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SUMMARY

In 1978, Mazur proved his famous theorem on possible torsion subgroups of elliptic
curves defined over the field of rational numbers [32]. In the 1990s, a similar result
was proved by Kamienny, Kenku and Momose [20,26], which says what are the possible
torsion subgroups of all elliptic curves over all quadratic fields. However, that result tells
us little about possible torsion subgroups if we fix a quadratic field.

In Chapter 6, which is based on the author’s paper [47], we describe methods that we
can use to determine all possible groups that can appear as torsion subgroups of elliptic
curves if we fix a quadratic field. Furthermore, we give the classification of torsion sub-
groups of elliptic curves over quadratic fields Q(+/d), where 0 < d < 100 is squarefree.
Those results can be found in Table 6.1. We obtained a complete classification for 49
out of 60 such fields. Over the remaining 11 quadratic fields, we could not rule out the
possibility of the group Z/16Z appearing as the torsion group of an elliptic curve.

Except for the question about determining possible torsion subgroups of elliptic curves
over number fields of certain degree, in this thesis we will also be interested in the inverse
question, i.e. if we have a given group T and a positive integer d, what are we able to say
about number fields of degree d over which an elliptic curve with torsion T appears? We
can ask even more, what if instead of a group T we are given an n—isogeny?

The results of the author’s paper in collaboration with Filip Najman [39] give some
answers when the torsion T = Z /27 @ 7,/ 147 is given and d = 3, and when d = 2 with a
given n—isogeny, for n € {22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71},
which correspond to the modular curves Xo(n) that are hyperelliptic, except for n = 37.
Those results are presented in Chapter 7. Specifically, in Theorems 7.1.1 and 7.1.10 some
splitting behaviour of small primes in quadratic extensions over which Xp(n) has a non-

cuspidal point was presented. Moreover, we were able to prove some results about the



Summary

splitting of primes in cubic fields generated by points on X;(2,14). It turns out that 2
always splits in such fields, and rational primes p = +1 (mod 7) of multiplicative reduc-
tion split as well (see Proposition 7.2.7). Bruin and Najman [5] proved that elliptic curves
with torsion Z /27 @ 7/ 147 over cubic fields are actually a base change of elliptic curves
over Q. It is also true that those curves defined over Q have multiplicative reduction of
type 114 at 2 (see Proposition 7.2.3) and in Chapter 8, Proposition 8.1.2, it was proved
that the reduction is always split multiplicative.

In the final chapter, Chapter 8, which will follow the author’s paper [46], we study the
Tamagawa numbers of elliptic curves with torsion Z /27 & Z/14Z and of elliptic curves
with an n—isogeny, for

ne{6,8,10,12,14,16,17,18,19,37,43,67,163}.

It makes sense to study how the value of the Tamagawa number cg of elliptic curve E
depends on E(K);rs, since cg/#E(K):ors appears as a factor in the leading term of the
L—function of E/K in the conjecture of Birch and Swinnerton-Dyer (see, for exam-
ple, [16, Conj. F.4.1.6]). Some results on Tamagawa numbers of elliptic curves with
a specific torsion subgroup and on the quotient cg/#E(K);ors are given by Lorenzini
in [30, Chapter 2] for elliptic curves over the rationals and over quadratic extensions.
Krumm [27, Chapter 5] proved some further results on Tamagawa numbers of elliptic
curves with prescribed torsion over number fields of degree up to 5. He also conjectured
that ordj3(cg) is even for all elliptic curves defined over quadratic fields with a point
of order 13 and the same conjecture was later proved by Najman in [37]. We found in
Proposition 8.1.4 that Tamagawa numbers of elliptic curves with torsion Z /27 & Z /147
are always divisible by 142, with factors 14 coming from rational primes with split multi-
plicative reduction of type /14, one of which is always p = 2 (see Proposition 8.1.2). The
only exception is the curve 1922c1, with cg = ¢ = 14.

The question which naturally arises next is how does the Tamagawa number of an
elliptic curve depend on the isogenies of that elliptic curve. In Section 8.2 we give a series
of propositions which give us first results about Tamagawa numbers of elliptic curves
with prescribed isogeny. Tamagawa numbers of elliptic curves with an 18—isogeny must
be divisible by 4 (Proposition 8.2.2), while elliptic curves with an n—isogeny for the

remaining n from the mentioned set must have Tamagawa numbers divisible by 2 (see

il
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Propositions 8.2.3, 8.2.4, 8.2.5 and 8.2.6), except for finite sets of specified curves.

In Chapters 1-4 we give a short introduction to elliptic curves and we set the stage
for studying all of the mentioned properties of curves and number fields. We include
chapters about modular curves, elliptic and hyperelliptic curves, as well as a chapter on
elliptic curves over local fields.

The computations in this thesis were executed in the computer algebra system Magma
[2]. The code can be found at https://web.math.pmf .unizg.hr/~atrbovi/cv.html

next to the corresponding paper, or in Appendices A, B and C.

iil



SAZETAK

Mazur je 1978. godine dokazao svoj poznati teorem o mogucim torzijskim podgrupama
eliptickih krivulja definiranih nad poljem racionalnih brojeva [32]. U 1990-ima, Kami-
enny, Kenku i Momose [20, 26] su dokazali slican rezultat koji govori koje su moguce
torzijske podgrupe svih eliptickih krivulja nad svim kvadratnim poljima. No, taj rezultat
nam ne govori puno o tome $to se dogada ako uzmemo neko fiksno kvadratno polje.

U Poglavlju 6, koje prati autori¢in ¢lanak [47], opisujemo metode koje se mogu isko-
ristiti da bismo odredili sve moguce torzijske grupe eliptickih krivulja nad nekim fiksnim
kvadratnim poljem. Nadalje, dajemo klasifikaciju torzijskih podgrupa eliptickih krivulja
nad kvadratnim poljima Q(\/E ), gdje je 0 < d < 100 kvadratno slobodan. Ti rezultati se
mogu naci u Tablici 6.1. Uspjeli smo dobiti potpunu klasifikaciju nad 49 od 60 takvih
polja. Nad ostalim poljima nismo mogli zakljuditi je li moguca pojava grupe Z/16Z kao
torzijske grupe neke elipticke krivulje.

Osim problema o moguéim torzijskim podgrupama eliptickih krivulja nad poljima
algebarskih brojeva odredenog stupnja, u ovoj disertaciji ¢e nas zanimati i obratno pitanje,
tj. ako imamo zadanu grupu T i prirodni broj d, §to moZemo reci o poljima algebarskih
brojeva stupnja d nad kojima postoji neka elipticka krivulja s torzijom 7?7 MoZemo se
pitati i viSe od toga, Sto ako umjesto grupe 7" imamo zadanu n—izogeniju?

Rezultati autori¢inog ¢lanka u suradnji s Filipom Najmanom [39] daju neke odgovore
na ta pitanja kad imamo zadanu torziju T = Z /2Z ® 7 /147 i d = 3 te kada imamo d = 2
i zadanu n—izogeniju, za

n € {22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71},
a u skupu se nalaze svi n osim n = 37 takvi da je pripadna modularna krivulja Xy (n)
hiperelipticka. Ti rezultati su predstavljeni u Poglavlju 7. U Teoremima 7.1.1 1 7.1.10

mozemo naci neke rezultate o cijepanju malih prostih brojeva u kvadratnim prosirenjima

v
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nad kojima Xy(n) ima tocku koja nije kusp. Nadalje, bili smo u moguénosti dokazati
i neke rezultate o cijepanju prostih brojeva u kubic¢nim proSirenjima koja su generirana
tockama na X;(2,14). MozZe se dokazati da se u takvim poljima 2 uvijek cijepa te da se
racionalni prosti brojevi p = +1 (mod 7) multiplikativne redukcije takoder cijepaju (vise
u Propoziciji 7.2.7). Bruin i Najman [5] su dokazali da su elipticke krivulje s torzijom
Z)27 & 7./147 nad kubi¢nim poljima zapravo definirane nad Q. Vrijedi i Cinjenica da
te elipticke krivulje definirane nad Q imaju multiplikativnu redukciju tipa I14; u 2 (viSe
u Propoziciji 7.2.3), a u Poglavlju 8, Propozicija 8.1.2, dokazali smo da je ta redukcija
uvijek rascjepiva multiplikativna.

U zadnjem poglavlju, Poglavlju 8, koje prati autori¢in ¢lanak [46], proucavamo Tam-
agawine brojeve eliptickih krivulja s torzijom Z /27 @ 7/ 147 i elipti¢kih krivulja s
n—izogenijom, zan € {6,8,10,12,14,16,17,18,19,37,43,67,163}.

Ima smisla proucavati kako vrijednost Tamagawinog broja cg elipticke krivulje E
ovisi 0 E(K)ors, buduéi da se cg/#E(K):ors pojavljuje kao faktor u vodeéem koefici-
jentu L—funkcije od E /K u slutnji od Bircha i Swinnerton-Dyera (vidjeti npr. [16, Conj.
F.4.1.6]). Neke rezultate o Tamagawinim brojevima s odredenom torzijskom podgrupom
i o kvocijentu cg /#E (K )1ors je dao Lorenzini u svom ¢lanku [30, Chapter 2], za elipticke
krivulje definirane nad poljem racionalnih brojeva i nad kvadratnim proS$irenjima. Krumm
je u svojoj doktorskoj disertaciji [27, Chapter 5] dokazao joS neke rezultate o Tamagaw-
inim brojevima elipti¢kih krivulja s odredenom torzijom nad poljima algebarskih brojeva
stupnja do 5. On je takoder naslutio da je ord)3(cg) paran za sve elipticke krivulje defini-
rane nad kvadratnim poljima s tockom reda 13, a tu slutnju je kasnije dokazao Najman
u [37]. U Propoziciji 8.1.4 smo dokazali da Tamagawin broj elipti¢kih krivulja s torzijom
7./27.@ 7,/ 147, mora uvijek biti djeljiv s 142, gdje svaki faktor 14 dolazi od racionalnog
prostog broja s multiplikativnom redukcijom tipa /14, a jedan od tih prostih brojeva je
uvijek p = 2 (vidjeti Propoziciju 8.1.2). Jedina iznimka je krivulja 1922c1, za koju je
cg =cpy=14.

Pitanje koje se sljedeée prirodno postavlja je kako Tamagawin broj elipticke krivulje
ovisi o izogenijama koje ima ta elipti¢ka krivulja. U Poglavlju 8.2 dajemo niz propozicija
koje nam daju prve rezultate o0 Tamagawinim brojevima elipti¢kih krivulja s odredenom

izogenijom. Tamagawini brojevi eliptickih krivulja s 18-izogenijom moraju biti djeljivi s
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4 (Propozicija 8.2.2), dok elipticke krivulje s n—izogenijom za preostale n iz spomenutog
skupa imaju Tamagawine brojeve djeljive s 2, osim za kona¢no mnogo poznatih krivulja.
Ti rezultati se nalaze u Propozicijama 8.2.3, 8.2.4, 8.2.5 1 8.2.6.

U poglavljima 1-4 dajemo kratak uvod u elipticke krivulje i osnovne rezultate koje
koristimo za proucavanje eliptickih krivulja i polja algebarskih brojeva. Ukljucujemo
poglavlja o modularnim krivuljama, eliptickim i hipereliptickim krivuljama i takoder o
eliptickim krivuljama nad lokalnim poljima.

Izracuni u ovoj disertaciji izvrSeni su u raCunalnom sustavu Magma [2]. Svi kodovi se
nalaze na https://web.math.pmf.unizg.hr/~atrbovi/cv.html kraj odgovarajucih

¢lanaka ili u Dodacima A, B i C.

Vi
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1. INTRODUCTION

The study of Diophantine equations, i.e. polynomial equations and their solutions over Z
or (Q exists since as early as ancient Greece. The most famous such problem is Fermat’s

last theorem, which says that the equation
an _,_bl’l — Cﬂ

has no solutions (a,b,c) € Z* such that abc # 0 and n > 3. The theorem was proved in
1994 by Andrew Wiles, for which he received the Abel prize in 2016.

For simple forms of Diophantine equations in two variables, which determine a curve
of genus 0, the problem of finding solutions is solved. It can be shown that the set of
solutions is either empty or infinite, in which case it is isomorphic to P'(Q). On the
other hand, if we study a more complicated case of cubic Diophantine equations in two
variables, they determine a curve of genus 1, which is actually our motivation for the

study of elliptic curves.

Definition 1.0.1. Let K be a number field. An elliptic curve E defined over K is a
smooth projective curve of genus 1 with a distinguished K-rational point &', which we

call the point at infinity.

Furthermore, if we look at the curves of genus 2 and Diophantine equations associated

to them, Faltings’ theorem tells us about the number of solutions.

Theorem 1.0.2 (Faltings). Let C be a smooth, irreducible, projective curve of genus
g > 2 defined over a number field K. Then the set C(K) of all K—rational points on C is

finite.

In the case of curves C of genus 0, a simple argument can be used to show that C(K)

is either empty or infinite and that the curve C is isomorphic to P!. Furthermore, the
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previous theorem states that if C has genus 2 or larger, then C(K) is a finite set. As we
can see, the curves of genus 1 are the most interesting ones, in terms of the number of
solutions, and we will focus on those in this thesis. In the remainder of this chapter we
will give some basic properties of such curves and set the field for studying the number
of solutions and points on those curves.

Every elliptic curve defined over a field K has an equation of the form
Y2Z4+aiXYZ+a3YZ> = X> + an X’ Z+ auXZ* + agZ>,

where ¢ = [0,1,0] is the point at infinity and ay,a,,a3,a4,as € K. However, we will
mostly be using the affine coordinates x = X /Z,y =Y /Z and remembering we have one

extra point at infinity. We now have the following equation for £
2 _ .3 2
V- +aixy+azy =x +axx” +asx—+ ae,

which we call the long Weierstrass model for E. If char(K) # 2,3 we can get the equation
to be of the form

y2 :x3—|—ax+b,

where a,b € K, and this model is said to be the short Weierstrass model.
Even though we will mostly be encountering elliptic curves over fields of characteris-
tic not equal to 2 or 3, in Chapter 8 those characteristics will be of great importance, so it

is essential to include the following definition in full generality.

Definition 1.0.3. Let E be an elliptic curve defined over K, given in its long Weierstrass
form y2 4 ajxy + azy = x> + arx* + asx + ag. We define

by = a% +4a,,

by =2a4 +ajas,

be = a% +4ag,

bg = a%a(g +4ayag — ajazay, +a2a§ — ai.

