl) Snrz(AZ) 7/r1751 v

12,52

Using Proposition 3.5.1 we see that in these cases

) ST, (A3)
d”“’(snrl(zl) ST, (4)) =

The claim holds. |
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3.6. The calculation of fusion rules

By using the following natural isomorphism of the spaces of intertwining operators

(cf. [5, Section 2]):

ST, (43) N I1,,(A3)
e <Snn () Snrmz)) = (Hrl (A1) Hmw))’

Theorem 3.6.3 implies the fusion rules result in the category of modules for the Weyl
vertex algebra M (see also [70, Corollary 6.7], for a derivation of the same fusion rules

using Verlinde formula).

Corollary 3.6.4. Assume that A;,A>,A; + A, € C\ Z, ry,rp,r3 € Z. There exists a non-

zero intertwining operator of type

(10,00, 1 2)

in the category of M—modules if and only if A3 = A+ Ay and 3 =r;+rporrs=r; +
rp—1.

The fusion rules in the category of weight M—modules are given by

L, () X Ty (A2) = Ty, 1y (At +A2) + Ty 1y 1 (A + ).
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4. IRREDUCIBILITY OF MODULES OF
WHITTAKER TYPE FOR CYCLIC

ORBIFOLD VERTEX ALGEBRAS

This chapter is joint work with D. Adamovié, C.-H. Lam and N. Yu and it is published
in Journal of Algebra (cf. [12]). In this chapter we extend the Dong-Mason theorem on
irreducibility of modules for orbifold vertex algebras (cf. [41]) to the category of weak
modules. Although the theorem holds for any category of weak modules for a vertex alge-
bra, we find Whittaker modules to be of greatest interest due to their unique determination
via their Whittaker functions. We present certain applications in the cases of Heisenberg

and Weyl vertex algebras.
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4.1. Introduction

Research Fund for Fujian Young Faculty JAT170006.

4.1. INTRODUCTION

4.1.1. Irreducibility of orbifolds.

Let W be an irreducible weak V-module and g an automorphism of V with order p. Let
Yw (v,z) be the vertex operator of v € V operating on W. Recall that W o g is defined

in [41] to be the space W with the vertex operator given by
Yiog (v,2) = Yw (gv,2) , YW € V.

It is clear that W o g is also a V-module.
The following is our first main result (see Theorem 4.5.3 for part (1) and Theorem

4.6.3 for part (2)).

Main Theorem 1. Let W be an irreducible weak V—module and g an automorphism of

finite order.
(1) Assume that W o g’ 2 W for all i. Then W is an irreducible v {¢)_module.
(2) Assume that W =2 W og. Then W is a direct sum of p irreducible V{¢)—modules.

Let us explain the main new ideas of our proof. For (1), we construct a graded module

p—1 p—1
M = @Wog’ = EBA"”(W),
i=0 i=0

compatible with the action of the automorphism g, such that each component is isomor-
phic to W as V{¢)—module. Then we take any non-trivial submodule § of W and identify

it with a submodule of AP’O(W). It is then sufficient to prove the following claim:
(1.1) For each w # 0, a vector of the form (w,...,w) € .# is cyclic in .Z .

The advantages of our approach are the fact that we do not need Zhu’s algebra and the
fact that this approach can be applied for non-weight modules. In Lemma 4.3.3, we prove

relation (1.1) for arbitrary weak module by using the Lie algebra g(V) associated to V and
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

its universal enveloping associative algebra. It turns out that (1.1) is just a consequence
of a similar statement for associative algebras (cf. Lemma 4.3.1).

For proof of the part (2) (cf. Theorem 4.6.3), we slightly modify the methods of [41]
and [45] by applying a general version of Schur’s Lemma on the action of the group

G=Z,onW.

4.1.2. Role of the Whittaker modules in the paper

Although Theorem 1 holds for arbitrary weak V-modules, it is not easy to construct
examples of modules satisfying the conditions of the theorem. It turns out that these
conditions can be checked for a large class of Whittaker modules for certain infinite-
dimensional Lie algebras. We use concepts of Whittaker categories which appear in the
paper [22] (see also [67]). Since any weak module for a vertex algebra is automatically a
module for an infinite-dimensional Lie algebra, such an approach gives a framework for
studying many examples. We just need to assume that each module W o g’ belongs to a
different Whittaker block. This means that each module W o g’ has a different Whittaker
function. The following is our second main result (see Theorem 4.7.10) which gives most

new applications of our construction.

Main Theorem 2. Let W be an irreducible weak V—module such that all W; = W o g’ are
Whittaker modules whose Whittaker functions A() = n — C are mutually distinct. Then

W is an irreducible weak V{¢)—module.

4.1.3. Examples

We construct a family of Whittaker modules for Heisenberg and Weyl vertex algebra, and
apply our new result to prove irreducibility of orbifold subalgebras. In particular, we show
that in these cases, standard (= universal) Whittaker modules are irreducible.

In the case of Heisenberg vertex algebra, we use the new method and present an alter-
native proof of the Z,—orbifolds of Heisenberg vertex algebra (cf. [56]).

In the case of Weyl vertex algebra M, we construct a family of Whittaker modules

M (A, ) where (A, ) € C" x C". We prove:
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4.2. Introduction

Main Theorem 3 (see Theorem 4.9.3). Assume that A = (A, ) # 0. Then M; (A, ) is

an irreducible weak module for the orbifold subalgebra M Zp_for each p>1.
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

4.2. THE DONG-MASON THEOREM

The following result was proved in [41].

