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Zagreb, July, 2022



Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom
u sastavu:

1. , predsjednik

2. , član
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Introduction

Differentiation is one of the fundamental problems in numerical mathematics. The solution
of many optimization problems and other applications require knowledge of the gradient,
the Jacobian matrix or the Hessian matrix of a function. It often happens that this process
has to be done repeatedly for a sequence of streaming input data and on a large-scale, mak-
ing the computation of derivatives a central part of the solution. This is why it is necessary
to have an accurate and efficient derivative computation for the practical solutions of dif-
ferent industrial problems.
One of the applications where these solutions are needed is photolithography - a technique
that uses light to produce extremely small (nanometer) patterns of suitable materials over
a substrate. Most commonly, it is used for fabricating integrated circuits (electronic chips)
such as solid-state memories and microprocessors. What happens is the following: a sys-
tem uses ultraviolet light and transfers it from an optical image called reticle through the
number of lenses and projects it on a thin slice of semiconductor - usually a silicon wafer.
This wafer is coated by a light-sensitive material, which causes it to change when exposed
to light, thus producing a desired pattern on a wafer. To project this patterns (image),
a number of coordinate system transformations are associated with the above mentioned
hardware parts. This way, the machine knows where the desired point in the upper lever
will end up in the lower levels of the machine. Of course, since we are talking about ex-
tremely small patterns (nanometer precision), while loading and positioning all the stages
and instruments before exposing an image, the errors are unavoidable. These can have an
enormous impact on a resulting product, since any mispositioning of the instruments will
inevitably result in defects in the exposed image. Thus, correcting for that error is of great
importance. It will turn out that computing the Jacobian matrix of a given coordinate sys-
tem transformation is the solution of this problem. Therefore, the goal of this work is to
investigate different methods for computing derivatives and test their performance in the
context of coordinate system transformations.
Since a derivative calculation is a topic that is thoroughly researched, there are a lot of
methods that we can choose from. It will turn out that there are two types of methods
that will require a deeper investigation - numerical methods, including both finite step and
complex step approximation, as well as automatic differentiation, hereafter abbreviated
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2 CONTENTS

as ”AD”. The two classes of methods have their share of differences. The most glaring
one being the technical effort needed to implement the methods. On one hand, numerical
methods are usually extremely simple, needing a few lines of code to compute the entire
Jacobian matrix. On the other hand, AD is the one where all the complicated comes in. As
we are about to see, there are two different modes of AD - forward and reverse, with the
latter one being especially challenging. Of course, there is a tradeoff : accuracy wise, AD
performs as perfect as one can ask for. It computes the derivative that is exact to roudoff,
while numerical methods incur an truncation error in the result. How big is the error is also
one of the things we aim to find out.
When testing these methods, two conditions will be required - accuracy and time-wise effi-
ciency. As we are about to see, all methods will produce excellent results, which will make
the decision on which one to choose even tougher. It will come down to choosing between
two things: sacrificing a bit of time and accuracy for a simple, effortless implementation,
or making quite an effort to gain a few milliseconds of execution time.
The thesis is organized as follows. In Chapter 1 we state the mathematical facts and defini-
tions used throughout the work. The chapter is divided into four parts. The first one gives
an introduction into coordinate system transformations. The second one gives a review of
calculus with an emphasis on differentiation. Third, we review problems that arise when
dealing with systems of linear equations using a computer and lastly, the software and im-
plementation methods used in this work are described.
In Chapter 2 we present the problem and different solutions to it. Here we discuss different
approaches on how to compute the Jacobian matrix using a computer, and also how and
why those methods are implemented. Special attention is given to numerical and automatic
differentiation, since it will be shown that those fit the problem best.
In Chapter 3 we present the results obtained on a real application data. The focus is on the
accuracy and speed of execution, as we compare different methods. After collecting and
visualizing the data, the final conclusions are drawn.
Many thanks to ASML Netherlands BV for giving me the opportunity of doing the Intern-
ship and writing this thesis about my work there. Special thanks to all my colleagues for
giving me assistance and providing me with everything needed to make this possible. Their
guidance and advice is much appreciated and I couldn’t be more proud to be a part of the
team.



Chapter 1

Mathematical preliminaries

In this chapter the most important mathematical definitions and theorems used in this work
will be reviewed. It is divided in three sections. In the first one, the basic types of trans-
formation matrices will be introduced. Those will be used for coordinate transformation
experiments used later. After that, we review the basic notions from the calculus. More
specifically, the basic definition of the derivative and the Jacobian matrix, as well as their
properties and most important features. Lastly, we will briefly introduce the software en-
vironment in which the numerical methods will be implemented. To be more precise, the
software used throughout the work will be MATLAB, whose object-oriented nature will be
of extreme use.

1.1 Coordinate systems and transformations
In this section we review the basic notions from linear algebra - matrix representation of
linear operators, affine spaces and transformations. We will also take a closer look at some
basic transformations - translation, rotation and magnification - that will be crucial later.
The material here is taken from [6].

Definition 1.1.1. (Vector space)
Let V be a nonempty set of objects called vectors, on which two operations are defined -
addition and multiplication by scalars from a field F:

+ : V × V −→ V

· : F × V −→ V

We say that V is a vector space over the field F if:

i) ∀a, b, c ∈ V : (a + b) + c = a + (b + c).

3



4 CHAPTER 1. MATHEMATICAL PRELIMINARIES

ii) ∃0 ∈ V : a + 0 = 0 + a = a,∀a ∈ V.

iii) ∀a ∈ V,∃ − a ∈ V : a + (−a) = −a + a = 0.

iv) ∀a, b ∈ V : a + b = b + a.

v) ∀a ∈ V,∀α, β ∈ F : α(βa) = (αβ)a.

vi) ∀a ∈ V : 1 · a = a.

vii) ∀a ∈ V,∀α, β ∈ F : (α + β)a = αa + βa.

viii) ∀a, b ∈ V,∀α ∈ F : α(a + b) = αa + αb.

Example 1.1.2. Let n ∈ N. The set Rn is a real vector space where the vectors are n-tuples
of real numbers and the operations are defined as follows:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),
α(x1, . . . , xn) = (αx1, . . . , αxn),

where α ∈ R, (x1, . . . , xn), (y1, . . . , yn) ∈ Rn. The defining vector space properties are easily
checked.

Definition 1.1.3. (Transformation matrix)
Let T : Rn −→ Rm be a linear transformation and x ∈ Rn an arbitrary column vector. There
exists the matrix A ∈ Mm,n(R) such that

T (x) = Ax.

The matrix A (that is uniquely determined by T) is called the transformation matrix of T.

The transformation matrix alters the given coordinate system and maps the coordinates
of the vector to the new coordinates. It can be also taken as the transformation of space.
Most examples here will be three-dimensional - thus using 3 × 3 transformation matrices.
There are multiple types of transformation matrices that are frequently used in all kinds of
applications, for example stretching, squeezing, rotation etc. In this work we will mostly
concentrate (with few exceptions) on so-called affine transformations. Examples of these
transformations are visualized in Figure 1.1.

Definition 1.1.4. LetA , ∅ be a set and V a vector space over a field F. Furthermore, let
v : A×A −→ V be a mapping with properties:

i) ∀X ∈ A, x ∈ V,∃!Y ∈ A : v(X,Y) = x.

ii) ∀X,Y,Z ∈ A : v(X,Y) + v(Y,Z) = v(X,Z).



1.1. COORDINATE SYSTEMS AND TRANSFORMATIONS 5

Figure 1.1: 2D affine transformations

Then we say that (A,V, v) is an affine space over V.

Example 1.1.5. Using the notations from the Definition 1.1.4, we set A = R (as a point
set) and V = R1 (as a vector space). We can define v(x, y) = y − x. Similarly, let A = Rn,
V = Rn and define

v((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = (y1 − x1, y2 − x2, . . . , yn − xn).

These are the examples of affine spaces where d(x, y) is the vector in Rn from point x to
point y.