Now we can define the discriminant of E as

A = —b3bg — 8b3 — 27b% + 9bybybs.
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Furthermore, we have

c4 = b3 —24by,

ce = —b3 +36byby — 216bs.

When the elliptic curve is given by the short Weierstrass equation y* = x> 4 ax + b, then
A(E) = —16(4a> +27b%).

We also define the j—invariant of E as

The quantities from the previous definition will be used extensively in Chapters 7 and
8, where we will be examining them in order to conclude something about the reduction

type and Tamagawa numbers.

Theorem 1.0.4. ( [43, Proposition III.1.4.(b)]). Let E and E’ be elliptic curves defined
over a field K. Then E and E' are isomorphic over K if and only if j(E) = j(E’).

The previous theorem confirms that the j—invariant just defined in Definition 1.0.3
really is an invariant. It is an invariant of the isomorphism class of the curve and it does
not depend on the chosen Weierstrass equation.

It turns out that the Weierstrass equation for an elliptic curve is not unique. It can
be shown that the only change of variables fixing the point at infinity and preserving the

Weierstrass form is

x=u*x +r,

y= u3y/ + u’sx’ +1,
where u,r,s,t € K and u # 0. It will be of importance to us to know the coefficients a!
of the new Weierstrass equation that is obtained after the change of variables and how
the already defined quantities change under that substitution. Those are given in Table
1.1 [43, Table 3.1]. We will be changing variables a lot in Chapter 8 to obtain a suitable
model for which we can deduce some important properties of the curve.

Addition on points of E(K) can be defined roughly in the following manner. If P and
Q are points on E, let L be the line through P and Q (if P = Q, let L be the tangent line
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uay =a;+2s
wld, =ap—sa;+3r—s

u3ag =az+ra; +2t
utd, =as—saz+2ray—(t+rs)a;+3r* —2st
ubaly, = ag+ras+ray+r’ —tas —t> — 2st

ulby =by+12r

u4b2 =by+rby+ 612
Ul = bg+2rby+r’by +4r°
uby = bg+3rbg+3r’bs+r3by +3r*

4.

u'c, =cs
ubcl, =g
u?A =A
-I .
J =1

Table 1.1: Change-of-variable formulas for Weierstrass equations

to E at P), and let R be the third point of intersection of L with E. We know that the
third point of intersection exists, according to Bézout’s theorem [10, Theorem 10, p.10].
Let L' be the line through R and &. Then L’ intersects E at R, ¢, and a third point. We
denote that third point by P+ Q. Explicit formulas for addition of points P = (xp,yp) and
Q = (x0,yo) can be found in [43, Group Law Algorithm 2.3]. From those it can be easily
seen that if P and Q are defined over a field K, then P + Q is also defined over the same

field K. This addition gives us an abelian group structure on E(K).

Theorem 1.0.5 (Mordell-Weil). Let K be a number field and let £ be an elliptic curve

defined over K. Then the group E(K) is finitely generated abelian group.

As we can see, the theorem tell us that the group E(K) is finitely generated, which

together with the structure theorem for finitely generated abelian groups gives that
E(K) = Z" S E(K)ors,

where r > 0 is an integer which we call the rank of E over K and E(K),,,s is the torsion

subgroup, the group of elements of finite order.
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In Chapter 6 of this thesis we will focus on the torsion subgroup, specifically on the
torsion subgroup of elliptic curves defined over a quadratic field K. We mention some

famous results on torsion of elliptic curves.

Theorem 1.0.6 (Mazur [32]). Let E be an elliptic curve defined over Q. Then E(Q) is

one of the following 15 groups

 Z/nZ, n=1,...,10,12,

« /22 7)2n7, n=1,2,3,4.
Theorem 1.0.7 (Kamienny, Kenku, Momose [20,26]). Let E be an elliptic curve defined
over a quadratic field K. Then E(K) is one of the following 26 groups

* Z/nZ, n=1,...,16,18,

* Z2LSZL/2nZ, n=1,...,6,

* Z/3Z&®Z)3nZ, n=1,2,

s ZJAZSZ/AL.

The previous theorem tells us what are the possible torsion subgroups of all elliptic
curves over all quadratic fields, but tells us little about what will happen if we fix a certain
quadratic field. We will try to give an answer to that question in Chapter 6.

Now we introduce the definition of an isogeny of an elliptic curve, as this will be the

center of our study in Chapter 7.

Definition 1.0.8. Let £; and E; be elliptic curves. An isogeny from E; to E, is a non-
constant morphism ¢ : Ey — E; satisfying ¢(OF,) = Of,. If there exists an isogeny

¢ : E; — E», then we say that elliptic curves E| and E, are isogenous.

Example 1.0.1. Let E be an elliptic curve defined over a number field K and let n be an
integer. The morphism
[n]:E—E
P+P+...+P,ifn>0
| —

n-times

PP =3 1Zn)(=P), ifn <0

\ﬁ’ ifn=0
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is clearly an isogeny, as the addition formulas are given as K—rational functions.

It turns out that every isogeny is automatically a homomorphism, which is stated in

the following theorem.

Theorem 1.0.9. ([43, Theorem I11.4.8]). Let ¢ : E; — E; be an isogeny. Then

¢(P+Q)=0(P)+¢(0),
forall PO € E;.

Corollary 1.0.10. ( [43, Corollary I11.4.9]). Let ¢ : E; — E; be an isogeny. Then
Ker¢p = ¢~'(0)
is a finite group.

If we have an isogeny ¢ : E; — E; such that Ker¢ = ¢ ~!( &) is a cyclic group of order
n, we say that ¢ is an n—isogeny. The following proposition introduces another kind of

relationship between isogenies and finite subgroups of E.

Proposition 1.0.11. ( [43, Proposition 111.4.12]). Let E be an elliptic curve and let ®
be a finite subgroup of E. There are a unique elliptic curve E’ and a separable isogeny

0 : E — E' satisfying Ker¢ = ®.

For the end of this chapter, we give the following theorem that tells us which are the

possible values of n for elliptic curves defined over the field of rational numbers.

Theorem 1.0.12 (Kenku, Mazur [22-25,33]). Let E be an elliptic curve defined over Q

with a rational n—isogeny. Then
ne{l,...,19,21,25,27,37,43,67,163}.

There are infinitely many elliptic curves up to Q—isomorphism with a rational n—isogeny
over Q for

ne{l,..,10,12,13,16,18,25}

and only finitely many for other values of n.



2. QUADRATIC TWISTS OF ELLIPTIC

CURVES

In this chapter we give the definition of a quadratic twist of an elliptic curve and we prove
some important properties of twists that will be of importance to us in the subsequent

chapters.

Definition 2.0.1. Let E be an elliptic curve defined over a number field K. A twist of E

over K is a smooth curve that is isomorphic to E over K.

Example 2.0.1. Let E be an elliptic curve given by a Weierstrass equation

and let K(+/d) be a quadratic extension of K, where d is squarefree. The curve
EY: dy’ = f(x)

is a twist of E over K and the isomorphism ¢ : EY — E is given by ¢ (x,y) = (x,yV/d).

We will refer to the twists described in this example as quadratic twists.

Proposition 2.0.2. ( [43, Exercise 10.16]). Let K be an algebraic number field and
L = K(+/d) its quadratic extension. Let E be an elliptic curve defined over K. Then
we have

r(E(L)) = r(E(K)) +r(EY(K)).
Proof. Let E be an elliptic curve with its short Weierstrass equation

E: y2 = x> +ax+b,
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and let E9 be its quadratic twist given by
E¢: dy2 = x> +ax+b,

where a,b € K. Let ¢ be the generator of Gal(L/K). Note that the points (x,y) € E4(K)
correspond to the points (x,yv/d) € E(L), where x,y € K. We will first prove the inequality

r(E(L)) > r(E(K)) +r(EY(K)).

If r(E(k)) = 0 or r(E%(k)) = 0, the claim trivially holds. If E and E“ have positive ranks,
then we need to prove that any two points of infinite order coming from E(K) and E%(K)
are necessarily independent. Let P; € E(K) and P, € E?(K) be two such points. If they

were not independent, we would have o, B € Z, o, B # 0, such that
aP +BP,=0.

Acting with ¢ to this equation we get
aP —pp =20,

because 6(P;) = —P;. Now we easily get @ = B = 0, which is a contradiction.

Now we want to prove
H(E(L)) < r(E(K)) + r(E(K)).
Let us denote | = r(E(K)), r» = r(E*(K)), r = r(E(L)), which means that we can write
E(K)/E(K)iors = (P1,..., P,),
EYK)/EY(K)tors = (Pry1s s Pryira)s

E(L)/E(L)ors = (T1, ..., T,).

Suppose that P = (x; +x2v/d,y; +y2v/d) € E(L) is a point of infinite order. Direct cal-
culation gives

P+o(P) € E(K), P—o(P) € E4(K),

so we have

2P € E(K) + EY(K).
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It follows that
2(T,....,T;) JE(L)sors

is a subgroup of

(Pt Pritry) [E(L)tors-
Therefore, (Py, ..., Py +r,) has finite index in E(L)/E(L);ors, and r(E(L)) < r(E(K)) +
r(EY(K)). u

Proposition 2.0.3. Let E be an elliptic curve defined over K and let L = K(1/d) be a

quadratic extension of K. Then
E(L) @) =E(K)@2)®E*(K) ),

where E¢ is a quadratic twist of E over K and E(K) (/) 1s the subgroup of E (K) of points
of odd order.

The proof of this proposition is very similar to the proof of Proposition 2.0.2, if we

exchange the points of infinite order with points of odd order.

Proposition 2.0.4. Let E be an elliptic curve defined over K and let d € K be squarefree.
Then
E(K)[2) = E*(K) 2].

Proof. Let
E:y =x+ax+b,

and

E?: y2 = x> +ad*x+bd’.
Recall that P € E(K) is a point of order 2 if and only if y(P) = 0, i.e. P = (¢,0), where
t € K is a root of x> 4+ ax + b. Furthermore, 7 is a root of x> 4+ ax+ b if and only if td is a
root of x> 4 ad’x + bd>. Hence, the number of roots of x> + ax+ b and x> + ad’x + bd? is
the same, so we have E(K)[2] = E4(K) [2]. [

In Chapter 6 we will use Propositions 2.0.2, 2.0.3 and 2.0.4 in order to obtain the
rank and torsion of an elliptic curve over a quadratic field and the rank and torsion of the
Jacobian variety of an elliptic curve, for which the claims are also true. The Jacobians

will be defined later, in Section 5, Theorem 5.0.4.



3. MODULAR CURVES

The goal of this chapter is to define modular curves which will be moduli spaces of iso-
morphism classes of elliptic curves with a certain (torsion) structure. We will be using
them throughout, as examining the points on those curves over an algebraic number field

K can give us all elliptic curves over K with some specific property.
Definition 3.0.1. We define the modular group SL,(7Z) as

a b
SLy(Z) = ta,b,c,d €7, ad—bc=1
c d

We also define some subgroups of the just defined modular group.

Definition 3.0.2. Let n € N. The principal congruence subgroup of level  is

a b 10
I'(n)= € SLy(Z):
c d c d 0 1

(mod n)

A subgroup I" of SL,(Z) is said to be a congruence subgroup if I'(n) < T, for some n € N.

If n is the smallest such number, we say that I" is a congruence subgroup of level n.

We now give two very important definitions. The first one is of two congruence sub-
groups that we will use in the second definition, the definition of modular curves associ-

ated to those subgroups.

Definition 3.0.3.
a b a b * %
I'o(n) = €SLy)(Z): = (mod n) 2,
c d c d 0 =
a b a b 1 =*
[(n)= €SIy (Z): = (mod n)
c d c d 0 1

10
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Note that we have

F(n) <TI'i(n) <Ty(n) <SL)(Z).

Before proceeding with the definition of a modular curve, we have to define the action

of the modular group SL,(7Z) on the upper half plane 7. Let T be an element of 7 and

a b
Y= be an element of SL,(7Z). We define the action as
c d
(1) = a b . at+b
ne = ¢ d Cct+d’
The formula
Im(7)
I =—
m(1(%) = o o

which can be found in [12, Exercise 1.1.2(a)], confirms that this truly is an action.

Definition 3.0.4. For a congruence subgroup I' < SL,(Z) we define the modular curve
Y () as the quotient

Y(I) =D\ ={'t:te X},
where 7 = {t € C: Im(t) > 0} is the upper half plane. Therefore, for the already men-
tioned congruence subgroups I'g(n),I';(n) and I'(n) we can define the following modular

curves

Yo(n) =To(n)\7,

Yi(n) =T1(n)\o2,

Furthermore, we will define sets of isomorphism classes of elliptic curves with certain
torsion structures and then see a relationship between those and modular curves defined

in Definition 3.0.4.
Definition 3.0.5. Letn € N.

* Let (E,C) be an ordered pair, where E is a complex elliptic curve and C is a cyclic
subgroup of E of order n. We say that two such pairs (E,C) and (E’,C’) are equiv-
alent and we write (E,C) ~ (E',C’) if there exists an isomorphism from E to E’
which maps C to C'. We denote by Sy(n) the set of all equivalence classes with

respect to ~ .

11
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* Let (E,Q) be an ordered pair, where E is a complex elliptic curve and Q is a point
on E of order n. We say that two such pairs (E,Q) and (E’,Q’) are equivalent and
we write (E,Q) ~ (E’, Q') if there exists an isomorphism from E to £’ which maps

Q to Q'. We denote by S (n) the set of all equivalence classes with respect to ~ .

* Let (E,(P,Q)) be an ordered pair, where E is a complex elliptic curve and (P,Q)
is a pair of points on £ which generate the n—torsion subgroup of E with Weil
pairing e, (P, Q) = er . We say that two such pairs (E,(P,Q))and (E',(P',Q")) are
equivalent and we write (E, (P,Q)) ~ (E’,(P', Q")) if there exists an isomorphism
from E to E' which maps P to P’ and Q to Q. We denote by S(n) the set of all

equivalence classes with respect to ~ .

Theorem 3.0.6. There exist bijections
Q)() : So(n) — Yo(n),

(])1 ZSl(I’L) —>Y1(n),

¢ :S(n)—Y(n).

For in detail description of the bijections and the sketch of the proof one can look
at [12, Theorem 1.5.1], but the detailed proof can be found in [45, Teorem 3.2.2]. We will
not be including those here, since a lot of additional information, which is not the main
focus in this thesis, would be necessary.