Theorem 4.2.1. (cf. [41, Theorem 6.1]) Assume that (W, Yy ) is an ordinary module for
the vertex operator algebra V. Assume that g is an automorphism of V of prime order p

such that W o g 22 W. Then W is an irreducible module for the orbifold subalgebra Vi),

The goal of this chapter is to extend this result for weak modules for vertex operator
algebras.

It is truly a matter of great interest to extend this result to weak modules because
it allows us to study any module category for vertex algebras and this opens up many
possibilities. In particular, we can now look at the category of Whittaker modules for
vertex algebras. These modules have long been an important part of the theory of com-
plex semisimple Lie algebras (cf. [61]), and later they were generalized by Batra and
Mazorchuk (cf. [22]), but recently they have sparkled a lot of interest among scientists
working in the vertex operator algebra theory. Among others, irreducibility of Whittaker
modules for vertex operator algebras hase been studied by Adamovic¢, Lu and Zhao for the
affine vertex operator algebra case (cf. [17]), Mazorchuk and Zhao (cf. [67]) and Ondrus
and Wiesner (cf. [69]) for the Virasoro vertex operator algebra case and Hartwig and Yu
(cf. [56]) and Tanabe (cf. [71]) for the Heisenberg vertex operator algebra cases.

In this chapter we will concentrate on the examples of Heisenberg and Weyl vertex

operator algebras and their Whittaker modules.
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4.3. On cyclic vectors in a direct sum of irreducible weak modules

4.3. ON CYCLIC VECTORS IN A DIRECT SUM OF

IRREDUCIBLE WEAK MODULES

In this section, we prove one basic, but important technical result on cyclic vectors in a
direct sum of non-isomorphic weak modules for a vertex operator algebra. It turns out
that the result can be proved much more easily in the context of associative algebras.

First we include the following result for associative algebras:

Lemma 4.3.1. Let < be an associative algebra with unity. Assume that L;, i = 1,...,1,
are non-isomorphic irreducible </-modules and . = @}_, L;. Then for each w; # 0,

w; € L;, a vector of the form (wy,ws,...,w;) is cyclic in .Z.

Proof. Let % = </ .(w1,wa,...,w;) be the o/-module generated by (wy,wy,...,w;). Let
Ji = Anmn(w;) = {a € & | a.w; =0} for 1 <i<t. Then J; is a left ideal in <7 and
o/ |J; = L;. Since L;’s are irreducible <7—modules which are mutually non-isomorphic,

we conclude:
e ideals J;, i = 1,...,t, are maximal left ideals,
o Ji#Jjfori# j,
s ANl i L.

Note that in the last conclusion we use the fact that J;’s are maximal left ideals of < and

apply Chinese Remainder Theorem. This implies that there is an element

u; € m Jj, Uu; ¢ Jl'.
I<j<t, j#i

Then one can construct the vector
ui(wiy ..o swiy...,wy) = (0,...0,u;w;,0,...,0),

which belongs to L;, so L; C % for all i. Therefore . C %/, which implies that . =
v . [ |
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

We want to show the analogous result for weak modules for a vertex operator algebra
V. For this purpose, we use the Lie algebra g(V) associated to the vertex operator algebra
V (cf. [24], [39D).

The Lie algebra g(V) is realized on the vector space

VeC[t,t !
L(-1)®@1+1 4. VveC[t,r 1]

g(V)=
where the commutator is given by

tn b tm — ib tn-‘rm—l‘
a® ", bet™] g(l)(a )@
Then by [39, Lemma 5.1] we have:

Lemma 4.3.2. Let V be a vertex operator algebra. We have:

* Every weak V-module W is a g(V)-module with the action

vet'—yv, (veV,nelZ).

e If W is an irreducible weak V-module, then W is also an irreducible g(V)-module.

Lemma 4.3.3. Assume that L;, i = 1,...,¢, are non-isomorphic irreducible weak V—
modules and . = @'_ L;. Then for each w; # 0, w; € L;, a vector of the form (wy,wy, ..., w;)

is cyclic in .Z.

Proof. By Lemma 4.3.2, we have that L;, i = 1,...,¢ are irreducible modules for the
associative algebra o = U(g(V)). Then the assertion follows by applying Lemma 4.3.1.
[ |
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4.4. MAIN RESULT: ORDER 2 CASE

We shall first consider the case of automorphisms of order two.

Let 6 be an order two automorphism of V. Let
Vi={ev|oWw) =v}, V ={reVv]|o(v)=—v}.
Then V™ is a vertex subalgebra of V and V™ is a V"-module.

Theorem 4.4.1. LetV be a vertex operator algebra and W be an irreducible weak V-module

such that Wg = W 0 0 22 W. Then W is an irreducible weak V "—module.
Proof. Consider a V-module .# = W & Wj. Define now the map

AT W =, wes (w,+w).
Let

AE(W) = {(w,£w) | w e W}.

Then we have

M =N (W)EPA(W).

Moreover, AT are V*—homomorphisms. Next we notice that

VAT (W)
= Spang { (vaw,0 (v),w),v €V, we W}
= Spang { ((vnw7 vaw),vEVT we W) }

=AY (W)
and

Vo.AT (W)

= Spang { (vaw, 0 (v),,w),vEV ,we W}
= Spang { ((vnw, —vpw),veV  we W)}
=A" (W)
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

Assume that W is not irreducible V*—module. Then there is a V*—submodule 0 # S G W.