Definition 1.1.6. LetA,B be affine spaces and f : A −→ B. f is an affine transformation
if it determines a linear map ϕ such that, for any pair of points P,Q ∈ A

−−−−−−−−→
f (P) f (Q) = ϕ(

−−→
PQ).

It is not hard to show the following:

Proposition 1.1.7. An affine transformation of Rn is a map f : Rn −→ Rn of the form

f (p) = Ap + q

for all p ∈ Rn, where A is a linear transformation of Rn and q ∈ Rn. If det A > 0, the
transformation is orientation-preserving. Otherwise, it is orientation-reversing.

The most important affine transformations are rotations, magnifications and transla-
tions. In fact, all affine transformations can be expressed as combinations of those three.
Let us briefly introduce all of them.
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1.1.1 Translation
Definition 1.1.8. Let v ∈ V be a fixed vector. The translation T : V −→ V is defined as
T (p) = p + v.

Remark 1.1.9. If T is a translation andA ⊆ V, then T (A) is the translate ofA by T . This
is often written asA + v, v ∈ V.

Example 1.1.10. (Matrix representation) Let v =
(
vx vy vz

)T
∈ R3 be a fixed vector. We

wish to translate a vector p =
(
px py pz

)T
∈ R3 by a vector v. Since there is no way to

represent a translation using 3 × 3 matrix, we have to come up with something different.
Luckily, there is a workaround. Write the 3 dimensional vector p using 4 coordinates:
v̄ =

(
vx vy vz 1

)T
and p̄ =

(
px py pz 1

)T
. To translate an object by a vector v̄, each

vector p̄ can be multiplied by this translation matrix:

A =


1 0 0 vx

0 1 0 vy

0 0 1 vz

0 0 0 1

 .
The corresponding transformation is given by:

T ( p̄) =


1 0 0 vx

0 1 0 vy

0 0 1 vz

0 0 0 1



px

py

pz

1

 = p̄ + v̄.

Our result in 3D space is now the first three coordinates of the obtained trasformation
T (p).

Proposition 1.1.11. Let Tv be a translation by vector v. Then it holds that:

i) T−1
v = T−v.

ii) TvTw = Tv+w.

1.1.2 Rotation
A rotation is a type of transformation that takes each point in a figure or a set and rotates
it a certain number of degrees around a given point called the origin. Rotation matrix is
a transformation matrix that is used to perform a rotation. A basic (elemental) rotation
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is a rotation about one of the axes of a coordinate system. The following are the 3 basic
rotation matrices that rotate vectors by an angle θ about the x, y, z axes respectively

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (1.1)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (1.2)

Rx(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1.3)

In general, all other rotation matrices can be obtained from these three using matrix multi-
plication. More on rotations and rotation matrices can be found in [4].

1.1.3 Magnification

Definition 1.1.12. Let v =
(
vx vy vz

)T
∈ V. Magnification is a transformation Mv : V −→

V such that

Mv p =

vx 0 0
0 vy 0
0 0 vz


px

py

pz

 =
vx px

vy py

vz pz

 , p =
(
px py pz

)T
∈ V

1.2 Calculus
In this section we review the basic derivative rules of calculus of functions with several
variables. More precisely, we will define a derivative for the multivariate functions along
with its important properties. One thing to look for here is the introduction of the Jacobian
matrix, since it will be extensively used throughout the work. The definitions and theorems
here are taken from [16], [8].

Definition 1.2.1. Let V be a vector space over the field F. Norm is a mapping || · || : V −→ R
with the following properties:

i) ∀x ∈ V, ||x|| ≥ 0.

ii) ||x|| = 0⇔ x = 0.

iii) ∀α ∈ F,∀x ∈ V, ||αx|| = |α|||x||.
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iv) ∀x, y ∈ V, ||x + y|| ≤ ||x|| + ||y||.

An ordered pair (V, || · ||) is called normed space.

Example 1.2.2. (Norms in a vector space Fn)

i) (F, | · |) - absolute value serves as a norm in a field.

ii) (Fn, || · ||1), ||(x1, . . . , xn)||1 =
∑n

j=1 |x j|.

iii) (Fn, || · ||2), ||(x1, . . . , xn)||2 =
√∑n

j=1 |x j|
2.

iv) (Fn, || · ||∞), ||(x1, . . . , xn)||∞ = max{|x j| : j = 1, . . . , n}..

Definition 1.2.3. Let V be a vector space over the field F and || · ||a, || · ||b be two norms. We
say that the two norms are equivalent if there exist positive constants m,M > 0 such that
for all x ∈ V

c||x||a ≤ ||x||b ≤ C||x||a

Theorem 1.2.4. Let vector space V be finite-dimensional. Then all norms are equivalent.

Corollary 1.2.5. For n ∈ N, all norms in a vector space Fn are equivalent.

Remark 1.2.6. Because of the last corollary, we can use any norm in the given vector
space. That’s why, henceforward, we are going to use the the notation || · || if not specified
otherwise, meaning that the claims hold for all norms in the observed vector space.

Definition 1.2.7. Let A ⊆ Rn. Function f : A −→ Rm is differentiable in point c ∈ A if
there exists a linear operator L ∈ L(Rm,Rn) such that

lim
n→∞

∥ f (x) − f (c) − L(x − c) ∥
∥ x − c ∥

= 0.

The linear operator L is unique and we call it a differential of the function f in point c. We
denote it by D f (c).

Remark 1.2.8. In case of m = n = 1, D f (c) = f ′(c).

Lemma 1.2.9. Let A ⊆ Rn, f : Rn −→ Rm, f = ( f1, . . . , fm) and c ∈ A. Function f is
differentiable in point c if and only if fi are differentiable for all i = 1, . . . ,m.

Proof. In [8]. □
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For a function f : A ⊆ Rn −→ Rm, let us observe its component functions f1, . . . , fm : A −→
R,

f (x) = ( f1(x), . . . , fm(x)).

Each function fi is a function of n variables. Therefore we can define real functions

gi j(h) = fi(c1, . . . , c j−1, c j + h, c j+1, . . . , cn).

around a point c = (c1, . . . , cn) ∈ A. These functions we know how to differentiate.

Definition 1.2.10. We define partial derivatives of a function f in point c ∈ A as

∂ fi

∂x j
= g′i j = lim

h→0

fi(c1, . . . , c j−1, c j + h, c j+1, . . . , cn)
h

= lim
h→0

fi(c + he j) − fi(c)
h

i = 1, . . . ,m, j = 1, . . . , n.

Theorem 1.2.11. (Jacobian matrix)
Let f : A ⊆ Rn −→ Rm be differentiable in point c ∈ A. Then all partial derivatives ∂ fi

∂x j
(c)

exist. Furthermore, if we define a matrix ∇ f (c) ∈ Mm,n(R) as

∇ f (c) =


∂ f1
∂x1

(c) ∂ f1
∂x2

(c) . . . ∂ f1
∂xn

(c)
∂ f2
∂x1

(c) ∂ f2
∂x2

(c) . . . ∂ f2
∂xn

(c)
...

...
. . .

...
∂ fm
∂x1

(c) ∂ fm
∂x2

(c) . . . ∂ fm
∂xn

(c)


then ∇ f (c) is a representation of D f (c) in a pair of canonical bases of Rn and Rm. This
matrix is called the Jacobian matrix of the function f and it is often denoted by J f or just
J.

Proof. [16], [8]. □

In Definition 1.2.10 we restricted ourselves to the points in the direction of coordinate
axes. There is, of course, every reason to look at the other directions too.

Definition 1.2.12. Let f : A ⊆ Rn −→ Rm and c ∈ A. Furthermore, let v ∈ Rn be unit
vector. If there exists a limit

lim
h→0

f (c + hv) − f (c)
h

,

we call it a directional derivative of a function f in a direction of a vector v at the point c
and we denote it by ∂ f

∂v .
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Proposition 1.2.13. Let f : A ⊆ Rn −→ Rm and v ∈ Rn, ∥ v ∥= 1. If f is differentiable at
the point c then there exists the directional derivative ∂ f

∂v (c) and

∂ f
∂v

(c) = D f (c)v.