To compactify the modular curve Y (I') = I'\.7Z, we define 7 = 77 UQU {e} and
we take the quotient X(I') = I'\oZ* = Y(I') U\ (QU {0} ).

The compactified modular curves Xo(n) =o(n)\o¢*, X, (n) =T (n)\#* and X (n) =
['(n)\#* turn out to be algebraic curves. Modular curves are in fact compact Riemann
surfaces, so such polynomials with complex coefficients exist by a general theorem of
Riemann surface theory, but Xy(n) and X; (n) are in fact curves over the rational numbers,
meaning the polynomials can be taken to have rational coefficients.

The points of the set X (I")\Y (I") are said to be cusps. It can be shown that the set of
cusps is finite, and for the modular curves in this thesis, the exact elements of those sets

are known.

12
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Theorem 3.0.6 tells us that over the field K (which will in this thesis always be an
algebraic number field), each point on X;(n)(K) is either a cusp or it parameterizes an
elliptic curve with torsion Z/nZ over K; and for the points on Xy(n)(K), those are either
cusps or they parameterize an elliptic curve over K with an n—isogeny. Now it is clear
that studying elliptic curves with certain torsion subgroup or isogeny comes down to
examining the points on modular curves Xy(n) and X; (n).

In the subsequent chapters, these curves will be of great importance, since torsion

subgroups and isogenies of elliptic curves will be the center of our study.

13



4. ELLIPTIC CURVES OVER LOCAL

FIELDS

In this chapter we will describe some properties of rational points on elliptic curves de-
fined over a field that is complete with respect to a descrete valuation. We will use the
mentioned results throughout the thesis, as we will almost always, without explicitly men-
tioning it, be working with base changes to QQ, of elliptic curves defined over Q. This
chapter will mainly follow some sections of [43, Chapter VII], although the notation will
mostly be different.

Let E be an elliptic curve over a number field K and denote by X the set of all finite
primes of K. For each p € ¥, K, will denote the completion of K at p and k, = Ok, /()
the residue field of p, where Ok, is the ring of integers of K}, and 7 is a uniformizer of
Ok, The discrete valuation in respect to which K, is complete, we will denote by v, or

just v if it is clear which p we are referring to. Let the equation for E over K be
.2 _ 3 2
E: y+axy+azy=x"+ax"+asx+ag.

With the substitution x — u_zx, Vi u‘3y, choosing the suitable value of u, we can make
all the coefficients a; to be elements of ﬁKp. Now for the discriminant A of E we have
v(A) > 0. The model for E with the minimal value of v(A) will be called the minimal
model. In Chapter 8 we will often be searching for minimal models of elliptic curves for
some primes p, since it will allow us to deduce some properties of reduction of E at p.
In essence, if a; € Ok, and v), (A) < 12, for p # 2,3, then the equation for E is minimal

at p. For char(kp) = 2 or 3 (and for arbitrary K), Tate’s algorithm [44] can be used to

14
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determine whether the equation is minimal.

4.1. REDUCTION MODULO T

In this section we will be looking at the reduction modulo the uniformizer 7. There is a
natural reduction map

ﬁ]{p — kp = ﬁ[{p/(ﬂ')

t> 1,

which we can apply to the coefficients of the minimal model of the equation for E. In

other words, if we start with a minimal model
E: y2 +aixy+azy = x>+ apx® + asx + ag,
reducing its coefficients a; € R modulo 7, we obtain the equation
E: Yy’ +aixy+azy = x> + x> + azx + dg,
for the curve E defined over k), that is possibly singular. This defines a reduction map

E(Kp) — E(kp)

P—P.

As mentioned, the curve E /k, can be singular, but the set of all nonsingular points

E (k) forms a group [43, I11.2.5.]. Now we can define the following subsets of E(K).

Definition 4.1.1. Let E be an elliptic curve defined over K,,. We define the set of points

of nonsingular reduction as
Ey(K,) ={P€E(Kp):PeEpnkp)},
and the kernel of reduction as
E\(K,)={P€E(K,):P=0}.

Note that the definition does not depend on the initial choice of a minimal Weierstrass

equation [43, Proposition VII.1.3.b)].
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4.1.1. Good and bad reduction

Definition 4.1.2. Let E be an elliptic curve defined over K, and let E be the reduction

modulo (7) of a minimal Weierstrass equation for E. We say that
(a) E has good reduction if E is nonsingular,
(b) E has multiplicative reduction if E has a node,
(c) E has additive reduction if E has a cusp.

In the last two cases we say that E has bad reduction. If E has multiplicative reduction,
then the reduction is said to be split if the slopes of the tangent lines at the node are in &,

and otherwise it is said to be nonsplit.

We will be needing a practical way to determine the reduction type, which is given

with the following proposition.

Proposition 4.1.3. ( [43, Proposition VIL.5.1]). Let E be an elliptic curve defined over

K, with minimal Weierstrass equation
) _ .3 2
E: y4axy+ay=x"+ayx"+asx+ag.

Let A be the discriminant and let ¢4 be the usual expression involving ay, ...,a¢ defined in

Definition 1.0.3.
(a) E has good reduction if and only if v(A) = 0.
(b) E has multiplicative reduction if and only if v(A) > 0 and v(c4) = 0.

(c) E has additive reduction if and only if v(A) > 0 and v(c4) > 0.

16
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4.2. TAMAGAWA NUMBERS

In this section we will focus on the quotient E(K,)/Eo(K,), where Ey(K},) is the set of
all points on E(K},) that do not reduce to a singular point in E(k,). We already defined
this set in Definition 4.1.1. The most important (and nontrivial) property of this quotiont

is that it is finite. The proof of this fact can be found in [42, Chapter IV].

Theorem 4.2.1 (Kodaira, Néron). Let E be an elliptic curve defined over K,. If E
has split multiplicative reduction over K, then E(K},)/Ey(K,) is a cyclic group of or-
der v(A) = —v(j). In all other cases the group E(K),)/Ey(K}) is finite and has order at

most 4.
Corollary 4.2.2. The subgroup Ey(K),) has finite index in E(K),).

Using the finiteness of the mentioned index, we can now define the Tamagawa number

of elliptic curves (at a specified prime).
Definition 4.2.3. The Tamagawa number of E at a prime p is the index
cp=[E(Kp) : Eo(Kp)]-

We define the Tamagawa number of E over K to be the product
CE/K = H Cp.
pEL

Note that the Tamagawa number of an elliptic curve depends on the field over which it is

defined. However, we will write cg instead of ¢ x wherever it does not cause confusion.

The entire Chapter 8 will be devoted to Tamagawa numbers of elliptic curves with
some torsion subgroup or isogeny, so more interesting properties of Tamagawa numbers

will be mentioned there.
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5. HYPERELLIPTIC CURVES AND THEIR

JACOBIANS

In this section we will define hyperelliptic curves and the Jacobian variety of a curve C
defined over a perfect field K. We will mention the importance of Jacobians of hyper-
elliptic curves in general, as well as in Chapter 6 and give some well-known results that
we will be using throughout. In the end, we will introduce Mumford representation of
divisors on a curve, i.e. of points on the Jacobian. This is the representation in which
Magma [2] stores and works with the points on the Jacobian, which will be of use to us in
Chapter 6 when computing the Jacobians over Q of hyperelliptic modular curves X (n),

forn=13,16,18.

Definition 5.0.1. A hyperelliptic curve over a field K such that char(K) # 2 is an alge-
braic curve given by the equation
¥ =f(),

where f € K|[x| is a polynomial of degree n > 4 with n distinct roots.

Remark 5.0.2. A more general definition would be the one where we define a genus
g hyperelliptic curve over K (of any characteristic) with the equation y? + h(x)y = f(x),
where h, f € K [x] ,deg(f) <2g+2,deg(h) < g+ 1. In the case of characteristic different
from 2 we can always find a model of the form y? = f(x) for the curve, so in this thesis

we will always assume that & = 0.

The degree of the polynomial f determines the genus of the curve; polynomials of
degree 2g+ 1 and 2g 42 give a curve of genus g. All curves of genus 2 are hyperelliptic.
Let K be a perfect field and C a curve defined over K. We define a group Div(C) as the

free Abelian group generated by points in C(K), the set of points on the curve C defined

18
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over the algebraic closure K of K. The elements of that group are called divisors. In other
words, a divisor D is a Z—linear combination of points on C, i.e.,
D=Y npP,

peC
where np € Z and n,, = 0 for all but finitely many P. The absolute Galois group Gal(K/K)
acts on the group Div(C) in the usual manner,

D° =Y npP°,

pPeC

for 0 € Gal(K/K). The divisors that are invariant under the action of Gal(K/K) are said

to be K —rational divisors. The set of all K—rational divisors will be denoted by Divk(C).

Example 5.0.1. Let C be a hyperelliptic curve defined over K given by y? = f(x). Fix

xo € K and let yj be an element of K such that y§ = f(xo). Then the divisor

D = (xo,y0) + (x0, —y0)
is a K—rational divisor on C, i.e. D € Divg(C).

The degree of the divisor D =Y p.-npP is defined as the sum of its coefficients,
deg(D) = Z np € 2.
PeC
This gives us a homomorphism deg : Div(C) — Z. Its kernel, Div(C), is the subgroup of
divisors of Div(C) of degree 0.
Now assume that the curve C is smooth and let f be a rational function in K(C)*. We

can associate to it a divisor

div(f) =Y ordp(f)P,

PeC
where ordp(f) is the order of f in the point P. This is distinct from zero only in the

cases when P is a pole or a root of f. It is now clear that deg(div(f)) = 0 [43, Propo-
sition II.3.1], since any function f € f(C )*, for a smooth curve C, has the same number
of poles and roots, counting multiplicities. This gives a homomorphism div : K(C)* —
Div(C). We denote the image of this map by Princ(C). We define the Picard group as
the quotient Pic(C) = Div(C)/Princ(C). We note that we can also write the mentioned
homomorphism as div : K(C)* — Div?(C) and we can define the quotient Pic®(C) =
DiV°(C) /Princ(C).
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Definition 5.0.3. We say that the divisors D and D’ are linearly equivalent, and we write
D ~ D', if D and D' have the same image in the Picard group Pic(C). We denote that

image with [D].

Theorem 5.0.4. Let C be a curve over K of genus g. Then there exists an abelian variety

J over K of genus g such that there exists an isomorphism Pic®(C ) —J.

The abelian variety from the theorem is called the Jacobian (variety) of the curve C. It
is clear that we also have an isomorphism Pic%(C) — J(K), from the K —rational divisors

in the Picard group to the Jacobian of the curve C defined over K.

Proposition 5.0.5. Let C be a curve over K of genus g > 1 and with Jacobian J. Let [Dy]

be a class of K—rational divisor Dy of degree 1. Then the map
i[Do] :C—=J,P— [P—D()]
is injective.

The idea now is to get some information about C(K) using the mentioned injection to
J(K) and some results about the group structure of J(K). We know that J is an abelian
variety, which means that J(K) is an abelian group. The following result tells us more

about the group structure.

Theorem 5.0.6 (Mordell-Weil). Let J be the Jacobian of some curve C defined over K.

The group J(K) is finitely generated.

Using this theorem and the structure theorem for finitely generated abelian groups, we
know that
J(K)ZZ" ®J(K)ors-

If we specify the field K to be the field of rational numbers QQ, we can say even more about
the torsion subgroup J(Q);,rs. Let p be a prime such that the curve E has good reduction

in p so that we have the mapping
C(Q) = C(F,), P—P.

Proposition 5.0.7. Let p be a prime of good reduction for C. Then J also has good

reduction at p and the reduction map J(Q) — J(F,) is a group homomorphism. If p >
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3, then the restriction of the reduction map to J(Q);,s is injective. Furthermore, the

following diagram commutes.

Proposition 5.0.7 is a very useful result since it gives an upper bound for |[J(Q)ors|

using the fact that |J(Q);ors| divides |J(F )] for all p of good reduction.

5.1. MUMFORD REPRESENTATION

As mentioned, in this subsection we will explain the Mumford representation of the divi-
sors on a curve, the representation in which the computer algebra system Magma stores
them and works with them. We will be interested only in divisors of hyperelliptic curves
in this thesis, hence we first have to learn how to differentiate between different kinds of
hyperelliptic curves, since the way in which we obtain divisors on the curve from divisors
in Mumford representation will be slightly different for each of the types.

If a hyperelliptic curve C has a unique point at infinity oo, we say that C is an imaginary
hyperelliptic curve. This happens when the defining polynomial f is of odd degree. If f
has even degree, then C has two points at infinity, which we denote by co_ and oo, and

we say that C is a real hyperelliptic curve.

Definition 5.1.1. We say that a divisor D of C is reduced if it has the form

k
D=} Pp,
i=1

with k < g, where g is genus of C and P; # P;, where P = (a,b) = (a,—b). If C is an
imaginary hyperelliptic curve, then we require P; # oo, and if C is a real hyperelliptic

curve, then P, can be one of the points at infinity.

If the curve C is a real hyperelliptic curve, it has 2 points at infinity, co_ and oo. If

the curve C has a K—rational point we can always move it to the line at infinity so that the
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points at infinity of the curve are K—rational. Now we see that when we allowed some P,
in Definition 5.1.1 to be a point at infinity in the case of a real hyperelliptic curve, it will

not affect the K—rationality of the divisor.

Definition 5.1.2. If C is an imaginary hyperelliptic curve, we define Do, = goo, where g

is genus of C. If C is a real hyperelliptic curve, then D, = g(oo_ +ooy).

Note that we will only be working with the case g = 2, as only the curves Xy(n), for
n = 13,16,18 will be of interest in this thesis.

For each divisor D € Div?(C) it can be shown that it is equivalent, in the sense of
Definition 5.0.3, to a unique divisor Dy — D, where Dy is reduced. Therefore, every
class in the quotient group J is represented by exactly one such divisor, see [34, Theorem
47] for imaginary hyperelliptic curves or [14, Proposition 1] for real hyperelliptic curves.

There is a convenient representation of such divisors, which is called the Mumford
representation. A divisor in Mumford representation is an ordered triple (a(x),b(x),d) of

polynomials a,b € K [x] such that:

* a(x) is monic of degree at most g;

* b(x) has degree at most g+ 1 and a(x) divides b(x)?> — f(x), where f(x) is the
defining polynomial of C;

s d is a positive integer with deg(a(x)) < d < g+ 1, such that the degree of b(x)?> —
f(x) is less than or equal to 2g +2 — d + deg(a(x)).