In particular, 0 # A™(S) & A" (W). But Lemma 4.3.3 implies that V.A™(S) = .#. Since
VEAT(S) C AE(W),

we must have that V*.AT(S) = A (W) which is a contradiction. The proof follows. W
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4.5. GENERAL CASE
Assume that g is an automorphism of arbitrary (not necessarily prime) order p. Then
v=Vlovig. . .gvr! .1

where

Vi={veV|gv={_{V}

and { is a primitive p—th root of unity.

Let W be a weak V-module. Let
M=WoDW D DW,_1,
where W, =Wog,i=0,1,---,p— 1. Let A»Y) be the V—homomorphism defined by
wi (w, (E)w,---, (67 w).
Lemma 4.5.1. We have:
() A = AP (W).
) VIi.APD(W) c APt (w).

Proof. The proof of (1) is easy. Let us prove (2).

Take v € V/. For w' € W, we have
vaw' = v,
which implies
Va(w, (EDw, -+ (EDPTw) = (vaw, E v, -+ (ETH)P~ Ly, w) € AP (W),
The Lemma holds. |

Lemma 4.5.2. Let W be an irreducible weak V—module and .# be as above. Assume

that for every w € W, w # 0,
(wy---,w) iscyclicin A
Then W is an irreducible weak V°-module.
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

Proof. Assume that W is not a simple V%—module. Then there is a V’-submodule 0 #
S S W. In particular,
0 £ APO(S) - AP (W),

Since each (w,---,w), with w # 0, is a cyclic vector in .Z, we get
M =V.APO(s),
This implies that V0. AP0 (§) = AlP0)(W). A contradiction. The proof follows. [

Lemmas 4.3.3 and 4.5.2 imply our main result.

Theorem 4.5.3. Let W be an irreducible weak V—module, and g an automorphism of

finite order such that W o g/ 2 W for all i. Then W is an irreducible weak V°—module.
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4.6. ON COMPLETE REDUCIBILITY OF CERTAIN

V(& _MODULES

In this section we shall use the following very general version of Schur’s Lemma. Proof

can be found in [54, Section 4.1.2].

Lemma 4.6.1. Assume that W| and W, are irreducible modules for an associative algebra
A. Assume that W) and W, have countable dimensions over C. Then dim Homa (W), W,) <

1 and dim Homy (W), W,) = 1 if and only if W} = W;.

Lemma 4.6.2. Assume that V is a vertex operator algebra. Then every irreducible weak

V-module W is countable dimensional.

Proof. Note that the vertex operator algebra V is countable dimensional. Take any w € W.

Then by [64, Proposition 6.1] (see also [41, Proposition 4.1]),
W =V.w = Spanc{u,w |u€V,neZ},

which implies that W is also countable dimensional.

Assume that g is an automorphism of arbitrary order p. Then we have the decompo-

sition (4.1).

Theorem 4.6.3. Assume that g is an automorphism of V of finite order p as above. As-
sume that W is an irreducible weak V—module such that W o g = W. Then W is completely

reducible weak V%—module such that

(L) W= W, Viwicwt mod(p) where W/, j=1,...,p are eigenspaces of

certain linear isomorphism ®(g) : W — W.
(2) Each W' is an irreducible weak V-module.

(3) The modules Wi, i =0,...p — 1, are non-isomorphic as weak V°-modules.
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

Proof. By Lemma 4.6.2, W is countable dimensional. Let f: W — Wog be a V-

isomorphism . Then we have
flugw) = (gu)nf(w) YueV,wew.
Applying f p-times, we get

TP (unw) = (8Pu)n f? (W) = un f¥ (w).
Therefore f? is a V—endomorphism. Applying Schur’s Lemma for the associative algebra
A=U(g(V)), we get that f” = aldy, where a is a non-zero constant. By rescaling f one
gets an isomorphism ®(g) : W — W o g such that ®(g)? = Id. Next we consider ®(g) as
a linear operator on W with the property ®(g)” = Idy .

That means W is a (g)-module and there is 0 < j < p—1 and a vector 0 # w; € W
such that ®(g)(w;) = {/w;. Clearly, for any x € V'.w; = Spanc{v,w;|v € V/,n € Z} and
0<i<p—1, wehave ®(g)(x) = {""/x. Without loss of generality, we may assume there
isa 0w e W such that (g)(w) = w.

Now define W/ = V/.w = Spang{v,w|v € V/.n € Z}. Then

« ®(g)(wj) = /w; for each w; € W/.

o D(g)(uwj) = Gg(u)yw; = uyw; foru e Vi, w; € Wv.

This implies that W = @”_, Wi, Vi.w/ c witi m0d(») and (1) holds.
Assertion (2) follows from (1).
Let 0 % U # W/ be a proper VO—submodule of W/ and consider the V—-submodule

X =V.U. Then
X=VoUu+viu+..+vrly

Since U is a proper V'—submodule of W/, then VI.U C Wit/ implies that X is a proper
V-submodule of W. This is impossible since W is a simple V-module. Hence W/ is
irreducible V%—module for each ;.

Proof of assertion (3) is completely analogous to that of [41, Theorem 5.1] and it uses
Lemma 4.6.1. For completeness, we shall include it.

Suppose we have a VO—isomorphism p : Wi — W/, i # j. Take a nonzero w € W' and

consider the following V—submodule % of W & W
U =V.(w,p(w)) = Spanc{ (vaw,vap(w)) | v € V}.
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Then W@ W' is notin % and hence % is a proper submodule of W &W. Since W G W is a
U(g(V))-module of finite length, the Jordan-Holder theorem can be applied. Comparing
filtrations

0)—=W—-WaW, 0)—-%—->WaoWw,

and using simplicity of W, we get that % = W as U(g(V))-modules. This implies that
U =W as V-modules.