Remark 1.2.14. If we choose v = ei in Proposition 1.2.13, then it follows

∂ f
∂ei

(c) =
∂ f
∂xi

(c) = D f (c)ei =


∂ f1
∂xi

(c)
∂ f2
∂xi

(c)
...

∂ fm
∂xi

(c)

 .

Notice that ∂ f
∂xi

(c) ∈ Rm is equal to the ith column of the Jacobian matrix from Theorem
1.2.11.

Especially interesting and important is the case when m = 1, i.e. when f is a real
multivariate function. Then the Jacobian matrix is a 1 × n dimensional:

∇ f (c) =
(
∂ f
∂x1

(c) . . . ∂ f
∂xn

(c)
)
.

This vector is called the gradient of f and it is denoted by grad f (c).
Next we shall take a look at basic but important properties of derivatives which will be
used throughout this work. Most proofs are straightforward and can be found in [16] or
[8]. Especially important will be Theorem 1.2.17.

Proposition 1.2.15. Let f : A ⊆ Rn −→ Rm be differentiable in point c ∈ A. Let B ⊆ Rm

Then the function α f + βg is differentiable in c and

D(α f + βg)(c) = αD f (c) + βDg(c).

Proposition 1.2.16. Let f : A ⊆ Rn −→ Rm and g : A −→ R be differentiable in point
c ∈ A. Then the function g f is differentiable in c and

D(g f (c))h = g(c)(D f (c)h) + f (c)(Dg(c)h), h ∈ Rn.

Theorem 1.2.17. (Chain rule)
Let g : A ⊆ Rn −→ Rm be differentiable in point c ∈ A. Let B ∈ Rm be an open subset such
that g(A) ⊆ B and h : B −→ Rp. Then the function f = h ◦ g is differentiable in c and

D f (c) = D(h ◦ g)(c) = Dh(g(c))Dg(c).
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Remark 1.2.18. In terms of the Jacobian matrices Theorem 1.2.17 can be written as

J f (x) = Jh◦g(x) = Jh(g(x)Jg,

with (i, j)th element:

Ji j =
∂ fi

∂x j
=
∂hi

∂g1

∂g1

∂x j
+
∂hi

∂g2

∂g2

∂x j
+ . . . +

∂hi

∂gk

∂gk

∂x j
.

More generally, if our target function f is the composite expression of L functions

f = f L ◦ f L−1 ◦ . . . ◦ f 1,

the corresponding Jacobian matrix is the product:

J = J f L · J f (L−1) · . . . · J f 1 . (1.4)

Theorem 1.2.19. (Mean value theorem for real functions)
Let A ⊆ Rn be open and f : A −→ R differentiable in A. For every segment [x, y] ⊆ A there
exists a point c ∈ (x, y) such that

f (y) − f (x) = D f (c)(y − x).

Corollary 1.2.20. Let A ⊆ Rn be open and f : A −→ Rm differentiable in A. For every
segment [x, y] ⊆ A there are points c1, . . . , cm ∈ (x, y) such that

fi(y) − fi(x) = D fi(ci)(y − x), i = 1, . . . ,m.

Theorem 1.2.21. (Mean value theorem for vector-valued functions)
Let A ⊆ Rn be open and f : A −→ Rm differentiable in A. If ∥ D f ∥∞< ∞ then for every
segment [x, y] ⊆ A

|| f (y) − f (x)|| ≤ ||D f (c)||∞||(y − x)||.

1.3 Numerical analysis
In this chapter we are introducing certain problems that are arising when we are working
with numerical methods and finite precision arithmetic in a computer. More precisely, we
will take a look at the solution of the system of linear equations, and how the changes in
the input data affect the final solution. We will introduce perturbations, and give some
general results on the conditions and consequences of the given issues. More on this topic
can be found in [9]. Before we dive into it, we introduce two different types of error that
can emerge when dealing with numerical computing: truncation and roundoff error.
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Definition 1.3.1. Let x be the actual value of some process, and x̂ the approximated value
calculated using a numerical method. We define the truncation error as ∆x = x − x̂.

Definition 1.3.2. Let x be the result produced by a given algorithm using exact arithmetic,
and x̃ the result produced by the same algorithm using finite-precision, rounded arithmetic.
The difference ∆x = x − x̃ is called roundoff error.

Example 1.3.3. (Truncation error when calculating derivatives).
Suppose we want to find truncation in calculating the first derivative of a function

f : R −→ R, f (x) = 5x3.

at the point x = 7. We know that
f ′(x) = 15x2,

f ′(7) = 735.

The exact first derivative is given by the formula defined in Definition 1.2.7. However, if
we are calculating the derivative numerically, h in the definition of exact derivative has to
be finite. The error caused by choosing h as finite is a truncation error in mathematical
process of differentiation. Let us choose h = 0.1. The approximate value is given by:

f ′(7) =
f (7 + 0.1) − f (7)

0.1
= 745.55

Hence, the truncation error is T E = |735 − 745.55| = 10.55

1.3.1 Perturbation theory for systems of linear equations
In general, perturbation theory comprises methods for finding an approximate solution to a
problem. It is based on the fact that it is possible to give an approximate description of the
system under study using some specially selected ”ideal” system which can be correctly
and completely studied. One of the criteria of applicability of some part of perturbation
theory, depending on the nature of the problem being studied, is that the equations de-
scribing the process in question contain a small parameter (or several small parameters),
explicitly or implicitly. The requirement is furthermore that if the small parameter is zero,
the equation is exactly solvable, so that the problem is reduced to finding the asymptotic
behaviour of the best approximation to the true solution, accurately to within ϵ, ϵ2, ...
Before describing a problem, we introduce one important definition.

Definition 1.3.4. We say that a matrix A ∈ Rn×n is invertible or non-singular if there exists
a matrix B ∈ Rn×n such that

AB = BA = I
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Matrix B is called the inverse of the matrix A. Matrices that don’t have the inverse are
called singular matrices.

We are considering the linear system of equations

Ax = b

where A is a non-singular n × n system matrix, b is a vector in Rn and x ∈ Rn is a vector
whose coefficients x1, x2, . . . , xn are unknown.
We know from linear algebra that, in theory, solving this system is a simple problem. The
solution is given by formula x = A−1b, where A−1 is a inverse matrix of A. Thereby exist
explicit formulas for the inverse matrix A−1 and the solution x.
Unfortunately, when using a finite precision arithmetic in a computer, it is impossible to
get the exact solution, even with the theoretically perfect method and formulas. Also, when
working in a real environment and on the real data, we cannot be sure that our input data,
i.e. system matrix A and vector b, are exactly correct. These small inaccuracies are called
perturbations, and always have to be kept in mind when solving practical problems since:

• The data A and/or b may be obtained from measurements, and therefore they are
error prone.

• Representation of data as floating point numbers using computers produces errors.

Hence, one always has to emanate from the fact that one solves a perturbed linear system
instead of the given one. More precisely, we can say that our approximation of the solution
x̃ = x + δx satisfies the perturbed system

(A + δA)(x + δx) = b + δb.

Our aim is to examine how perturbations of A and b affect the solution of the system x.
For simplicity, let us first examine the case when δb = 0. Then the perturbed system has
the form

(A + δA)(x + δx) = b.

The question that immediately arises when dealing with this system is the singularity of
the perturbed system matrix A + δA. From the equality A + δA = A(I + A−1δA) we
deduce that the matrix A+δA is regular if I +A−1δA is regular. The conditions for which
we can guarantee the non-singularity of the matrix I +A−1δA is given by the following
results.

Lemma 1.3.5. Let A ∈ Rn×n such that ||A|| < 1. Then the matrix I −A is non-singular
and it holds that

||(I −A)−1|| ≤
1

1 − ||A||
.
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Proof. For all x ∈ Rn, x , 0:

||(I −A)x|| ≥ ||x|| − ||Ax|| ≥ ||x|| − ||A|| ||x|| = (1 − ||A|| ) ||x|| > 0.