The conditions above ensure that we can get a unique divisor on J from a divisor in
Mumford representation, see [7, Theorem 4.143 (iii)] for imaginary hyperelliptic curves
or [14] for real hyperelliptic curves.

We will now describe a method, obtained from [2], on how to retrieve the point on the
Jacobian from its Mumford representation.

For a triple (a(x),b(x),d) in Mumford representation we define A(x,z) as the ho-
mogenisation of the polynomial a(x) of degree d and B(x, z) as the homogenisation of the
polynomial b(x) of degree g+ 1, where g is a genus of C, in our case g = 2.

Now, by solving the equations

A(X,Z) :07 yzB(x,z),
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we get the points P, = [x;,y;, 1], i=1,...,d, in projective coordinates. Note that the number
of points is exactly d, as the polynomial A(x,z) is of degree d (which will be even in our
case).

The point on the Jacobian represented by (a(x),b(x),d) is then the divisor class
[P] =+ ... +Pd —doo] ,
if there is a single point oo at infinity, or
d
Pi+..+P;— §(°°+ +oo_ )|,

if there are two points ey and co_ at infinity. We will use this method in Chapter 6,

precisely, in Proposition 6.2.9 and Proposition 6.2.10.
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6. TORSION GROUPS OF ELLIPTIC
CURVES OVER QUADRATIC FIELDS

Q(Vd),0 < d < 100

The idea of this chapter is to examine the methods that can be used to determine all pos-
sible torsion subgroups over an arbitrary, but fixed, quadratic field. We will mostly follow
the chapters in the author’s paper [47]. In this chapter we will use the same notation as in
previous chapters; for an elliptic curve E defined over a number field K, we will denote
by E(K) the set of all K—rational points on E, and by E (K);,s the torsion subgroup of E.

We already mentioned the famous result by Kamienny, Kenku and Momose [20, 26]
concerning possible torsion subgroups of elliptic curves defined over any quadratic field,

which are the following 26 groups:
Z/nZ, n=1,...,16,18,
L2 DL)2nZ, n=1,...,6,
Z)3Z®ZL)3nZ, n=1,2,
LJAZ B LJAL.

While this theorem settles the question on what are the possibilities for the torsion sub-
group over all quadratic fields, we are interested in what happens when we fix a certain
quadratic field. In order to see what happens over a fixed field, one would have to go
through each of the 26 groups mentioned above and check whether that is a possible
torsion subgroup or not.

First we are going to see why every group mentioned in Mazur’s theorem has to appear

as a possible torsion subgroup over all quadratic fields, and what happens with the groups
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Z)32®Z)3nZ,n=1,2,and Z/4Z & Z/4Z. For the rest of the groups we will follow the
methods described in [19].

From now on, let K be a fixed quadratic field. Let Y;(m,n) be the affine modular
curve whose every K—rational point corresponds to an isomorphism class of an elliptic
curve together with an m—torsion point B, € E(K) and an n—torsion point P, € E(K)
such that P, and P, generate a subgroup isomorphic to Z/mZ & Z/nZ. Let X;(m,n) be
its compactification (the same curve with adjoined cusps). We denote X;(1,n) by X;(n).
The mentioned modular curves were defined in Chapter 3.

More precisely, what we need to do in order to determine whether an elliptic curve
with torsion Z/nZ ® Z/mZ over K exists, for the remaining 26 groups, is to determine
whether there are K —rational points on X (m,n) that are not cusps. These modular curves
are either elliptic or hyperelliptic.

If the modular curve X;(m,n) is elliptic, we compute its rank. If the rank is positive,
there are infinitely many elliptic curves over K with the given torsion subgroup, as the
number of cusps is finite. If the rank is 0, we have to compute the torsion subgroup and
check whether any torsion point corresponds to a K —rational point on the modular curve
that is not a cusp.

If the modular curve X;(m, n) is hyperelliptic, we compute the rank of the Jacobian of
the curve. If the rank is 0, we also have to check whether any torsion point arises from
a K—rational point on the modular curve that is not a cusp. If the rank is positive, the
problem becomes more difficult. More about this can be found in [19].

One could also take a look at [ 18] for examples of quadratic fields where some of the
groups, namely Z /27 & Z/10Z, Z/2Z & 7127, Z./15Z, Z/11Z and Z /147, appear as

torsion subgroups.

6.1. GROUPS FROM MAZUR’S THEOREM AND
Z/3Z@Z/3nz, n=1,2, Z/4Z@Z/4Z

In this section, we are going to show that every group mentioned in Mazur’s theorem has

to appear as a possible torsion group over any quadratic field K and we are going to see
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under which conditions the groups Z/3Z & Z/3nZ,n = 1,2, and Z /47 & 7./4Z appear as
a torsion of an elliptic curve over some quadratic field.

Let E be an elliptic curve and denote by pg , : Gal(K/Q) — GLy(Z/nZ) the mod n
Galois representation attached to E.

If P,P' is a basis for E[n], the subgroup of E of points of order n, and if P is a point

1 b
of order n in E(Q), then pg ,(0) = ,beZ/nZ,d € (Z/nZ)* for every o €
0 d

Gal(K/Q), with respect to the basis {P, P'}.
We define a subgroup of GL,(Z/nZ),

1 b
['(n)= :beZ/nl,d € (Z/nZ)" ;,
0 d
which corresponds to X (n), i.e. the mod n representations of elliptic curves parameter-
ized by the points on X (n) are elements in I'j(n), with an appropriate choice of basis.

Similarly, we define a subgroup

1 b
I (2,2n) = . b€ 2Z)2nZ,d € (Z)2nZ)" } |
0 d

which corresponds to X (2,2n), in the sense described above.

For any of the groups Z/nZ or Z/27&® Z/2nZ appearing in Mazur’s theorem, we have
that the corresponding modular curve X (n) or X;(2,2n), respectively, is of genus 0. Now,
with X = X (n) or Xg = X;(2,2n) in [48, Lemma 3.5], using the same arguments as in
the proof of the lemma, but taking the base field to be a quadratic field K instead of Q, we
have that there are infinitely many elliptic curves E over K such that pg ,(Gal(K/Q)) is
conjugate (not just contained) in GL,(Z/nZ) to I'1(n) or I'1(2,2n), respectively, proving
our claim.

Now, we will focus on the groups
Z/3Z®ZL)3nZ, n=1,2,

YALYASYALYA

From the properties of the Weil pairing, we know that Z/nZ x Z/nZ C E(K) only if
Q&) C K.
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Hence, Z/3Z x 7Z./3nZ C E(K), n = 1,2, only when K D Q(&;) = Q(v/—3) and
ZJAZ x 7/AZ C E(K) only if K D Q(i). Moreover, the mentioned groups are the only
groups, except the ones from Mazur’s theorem, that appear over Q(v/—3) and Q(i), re-
spectively [36,38].
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6.2. TORSION OVER Q(/17)

We will now demonstrate how to carry out the methods mentioned at the beginning of this
chapter over the quadratic field Q(+/17). We chose Q(+/17) because 17 =1 (mod 8), and
the significance of this relation will be clear later on.

As stated above, all groups from Mazur’s theorem are possible torsion subgroups over
Q(+/17), while the groups Z/3Z ® Z/3nZ, n = 1,2, Z./4Z & 7./AZ are not.

For the rest of the groups we will follow the methods from [19] described above.

The equations for X (m,n) can be found in [1,41].

All computations in the following propositions will be done in Magma [2]. Compu-
tations for this Chapter can be found at http://web.math.pmf.unizg.hr/~atrbovi/

magma .txt or in Appendix A.

Proposition 6.2.1. There are infinitely many elliptic curves with torsion Z/117Z over

Q(V17).

Proof. To show this, we have to prove that the modular curve X (11) defined over Q(+/17)
has infinitely many points. It will suffice to see that the rank is positive, since the number

of cusps on X;(11) is finite. For the modular curve
X (11): y? —y=x>—x%
we compute

rank(X1(11)(Q(V17))) = 1

in Magma. Now we can conclude that there are infinitely many elliptic curves with torsion

Z/11Z over Q(v/17).
We can also compute a generator of the group X;(11)(Q(+/17)) (modulo the torsion
subgroup), which is

<;(—xﬁ7+1),116(\ﬁ7+7)>.
m

Proposition 6.2.2. There are infinitely many elliptic curves with torsion Z/147Z over

Q(V17).
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Proof. For the modular curve
R _ .3
Xi(14): y"+xy+y=x"—x

we compute

rank(X, (14)(Q(v17))) = 1.

Using similar reasoning to the one in Proposition 6.2.1 we conclude that there are in-
finitely many elliptic curves with torsion Z /147 over Q(v/17).
We can also compute a generator of the group X;(14)(Q(+v/17)) (modulo the torsion

subgroup), which is
1
<2(\/ 17+3),—\/17—5> .

Proposition 6.2.3. The group Z/15Z cannot be a torsion group of an elliptic curve over

Q(V17).
Proof. For the modular curve
X1(15): Y +xy+y=x>+x%,

we compute

rank(X,(15)(Q(v'17))) = 0.

Hence, we only have to show that
Y1 (15)(Q(v17)) = 0,

i.e. that there are only cusps in X (15)(Q(v/17)).

The x—coordinates of the cusps on X;(15) satisfy the equation
x(x41) (433 + 40 + 20+ 1) (x* = 7% —6x> +2x+ 1) = 0.
So, the set of all Q(+/17)—rational cusps is
X1 (15)(Q(VIM)\11 (15)(Q(V17)) = {0,(0,0),(0,~1),(~1,0)}.

We compute

X1 (15)(Q(V17)) 2 Z/4Z,
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so now it is obvious that all points on the modular curve X;(15) defined over Q(+/17)

are cusps. Therefore, Y1(15)(Q(1/17)) = 0, so there are no elliptic curves with torsion
Z/15Z over Q(v/17). [

Proposition 6.2.4. There are infinitely many elliptic curves with torsion Z /27 & Z/10Z

over Q(v/17).

Proof. For the modular curve
X1(2,10) 0 y* = +x* —x,
we compute
rank(X;(2,10)(Q(V'17))) = 1.

We can also compute a generator of the group X;(2,10)(Q(+/17)) (modulo the torsion

subgroup), which is

(V17+4,3V17+12).

Proposition 6.2.5. There are infinitely many elliptic curves with torsion Z /27 ® Z /127,
over Q(v/17).

Proof. For the modular curve
X1(2,12): y* =x> —x* +x,
we compute

rank(X1(2,12)(Q(v/17))) = 1.

We can also compute a generator of the group X;(2,12)(Q(+/17)) (modulo the torsion

subgroup), which is
1 1
(2(—\/ 17+9), 5(—3\/ 17+ 19)> .

Now we have determined whether Z/nZ & 7 /n’Z is a possible torsion of an elliptic

curve over Q(v/17), for all modular curves X;(m,n) that are elliptic curves. To determine
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if Z/nZ, n=13,16,18, are possible torsion groups is somewhat more difficult, since the
corresponding modular curves are hyperelliptic curves.
The groups Z/nZ, n = 13,18, are generally easier to deal with over quadratic fields,

since we have the two following results that can be found in [3,27].

Theorem 6.2.6 (Bosman, Bruin, Dujella, Najman; Krumm). If X;(13) has a point de-
fined over Q(+/d), then:

1. d>0,
2. d=1 (mod 8).

Theorem 6.2.7 (Bosman, Bruin, Dujella, Najman; Krumm). If X;(18) has a point de-
fined over Q(v/d), d # —3, then:

1.d>0,
2. d=1 (mod 8),
3. d#2 (mod 3).

Now it becomes clear why we chose the field Q(v/17), as we did not want to rule out

the existence of the groups Z/nZ, n = 13,18, as possible torsion subgroups.
Proposition 6.2.8. The group Z/13Z is a possible torsion over Q(1/17).
Proof. Let Ji(13) be the Jacobian of the hyperelliptic curve

X1 (13): y? =0 =28 4t — 2 +6x% —dx+ 1

and let J{7(13) be its quadratic twist by 17, which becomes isomorphic to J;(13) over
Q(v/17). We compute
rank(J;(13)(Q)) =0,

rank(J17(13)(Q)) = 2.

Now, we have

rank(J1(13)(Q(V17))) = rank(J1 (13)(Q)) + rank(J" (13)(Q)) = 2.
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11
By searching for points on X;(13)(Q(+/17)) in Magma, we find a point <2, §V 17>

on the curve.

Since the x—coordinates of the cusps on X;(13) are the solutions of the equation
x(x—1)(* —4x> +x+1) =0,
the Q(v/17)—rational cusps are
X1(13)( QI (13)(Q(V17)) = {eoy 0, (0,£1), (1, £1)}.

11
We conclude that the point <2, g\/ 17> mentioned above is not a cusp and so the elliptic
curve over Q(1/17) with a torsion subgroup Z/137Z exists. [

Unlike in the previous propositions, we do not have infinitely many elliptic curves with
torsion Z/13Z, since by Falting’s theorem (Theorem 1.0.2) the modular curve X; (13) can

only have finitely many points over a number field.

Proposition 6.2.9. The group Z/16Z cannot be a torsion group of an elliptic curve over

Q(V17).
Proof. Let Ji(16) be the Jacobian of the hyperelliptic curve
X1 (16) 1 y* =x(x* +1)(x* +2x — 1)

and let J{7(16) be its quadratic twist.

We compute
rank(J,(16)(Q(V'17))) = rank(J1(16)(Q)) + rank(J{ (16)(Q)) = 0.

Since the rank is zero, we need to find the cusps in X;(16)(Q(+/17)) and the torsion
subgroup of J1(16)(Q(+/17)) in order to determine if there exists a point on the Jacobian
that arises from a point on the modular curve that is not a cusp.

As the x—coordinates of the cusps satisfy
x(x—1)(x+1)(2—2x—1)(x%4+2x—1) =0,
the cusps on X;(16)(Q(+/17)) are

X (16)(Q(\/ﬁ))\yl (16)((@(\/ﬁ)) = {ooa (Oa0)7 (1,:|:2), (_17i2)}'
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We also compute

J1(16)(Q)sors 2 Z/2Z.H Z/10Z,
I7(16)(Q)rors 2 Z/22.® L2,

The set of points of odd order on the Jacobian J; (16) defined over Q(+/17) is
H(16)(QWVID)) = N1(16)(Q) ) ©117 (16)(Q) ) = Z/5Z,
and the 2—torsion subgroup is
J1(16)(Q(V17))1ors = Z)2Z.® 7] 2.

Thus, J1(16)(Q) & Z/27Z & Z,/10Z and J;(16)(Q) 2 J; (16)(Q)yors.