Then both projection maps from % — W & (0) and % — (0) W are V—isomorphisms.
Hence the map

D uw— uyp(w), (meV)

is also an isomorphism. Using Schur’s lemma we get ® = ald for a € C, which implies

that p(w) = aw € W'. This implies i = j. A contradiction.
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4.7. WHITTAKER MODULES: SOME

STRUCTURAL RESULTS

First we recall some basic notions from [22].

Definition 4.7.1. For a Lie algebra n, define ideals ng := n and n; := [n;_j,n,i > 0.

Then we have a sequence of ideals
n=nypony oy D---.

We say that n is quasi-nilpotent if N> n; = 0. Obviously, any nilpotent Lie algebra is

quasi-nilpotent.

Definition 4.7.2. Let g be a nonzero complex Lie algebra and let n be a subalgebra of g.
If M is a g—module, then we say that the action of n on M is locally finite provided that
U (n)v is finite dimensional for all v € M. Let # h(g,n) denote the full subcategory of
the category g—Mod of all g—modules, which consists of all g—-modules, the action of n on

which is locally finite.

Let V be a vertex algebra. Assume that the Lie algebra £ is one of the following two

types:
(1) Z=g(V),or
(2) .Z is the Lie algebra of modes of generating fields of the vertex algebra V.

Remark 4.7.3. In many cases it is possible to replace g(V) with much smaller Lie alge-

bra. For example, this happens in the following cases:

« If V is the universal affine vertex algebra V¥(g), then we can take £ = g, where g
is the affine Lie algebra associated to the simple Lie algebra g (cf. [17], [11] for

studying Whittaker modules in this case).

 If V is the Heisenberg vertex algebra M (1), we can take £ = b (cf. Section 4.8

below).
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» IfV is the Weyl vertex algebra, we can take Lie algebra £ such that the Weyl algebra
o = U(E) (cf. Section 4.9 below).

Note that by our assumptions on the vertex algebra, every weak V—module is a module

for the Lie algebra £. We also assume the following:
* Let n be a nilpotent subalgebra of £.

* Let #'h(£,n) denote the full category of £-modules W such that n acts locally
finitely on W (cf. [22]).

Definition 4.7.4. Let W € #'h(£,n). A vector v € W is called a Whittaker vector pro-

vided that (v) is an n-submodule of W.

Let A : n — C be a Lie algebra homomorphism which will be called a Whittaker

function. Let U), = Cu, be the 1-dimensional n—module such that
xuy =A(x)uy  (x €n).
Consider the standard (universal) Whittaker £-module
M) =U (L) ®ym) Uy

Definition 4.7.5. We say that an irreducible V-module W is of Whittaker type A if W is

an irreducible quotient of the standard Whittaker module M} .

Lemma 4.7.6 (cf. [22]). Assume that W is an irreducible V-module of Whittaker type
A. Then

W={weW|V¥xen, (x—A(x))*w=0fork>>0}.
Proof. Let us first prove that
My ={weM; |V¥xen, (x—A(x))*w=0"fork>>0}.

Take an arbitrary element w € U(£). Since n is a nilpotent subalgebra of £ , for x € n,

we have

adf(w)) =0 fork >>0.
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

Next we notice that

(x—A(x))w1 Quy = [x,w1] Quy
which implies that
(x—A(x)*w; @uy = ad*(w))@uy =0 fork >>0.

The claim now follows from the fact that W is a quotient of the universal Whittaker

module M . u

Lemma 4.7.7. Assume that A, u : n — C are Whittaker functions such that A # u. As-
sume that W and W), are irreducible Whittaker modules of types A and p respectively.
Then

(1) Wy and W, are inequivalent as V—-modules.

(2) Let (wi,w2) € Wy @ Wy, wi # 0,wp # 0. Then
V.(wi,wa) =W, OWy.

Proof. (1) Assume that f : W) — W, is an isomorphism. Then f(w, ) is a non-trivial

Whittaker vector in W), such that
(x—A(x))f(w;) =0, Vxen.
Take x € n such that A (x) # u(x). The for every k > 0 we have
(r =) Fwa) = (0= A(0) +2(0) = 1 () f(wa) = (A(x) = 1 (x)“f (w3) #0.

This contradicts with Lemma 4.7.6. So (1) holds.
Now let us prove (2).

Claim: There exist k > 0 and x € n such that
(x—A(x)*w; =0 and (x—A(x))wy =27 #0.

Indeed, take x € n such that u(x) —A(x) = A # 0. Let k;,k» be the smallest positive

integer such that

(x—A (X)) Tw; =0and (x— pu(x))2w; =0.
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Let k = max{k;,k;}. We have

B p=0 (I;’) (x = (x))P A Pw;
==§i;(§)<x——u<x»PAﬁpwz

:Asz + kAK! (x—p(x)wr+---+ (£2_1>Ak—k2+1 (x—nu (X))kz_IWZ.

ky—1

Note that wy, (x — i (x))wp, -+, (x — 1 (x))™" wy are linearly independent. Otherwise,

there exist pg, p1,--- s Pk, —1 such that

pow2+p1 (x—p(x))wa 4+ pr,_1 (x— ()c))kz_1 wy =0.