Therefore, the linear system
(I −A)x = 0

has the unique solution x = 0 and I −A is non-singular. The estimate of the norm of the
(I −A)−1 follows from

1 = ||(I −A)−1(I −A) || = ||(I −A)−1 − (I −A)−1A||

≥ ||(I −A)−1|| − ||(I −A)−1A||

≥ ||(I −A)−1|| − ||(I −A)−1|| ||A||

= (1 − ||A|| ) ||(I −A)−1||.

□

Corollary 1.3.6. Let A ∈ Rn×n be a non-singular matrix and δA ∈ Rn×n. Assume that

||δA|| ≤
1

||A−1||
.

Then A + δA is non-singular and

||(A + δA)−1|| ≤
||A−1||

1‘ − ||A−1δA||
≤

||A−1||

1 − ||A−1|| ||δA||

Proof. The existence of (A + δA)−1 follows from Lemma 1.3.5 since

||δA|| ≤
1

||A−1||
⇒ 1 ≥ ||A−1δA||

and A + δA = A(I +A−1δA)

||(A + δA)−1|| = ||(I +A−1δA)−1A−1|| ≤ ||A−1|| · ||(I +A−1δA)−1||

≤
||A−1||

1‘ − ||A−1δA||
≤

||A−1||

1 − ||A−1|| ||δA||

□

The corollary demonstrates that for a non-singular matrix A the perturbed matrix A +
δA is also non-singular if the perturbation δA is sufficiently small. Having that in mind,
let

ϵ =
||δA||

||A||
≪ 1
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non-singularity of the matrix A + δA is assured if

||A−1|| ||δA|| = ϵ(||A|| · ||A−1|| ) < 1, i.e. ϵ <
1

||A|| ||A−1||
.

Then it holds ||A−1δA|| < 1 and (A + δA)−1 = (I +A−1δA)−1A−1, so x̃ = (A + δA)−1b
can be written as

x̃ = (I +A−1δA)−1A−1b = (I +A−1δA)−1x, i.e. (I +A−1δA)x̃ = x.

Therefore, x = x̃ = A−1δAx̃, and

||x − x̃|| ≤ ||A−1δA|| ||x̃||.

Because of ||A−1δA|| ≤ ||A−1|| ||δA||, we have

||x − x̃||
||x̃||

≤ ||A−1|| ||A||
||δA||

||A||
= ϵ ||A−1||||A||.

This shows us that relative error in the solution x̃ can be magnified by a factor of ||A−1||||A||,
regards to relative change ϵ in the input matrix A. This discussion serves as a motivation
for the following definition.

Definition 1.3.7. Let A ∈ Rm×n be a matrix. We define a condition number of a matrix A
as

κ(A) = ||A|| ||A−1||

if A is regular. Otherwise we set κ(A) = ∞. If κ(A) is such that κ(A) · ϵ ≪ 1, we say that
the linear system is well-conditioned. Otherwise, it is ill-conditioned.

Example 1.3.8. Consider the linear system of equations[
1 1
1 0.999

]
x =

[
2

1.999

]
Obviously, the solution is x =

[
1 1

]T
. We compute that

A−1 =

[
−999 1000
1000 −1000

]
and therefore κ∞(A) = 4000.

Let us now take a look at a general case, where δA , 0 and δb , 0. The results are
summarized in the following theorem.
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Theorem 1.3.9. Let Ax = b, (A + δA)(x + δx) = b + δb, where ||δA ≤ ϵ||A|| and
||δb|| ≤ ϵ ||b||. If ϵ||A−1||||A|| < 1, then it holds

||δx||
||x||
≤

ϵ

1 − ϵ ||A−1|| ||A||

(
||A−1|| ||b||
||x||

+ ||A−1|| ||A||

)
≤ 2

ϵ ||A−1|| ||A||

1 − ϵ ||A−1|| ||A||
.

Thereby exist perturbations δA and δb such that above inequality is almost achieved. More
precisely, there exist δA and δb such that ||δA|| = ϵ ||A||, ||δb|| = ϵ ||b||, and

||δx||
||x||
≥

ϵ

1 + ϵ ||A−1||||A||

(
||A−1|| ||b||
||x||

+ ||A−1|| ||A||

)
.

1.4 Software environment
The software that will be used to implement the methods in this work will be MATLAB.
Its name is the abbreviation of Matrix laboratory and it is a proprietary multi-paradigm
programming language and numerical computing environment. It allows matrix manipula-
tions, plotting of functions and data, implementations of algorithms, etc. Although MAT-
LAB is primarily intended for numerical computing, it is extremely powerful and it allows
the use of object-oriented features. In this section we will introduce object-oriented pro-
gramming. Special attention will be given to a feature called operator overloading, since
the most method in this work will use it as a fundamental technology. More on MATLAB
object-oriented programming can be found in [13].

1.4.1 Object-oriented programming
As mentioned above, the software environment that will be used throughout this work is
MATLAB. More specifically, we will take advantage of its object-oriented nature. Espe-
cially useful and important will be a feature called operator overloading. Hereafter, object-
oriented programming (OOP) and its basic principles will be introduced.
The main goal of OOP is to make the code simpler. To do this, the program is divided into
independent blocks of code that are called objects. An object is a collection of data and
functions - called properties and methods respectively. An object can represent anything,
from geometric shape to cars or any abstract entities. To use objects, a programmer needs
to define classes. In MATLAB, one example could be:

c l a s s d e f s q u a r e
p r o p e r t i e s

s i d e
end
methods
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f u n c t i o n A = a r e a ( s e l f )
A = s e l f . a * s e l f . a ;

end
f u n c t i o n S = scope ( s e l f )

S = 4 * s e l f . a ;
end

end
end

Listing 1.1: MATLAB class example

Objects are actually instances of classes. Objects can be characterized by 4 terms:

1. Encapsulation - objects are independent, which means that all the data needed is
stored inside the object itself.

2. Abstraction - objects have interface so users can access its properties and methods
from outside the object.

3. Inheritance - essentially a copying mechanism. We can create multiple objects that
are alike which prevents us from copy-pasting the same code.

4. Polymorphism - objects that are alike and inherited from one another can share func-
tionality while being adapted as necessary.

1.4.2 Operator overloading
One of the most popular and widely used features of OOP is operator overloading. It is
used to redefine the operators such as +,−,×, / etc. These operators by default work only
on standard data types such as int, float, char etc. But with this OOP feature we can give
this operators additional meaning. The way we do it is by defining certain methods inside
our class. For instance, if we want to add our objects, we would overload, or redefine a
method called plus(). Following is a simple example where operator overloading is a go to
technology.

c l a s s d e f f r a c t i o n
p r o p e r t i e s

n u m e r a t o r
d e n o m i n a t o r

end
methods

f u n c t i o n o b j = f r a c t i o n ( num , den )
f u n c t i o n r e s = p l u s ( a , b ) . . .
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f u n c t i o n r e s = t i m e s ( a , b ) . . .
% . . .

end
end

Listing 1.2: Operator overloading - class fraction

This approach allows us to write simple and natural code such as:

>> f r a c t i o n x ( 1 , 2 ) ;
>> f r a c t i o n y ( 1 , 3 ) ;
>> x + y
ans =
f r a c t i o n wi th p r o p e r t i e s :

n u m e r a t o r : 5
d e n o m i n a t o r : 6

Listing 1.3: Usage of class fraction - 1
2 +

1
3

Apart from regular arithmetic and logical operations, it is possible to overload the math
functions such as sin, cos, log, as well as relational operators such as ==, >,≤ etc. For a
deeper dive into operator overloading in MATLAB and which functions/operators can be
redefined we refer the reader to https://nl.mathworks.com/help/matlab/matlab_
oop/implementing-operators-for-your-class.html.

https://nl.mathworks.com/help/matlab/matlab_oop/implementing-operators-for-your-class.html
https://nl.mathworks.com/help/matlab/matlab_oop/implementing-operators-for-your-class.html


Chapter 2

Problem statement and algorithms

In this chapter we will present the problem and its possible solutions i.e. the methods that
can be used to solve it. We will start by introducing a framework - an array of coordi-
nate system transformations used in photolithography equipment. First we wil acquaint
ourselves with the basics of photolithography. More on this specific topic can be found in
[14]. After describing the problem it will turn out that everything revolves around com-
puting the Jacobian matrix, a term defined in Theorem 1.2.11. Therefore, the main goal of
this chapter will be to investigate and implement different methods to compute derivatives.
Of course, there are many methods that we can choose, but we will see that the best ones
are the following:

1. Numerical methods - finite step and complex step approximation

2. Automatic differentiation and its two modes - forward and reverse

All of these methods will be thoroughly explained and investigated in this chapter. We will
give a summary of the differences between the methods, as well as its implementations
and advantages/disadvantages of each one. More information on the derivatives and its
computations can be found in [18], [15] and [3].