In Magma, we find 20 divisor classes in Mumford representation [7],
(1,0,0), (x*+2x+1,2x,2), (x*+2x+1,-2x,2), (x* —2x+1,4x—2,2),

(X —2x+1,—4x+2,2), (x+1,2,1), (x+1,-2,1), (x,0,1),
(x—1,2,1), (x—1,-2,1), (®+2x—1,0,2), (x* +x,2x,2), (x> +x,—2x,2),
(x* —1,2x,2), (x* —1,-2x,2), (x* —1,2,2), (x* —1,-2,2),
(x*41,0,2), (x> —x,2x,2), (x* —x,—2x,2).

The first divisor class represents the point at infinity, and for the rest of the divisor
classes in Mumford representation, we follow the methods described in [2] in order to
retrieve the point on the Jacobian from its Mumford representation. We presented the
mentioned method in detail in Section 5.1.

For example, for the point (x? 4 2x -+ 1,2x,2) on J;(16)(Q(+/17)) in Mumford repre-
sentation we have

A(x,2) = x>+ 2xz+ 22,
B(x,z) = 2xz2,
and Py = P, = (—1: —2:1), so we conclude that the point (x> +2x + 1,2x,2) represents
the divisor class [2(—1: —2: 1) —2e0] on the Jacobian J;(16)(Q(v/17)).
By doing so for every divisor class in Mumford representation, one can check that all

divisor points correspond to the cusps in X;(16)(Q(+/17)), so we conclude that Z/16Z

cannot be a torsion group of an elliptic curve over Q(1/17). |
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Proposition 6.2.10. 7 /187 cannot be a torsion group of an elliptic curve over Q(v/17).
Proof. Let Ji(18) be the Jacobian of the hyperelliptic curve
X1(18) 1 y? =x0 4+ 2x° +5x* + 10 + 106 +4x + 1
and let J{7(18) be its quadratic twist. We compute
rank(J1(18)(Q(V17))) = rank(J1(18)(Q)) + rank(J" (18)(Q)) = 0.
The x—coordinates of the cusps in X;(18) satisfy the equation
x(x4+ 1) (% +x+1)(x* =3x—1) =0,
so the cusps are
Xi(18)( QI \V1(18)(Q(V1T)) = {oo 00—, (0, 1), (—1,£1)}.
On the other hand, we compute
J1(18)(Q)rors = Z/21Z,
J1(18)(Q)rors = {0}
The set of points of odd order is
J1(18)(Q(V17)) 2y = 11(18)(Q) 2 @11 (18)(Q) () = Z/217Z.
As the polynomial
Fx) = x84 2x% 4 5x* + 102> 4+ 10x% +-4x + 1

has no zeros defined over Q(+/17), we conclude that J;(18)(Q(+/17)) has no points of
order 2, and

T8 (Q(V17))1ors 2 Z./217.

The elements of J; (18)(Q(v/17))zors in Mumford representation are

(1,0,0), (1,x*+x%,2), (1,—x —x%,2), (> +2x+1,x,2), (x*+2x+1,—x,2),

34



Torsion groups over quadratic fields Torsion over Q(+/17)

(¥, 2x+1,2), (%, —2x—1,2), (x+1,%°,2), (x+1,-x",2),
(x+1,x°+2,2), (x+1,—x>=2,2), (x,x* —1,2), (x,—x* +1,2), (x,x> +1,2),
(x,—x> = 1,2), (& +x,2x+1,2), (x> +x,—2x—1,2)), (**+x,1,2),

(P +x,-1,2), (P +x+1,x—1,2), (®+x+1,—x+1,2),
and one can easily conclude that all of the points correspond to the cusps, so we obtain
our result. |

We proved the following theorem:

Theorem 6.2.11. The possible torsion subgroups of elliptic curves defined over Q(v/17)
are the following:

Z/nZ, n=1,...,14

Z)22.67)2nZ, n=1,...,6.

Remark 6.2.1. In [27, Theorem 2.7.7, 2.7.8] Krumm found a list of possible quadratic
fields Q(v/d) over which torsion subgroups Z/13Z and Z/187Z may appear, for 0 < d <
1000.

In our case, for 0 < d < 100, there are only two such fields, Q(m ), over which
7./137 appears, and Q(+/33), over which Z/187Z appears. We were able to eliminate
the rest of the fields for 0 < d < 100 using only conditions from Theorem 6.2.6 and

Theorem 6.2.7 and methods described in Proposition 6.2.8 and Proposition 6.2.10.
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6.3. TORSION OVER Q(v/d), 0 < d < 100

For every quadratic field Q(\/E), where d is a non-negative squarefree integer d # 1,
0 < d <100, we found the torsion subgroups appearing over it by using methods similar
to the ones described in Theorem 6.2.11, and those results are presented in Table 6.1. We
have chosen to consider only real quadratic fields, because we expect the same problems
to happen in the range —100 < d < 0, except with the groups Z/13Z and Z/18Z, for
which we already stated in Theorem 6.2.6 and Theorem 6.2.7 that they cannot appear as
torsion subgroups over Q(+/d), for d < 0.

Since we know that the groups from Mazur’s theorem appear as torsion subgroups, and
the groups Z/3Z ® 7 /3nZ, n = 1,2, Z./AZ & Z/4Z do not appear as torsion subgroups
of elliptic curves over Q(v/d), for 0 < d < 100, in Table 6.1 we give the list of possible

torsion subgroups within the groups
Z/nZ, n=11,13,14,15,16,18,

Z2LBZL)2nZ, n=75,6,

i.e. the rest of the possible 26 torsion subgroups over quadratic fields.

Note that the groups mentioned above appear as a torsion subgroup 37, 1, 38, 37, 6-17,
1, 35, 36 times, respectively, over all Q(v/d), where 0 < d < 100.

We were unable to determine the exact number of times that the group Z/16Z appears
as a torsion subgroup because of the following problem: computing (in Magma) the rank
of the Jacobian of the modular curve X; (16) defined over the problematic quadratic fields
listed in the table did not give a result, only the lower and the upper bound that were not
the same, and were always 0 and 2. That was a problem since it is important to know the
mentioned rank in order to know which method to use for determining whether that is a
possible torsion subgroup or not.

Also, searching for the points on the modular curve X;(16) over the same fields did

not yield a result.
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Torsion over Q(+v/d), 0 < d < 100

Fields

Possible torsion subgroups over a given field

Q(v2)

Z/nZ, n=11

Z/nZ, n=14,15
L]27B7)2nZ, n=06
Z/nZ, n=15

Z/nZ, n=11,14
Z)2257) 2L, n=5,6
Z/nZ, n=11,14,15
L]2ZS7)2nZ, n="6
Z/nZ, n=11,14,15,16
2)27.®7L)2nZ, n=15,6
Z/nZ, n=11,15
Z/nZ, n=11,15
7)20.6 T 20T, n=5,6
Z/nZ, n=14,15
L]2Z&L)2nZ, n=15
Z/nZ, n=15,16
Z)2LBL)2nZ, n=>5
Z/nZ, n=11,13,14
Z)2Z&L)20Z, n=5,6
7/nZ, n=11,14
Z)2L&L)2nL, n=>5
Z/nZ, n=11
Z]2ZS7)2nZ, n="6
Z/nZ, n=11,14,15
Z)27.®ZL)2nZ, n="6
Z)27.®7L)2nZ, n="6

Z/nZ, n= 14,15, maybe Z/16Z

7)206 T 20T, n=>5
Z/nZ, n=11,14,15
L/2Z&L)2nZ, n=15
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Fields

Possible torsion subgroups over a given field

Q(V30)

Z/nZ, n=11,15
Z)2Z&L)2nL, n=5,6
Z/nZ, n =14, maybe Z/16Z
Z)2L &L 2T, n=>5
Z/nZ, n=11,14,15,18
Z)2Z®ZL)2nZ, n=>5
Z/nZ, n=14,15

222 ®7L)2nZ, n=15,6
Z/nZ, n=11,14
Z)2Z&7)2nL, n=5,6
Z/nZ, n=14,15
Z)2Z&Z)2nL, n=5,6
Z/nZ, n=14,15
Z/nZ, n=11
7)22.87) 27, n=5,6
Z/nZ, n=11,14,15,16
LZ]2Z&L)2nZ, n=6
Z/nZ, n=14,15
Z)2L®L)2nZ, n="6
Z/nZ, n=11,15
Z/nZ, n=11
Z)2Z&L)2nL, n=5,6
7/nZ, n=14, maybe Z /167,
Z)2L®L)2nZ, n="6
Z/nZ, n=11,14,16
Z)2L®ZL)2nZ, n=15
Z/nZ, n=14
LZ2Z&SZL/2nZ, n=>5
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Fields

Possible torsion subgroups over a given field

Z/nZ, n=11,14,15
Z)2L & L)L, n=>5,6

Z/nZ, n=11,15
Z)2L &L 2T, n=>5

Z/nZ, n=11,15, maybe Z/16Z
Z)2LBL)2nZ, n="6

Z/nZ, n=14,15
Z)2L & L)L, n=>5,6

Z/nZ, n=11

Z)2L&L)2nZ, n=6

7/nZ, n=11,14, maybe 7,167
Z/nZ, n=11

LZ]2Z&L)2nZ, n=06

Z/nZ, n=11,14
7)22.87)2nZ, n=5,6

Z/nZ, n=15

Z)2Z&L)2nZ, n=6

Z/nZ, n=14,1516

Z)2L® L)L, n=>5,6

Z/nZ, n=14,15
Z)2Z.67)2nZ, n=15,6

Z/nZ, n=11,14,15
Z)2Z&7)2nL, n=5,6

7/nZ, n=11,15, maybe 7,167
Z)2L &L 2T, n=>5

Z/nZ, n=11

L)2Z&L)2nL, n=>5

Z/nZ, n=15, maybe Z/16Z
LZ]2Z&L)2nZ, n=6
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Fields

Possible torsion subgroups over a given field

7/nZ, n= 11,14, maybe Z/167Z
L)2Z&L)2nT, n=>5

Z/nZ, n=14,15, maybe Z/16Z
Z)2LBL)2nZ, n="6

Z/nZ, n=11,14
Z]22.&7)2nZ, n=6

Z/nZ, n=11,14,15

Z)2ZG )T, n=6

Z/nZ, n=11,15
LZ2L&L)2nZ, n=15

Z/nZ, n=11,14,15, maybe Z/16Z
Z/nZ, n=14,15
Z)2Z®ZL)2nZ, n=15,6

Z/nZ, n=11,14,15
LZ2L&L/2nZ, n=15

7/nZ, n=14,15,16
Z)22.®7L)2nZ, n=15,6

Z/nZ, n=11,14, maybe Z/16Z
Z)2ZS L)L, n=5,6

Z/nZ, n=11

2)27.®7L)2nZ, n=15,6

Z/nZ, n=14,15
Z)2ZG T 2T, n=>5

Table 6.1: The list of all possible torsion groups over quadratic fields Q(v/d), for 0 < d <

100, with the exception of the groups from Mazur’s theorem
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7. SPLITTING OF PRIMES IN NUMBER
FIELDS GENERATED BY POINTS ON

SOME MODULAR CURVES

This chapter will mostly follow a paper by Filip Najman and the author [39]. We will
focus here on finding some interesting properties of elliptic curves and number fields when
elliptic curves have given torsion subgroup or isogeny and are defined over a number field
of given degree.

A famous and much-studied problem in the theory of elliptic curves, going back to
Mazur’s torsion theorem [32], was to determine the possible torsion groups of elliptic
curves over K, for a given number field K or over all number fields of degree d. We
studied the special case of d = 2 of this question in Chapter 6. Here we are more interested

in the inverse question:

Question 7.0.1. For a given torsion group T and a positive integer d, for which and what

kind of number fields K of degree d do there exist elliptic curves E such that E(K) ~ T?

To make Question 7.0.1 sensible, one should of course choose the group 7" in a such
a way that the set of such fields should be non-empty and preferably infinite.

It has been noted already by Momose [35] in 1984 (see also [26]) that the existence
of specific torsion groups 7" over a quadratic field K forces certain rational primes to split
in a particular way in K. Krumm [27] in his PhD thesis obtained similar results about
splitting of primes over quadratic fields K with T ~ Z/137Z or 7Z/18Z and it was also
proven by Bosman, Bruin, Dujella and Najman [3] and Krumm [27] independently that

all such quadratic fields must be real. These results were already stated in Theorems 6.2.6
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and 6.2.7.

The first such result over cubic fields was proven by Bruin and Najman [5], where it
was shown for T ~ 7, /27 x 7./ 147 that all such cubic fields K must be cyclic. In this
chapter we explore this particular case further and prove in Section 7.2 that in such a field
2 always splits, giving the first description of a splitting behaviour forced by the existence
of a torsion group of an elliptic curve over a cubic field. Furthermore, we show that all
primes ¢ = £+1 (mod 7) of multiplicative reduction for such curves split in K. The proof
of these results turns out to be more intricate than in the quadratic case.

As Question 7.0.1 can equivalently be phrased as asking when the modular curve
X1 (M, N) parameterizing elliptic curves together with the generators of a torsion subgroup
T = 7,/MZ & Z/NZ has non-cuspidal points over K, one is naturally drawn to ask a more

general question by replacing X;(M,N) by any modular curve X.

Question 7.0.2. For a given modular curve X and a positive integer d, for which and

what kind of number fields K of degree d do there exist non-cuspidal points in X (K)?

The most natural modular curves to consider next are the classical modular curves
Xo(N) classifying elliptic curves with cyclic isogenies of degree N. For N = 28 and 40
Bruin and Najman [6] proved that quadratic fields K over which Xy(N) have non-cuspidal
points are always real. In this chapter we prove the first results about splitting of certain
primes over quadratic fields where some modular curves Xo(N) have non-cuspidal points.

We consider all the N such that Xo(N) is hyperelliptic except for N = 37, in particular
N €{22,23,26,28,29,30,31,33,35,39,40,41,46,47,48,50,59,71}. (7.0.1)

The reason we exclude N = 37 is that the quadratic points on X(37) cannot all be de-
scribed (with finitely many exceptions) as inverse images of P!(Q) with respect to the
degree 2 hyperelliptic map X,(37) — P!. For more details about quadratic points on
Xo0(37), see [4]. In Section 7.1 we prove a series of results about the splitting behaviour
of various primes in quadratic fields generated by quadratic points on Xo(N).