Let/={i=0,1,--- ,kp — 1|p; # 0} and s = max /. Then

s—1

(x—p () ws = ¥ 2 (x = p (@) wa. (4.2)
i=0 Ps
If (x— o (x)2 S wo, (x— p (x))2 ™ wy, -+ (x— 1 (x))2 7" wy are linearly independent,

then p;=0,i=0,1,---,s— 1. By (4.2), we obtain (x — u (x))* wy = 0 where s < k, which
is a contradiction. So(x— i (x))2 S wy, (x—p ()2 sy, ) (x—p ()2 wy (at
most k; — 1 terms) are linearly dependent. Repeating similar argument, we can prove that
there exists ¢ < k such that (x — u (x))?w, =0, which is a contradiction. Thus we proved

wa, (x = (x))wa, -+, (x— it (x))*2 1w, are linearly independent and hence

Ay 1 AR (= () wa -+ (@71) ARt () £ 0.

Now we have
(x—A(x) (wi,w2) = (0,2), 2 €Wy, 2 #0.

Irreducibility of W, now gives that W, C V.(wy,w). Similarly we prove that W) C
V.(w1,w2). So (2) holds. [ |

Remark 4.7.8. The assertion (2) is a consequence of (1) and Lemmas 4.3.1 and 4.3.3.

So we could omit its proof. But since Whittaker modules are the main new examples
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

on which we can apply Theorem 4.5.3, we think that it is important to keep an inde-
pendent proof which contains explicit construction of elements in maximal left ideals
J; = Ann(w;), i = 1,2. In particular, we have elements (x — A (x))* € J; \ J, which corre-

spond to element u; (for i = 2) constructed in Lemma 4.3.1 by using abstract arguments.
We can easily generalize the previous lemma:

Lemma 4.7.9. Assume that A, ---, 4, : n — C are Whittaker functions such that A; # A;
for i # j. Assume that Wy, i = 1,...,n are irreducible Whittaker modules of types ;.
Then

(1) All W), are inequivalent as V-modules.
(2) Letw= (wy,wa,---wy,) €Wy, ©---OW,, , where 0 # w; € Wj,. Then

Vw=W, ©---dW,, .

Theorem 4.7.10. Assume that W is a V—module in the Whittaker category # h(L,n) as
before. Assume also that W; = W o g’ has the Whittaker function A =n — C and that

all A1) are distinct. Then W is an irreducible V9—module.

Proof. The proof follows immediately from Lemma 4.7.9 and Theorem 4.5.2. |
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4.8. Example: Heisenberg vertex algebra

4.8. EXAMPLE: HEISENBERG VERTEX

ALGEBRA

First we recall the definition of the Heisenberg Lie algebra h. Let b be complex ¢-
dimensional vector spaces with respect to the non-degenerate bilinear form (-,-). Fix an
orthonormal basis {hy,hy,...,hs} with respect to form (-,-). The Heisenberg Lie algebra
b is defined as

h=h®C [t ®CK

with the commutator relations
K, 6] =0, and [a(m),b(n)]=mbuino(a,b)K

for a,b € h, m,n € Z and a(n) = a®1t". We identify b with its dual space h* by the form

(-,-). Let Ce be the one-dimensional module over the Lie algebra h with action given by
h(n)eozo, VYheh,n>0; Ke’ = €.
Define the vector space M(1) by
M(1) = U (b) @y pacijeck) Ce’. (4.3)
On M(1) define the state-field correspondence by
Y(aW(ny)---a"(n)e,2) = a(l)(z)nl ---a(r)(z)nyIdM(l) (4.4)

for a') € b and n; € Z. The vacuum vector is 1 = ¢° and the conformal vector is given by

Zhi(—l)zl.

i=1

| —

oW =

In particular,

V(@9 =LE)= L L2 L) =5 ¥ Sh(-mlmn)
nez mez

Then (M (1),Y,1,®) is a vertex operator algebra (cf. [62] for details). Now consider

the order two automorphism 6 of the vector space M (1) given by

0 (i, (—n1)hiy(—n2) -+ i (—=m) 1) = (= 1) Ry, (—n1 Yhiy (—n2) -+ hiy (=) 1
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

forije{1,2,...,¢} forall jandn; >ny >--- >n > 0. Let M(1)" be the corresponding

subspace of fixed-points with respect to 0:
M)t ={veM()|6(v)=v}. 4.5)

Then M (1)" is a vertex operator algebra and its structure and representation are well
studied (cf. [1,5,42,44)).

Let A = (A9, A,...,A,,0,---) be a sequence of elements of h with at least one nonzero
entry, and A, = 0 for n > 0. Let Ce* be the one-dimensional module over the Lie algebra

h ® CJt] ® CK with action given by
h(n)e* = (h,2,)e*, heh,n>0; Ke* =e*.
Consider the corresponding induced U (b)-module

M(1,A) = U() @y pacyeck) Ce*.

Let C=handn=H®C [t] ® CK, then it is clear that n is a nilpotent subalgebra of
£ and hence M(1,A) is the standard (universal) Whittaker £-module U (£) ®U(n)(Ce)“.
Define the Whittaker function A : n — C by

A(h(n) = (A A) ,n=0,1,---,r; A(h(K)) =0,k > r.

Then we see that Ce? is a 1-dimensional n-module such that xe* = A (x) e* for any x € n.
By Definition 4.7.5, M(1,A) € #'h(£,n) is an irreducible Whittaker module for M (1) of
Whittaker type A.