2.1 Problem Setting
Photolithography, in its most general form, is a term used for techniques that use light to
produce patterned thin films of suitable material over a substrate, such as a silicon wafer.
In this context, a wafer is a thin slice of semiconductor, such as crystalline silicon. It
serves as the substrate for microelectronic devices built in and upon the wafer. Typically,
ultraviolet light is used to transfer a geometric design from an optical mask to a light-
sensitive chemical called photoresist coated on the wafer. This photoresist either hardens or

19
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breaks down when exposed to light. The patterned film is then created by removing softer
parts of the coating. Photolithography is widely used in different applications. The most
common and wide-known use is for fabricating electronic chips (solid-state memories,
microprocessors). It is able to create extremely small patterns, down to a few tens of
nanometers in size.
The root of the name photolithography has Greek origins. It is compounded from three
words:

1. photo - light,

2. litho - stone,

3. graphy - writing.

This process was invented by Alphonse Poitevin in 1855 who combined the process of
lithography with light. The same process is used today to print microchips that exist in
cellphones, computers and every other electronic devices. Photolithography is quite a com-
plicated procedure that requires many steps. Our focus will be on a step called exposure.
Here, the photoresist is exposed to a beam of intense light. One of the possible exposure
methods uses projection systems. These systems project the mask, usually called reticle,
onto the wafer. Essentially, light goes through the reticle and projects the exposed point(s)
onto the wafer while passing through a number of projection lenses that magnify/squeeze
the light beam. This process is illustrated in Figure 2.1. To project a given point, the ma-
chine uses a number of coordinate transformation systems that connect different hardware
parts. Of course, since extreme precision is required, during positioning of the wafers and
reticles, as well as their stages, there is usually misalignment and mispositioning of the
used instruments. These errors can be detrimental to the resulting product. One example
of a possible error is illustrated in Figure 2.2.

To be more precise, let f : Rn −→ R3 be the above mentioned coordinate system transfor-
mation. This is nicely illustrated at Figure 2.3. n input arguments represent the parameters
that we wish to correct the error in. Those can be translation, rotation or magnification
parameters in any direction in 3D, as well as some other parameters of interest. Notice that
we wish those parameters to be 0. Furthermore, we define the expected position x ∈ Rn of
the reticle. This point represents a position of the reticle in a perfect environment - without
any positioning errors. Using the given coordinate system transformation f , we yield the
expected wafer position f (x). On the other hand, we have aligned position x̃ which is the
actual position of the reticle. Similarly, at the wafer level there exists the aligned position
f (x̃). Finally, ∆x = x − x̃ represents the error in input data of the given coordinate system
transformation. x and f (x) are known a priori, and f (x̃) is measured by high-precision
positioning instruments. The only thing we do not have is the error ∆x. The goal is to
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Figure 2.1: Exposure process in photolithography

calculate that error so we can correct for it. To do that we make use of Corollary 1.2.20.
More precisely, we use the formula:

∆y = f (x) − f (x̃) = J f∆x.

The Jacobian matrix describes the variation of f with respect to each of the parameters.
So, to calculate ∆x, one has to calculate the Jacobian matrix J f of the coordinate system
transformation f . Once we have that, it follows:

∆x = J−1
f ∆y

There is of course the question whether a matrix J f is invertible. Thus, a few conditions
have to be met:

1. J f has to be of full rank.

2. J f has to be well-conditioned, e.g. the parameters are well modelled.

The objective of this work is to calculate the Jacobian matrix in the context of coordinate
system transformations. As mentioned above, we will primarily focus on accuracy and
efficiency of the observed methods, as both are crucial to obtaining the best result in ap-
plications. A more thorough example of how and when this approach is used we refer the
reader to [19].
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Figure 2.2: Mispositioning of the reticle - adopted from [19].

2.2 Computing derivatives
Numerical simulations arising in large-scale scientific applications often require the eval-
uation of derivatives of some objective function, as they play a crucial role in numerical
computing. Some examples include solution of nonlinear systems of equations, ordinary
and partial differential equations and differential-algebraic equations. Derivatives are also
ubiquitous in the areas of sensitivity analysis and design optimization. Therefore, the topic
of computational differentiation (i.e. some process by which derivatives are obtained with a
computer) is thoroughly researched. With that said, further development and investigation
of the known and new methods is still an open field of research today. When derivatives are
obtained with a computer, errors may be introduced in two ways: truncation and roundoff
error, as defined in Definition 1.3.1 and 1.3.2 respectively.

There are multiple approaches to this problem, and all of them have their advantages
and disadvantages and appear in a variety of applications. In general, when computing
derivatives with a computer, we want to meet the following requirements:

a) Efficiency - the amount of memory and runtime should be minimized.
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Figure 2.3: Coordinate system transformations.

b) Reliability - the truncation error should be minimized or ideally, non-existent.

c) Scalability - the method should give a correct result for the simplest and most compli-
cated programs.

d) Human effort - it should be easy to use.

The classical, or the old school way to compute derivatives is hand-coded differentia-
tion. Here the derivatives are obtained by deriving the analytic expressions by hand and
then coding a subroutine for their computation. The clear advantage of this approach is that
the result is exact (to roundoff) and can even be efficient when coded correctly. But this
approach is extremely time consuming, as well as error prone for complex cases. Shortly,
it is not practical for most problems of interest.
One alternative to hand-coding is symbolic differentiation. Here the idea is to find an ex-
plicit expression for the Jacobian matrix J. A big disadvantage of this approach is that
the expressions get really complicated really fast, especially for the large-scale problems.
It is also extremely painful when one wants to obtain higher-order derivatives. Moreover,
because of its tree-based structure, it is often times extremely inefficient due to its rapid
growth of underlying expressions. With that said, it is still used widely, for example it is
implemented via the software Maple.
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2.2.1 Numerical differentiation
A well-known and widely used approach to all kinds of general problems in numerical
mathematics is to use approximations rather then exact solutions. Reasons for that are of
course computational cost (both memory and time-wise) and the simplicity of implemen-
tations. Numerical methods for computing derivatives satisfy both. There is, naturally,
an obvious disadvantage of this kind of methods, and that is the truncation error. In case
of derivatives, in many applications this loss of accuracy is not acceptable. That is espe-
cially true when there are complicated functions and programs, or when there is a need
for higher order derivatives. Specifically, there are two methods that we will take a closer
look at. Those are the well-known and widely used finite difference approximation and the
less-known complex-step approximation.