A difficulty in proving these results that one immediately encounters is that the meth-
ods of [26] and [35] cannot be adapted to Xy(N) as the existence of a torsion point of
large order forces bad reduction on the elliptic curve (see for example [35, Lemma 1.9]),

while the existence of an isogeny does not. Hence we approach the problem via explicit
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equations and parameterizations of modular curves, more in the spirit of [3, 6,27] instead
of moduli-theoretic considerations as in [26,35].

Gonzalez [15] proved results about fields generated by j-invariants of Q-curves. Since
for the values N that we study almost all N-isogenies over quadratic fields come from Q-
curves, our results are reminiscent of his, but it turns out there is little overlap in the results
that are proved. This is perhaps not very surprising as we do not use the fact that we are
looking at (Q-curves at all.

The computations in this chapter were executed in the computer algebra system Magma
[2]. The code used in this paper can be found at https://web.math.pmf .unizg.hr/

“atrbovi/magma/magma2.htm or in Appendix B.

7.1. SPLITTING OF PRIMES IN QUADRATIC

FIELDS GENERATED BY POINTS ON X(N)

In this section we study the splitting behaviour of primes in quadratic fields over which the
modular curves Xo(N) have non-cuspidal points. Models for Xo(XN) have been obtained

from the SmallModularCurves database in Magma and can be found in Table 7.1.

N fn(zx) from the equation y? = f(x) for X, (V) and the factorization in Q[ X|

22 x5 — 4wt 42003 —40x% +48x —32
= (3 —2x% +4x —4) (x> + 24> —4x +8)
23 08 2 20 — 112 +10x—7
= (-8 +3x—T7)(x* —x+1)
26 x5 —8x° +8x* — 18x% +8x? —8x+1
28 4x® —12x° 4+ 25x* —30x3 +25x2 — 12x + 4
= (2% =3x+2)(x* —x+2)(2x* —x+ 1)
29 X0 —4x® —12x* +2x% + 8x? +8x— 7
30 x4 14x7 +79x0 +242x° 4 441x* +484x3 +316x% + 112x + 16
= (4 3x+ 1) (2 +6x4+4)(x* + 553 + 112 + 10x +4)
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31 X0 —8x° +6x* + 187 — 1132 — 14x—3
= —6x2 —5x—1)(x> — 24> —x+3)
33 x84 1060 —8x% +47x* —40x3 + 8242 — 44x + 33
= (% —x+3) (&0 4+ x° +8x* —3x3 + 2062 — 11x+11)
35 a8 —dx”—6x0—4x — 9t +4x° —6x2 +4x+ 1
= (P 4+x—1)(x% =58 —9x* —5x— 1)
39 867 +3x0 41260 —23x* + 1243 +3x% —6x+ 1
= =73+ 1 - Tx+ D)+ - Fx 1)
40 xB+8x0—2x*+8x2+1
41 x® —4x7 —8x0 + 10x° +20x* 4 8x® — 15x% —20x — 8
46 x'? —2xM" 45— x10 4 6x7 —26x8 4 84x7 — 11325 + 13450 — 64* +26x3 + 1262 4 8x—7
= =224 3x— 1) (P2 —x+ 70—+ — P 2%+ 2x+ 1)
47 110 —6x7 + 11x8 — 2407 + 1926 — 1627 — 13x* +30x° — 38x% +28x — 11
= (0 —5x* 4+ 58° — 1582 +6x — 1) (x° —x* + 3 +x%2 —2x+1)
48 B+14t+1
= (x* =2 + 22+ 2+ 1) (e + 2% + 22 — 2x 4+ 1)
50 54’ — 1007 —4x+1
59  x!2—8x! 4 22x10 —28x% 4+ 3x8 4+ 40x7 — 62x° + 40x° — 3x* — 243 +20x% —4x— 8
= (=% —x+2)(x° =T+ 16x7 —21x0 + 12x° —x* — 93 - 6x% —4x — 4)
71 xM g ax® - 2x1? - 38x! — 77x10 — 2627 4+ 11143 4 148x7+
+x0 —122x° — 70x* 4- 300 + 40x% + 4x — 11
= (&7 =70 — 1 4503 4+ 18x% 4+ 4o — 11) (&7 +4x® +5x° +x* — 3% — 242 + 1)

Table 7.1: Polynomials fy(x) in the equations y> = fy(x) for Xo(N).

Following [27], on a hyperelliptic curve X with a model y> = f(x), we say that the
quadratic points on X of the form (xo, v/ f(x0)), Where xo € Q, are obvious. The quadratic
points that are not obvious are called non-obvious. By the results of [6], all non-cuspidal

quadratic points on X, (N) are obvious, with finitely many explicitly listed exceptions.

Theorem 7.1.1. Let K = Q(+/D), where D is squarefree, be a quadratic field over which

Xo(N) has an obvious non-cuspidal point.
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Splitting of primes in quadratic fields generated by points on Xy(N)

(a) For each N, columns 2-5 in the table below show the splitting behaviour in K of

some of the small primes, as well as some properties of D.

(b) For the pairs of N and a indicated in the table, if a prime p ramifies in K, then a is

a square modulo p.

(¢) For the pairs of N and b indicated in the table, if p £ 2 is a prime such that b is
a square modulo p, then there exist infinitely many quadratic fields generated by a

point on Xo(N) in which p ramifies.

N not inert unramified splits D a b
2 2
26 13 odd 13
28 3,7 3 3 S0 7 7
29 29 odd 29
30 2,3,5" 2,3 2,3 odd 5 5
30211 2 2 0 o -n
odd
3/ 547 2.7 7 odd 5 5
39 3,13 2,13 13 odd 13
0 235 235 235 % 15
odd
41 41 41
46 2 2 2 odd
48 2 2.3,5 235 % i3
odd
50 5 odd 5

* -even more is true, D =1,2,6 (mod 8)

** -even more is true, D =0,1 (mod 5)

ok

*

_-see Remark 7.1.9

-the statement of (b) is true with the exception of p =2

Table 7.2: Splitting behaviour of small primes
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Many proofs will be similar for different values of N and before proceeding to a case-
by-case study, we mention some general results which will be useful.
We fix the following notation throughout this section. Let N be one of the integers

from (7.0.1) and write
deg fv

Xo(N) :y* = fu(x) = ;) ainx',
i—
with a; y € Z. Note that in all instances deg fy is even. As already stated, all non-cuspidal
quadratic points on Xo(N) are obvious, with finitely many exceptions. Those exceptions
can be found listed in [6, Tables 1-18]. Let (xo, v/ fn(x0)), for some xp € Q, be an obvious
point on Xo(N) and write xg = m/n, with m and n coprime integers. Let d := fy(xo),
s :=n%e/Nd, and let D be the square-free part of d, i.e. the unique square-free integer
such that n9°€/Nd = Ds?, for some s € Q. Since deg fy is even, it follows that s € Z. We

get the equality
deg f ) .
ndeeNg — ps® = Z a,-7Nm’nd€ng7’. (7.1.1)
i=0
The point (xg, v/ fv(x0)) will be defined over K := Q(v/D).
We will prove part (a) of the theorem for each N separately. This proof can unfortu-
nately not be generalized for each column of Table 7.2 as it can be for parts (b) and (c)
of the theorem. However, we do mention a number of lemmas that describe the splitting

behaviour of primes in K, which we will be using throughout. They are well-known or

obvious, so we omit the proofs.

Lemma 7.1.2. An odd prime p ramifies in K if and only if p | D, splits in K if and only
if (2) = 1 and is inert in K if and only if (2) = —1.

Lemma 7.1.3. Let p be an odd prime and assume that we have Ds*> = ap’ (mod p’)

with pfaand ¢ > 1.

a) If t = 2k for some k € Z, then v, (s) = k, D = a(p*/s)*> (mod p*~"), and p splits

in K if and only if a is a square modulo p.
b) If t =2k 1 for some k € ZZ , then p|D and p ramifies in K.

As previous lemmas stated results about splitting for odd primes, we include similar re-

sults for the prime p = 2.
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Lemma 7.1.4. The prime 2 ramifies in K if and only if D # 1 (mod 4), splits in K if
and only if D=1 (mod 8) and is inert in K if and only if D=5 (mod 8).

Lemma 7.1.5. Assume that we have Ds?> = 2'a (mod 2¢), with 2{a and ¢ > 1.

(a) If t = 2k, for some k € Z, then vo(s) = k and D = a(2*/s)* (mod 2°7"). Ifa = 1
and ¢ —t = 3, then 2 splits in K.

(b) If t = 2k+ 1, for some k € Z, then D = 2a (mod 2¢72K).

All of the computations done in the following proofs are listed in the accompanying

Magma code.

Proof of Theorem 7.1.1 (a).

IN=22: In the manner already described above, in (7.1.1) we get
n%d = Ds* = m® — 4m*n® + 20m*n® — 40m*n* + 48mn® — 32n5.

Considering all of the possibilities of m and n modulo 512, we have that Ds?> =
(mod 8), Ds> =32 (mod 64) or Ds*> = 64 (mod 512). Using Lemma 7.1.5 this becomes
D=1 (mod 8) or D=2 (mod 4). In any case we have D =1,2,6 (mod 8), so 2 is not

inert, according to Lemma 7.1.4.

N=26:1In(7.1.1) we get
n°d = Ds* = m® — 8m’n+ 8m*n?® — 18m°n° + 8m2n* — 8mn’ + nd.

Looking at all the possibilities of m and n modulo 132, we see that Ds*> = 1,3,4,9, 10,12
(mod 13) or Ds?> =4-13,9-13 (mod 132). It follows from Lemma 7.1.3 that D =
0,1,3,4,9,10,12 (mod 13). Using Lemma 7.1.2 we immediately get that 13 is not in-
ert.

Considering the possibilities of 7 and n modulo 128, we have that Ds> = 1 (mod 2),
Ds?> =4 (mod 16), Ds> = 16 (mod 32) or Ds> = 64 (mod 128). Using Lemma 7.1.5
this becomes D=1 (mod 2) or D=1 (mod 4), so D is always odd.
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N=28:1In(7.1.1) we get
n°d = Ds* = 4m® — 12mn + 25m*n* — 30m>n> + 25m2n* — 12mn° + 4n°.

Considering the possibilities of m and n modulo 3, we get Ds? = 1 (mod 3), so from
Lemma 7.1.3 we have D = 1 (mod 3), and the fact that 3 splits follows from Lemma
7.1.2.

Looking at all the possibilities of m and n modulo 72, we see that Ds*> = 1,2,4
(mod 7) or Ds> = 14 (mod 7?). It follows from Lemma 7.1.3 that D =0, 1,2,4 (mod 7)
and from Lemma 7.1.2 that 7 is not inert.

The proof of the fact that D > 0 can be found in [6, Theorem 4].

N=29:1In(7.1.1) we get

n°d = Ds* = m® — 4m’n — 12m*n? + 2mn’ + 8m*n* + 8mn> — Tn®.

Considering the possibilities of 7 and n modulo 32, we have that Ds?> = 1 (mod 2),
Ds?> = 12 (mod 16) or Ds?> = 16 (mod 32). Using Lemma 7.1.5 this becomes D = 1
(mod 2) or D=3 (mod 4), so D is always odd.

We write D =29 py - ...« px, where a € {0,1} and p; # 2, since D is odd. If a = 1,
then D=0 (mod 29).Ifa=0, then (%) = (55)-...- (4) , which is equal to 1 after using
the part (b) of this theorem for N = 29. In this case we have that (%) =1, and Lemma

7.1.2 says that 29 is not inert.

N=30:1In(7.1.1) we get
nd = Ds? =m® 4+ 14m" n+79m®n* + 242m°n> + 441m*n*
+484m>n® +316m*n® + 112mn” + 16n8.
Considering the possibilities of m and » modulo 128, we have that Ds> =16 (mod 128)
or Ds? =1 (mod 8). Using Lemma 7.1.5 we get D = 1 (mod 8), and from Lemma 7.1.4
we conclude that 2 splits.
Considering the possibilities of 7 and n modulo 3, we have that Ds?> = 1 (mod 3),

and from Lemma 7.1.3 we conclude that D =1 (mod 3). The fact that 3 splits follows

from Lemma 7.1.2.
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Looking at all the possibilities of m and n modulo 25, we see that Ds> = 1 (mod 5)
or Ds? =5 (mod 25). Using Lemma 7.1.3 we get D =0,1,4 (mod 5) and from Lemma
7.1.2 we see that 5 is not inert.

Furthermore, we want to eliminate the possibility D =4 (mod 5). If it were true, then
for s in n®d = Ds? it holds s> =4 (mod 5), so s would be divisible by a prime p such that
p=2,3 (mod 5), i.e. (g) = 1.

The expression n®d = Ds? above factorizes as

ndd = Ds* = (m2 + 6nm + 4n2) (m2 + 3nm+ nz) (m4 +5mPn+ 11m?n® + 10mn’ + 4n4) ,
so p has to divide one of the 3 factors on the right.
o If p divides m? +6nm+4n*> = (m+3n)> — 5n?, then (%) =1,s0 p#2,3 (mod 5).

e If p divides the second factor, it also divides 4(m? +3nm+n?) = (2m+3n)? — 5n?,
then (%) =1,s0 p#2,3 (mod 5).

o If p divides m* 4 5mn + 11m*n® 4 10mn> + 4n* = (2m?* + Smn + 4n)? + 3m?n?,
then (’73) = 1. The third factor can also be written as (2m? +Smn+m?)? +15(n” +

2

mn)*, so we alse have (_715) = 1. Combining these two facts, we get (%) =1,

which is also a contradiction.

N=33:In(7.1.1) we get
ndd = Ds* = m® + 10m®n? — 8m’n? +47m4n4 —40m3n® + 82m*n® — 44mn’ + 33n8.

Considering the possibilities of m and n modulo 8, we have that Ds> = 1 (mod 8),
so from Lemma 7.1.5 we conclude that D = 1 (mod 8) and from Lemma 7.1.4 that the
prime 2 splits.

We write D = 114 py - ... - px, where a € {0,1} and p; # 2, since D=1 (mod 8). If
a=1,then D=0 (mod 11). If a = 0, then () = (&) -...- (&), which is equal to 1
after using the part (b) of this theorem for N = 33. In this case we have that () = 1,
therefore 11 is not inert in K.

A point of the form (xo, 1/ f33(x0)) with xo € Q is clearly defined over a real quadratic

field, since f33(x0) = x5 + 10x§ — 8x3 -+ 47x§ — 40x3 + 82x5 — 44x0+ 33 > 0, for every xj.
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Therefore, D > 0.