Now we see that M (1,4) o 6 is a Whittaker module for M (1) with type —A. By The-
orem 4.7.10, M (1,A) is irreducible as Whittaker module for M (1)*. This gives another
proof of Theorem 6.1 in [56].

4.8.1. On cyclic orbifolds of M(1)

The orbifolds of M(1) were studied by A. Linshaw in [66] using invariant theory. We can
now prove irreducibility of certain Whittaker modules for M(1) for cyclic orbifolds.

Let O(¢) be orthogonal group. It acts naturally on the vector space h by preserving
form (-,-):

(gh,gh') = (h,h") Vh,i €, g€ O(¢).
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The action of O(¢) on h can be uniquely extended to the action on the vertex operator
algebra M(1). Moreover, O(¢) is the full automorphism group of M(1). Let A : n — C be
a Whittaker function. The action of O(¢) on M(1,4) is given by

M(1,A)og=M(1,A0g),

(Aog)(h(n)) = A(gh)(n), ge€O((), hebh, n>0.

It is important to consider orbifolds of certain finite subgroups of O(¢). A particularly
interesting subgroup of O(¢) is the symmetric group S, of ¢ letters. A detailed example of
orbifold M(1)S3, in the case of rank three Heisenberg algebra, were presented in a recent
paper by A. Milas, M. Penn and H. Shao (cf. [68]).

Let hy,. .., hy be the basis of b as above. Let A : n — C be a Whittaker function. Then

A= A0, A= (A((0)), A1), ).
The action of Sy on M(1,4) is given by
M(1,A)og=M(1,A0g),
Aog=sW . a8y vges,.

Proposition 4.8.1. (1) Assume that g € O(¢) is of finite order such that A o g’ # A for
all i. Then M(1,A) is an irreducible M(1){¢)—module.

(2) Assume that A o 6 # A for any 2—cycle o € Sy. Then M(1,A4) is an irreducible
M(1){¢)—module for any g € S;.

Proof. The proof of assertion (1) follows easily by using Theorem 4.5.2. Since for a

2-cycle o, we have
Aoo#A, Vo < Vi,j, 1<i<j<{l, MA&#A

s (AMD MOy £ (At Y, YheS,.

Therefore for any g € S; we have A og’ # A. Now assertion (2) follows directly from
(1). ]

We also have the following conjecture.
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Conjecture 4.8.2. Assume that A o 6 # A for any 2—cycle 6 € S;. Then M(1,4) is an

irreducible M (1)%-module.

The proof of the conjecture requires certain extension of methods used in the paper.

We plan to study the proof of this conjecture in our future work.
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4.9. EXAMPLE: WEYL VERTEX ALGEBRA

The Weyl algebra < is the associative algebra with generators a(n),a*(n),n € Z and

relations
la(n),a”(m)] = Oyymo, [a(n),a(m)]=[a"(m),a"(n)]=0, n,meZ.
Let M be the simple Weyl module generated by the cyclic vector 1 such that
anl=a*"(n+1)1=0 (n>0).

As a vector space,

M = Cla(—n),a*(—m) | n >0, m > 0].

There is a unique vertex algebra (M,Y,1) (cf. [47,48,59]) where the vertex operator

is given by
Y : M — End(M)|[z,27"]]
such that
Y(a(-1)1,z) =a(z), Y(a"(0)1,2) =a’(z),
a(z)=Y am)z "', a*(z)= ) a*(n)z "
nez nez
We choose the following conformal vector of central charge ¢ = —1 (cf. [59]):
1 * *
o = (a(=1)a"(~1) ~a(=2)a"(0))1

Then (M,Y,1, ®) has the structure of a %Zzo—graded vertex operator algebra. We can de-
fine weak and ordinary modules for (M,Y,1, @) as in the case of Z—graded vertex operator
algebras.

We define the Whittaker module for &7 to be the quotient
M(A,p) =1,
where A = (Ao, ..., A4y), & = (U1,- .., 4,) and I is the left ideal
1={a(0) — A, ...,a(n) — Ay,a*(1) — w,...,a" (n) — tp,a(n+1),....a* (n+1),...).
Proposition 4.9.1. We have:
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4. Irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras

(1) My(A,p) is an irreducible &/—module.

(2) My(A,p) is an irreducible weak module for the Weyl vertex operator algebra M.
Proof. 1t is straightforward to check that the ideal I defined above is a maximal left ideal
in o7 (cf. [23], [53]) and therefore the quotient M (A, ) = <7 /I is an simple —module.

Since by construction, M; (A, i) is a restricted /—module, it is an irreducible M—module.

Letw=1+1€ M;(A,u). Then w is a cyclic vector and
a(0)w = Aw,...,a(n)w = L,w,a*(1)w = w,...,a* (n)w = g,w

and a*(k)w = a(k)w = 0 for k > n.
Now we want to identify M1 (A, p) as a Whittaker module for certain Whittaker pair.

Let £ be the Lie algebra with generators a(n),a*(n),K, n € Z such that K is central and
la(n),a”(m)] = 8yymoK, [a(n),a(m)]=[a"(m),a"(n)]=0, nmeZ.

Then M, (A, ) is an irreducible £-module of level 1 (i.e., K acts as the multiplication
with 1).

Let n be the subalgebra of £ generated by a(n),a*(n+ 1) for n > 0. Then n is com-
mutative, and therefore a nilpotent subalgebra of £.

Define the Whittaker function A = (A,u) : n — C by
A@(0)) = A0y, Ala(n) = An Ala(k) =0 (k> n),
A (1)) = 1, Al () = o, Al (K) =0 (k> n).