2.2.2 Finite difference approximation of derivatives
The idea of the finite difference approximation is simple and it uses basic definitions of
derivatives from calculus. More precisely, the Definition 1.2.7. Here h represents a pertur-
bation in variable x j. Imagine h being finite and representable in a computer. Then, what
we get is an approximation of the derivative:

∂ fi

∂x j
≈

fi(x + he j) − fi(x)
h

. (2.1)

Obviously, there is a truncation error. The question is how good is this approximation, i.e.
how big is the error?
Let us write the Taylor series about the base point x, expanded in the variable h

fi(x + he j) = fi(x) +
∂ fi

∂x j
(x) · h +

1
2
∂2 fi

∂2x j
(x) · h2 +

1
3!
∂3 fi

∂3x j
(x) · h3 + . . . (2.2)

from where by dividing the entire equation by h it follows:

fi(x + he j) − fi(x)
h

=
∂ fi

∂x j
(x)︸ ︷︷ ︸

partial derivative we want

+
1
2
∂2 fi

∂2x j
(x) · h +

1
3!
∂3 fi

∂3x j
(x) · h2 + . . .︸                                        ︷︷                                        ︸

error

We have proven:

Lemma 2.2.1. For a function f : Rn −→ Rm is valid:

∂ fi

∂x j
(x) =

fi(x + he j) − fi(x)
h

+ O(h)

i = 1, . . . ,m, j = 1, . . . , n. We say that the dominant error term is on the order of h.
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The expression in Lemma 2.2.1 is called Forward Finite Difference Approximation
(FFDA). Similarly, we define a Backward Finite Difference Approximation (BFDA)

∂ fi

∂x j
(x) =

fi(x) − fi(x − he j)
h

+ O(h). (2.3)

This follows directly from Taylor series expansion of fi(x − he j):

fi(x − he j) = fi(x) −
∂ fi

∂x j
(x) · h +

1
2
∂2 fi

∂2x j
(x) · h2 −

1
3!
∂3 fi

∂3x j
(x) · h3 + . . . (2.4)

Furthermore, if we subtract the equation 2.4 from 2.2 we get a Central Finite Difference
Approximation (CFDA)

∂ fi

∂x j
(x) =

fi(x + he j) − fi(x − he j)
2h

+ O(h2). (2.5)

The question now is what is the optimal step-size h? One could say that the more we
decrease h, we get better results. So why wouldn’t we just decrease h? Here comes the
biggest disadvantage of these methods - and that’s the trade-off between truncation and
roundoff error. Namely, every number represented in a computer comes with a built-in
roundoff error. That error is of order 10−16 and its usually referred to as machine precision
ϵ. It is a limit of how close can a computer tell different numbers apart. Effectively what
we have is the following:

∂ fi

∂x j
(x) =

fi(x + he j) − fi(x)
h

+ O(h)︸︷︷︸
Truncation error

+
ϵ

h︸︷︷︸
Roundoff error

. (2.6)

So, the more we decrease h, the more the truncation error decreases. But on the other hand,
decreasing h means increasing the roundoff error. Because of that there is an optimal h for
which the cumulative error is minimized. In practice, that number is usually around 10−5

or 10−6. This is illustrated in Figure 2.4.

2.2.3 Complex step approximation
As an alternative to a finite step differencing approximation we will introduce another
numerical method: complex step differencing approximation. The story and idea be-
hind this method can be found in [11]. Here we are concerned with an analytic function
f : Cn −→ Cm. Put it simply, it means that f is a infinitely differentiable function.
Let z = x + ih ∈ C. Now let us expand fi(z), i ∈ {1, . . . ,m} in a Taylor series of the
coordinate j ∈ {1, . . . , n} of the real axis:

fi(x + ihe j) = fi(x) + ih
∂ fi

∂x j
(x) −

1
2

h2 ∂
2 fi

∂2x j
(x) − ih3 1

3!
∂3 fi

∂3x j
+ . . .
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Figure 2.4: Cumulative error plotted against step-size h. Figure has to be observed from
right to left, corresponding to decreasing of the step-size h. Blue line shows the magnitude
of the error with respect to different step sizes, while the red line shows what would happen
if we could represent the numbers in a computer exactly.

Take the imaginary part of both sides and divide by h:

∂ fi

∂x j
=

Im( fi(x + ihe j))
h

+ O(h2).

Therefore, simply by evaluating function f at the imaginary argument x+ ihe j and dividing
by h we got an approximation of the partial derivative ∂ fi

∂x j
, ∀i ∈ {1, . . . ,m}, ∀ j ∈ {1, . . . , n}.

Here, the optimal step-size h would be around 10−8. The described method is called Com-
plex Step Differentiation (CSD) and it is often a better alternative compared to FDA.

2.3 Automatic differentiation
In the previous section we discussed various methods for calculating derivatives in a com-
puter finite precision arithmetic. Each one had its advantages and disadvantages. For
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example, we have seen that finite step and complex step approximations inevitably yield
truncation errors. Even if the step size h is optimally chosen, the values of the derivatives
will be accurate to only about 1

2 or 1
3 of the significant digits of the observed function f .

For higher order derivatives these accuracy problems increase more and more. In con-
trast, automatic differentiation methods do not incur truncation errors at all and yield exact
derivatives up to round-off. This feature is the main advantage of AD. It is good to mention
that there are two modes of AD: forward and reverse mode. Both have its advantages and
applications, and one of our goals is to compare the two modes. Literature and material
used throughout this section: [15], [10], [7], [12].

Remark 2.3.1. Automatic differentiation does not incur truncation errors, the term defined
in Definition 1.3.1. This claim will be proven in the following section. Same cannot be
said for the roundoff error defined in Definition 1.3.2, as the latter one is an inevitable
consequence of working with the finite precision on the computer.

Likewise, symbolic differentiation, because of its tree-based structure tends to be too
slow and inefficient. On the other hand AD, if implemented carefully and correctly, per-
forms quite fast. In the next sections we will take a closer look at AD and its implementa-
tions. Specifically, we will take a look at two modes of AD that are widely used: forward
and reverse mode.

2.3.1 How automatic differentiation works
The main idea behind AD is:

Even the biggest, most complicated problems must be built from a smaller set
of primitive sub-problems.

In case of differentiation, the tool that makes that possible is the chain rule which we
defined in Theorem 1.2.17. This will be our building block for AD.
Given a target function f : Rn −→ Rm, the corresponding m×n Jacobian matrix J has (i, j)th

component:

Ji j =
∂ fi

∂x j
.

Now suppose f is a composite function: f (x) = (h1◦h2◦. . .◦hL)(x) = h1(h2(. . . (hL(x)))), L ∈
N, with x ∈ Rn, f : Rn −→ Rm and h1 : Rl1 −→ Rm, h2 : Rl2 −→ Rl1 , . . . , hL : Rn −→ RlL

and let u ∈ Rn. One sweep of forward AD evaluates the action of the Jacobian matrix J on
u; J · u. Let us remember the discussion from Remark 1.2.18. There we had a composite
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function and verified that its Jacobian is of the form (1.4). From there it follows:

J = JL · JL−1 · . . . · J1 · u
= JL · JL−1 · . . . · J3 · J2 · u1

= JL · JL−1 · . . . · J4 · J3 · u2

· · ·

= JL · uL−1

(2.7)

where we have a recursion

u1 = J1 · u
ul = JL · uL−1, l = 2, . . . , L

(2.8)

Hence, given a complex function f , we can break down the action of the Jacobian
matrix on a vector into simple components which we evaluate sequentially.

Remark 2.3.2. (2.7) corresponds to a directional derivative of f with respect to u.

Let us now consider a vector in the output space w ∈ Rm. Reverse sweep of AD
computes the action of the transposed Jacobian matrix on w, JT · w. Same process that we
did in the forward mode above applies here. More precisely, we repeat the procedure from
equation 2.7 while replacing J with JT , and u ∈ Rn with above defined w ∈ Rm. Again,
we successfully broke our program or a function into a sequence of elementary operations.
We will later see that the right choice of u or w allows us to compute one row or column of
the Jacobian matrix, respectively. But before we take a deeper dive into two modes of AD,
we will get familiar with a concept that will be crucial in building a theory of AD.

Definition 2.3.3. (Computational graph)
A computational graph is defined as a directed graph where the nodes correspond to math-
ematical operations.

Remark 2.3.4. Computational graphs are a way of expressing and evaluating a mathe-
matical expression.

Example 2.3.5. Let us consider a function f (x, y, z) = (x + y)(y + z). Now split f into
smaller, primitive functions:

u = x + y
v = y + z
w = u · v

The corresponding computational graph is shown in Figure 2.5.
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Figure 2.5: Computational graph - function f (x, y, z) = (x + y)(y + z).

.