N=35:In(7.1.1) we get
ndd = Ds* = m® — 4m’n — 6m®n® — 4m>n® — om*n® + AP — 6m*n® +4mn’ + nd.

Considering the possibilities of m and n modulo 4, we have that Ds* = 1 (mod 4)
and from Lemma 7.1.5 we conclude D =1 (mod 4). The fact that 2 is unramified now
follows from Lemma 7.1.4.

Looking at all the possibilities of m and n modulo 25, we see that Ds> = 1 (mod 5)
or Ds?> =5 (mod 25). It follows from Lemma 7.1.3 that D = 0,1,4 (mod 5) and from
Lemma 7.1.2 that 5 is not inert.

Now want to eliminate the possibility D =4 (mod 5). If it were true, then for s in n3d =
Ds? it holds s> = 4 (mod 5), so s would be divisible by a prime p such that p = 2,3
(mod 5), ie. (3) =—1.

p
The expression n8d = Ds? above factorizes as

ndd = Ds* = (—m2 —mn+ nz) (—m6 +5m°n+9m>n® + 5mn’ + n6) ,
so p has to divide one of the 2 factors on the right.

e If p divides the first factor, it also divides 4(—m? —nm +n?) = (2m —n)? — 5m?,

then (%) =1,s0 p#2,3 (mod 5).

e If p divides the second factor, it also divides 4(—m® +5m>n+9m>n + 5mn’ +n®) =
(213 4 5n%m + Snm? + 4m>)? — 5(3n’m + nm? 4 2m>)?, then (%) =1,s0 p#2,3
(mod 5).

And in the end, considering the possibilities of m and » modulo 7, we have that
Ds? =1,2,4 (mod 7). It follows from Lemma 7.1.3 that D = 1,2,4 (mod 7) and from
Lemma 7.1.2 that 7 splits.

N=39:1In(7.1.1) we get

n8d = Ds* = m® — 6m'n+3mn® + 12m°n® — 23m*n* + 12m3n° + 3m*n® — 6mn’ + nd.

50



Splitting of primes Splitting of primes in quadratic fields generated by points on Xy(N)

Considering the possibilities of m and n modulo 4, we have that Ds?> = 1 (mod 4)
and from Lemma 7.1.5 we conclude D =1 (mod 4). The fact that 2 is unramified now
follows from Lemma 7.1.4.

We have that the right side of n8d = Ds? above is congruent to m® — 2m*n* 4+ n® =
(m* —n*)? modulo 3.

Suppose first that m # n (mod 3). If n Z0 (mod 3) then D is a square modulo 3 and
if n=0 (mod 3) then it follows that D =1 (mod 3) so D is again a square modulo 3.
Suppose now that m =n (mod 3). Then we run through all the possibilities of m and n
modulo 81 and note that either Ds? is divisible by an odd power of 3, so D=0 (mod 3),
or Ds> =9k (mod 81), where k # 0 (mod 81) and k is a square modulo 9. Using Lemma
7.1.3 we get that D = k (mod 9), where k is a square modulo 9. Hence, in all cases we
have D =0,1 (mod 3) and from Lemma 7.1.4 we immediately see that 3 is not inert.

Considering the possibilities of m and n modulo 13, we have that Ds*> = 1,3,4,9, 10, 12
(mod 13), and from Lemma 7.1.3 we conclude D = 1,3,4,9,10,12 (mod 13). The fact

that 13 splits now follows from Lemma 7.1.2.

N=40:1In(7.1.1) we get
nd = Ds?® = m® 4+ 8m®n® — 2m*n* + 8m?n® 4+ n8.
We write n3d = Ds? as
nd = Ds* = (m* —n*)? 4+ 8m*n*(m* + n*).

The integer n has to be odd (otherwise m and n would both be even), and if m is even,
then Ds? is an odd square modulo 8. It follows from Lemma 7.1.5 that D =1 (mod 8)
and from Lemma 7.1.4 that 2 splits.

If m and n are both odd, then Ds? = 16m?n*> (mod 128). From Lemma 7.1.5 we get
that D is an odd square modulo 8, i.e. D=1 (mod 8). The fact that 2 splits now follows
from Lemma 7.1.4.

Considering the possibilities of m and n modulo 3, we have that Ds> = 1 (mod 3).
Using Lemma 7.1.3 we get D =1 (mod 3), and from Lemma 7.1.2 we conclude that 3

splits.
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Looking at all the possibilities of m and n modulo 5, we see that Ds*> = 1,4 (mod 5).
Using Lemma 7.1.3 we get D = 1,4 (mod 5), and from Lemma 7.1.2 we conclude that 5
splits.

The proof of the fact that D > 0 can be found in [6, Theorem 4].

N=41:1In(7.1.1) we get

n8d = Ds?* = m® —dm’n — 8m®n? + 10mn> + 20m*n* + 8m>n — 15m*n® — 20mn’ — 8n®.

We write D =41¢- p; -...- p, where a € {0,1}. If a =0, then D =0 (mod 41). If
a=1, then (£) = (4)-...- (}), which is equal to 1 after using the part (b) of this
theorem, and the fact that (%) =1, in case one of the p; is 2. In this case we have that

(%) =1, and Lemma 7.1.2 says that 41 is not inert.

N=46:1In(7.1.1) we get

n'2d = Ds* =m'? — 2m" ' n+ 5m'%%* + 6m°n® — 26m3n* + 84m’ >

— 113m%n® + 134m°n’ — 64m*n® + 26m°n’ + 12m%n'° + Smn!' —7n'2.

Considering the possibilities of m and n modulo 512, we have that Ds*> =64 (mod 512)
or Ds> =1 (mod 8). Using Lemma 7.1.5, in both cases we get D =1 (mod 8), and from

Lemma 7.1.4 we conclude that 2 splits.

N=48:1In(7.1.1) we get
nd = Ds* = m® + 14m*n* 4+ n8.
We write n3d = Ds? as
ndd = Ds?* = (m* +n*)? + 12m*n*.

If either m or n is even (forcing the other to be odd), then Ds? is an odd square modulo 8.
It follows from Lemma 7.1.5 that D =1 (mod 8) and from Lemma 7.1.4 that 2 splits.

If m and n are both odd, then Ds> = 16 (mod 128). It follows from Lemma 7.1.5 that
D=1 (mod 8) and from Lemma 7.1.4 that 2 splits.
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Considering the possibilities of m and n modulo 3, we have that Ds> = 1 (mod 3).
Using Lemma 7.1.3, we get D =1 (mod 3), and from Lemma 7.1.2 we conclude that 3
splits.

Looking at all the possibilities of m and n modulo 5, we see that Ds?> = 1 (mod 5).
Using Lemma 7.1.3, we get D = 1,4 (mod 5), and from Lemma 7.1.2 we conclude that
5 splits.

A point of the form (xg, v/ fa3(x0)) with xg € Q is clearly defined over a real quadratic

field, since fig(xp) = xg + 14xg + 1> 0, for every xq. Therefore, D > 0.

N=150:1In(7.1.1) we get
n°d = Ds* = m® — 4m’n — 10m°n> — 4mn® +n6.

Considering the possibilities of m and n modulo 5, we have that Ds?> =0, 1,4 (mod 5).
Using Lemma 7.1.3, we get D=0, 1,4 (mod 5), and from Lemma 7.1.2 we conclude that
5 is not inert.

We have

n%d = Ds* = (m* —n®)?  (mod 4).

If either m or n is even it follows that D is odd. If m and n are both odd, we have Ds? = 4
(mod 16),Ds*> =16 (mod 32) or Ds*> = 64 (mod 128). Using Lemma 7.1.5, in all cases
we get that D is odd. |

We now prove two lemmas that will be useful in the proof of part (b) of the theorem.

Lemma 7.1.6. Suppose fy factorizes as fy = [I;c; fiv,i» Where fy ; € Z[x] are irreducible
factors of degree 2 or 3 and p { ag y. If p ramifies in K, then there exists an i € I such that

A(fy,;) is a square modulo p.

Proof. Assume that p ramifies in K; then by Lemma 7.1.2 it follows that p|D. If p|n, then
it would follow that p|m, which is a contradiction, so we conclude that p { n. Dividing out
(7.1.1) by n, we see that m/n is a root of fy modulo p and hence there exists an i € I such
that m/n is a root of fy ; modulo p.

If fy i is of degree 2 or 3, the formulas for the roots of quadratic and cubic polynomials

imply that \/A(fy,;) is defined over IF,,, which proves the statement. [
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Remark 7.1.7. Note that the statement of part (b) of the theorem can be proved with the
previous lemma only for (N,a) = (28,—7). We have fog(x) = (2x> —3x+2)(x> —x +
2)(2x? —x+1) and A(fo3;) = —7, for each i.

As mentioned in the remark, Lemma 7.1.6 is not enough to prove all of the statements

in (b), so we provide a generalization.

Lemma 7.1.8. Let fy = [];c; fv,; be the decomposition into irreducible factors, with
fn,i € Z[x]. Assume that there exists a quadratic field Ky such that each fy; becomes
reducible in Ko[x] and let p be an odd prime such that (p,A(fy,;)) = 1 for all i. Then if p

ramifies in K it follows that A(Kp) is a square modulo p, i.e. p is not inert in Kp.

Proof. Let o be the generator of Gal(Ko/Q) and fy ik, € Ko[x] an irreducible factor of

fn.i- Then we obviously have

Iviko(fniky)® = fvie (7.1.2)

Assume that p ramifies in K. We will prove the lemma by contradiction, so we assume
that p is inert in Ky. As in the proof of Lemma 7.1.6 we conclude that fy ; has a root a
in IF, for some i. Hence a is a root of one of the factors on the left in (7.1.2). Assume
without loss of generality that a is a root of fy;in I,

Let p be the prime of K above p and denote by [}, := Ok, /p the residue field of p. Let
7 = Gal(FF,/F,) and denote by f the reduction of a polynomial f € Ky[x] modulo p; then
we have f° = f*. Hence a” is a root of ffvl But since a € F),, it follows that @ = a* and
hence from (7.1.2) it follows that a is a double root of fy; over I, and hence A(fy,) is

divisible by p, which is in contradiction with the assumption (p,A(fy,;)) = 1. [

Proof of Theorem 7.1.1 (b). Let fy =11, fy; be the factorization of fy in Z[X], as in Ta-
ble 7.1. Table 7.3, which can be computed with the accompanying Magma code, contains
for each N the number a such that every fy; becomes reducible in Q(+/a), the factoriza-
tion in Q(v/a) and discriminants of each fy ;. Using the Lemma 7.1.8 we immediately get
that if an odd prime p such that (p,A(fy;)) = 1 ramifies in K, then a is a square modulo
p. For p =2 and p that are not coprime to every A(fy;) and can ramify (this can be

checked in Theorem 7.1.10, which is proved independently) we can explicitly verify that

(5) # -1 -
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Proof of Theorem 7.1.1 (c). For all pairs of N and b, in Table 7.3 we have the factorizations
of fy where some of the factors are linear over Q(v/b). Therefore, fy has a root over each
IF), such that Vb is defined modulo p, i.e. such that b is a square modulo p.

If xo € Z is aroot of fy such that fy(xo) =0 (mod p), then fy(xo+kp) =0 (mod p),
k=0,...,p—1.1f p > deg fy, we have fy(xo+kp) 0 (mod p?) for at least one value of
k. Now we know that for p > deg fy there exists a € Z be such that fy(a) =0 (mod p)
and fy(a) # 0 (mod p?). For smaller values of p, with exception of p = 2, one can
explicitly check that this claim remains true. Therefore, p ramifies in Q(+/ fy(a)).

It remains to show that there are infinitely many quadratic fields such that p rami-
fies. Let S={u € Z:u=a (mod p?)}. Obviously fy(u) =0 (mod p) and fy(u) Z 0
(mod p?) for all u € S. Let d, be the squarefree part of fy(u); the quadratic point
(u,r/fn(u)) will be defined over Q(\/d,). After writing fy(u) = d,s? for some s, € Z,

we observe that (u,s,) is a rational point on the quadratic twists Cf\l,” of Xo(N),

C]‘\i;’ :duy2 = fn(x).

Since each C,ﬂ\l,“ is of genus > 2, by Faltings’ theorem it follows that Cf,”(@) 1s finite and

hence {d, : u € S} is infinite, proving the claim. [
N a factorization of fx in Q( /a) A(fn.i)
26 13 ((x3+(f\/ﬁ74)x2+%(\/ﬁ+5)x+%(f3\/ﬁfll)) X 220. 133
X (P + (VIB— 42 + L (—VI3+5)x+ 1(3VI3 - 11))
x+3(=V=T-1) (x+1(—vV=T-3) x -7
28 —7 X (x+1(=vV=T-1)) (x+ 3 (vV/=7-3)) x -7
X (x4 1(=V=T-1)) (x+ (/=T-1)) —7
29 ” (P4 (V-2 + L (VDI + 13)x+ L(—v29— 1)) x 21205
X (¥ + (V29— 222 + 3 (—vV29+ 13)x + 1 (V29 - 1))
(x f+3)( +1(=V5+3)) % 5
30 5 x (x4 3(v/5+3)) +\f+3) 2.5

(x
x (241 (=V5+5)x—V5+3) (P +1(V5+5)x+V5+3) 22325
(x+3(—V=TT=1)) (x+ 3 (/=TT = 1)) x
33 11 x (B + 5 (—V/=TT+ 1)x* + S (V=114 5)x— V/=11) x
x (B + 5 (V=114 1)+ 3 (—v/=1145)x+/—11)

~11
—28.36.115
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(x+%(—\f5+l)) (x—&-%(\@-i-l)) X

35 5 ><(x3+%(—3\f5—5)x2+%(\@+5)x—\@—2)>< 28.557.72
x (P +103V5-5)2 + L (—V5+5)x+V5-2)
39 3 (P+ (VBT +1) (2 +3(—VDB+1)x+1) x —33.132
< (2 +I(VB=Tx+1) (2 +L(VI3+1)x+1) ~3.132
-1 (¢ —2v—1r + 267 +2¢/—1x+1) x
40 X (x* 4+ 2v/ =1 + 262 = 2/—1x+ 1) 240 54
5 (x*+ (—2v5+ 42 +1) (2 + (25 +4)? +1)
m Al (x* =26 + (VAT — )% + (—VAT - T)x + ( \ﬁ 3)) x 516,416
><(x4—2x3+(\/4ﬁ—6)x2+(\/4r— )x+ )
@ VTV (R (- F+1x+r)x
X(x2 (\/j—])x—k\/i)(x +(\/7+1 ) 8 a2
48 23
8 22
(P+(—V3=1x+v3+2) (2 +(—V3+ 1)x—v3+2) x 2
x (24 (+V3—1x—v3+2) (P + (V34 Dx+3+2)
50 5 (x3+(*\67 )x2+l(*\f+l)x+l(*\673))>< 51655

x (P +(V5-2)2+ 1 (V5+ Dx+ 1(V/5-3))

Table 7.3: Factorizations of fy in Q(y/a), and the discriminants of fn,i defined in the

statement of Lemma 7.1.8.