Proposition 4.9.2. M;(A, ) is a standard Whittaker module of level 1 for the Whittaker
pair (£,n) with Whittaker function A = (A, ).

Let §, = ¢2™i/P be p-th root of unity. Let g, be the automorphism of the vertex opera-
tor algebra M which is uniquely determined by the following automorphism of the Weyl
algebra o

a(n) = Ga(n), a*(n) > & 'a*(n) (ne ).
Then g, is the automorphism of M of order p.
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Theorem 4.9.3. Assume that A = (A, ) # 0. Then M;(A,u) is an irreducible weak
module for the orbifold subalgebra MZr = M (&) for each p>1.

Proof. First we notice that M (A, p)og' =M ({)A, " i) and therefore modules My (A, jt) o
g' have different Whittaker functions for i = 0,...,p — 1. Now assertion follows from

Theorem 4.7.10. [ |

4.9.1. An application to affine VOA

Let g be a simple Lie algebra and let V*(g) be its universal affine vertex algebra of level

k. Let Li(g) be its simple quotient. The following result is well-known:

Lemma 4.9.4. If W is an irreducible weak L;(g)-module, then M is an irreducible mod-

ule for the affine Lie algebra §-module of level k.

Next we show how the Theorem 4.9.3 gives a construction of new irreducible modules

for affine Lie algebra s[(2) associated to s[(2). In the case p = 2, Z,—orbifold M? is iso-
morphic to a simple affine VOA L_(s[(2)) (cf. [46] and also [18, Section 6]) associated

1
2
to affine Lie algebra s[(2) at level —%. The previous theorem gives a realization of large

family irreducible modules for VOA L_; (s((2)).

1
2
Corollary 4.9.5. Assume that A = (A, ) # 0. Then M (A, ) is an irreducible module

for the affine Lie algebra 5/[(5) at the level k = —%.

Proof. For p =2, M”2 is isomorphic to the affine VOA L_, (s[(2)). Therefore, module

1
2
M;(A,p) is irreducible for Lf%(5[(2)). Now Lemma 4.9.4 implies that M (A, ) is an

—

irreducible module for affine Lie algebra s[(2). |

Remark 4.9.6. The irreducible weight modules for the Weyl vertex algebra were anal-
ysed in [16]. One can easily show that weight modules, denoted by i?(\/l{j, have the

property U(A)og, = U(A). Then Theorem 4.6.3 implies that they are direct sum of
two irreducible relaxed weight modules for the affine vertex algebra L_; (s[(2)) (see

also [11], [60]).
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5. NEW RESULTS ON THE STRUCTURE
OF WHITTAKER MODULES FOR

CERTAIN VERTEX ALGEBRAS

In this chapter we present some new results on Whittaker modules for the Weyl vertex
algebra. These and other important results on Whittaker modules will be included in a
forthcoming paper (cf. [20]). We have proved in chapter 4 that irreducible Whittaker
modules M (A, p) (with non-trivial Whittaker functions) for the Weyl vertex algebra M
are also irreducible for the orbifolds M%Zr = M <g1’>, for each p > 1. Here we will consider
the limit case of infinite-dimensional group G = (g) together with its associated orbifold
MC, and prove that irreducible Weyl vertex algebra modules of Whittaker type are always
reducible as M®—modules.

Let us first recall that in chapter 4 we proved the following proposition:

Proposition 5.0.1 (Theorem 4.9.1). We have:
(1) My(A,p) is an irreducible —module.

(2) My(A,p) is an irreducible weak module for the Weyl vertex operator algebra M.

Let {, = emi/p again be p-th root of unity and let g, again be the automorphism of the
vertex operator algebra M which is uniquely determined by the following automorphism

of the Weyl algebra o
a(n) = Gpa(n), a*(n) = ¢ la"(n) (n€Z).

As before, g, is the automorphism of M of order p.

In chapter 4 we also proved the following theorem:
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Theorem 5.0.2 (Theorem 4.9.3). Assume that A = (A,u) # 0. Then M;(A,u) is an

irreducible weak module for the orbifold subalgebra M’ Zp = M <g”>, for each p > 1.

Let us now define an operator J° := a(—1)a*. Then the components of the field

Y02 =Y Sm)z !
nez

satisfisfy the commutation relations for the Heisenberg algebra at level —1. We have the
following subalgebra of M:
M° = KerpJ°(0).

Let § € C, || = 1, which is not a root of unity. Let g be the automorphism of the
vertex operator algebra M uniquely determined by the following automorphism of the

Weyl algebra o
a(n)— Ca(n), a*(n)— Cila*(n) (neZ).

Then g is the automorphism of M of infinite order, and the group G = (g) is isomorphic
to Z. Clearly, we have

M° = MC.
Note also that
M= (\M%, MoM= > -M% > >5M
p=1
Since M (A, ) is an irreducible M%»—module for each p > 1, it is natural to ask if

Mi(A, ) is irreducible also as an M%—module. However, we prove that M;(A, ) is a

reducible and indecomposable M°-module.

5.1. #11e-ALGEBRA AT CENTRAL CHARGE

¢ = —1 AND ITS WHITTAKER MODULES

A peculiarity of the orbifold M is that it has two additional important realizations which

we plan to explore in detail in our forthcoming paper [19]:
« MY is isomorphic to the vertex algebra # .. at central charge ¢ = —1.
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+ MY is isomorphic to the simple module for the Lie algebra g?l, which is the central

extension of the Lie algebra of infinite matrices.