2.3.2 Forward mode of Automatic Differentiation
As we briefly mentioned, there are two modes of AD - forward and reverse. Here we will
first take a look at the intuitively and technically simpler mode which is the forward mode
of AD. We have seen in the AD introduction section 2.3.1 that the idea behind AD relies
on the chain rule. Also we described that a sweep of forward AD evaluates an action of
the Jacobian matrix on a vector in input space. Here, we expand that idea a bit further.
Along with the chain rule, forward AD depends on the definition of the dual numbers.
That is why, before we dive into the technical details of the forward mode, we start with
the introduction of those. The theory and implementation is based on [12] and [7]. More
details can be also found in [5].
As mentioned above, first we have to define the dual numbers and study its properties. This
concept was first described by W.K. Clifford in 1873, and since then it has been used in
many different applications, most notably in differentiation, as we are about to see. The
formal definition is the following:

Definition 2.3.6. (Dual numbers)
Let a, b ∈ R, and ϵ is infinitesimal. We define a dual number z = a + bϵ.

Remark 2.3.7. (Similarities with the complex numbers)
A complex number is an element of a number system that contains the real numbers and
a specific element denoted by i, called an imaginary unit, which satisfies the equation
i2 = −1. Every complex number can be expressed in the form a + bi, a, b ∈ R. The set of
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complex numbers is denoted by C.
Similarly, we defined the dual numbers in Definition 2.3.6, where instead of an imaginary i,
we introduced an element ϵ such that ϵ2 = 0. Thus, the dual numbers extend the definition
of real numbers by adjoining one new element ϵ.

Example 2.3.8. (Matrix representation)
Using matrices, dual numbers can be represented as

a + bϵ = a
[
1 0
0 1

]
+ b

[
0 1
0 0

]
.

The sum and product of the dual numbers are then calculated with ordinary matrix addition
and multiplication. This correspondence is analogous to the usual matrix representation
of the complex numbers:

a + bi = a
[
1 0
0 1

]
+ b

[
0 −1
1 0

]
.

Like the complex numbers, the dual numbers also satisfy basic arithmetic operations,
which is proven in the following proposition:

Proposition 2.3.9. Let z = a + bϵ and w = c + dϵ be two dual numbers. It is valid:

i) z + w is a dual number and z + w = (a + c) + (b + d)ϵ.

ii) z · w is a dual number and z · w = ac + (ad + bc)ϵ.

iii) if c , 0, then
z
w

is a dual number and
z
w
=

a
c
+

bc − ad
c2 .

Proof. All the proofs follow directly from 2.3.6:

i) z + w = a + bϵ + c + dϵ = (a + c) + (b + d)ϵ.

ii) z · w = (a + bϵ)(c + dϵ) = ac + adϵ + bcϵ + bdϵ2︸︷︷︸
=0

= ac + (ad + bc)ϵ.

iii)
z
w
=

a + bϵ
c + dϵ

=
a + bϵ
c + dϵ

·
c − dϵ
c − dϵ

=
ac − adϵ + bcϵ − bdϵ2

c2 − d2ϵ2
=

a
c
+

bc − ad
c2 .

□

Now consider a polynomial

P(x) = a0 +

N∑
n=1

anxn
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and a dual number z = x + ϵ. The polynomial P in the indeterminate z has the form:

P(z) = P(x + ϵ) = a0 +

N∑
n=1

an(x + ϵ)n

= a0 +

N∑
n=1

anxn + ϵ

N∑
n=1

annxn−1

= P(x) + ϵ
dP
dx

(x).

The third equality follows from the binomial theorem. Because of the fact that ϵ2 = 0, we
are left only with the first two terms. Last equality follows from the formula for the first
derivative of the polynomial.
The fact that ϵ2 = 0 suggests that the dual numbers can be used to differentiate functions,
since in analogy to an infinitesimal dx, quantities of order dxn with n ≥ 2 are usually ne-
glected. It turns out that this reasoning is correct. We proved this easily for polynomials.
Then, via the Taylor Series, it can be generalized for any analytic function. So, by extend-
ing a real function to a dual function one can numerically obtain its derivatives. This serves
as a motivation for the following definition:

Definition 2.3.10. Let z = a + bϵ and f : R −→ R differentiable in a. We extend the
definition of the function f to dual numbers by defining:

f (a + bϵ) = f (a) + f ′(a)bϵ.

Proposition 2.3.11. Definition 2.3.10 is compatible with the properties of derivatives:

i) if f (x) = g(x)h(x), then f (a + bϵ) = g(a)h(a) + (g′(a)h(a) + g(a)h′(a))bϵ.

ii) if f (x) = g(h(x)), then f (a + bϵ) = g(h(a)) + (g′(h(a))h′(a))bϵ.

Proof. Directly from Definition 2.3.10. □

Example 2.3.12. If f (x) = sin(x), then

f (x + ϵ) = sin(x + ϵ) = sin(x) cos(ϵ) + cos(x) sin(ϵ) = sin(x) + ϵ cos(x).

This follows directly from Taylor expansions of sin and cos functions, and the fact that
ϵ2 = 0.

Now we see that by evaluating f (x) in its dual form and setting b = 1 in Definition
2.3.6 we are able to recover both the function value f (a) as well as its evaluated derivative
f ′(a) in the form of the coefficient in front of ϵ! Finally, because of 2.3.11 ii) we can easily
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propagate gradients across the layers of computation simply by multiplying derivatives
with each other.
Now imagine a function with n inputs, f : Rn −→ R. Let us remember remark 2.3.2. Notice
that the right choice of u allows us to compute a partial derivative of f with respect to one
input. Specifically, if {e1, . . . , en} is a canonical basis for Rn, let u = ei. Then:

∇ fi = ∇ f · u = ∇ f · ei =
∂ f
∂xi
. (2.9)

Here ∇ fi denotes the ith element of the gradient ∇ f . Hence we can compute the full ∇ f
in n forward sweeps. Naturally, we do not compute (2.9) by doing a vector operation,
as it would require us to already know ∇ f . Instead, forward mode of AD computes a
directional derivative at the same time as it performs a forward evaluation trace. Notice
that same applies if we had a vector-valued function, f : Rn −→ Rm. In that case, n forward
sweeps would result in a full m × n Jacobian matrix.

Example 2.3.13. Find a derivative of f (x, y, z) = xy sin(yz) at the point a = (3,-1,2). First
we set

x = 3 + ϵ[1, 0, 0],
y = −1 + ϵ[0, 1, 0],
z = 2 + ϵ[0, 0, 1],

which leads to
t = xy = −3 + ϵ[−1, 3, 0],
u = yz = −2 + ϵ[0, 2,−1],
v = sin(u) = sin(−2) + ϵ cos(−2)[0, 2,−1],

and finally

w = tv = −3 sin(−2) + ϵ(− sin(−2), 3 sin(−2) − 6 cos(−2), 3 cos(−2)).

Therefore, we see that

f (3,−1, 2) = −3 sin(−2),
∇ f (3,−1, 2) = [− sin(−2), 3 sin(−2) − 6 cos(−2), 3 cos(−2)].

Figure 2.6 shows a corresponding computational graph.

2.3.3 Implementing forward mode
To implement the forward mode and dual numbers we will make use of MATLAB’s object-
oriented features. Specifically, operator overloading introduced in section 1.4. What we
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Figure 2.6: Computational graph - function f (x, y, z) = xy sin(yz).

want to do is represent a dual number with all of its properties. Therefore we need to make
sure that all of our elementary operations (addition, multiplication, division) and functions
(sin, cos, etc.) are redefined to accept dual numbers. Hence, we define a class:

c l a s s d e f Dual
p r o p e r t i e s

v a l u e % f u n c t i o n v a l u e
d e r i v % d e r i v a t i v e v a l u e o r g r a d i e n t v e c t o r

end
methods

f u n c t i o n o b j = Dual ( va l , d e r ) . . .
f u n c t i o n r e s = p l u s ( a , b ) . . .
f u n c t i o n r e s = minus ( a , b ) . . .
f u n c t i o n r e s = uminus ( a ) . . .
f u n c t i o n r e s = mtimes ( a , b ) . . .
f u n c t i o n r e s = m r d i v i d e ( a , b ) . . .
f u n c t i o n r e s = s i n ( a ) . . .
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f u n c t i o n r e s = cos ( a ) . . .
f u n c t i o n r e s = mpower ( a , b ) . . .