Remark 7.1.9. After we proved Theorem 7.1.1, we mention two papers [15,40] that
have some overlap with ours and show which of our results can be proved using their
methods.

Obvious points on curves Xo(N) are of the form (x,y\/d), where x,y € Q. This gives
us the point (x,y) on the quadratic twist X¢ (N)(Q) and hence X§(N)(Q,) # 0. Now the
underlined entries in Table 7.2 can be alternatively proved using the results of Ozman [40,
Theorem 1.1]. Note that the facts in Table 7.2 which have been marked by * or ** do not
follow from [40, Theorem 1.1].

Recall that a Q-curve is an elliptic curve that is isogenous to all its Galois conjugates.
The degree of a Q-curve over a quadratic field is the degree of a cyclic isogeny to its

Galois conjugate. Gonzélez proves the following statement [15, Proposition 1.1]:
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Assume that there exists a quadratic Q-curve of degree d defined over some quadratic

field K. Then every divisor Ny | d such that
Ni=1 (mod4) or Nyisevenandd/N; =3 (mod 4)

is a norm of the field K.

For our values of N, all but finitely many known exceptions of elliptic curves with
N-isogenies over quadratic fields are Q-curves, as proved by Bruin and Najman [6]. Note
that we do not use the fact that the curves we consider are Q-curves in any essential
way; we only use the fact that almost all the quadratic points on the modular curves
Xo(N) : y* = fn(x) are of the form (xo,/fn(x0)), for xo € Q (and from this fact Bruin
and Najman proved that the corresponding elliptic curves are (Q-curves).

After noting that an obvious quadratic point on Xy(N) corresponds to a Q-curve of
degree d, where d can be obtained from the tables in [6], and applying Gonzalez’ propo-
sition, we obtain that p is not inert in a quadratic field K := Q(v/D) generated by an

obvious point on Xy(N), for the following pairs (N, p):
(N, p) € {(26,13),(29,29),(30,5),(35,5),(41,41),(50,5)} .
In all of the pairs above we have d = N, except for N = 30, where d = 15. |

Theorem 7.1.10. In Table 7.4 below, we list the primes p < 100 which are unramified
for all quadratic fields generated by quadratic points Xo(N), for
N €{22,23,26,29,30,31,33,35,39,40,41,46,47,48,50,59,71}.

Proof. The proofs of all the facts listed are easy and all basically the same; take some
prime p in the table above. Using the notation as in (7.1.1), we run through all m and 7 in
the appropriate equation modulo p and we get that n?*d # 0 (mod p) for some positive

integer k, which gives us that D # 0 (mod p) and hence p is unramified. |
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N  unramified primes

22 3,5,23,31,37,59,67,71,89,97

23 2,3,13,29,31,41,47,71,73

26 3,5,7,11,17,19,31,37,41,43,47,59,67,71,73,83,89,97

28  3,5,13,17,19,31,41,47,59,61,73,83,89,97

29 3,5,11,13,17,19,31,37,41,43,47,53,61,73,79,89,97

30 2,3,7,13,17,23,37,43,47,53,67,73,83,97

31 2,5,7,19,41,59,71,97

33  2,7,13,17,19,29,41,43,61,73,79,83

35 2,3,7,13,17,23,37,43,47,53,67,73,83,97

39 2,57,11,13,19,31,37,41,47,59,61,67,71,73,79,83,89,97
40 2,3,5,7,11,13,17,19,23,31,37,41,43,47,53,59,61,67,71,73,79,83,97
41 3,5,7,11,13,17,19,29,37,47,53,61,67,71,73,79,89,97

46  2,3,13,29,31,41,47,71,73

47  2,3,7,17,37,53,59,61,71,79,89,97

48 2,3,5,7,11,17,19,23,29,31,41,43,47,53,59,67,71,79,83,89
50 3,7,11,13,17,19,23,37,41,43,47,53,67,73,83,89,97

59  3,5,7,19,29,41,53,79

71 2,3,5,19,29,37,43,73,79,83,89

Table 7.4: Primes up to 100 that do not ramify in quadratic fields over which Xo(N) has a

point.
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7.2. SPLITTING OF 2 IN CUBIC FIELDS

GENERATED BY CUBIC POINTS OF X;(2,14)

Let us fix the following notation for the remainder of this section. Denote X := X;(2,14)
andY :=7(2,14). Let ¢ : X;(2,14) — X/ (14) be the forgetful map sending (E,P,Q,R) €
X with P and Q of order 2 and R of order 7 to (E, P,R) € X;(14). Let K be a cubic number
field over which X has a non-cuspidal point x = (E,P,Q,R) and let ‘}3 be a prime above
p- By [5, Theorem 1.2], K is a cyclic cubic field. Denote by X the reduction of x mod ‘5.

In this section we are going to prove that the prime 2 always splits in a cubic field over
which X has a non-cuspidal point. Furthermore, we will show the same statement for all
primes p = £1 (mod 7) for which E has multiplicative reduction.

The curve X has the following model [5, Proposition 3.7] in I% X ]P’(b:
X:fuy) =+ =2u—1)wh+ D)+ +v—2v—Du(u+1)=0. (7.2.1)

The curve X has 18 cusps, 9 of which are defined over Q and 9 over Q(&7)™", forming 3
Galois orbits.

Let 7 and @ be automorphisms of X, where the moduli interpretation of 7 is that it
acts as a permutation of order 3 on the points of order 2 of £ and trivially on the point of
order 7, and where the moduli interpretation of @ is that it acts trivially on the points of
order 2 and as multiplication by 2 on the point of order 7. Let ¢ := @7 and B := w7°.

From [5, Chapter 3] it follows that the only maps of degree 3 from X to P! are quoti-
enting out by subgroups generated by o and 8 (an automorphism of X interchanges these
two maps) and that all non-cuspidal cubic points on X are inverse images of P!(Q) with
respect to these maps. Also, both @ and B act without fixed points on the cusps.

As it has already been mentioned, the results of [5] tell us that elliptic curves with
7,/27.® 7./ 147 torsion over a cubic field are parameterized by P'(Q), so one can write
every such curve as E, for some u € Q. We do not display the model for E, as it contains

huge coefficients, but it can be found in the accompanying Magma code. In [5] it is proved

that the curve E := E,, is a base change of an elliptic curve defined over Q.
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‘We have

2+ u+ 130+ +2u* + 913 + 1263+ Su+ 1) fia (u)?
W+ 1) +u? = 2u—1)2 ’

J(u) =

where

Fio(u) = u'? +4u +3u'% — 40 + 617 — 17u® — 3007 + 6u* + 340 +25u% + 8u+ 1,

and
Cutu+ )P+ —2u—1)?
Alu) = hia(u)'? ’
calut) = 82(1)g6(u)g12(u)
4 h]z(”)4 )

where g; are polynomials in u of degree i, for i =2,6,12, and h, is of degree 12.
Let res(f,g) denote the resultant of the polynomials f and g. If v,,(hi2(u)) > 0, then

E does not have multiplicative reduction at p, since

res (hi2(u), ga(u)) = res (hi2(u), ge, (1)) = 1,

where ga is the numerator of A(u) and g., is the numerator of c4(u), and therefore
vp(j(u)) = 0. Checking the factors of the discriminant, there are several possibilities for

the elliptic curve E to have multiplicative reduction:

* If v,(u) = k > 0, then using the fact that

A(u)>

= = 1
res (u, 1 res (u,ca(u)) =1,
we conclude that reduction mod p will be of type I}4;.

1

s If vy(u) = —k <0, with the change of variables v := ;, we get a similar situation as

above, with
A("))
) = -1
res <v, mE res(v,cq(v)) =1,

so the reduction mod p will be of type ;4.

* If v,(u) =0and v,(u+1) :=k > 0, then using the fact that

A(u)

(u+1)14> =res(u+1,c4(u)) =1,

res <u+ 1,

we conclude that the reduction mod p is of type I;4y.
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* The only other possibility for multiplicative reduction is v, (u® + u* —2u — 1) =
k > 0. Note that a root & of f(u) := u® + u® — 2u — 1 generates the ring of integers
Z[o] of Q(&7)*t. The fact that p|f(u) implies that f(u) has a root in IF,, and hence
p splits in Q(&7)™*, implying p = 41 (mod 7) or p = 7. Since

A(u)
3,2 _ 430
res (u +u —2u—1,(u3+u2_2u_1)2> =17

and

res (u3 +u* —2u— 1,C4(u)) =712,

it follows that there can be cancellation with the numerator only in the case p = 7.

* Suppose p =7, v7(u) = 0 and v;(u® + u?> —2u— 1) = k > 0. An easy computation
shows that ¥ =2 (mod 7) and k = 1, and that the numerator of the j—invariant
will be divisible by a higher power of 7 than u? + u? — 2u — 1, which show that the

reduction will not be multiplicative.
In the discussion above we have proved the following two results:

Proposition 7.2.1. Suppose E has multiplicative reduction at a rational prime p. Then
either the reduction is of type I14; for some k, or p = +1 (mod 7), in which case the

reduction is I.

Remark 7.2.2. As it has been mentioned, E is a base change of an elliptic curve over
@, so in Proposition 7.2.1 and in the remainder of the section, when we consider the
reduction of E (and also X and X (14)) modulo a rational prime, we will consider E to be
defined over Q and when we consider it modulo a prime of K we consider its base change

to K.
Proposition 7.2.3. The curve E has multiplicative reduction of type /4, at 2.

Proof. This follows from the observation that v, () # 0 or both vy (1) =0 and vy (u+1) >
0, from which it follows, by what we have already proved, that in both cases the reduction

type of E,, at 2 is 4. [ |

We now prove 3 useful lemmas.
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Lemma 7.24. Let x € Y(K) and let ‘3 be a prime of K over 2. Then x modulo 8 is

defined over .

Proof. As mentioned above, the results of [5] imply that a non-cuspidal cubic point on
x € X given by the equation f(u,v) = 0 in (7.2.1) satisfies either u € P'(Q) or v € P1(Q).

Over I, the polynomial f factors as
fluy)=@+v)(uv+u+1)(wv+v+1),

which implies that if one of u or v is € P! (IF,), then so is the other. This implies that the

reduction of x modulo 3 is defined over FF5. |

Lemma 7.2.5. Let F = Q(&;)™, let C be a cusp of X whose field of definition is F and
let g be a rational prime. Then the field of definition of the reduction of C in Fq is F s if

g#+1 (mod 7) and Fy if g = £1 (mod 7).
Proof. We have [k(C) : F,] = [Q,({7+ &) : Q] from which the claim follows. [

Lemma 7.2.6. Let ¢ = +1 (mod 7) be a rational prime such that £ has multiplicative
reduction over g and let *J3 be a prime of K over g. Then the reduction of x € X modulo

‘B corresponding to the curve E is [F,.
Proof. Since x modulo 33 is a cusp, the statement follows from Lemma 7.2.5. |

Proposition 7.2.7. Let g =2 or ¢ =+1 (mod 7) be a rational prime such that E has

multiplicative reduction in g. Then g splits in K.

Proof. Let o be a generator of Gal(K/Q) (recall that K is Galois over Q) and suppose ¢

is inert in K. As the degree 3 map X — P! is quotienting by «, it follows that

{x,xc,x"z} = {x, o(x), Ocz(x)} ,

so we can suppose without loss of generality that x° = a(x) and X0 = a?(x). Let ¥ = Cp,

for some cusp Cp € X. It follows that a(x) = at(Cp) and a?(x) = a?(Cp). Denote by
C1 := a(Cp) and by C, := a?(Cy); all C; are distinct as & acts without fixed points on the

cusps. By Lemma 7.2.4 and Lemma 7.2.6, all C; are defined over F,.
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Denote by K; := ¢(C;) and by y = ¢(x) € Y;(14). Descending everything to X;(14),
we have y = Ky, y° = Kj, )F = K,. By Lemma 7.2.4 and Lemma 7.2.6, all C; and hence
all K; are defined over F,,.

Using the same arguments as in [37, Proposition 3.1] we get that Ky = K| = K>.
Reduction modulo g is injective on the torsion of X;(14) by [21, Appendix] for ¢ > 2
and by explicitly checking injectivity for ¢ = 2. Now from the fact that the rank of
X1(14)(Q(&7) 1) is 0, we conclude Ky = K; = K. This is impossible since Cy,Cy,C,

are distinct and ¢ is a degree 2 map. |

63



8. TAMAGAWA NUMBERS OF ELLIPTIC
CURVES WITH PRESCRIBED TORSION

SUBGROUP OR ISOGENY

In this chapter, as the title suggests, we will be studying Tamagawa numbers (introduced
in Section 4.2) of elliptic curves with a certain torsion subgroup or isogeny. We will
mainly be following the author’s paper [46]. Before proceeding, we will introduce the
notation, which will not differ from the one in Chapter 4.

Let E be an elliptic curve over a number field K and denote by X the set of all finite
primes of K. For each v € £, K,, will denote the completion of K at v and k, = Ok, /(7)
the residue field of v, where Ok, is the ring of integers of K, and 7 is a uniformizer of

Ok,

The subgroup Ey(K,) of E(K,) consists of all the points that reduce modulo 7 to a
non-singular point of E(k,) (see Definition 4.1.1). It is known that this group has finite
index in E(K,) so in Definition 4.2.3 we defined the Tamagawa number ¢, of E at v to be

that index, 1i.e.

¢y :=[E(Ky) : Eo(K,)].

Consequently, we defined the Tamagawa number of E over K to be the product cg /g :=
[Tyex cv. We will write cg instead of cg/x wherever it does not cause confusion.

It makes sense to study how the value cg depends on E(K);ors, since cg/#E(K)ors
appears as a factor in the leading term of the L—function of E/K in the conjecture of
Birch and Swinnerton-Dyer (see, for example, [16, Conj. F.4.1.6]).

Some results on Tamagawa numbers of elliptic curves with a specific torsion subgroup
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