5.1.1. The #)-algebra approach

The universal vertex algebra # ¢

1%o0 18 generated by the fields

F@) =Y JFmz" 1 (ke Zx),

nez
whose components satisfy the commutation relations for the Lie algebra 2 at central
charge ¢, which is a central extension of the Lie algebra of complex regular differential
operators on C*. (cf. [49], [59]). It has a simple quotient, which we denote by #]_c .
It was proved by V. Kac and A. Radul in [59] that MO =~ Moo forc=—1. Asa

consequence, we have that M is generated by the fields

(@) =Y (a"(~K)a,2) = (3ka"(2)) alz) i= X S (k€ Z0).

nez
So our Whittaker modules for the Weyl vertex algebra are automatically Whittaker

modules for #] e c——1.

5.1.2. Approach using the Lie algebra gAl

Define the generating function

E(z,w) =:a(z)a*(w):= Y E; iz 'w

i,jJEL
In other words, the operators E; ; are defined as
Ejj=:a(-i)a"(j): (5.1)
These operators endow M with the structure of a g?l—module at central charge K = —1

(see formula (2.7) in [59] for commutation relations for é\l ).

We have (cf. [59]):

[Eij,a(—m)| = 8jma(—i), [Eij,a" (m)]=—&ma (j).
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5.2. THE STRUCTURE OF THE WHITTAKER

MODULE M{(A, ) AS A g[-MODULE

In this section we finally prove that M;(A, ) is not an irreducible gA[—module. We shall
use the following Casimir element.

Define

I:= ZEj‘rj'

Jez
As far we can see, / is introduced in [55] for a slightly different category of modules.

But it is well defined on a family of Whittaker gAl—modules which we considered.
Lemma 5.2.1. We have:

(1) I € End(M;(A,p)) is well-defined.
(2) The action of I commutes with the action of gAl on M;(A,p).

(3) The action of I commutes with the action of #] ;. on M| (A, ).

Proof. Letv € My(A,p). Since Mi(A,p) is a restricted module for the Weyl alegbra,

there is N € Zx>( such that
a(njv=a*(n)y=0 forn>N.

This implies that E,, ,v = 0 if |n| > N. Therefore

N
IVZZEJ'JV: Z Ejij,
JEZ j=—N

and we conclude that 7 is well defined on M; (A, ). Thus (1) holds.

For a proof of assertion (2) we use commutation relations for QTZ:
[Ei j,Es;) = 8 sEis — 0i1Es.j — CP(E; j,Es;).

Then

Eijdlv = | YL IEijExdl | v
keZ
= (E,-’j—E,-,j)v
= 0.
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5. New results on the structure of Whittaker modules for certain vertex algebras

The assertion (2) holds.
(3) Since M{(A,u) is an M°-module, it is also a #;,.—module at central charge

¢ = —1. The action of 7. is generated by the fields

) = ) )zt = <8zl‘a*(z)) a(z):

nez

which can be expressed as

Jk(l’l): ijEj,j—n (bJGC)
JEZ

Now (2) implies that

)y = 1Y bjEjj—w
jez

= Z bj]EjJ_nV
JEZ

= Y bjEjjulv
=/

= Jn)y

Here we will denote the appropriate Whittaker vector by wy, ;.

Lemma 5.2.2. (1) For every n € Z>1, I"wl’u is a non-trivial Whittaker vector in

Mi(A,p).

(2) For any S C C[l]wy,,, let (S) be the submodule generated by all of the Whittaker

vectors in S. Then the module

(1-d)Clwyp)
is a proper submodule of M} (A, ), foreach d € C.
Finally, we have proved the main result of this chapter.

Theorem 5.2.3.
(1) My(A,p) is a reducible gAl—module.

(2) My(A,p) is a reducible #] ., .—module at central charge ¢ = —1.
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5.2. The structure of the Whittaker module M (A, 1) as a gl-module

Proof. Let us assume to the contrary, i.e. M (A, 1) is irreducible. Schur’s lemma implies
that the Casimir element I has to act as a constant, ] = o, o € C. However, we have seen

that Iw, , is a non-trivial vector in M, (A,u), so we have a contradiction. |

Remark 5.2.4. Note that the statement (2) of the previous theorem shows that My (4, )
is a reducible M°—module. Thus, the main theorem of [12] can not be extended for infinite

cyclic groups.

Let L1(A, ) be an irreducible quotient of M;(A, ). Here we list some of the very

important problems which we will address in our future work:

(A) Prove M;(A, ) is a cyclic gl-module.
(B) Realize L(A, ) by free-fields.

(C) Determine the complete set of Whittaker vectors in M; (A, ) which generate the

maximal submodule of M| (A, ).
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CONCLUSION

In this thesis we have dealt with two important problems in the vertex algebra theory: the
problem of determining fusion rules in some category of modules for a vertex algebra and
the orbifold problem.

For the fusion rules problem, we have shown that it is possible to prove Verlinde
formula with vertex-algebraic methods. We anticipate that our methods can be applied
to the affine vertex operator algebras and the singlet vertex operator algebras. We also
believe there is a vertex tensor category for the relaxed modules category.

For the orbifold problem, we have proven a result generalizing Dong-Mason theo-
rem from quantum Galois theory. Furthermore, we have presented a counterexample
demonstrating this theorem can not be extended to the case of infinte-dimensional group
of automorphisms. However, we believe we can extend our theorem to the case of arbi-
trary commutative finite-dimensional group of automorphisms and to the case of twisted

modules.
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