% . . .
end

end
Listing 2.1: class Dual definition.

Since any function can be written by combining these operations, it is then possible to write
a simple code, such as

>> x = Dual ( 3 , 1 ) ;
>> s i n ( x*x )
ans =
Dual wi th p r o p e r t i e s :

v a l u e : 1 .2364
d e r i v : −15.9882

Listing 2.2: Forward AD - function f (x) = x2.

In this display, first the Dual object is instantiated. The second argument in the constructor
call indicates that we want to take a derivative with respect to variable x. This is particularly
important when we are dealing with multivariate functions, as in the below example:

>> x = Dual ( 3 , 1 ) ;
>> y = Dual ( −1 ) ;
>> z = Dual ( 2 ) ;
>> f = x * y * s i n ( y * z )
ans =
Dual wi th p r o p e r t i e s :

v a l u e : 2 .7279
d e r i v : 0 .9093

Listing 2.3: Forward AD - function f (x, y, z) = xy sin(yz).

Note that the variable f contains both the function value and a partial derivative with re-
spect to the first coordinate, in this case that is ∂ f

∂x , both at the point (3,−1, 2). Alternatively,
we could have written

>> x = Dual ( [ 3 −1 2 ] , [ 1 0 0 ] ) ;
>> f = x ( 1 ) * x ( 2 ) * s i n ( x ( 2 ) * x ( 3 ) ) ;

Listing 2.4: Forward AD - alternative approach.

generating the same result. This approach specifically, will be used in coordinate system
transformations (section 3.1). All of these examples are made possible with a careful im-
plementation of a Dual constructor, as seen in the following snippet
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f u n c t i o n o b j = Dual ( va l , d e r )
o b j . v a l u e = v a l ;
i f nargin < 2

o b j . d e r i v = z e r o s ( s i z e ( v a l ) ) ;
e l s e

o b j . d e r i v = d e r ;
end

end
Listing 2.5: Constructor - class Dual.

The simplicity of the methods of interest is obvious. For most elementary functions, cor-
responding overloads are just one-liner functions that code calculus derivative rules, as in
the following sin definition:

f u n c t i o n r e s = s i n ( a )
r e s = Dual ( s i n ( a . v a l u e ) , cos ( a . v a l u e ) * a . d e r i v ) ;

end
Listing 2.6: class Dual - overloading sin function.

Notice the silent use of the chain rule!
With two-argument operations we need to be more careful. Namely, in case of multiplica-
tion there are two possibilities: either both parameters are a Dual, or just one of them is
(the second one is a scalar). Hence:

f u n c t i o n r e s = mtimes ( a , b )
i f ˜ i s a ( a , ’ Dual ’ ) % a i s a s c a l a r

r e s = Dual ( a * b . va lue , a * b . d e r i v ) ;
e l s e i f ˜ i s a ( b , ’ Dual ’ ) % b i s a s c a l a r

r e s = Dual ( a . v a l u e * b , a . d e r i v * b ) ;
e l s e % both a and b a r e Dual

r e s = Dual ( a . v a l u e * b . va lue , . . .
a . d e r i v * b . v a l u e + a . v a l u e * b . d e r i v ) ;

end
end

Listing 2.7: class Dual - overloading operator *.

Aside from basic arithmetic operations and elementary functions, one could also rede-
fine matrix manipulation functions available in Matlab. More specifically, functions such
as transpose, horizontal and vertical concatenations, as well as indexing and assignment
methods can be customized. This way we could take the full advantage of all MATLAB’s
power and features that are at disposal.
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2.3.4 Reverse mode of Automatic Differentiation
The simplicity of forward AD comes with a big disadvantage which becomes evident when
we wish to compute a partial derivative with respect to different parameters. In forward
mode, doing so requires running the program (and with it the entire evaluation trace) again
and again for each input variable. Obviously, this is very costly for a function with many
inputs. A baby example for this is 2.3, where to get the entire gradient, we would have to
run the same code (this time for variables y and z) multiple times. So natural question that
pops up is can we do better? It turns out that we can, and that is where the reverse mode
of AD comes into play. The idea here is to inverte the input-output roles of the vaiables.
So instead of computing derivatives with respect to an input, we compute adjoints with
respect to an output.

Definition 2.3.14. (Adjoint of a variable)
The adjoint of a variable x with respect to another variable z is defined as

x̄ =
∂z
∂x
.

As briefly mentioned in section 2.3.1, for a initial vector w̄ ∈ Rm and a differentiable
function f : Rn −→ Rm, reverse sweep of AD computes JT · w. Again, the right choice of
w allows us to compute one row of the Jacobian matrix. Notice that, for m = 1, this row
corresponds exactly to the gradient. Particularly, if we pick w = f j, ∀ j = 1, . . . ,m where f j

is basis vector for Rm,
Ji = JT w̄

we get the full m × n Jacobian matrix. We already see why the use of reverse AD instead
of forward AD would be beneficial in a variety of cases, i.e when n ≫ m. But how does it
work exactly?
First, we make a forward pass through the computational graph and record the intermedi-
ate (auxiliary) variables. Then we work our way down the graph and record the adjoints
using the chain rule and recorded variables. This is illustrated in Algorithm 3. To better
understand this process and give a bit of intuition, the following example is presented.

Example 2.3.15. We will use the same function as in Example 2.3.13 - f (x, y, z) = xy sin(yz).
First, we do a forward sweep and record the intermediate variables. This is illustrated in
Figure 2.6. Observe that we will use the variables in this figure to compute the adjoints.
Now we have to do a reverse sweep by working our way down the graph, starting at the
root variable w. Remember, we wish to calculate all the adjoints of the output variable w.
We start with

w̄ =
∂w
∂w
= 1,
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which is the seed for the reverse pass. Next, we calculate each of the adjoints that w directly
or indirectly depends on using the chain rule and basic derivative rules of calculus.

v̄ =
∂w
∂v
= t = −3,

t̄ =
∂w
∂t
= v = sin(−2),

ū =
∂w
∂u
=
∂w
∂v
∂v
∂u
= v̄ cos(u) = −3 cos(−2),

z̄ =
∂w
∂z
=
∂w
∂u
∂u
∂z
= ūy = 3 cos(−2),

ȳ =
∂w
∂y
=
∂w
∂t
∂t
∂y
+
∂w
∂u
∂u
∂y
= t̄x + ūz = 3 sin(−2) − 6 cos(−2),

x̄ =
∂w
∂t
∂t
∂x
= t̄y = − sin(−2).

Notice that in every step the calculated intermediate variables and their values are used.
Finally,

f (3,−1, 2) = w = −3 sin(−2),

∇ f =

x̄
ȳ
z̄

 =
 − sin(−2)
3 sin(−2) − 6 cos(−2)

3 cos(−2)


2.3.5 Implementing reverse mode
The goal is to do the exact same thing that we did in Example 2.3.15 - store a computational
graph in the forward sweep, and use its intermediate values to compute the Jacobian. To
do a reverse pass, we have to be able to access two things:

1. The computational graph, and

2. The numerical values of the intermediate variables on that graph.

More precisely, during the forward sweep we build up an internal representation of the
computation, and then use it to perform a reverse sweep. This internal representation will
be stored in a persistent memory arena, which will be referred to as the tape. Again,
operator overloading is used. The idea here is that with each new operation, we create
new nodes by appending them to an existing, growable array. Notice, this array is actually
the tape. Also, an integer index will be assigned to each node, so we can refer to it in
this array. Intuitively, we could think of it as a pointer to another node. Additionally, to
connect the nodes, each one will also store indices to their parent node(s) to represent the
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dependencies. Conceptually, Figure 2.7 shows how this representation would look like for
the function in Example 2.3.15. Note that there is a similarity with the graph 2.6. More

Figure 2.7: Representation of the computational graph in memory - function f (x, y, z) =
xy sin(yz).

generally, given a function f : Rn −→ Rm, the tape can be divided into 3 parts, as shown
in 2.10. At the beginning there are always n input variables created before any operation
or evaluation. Following are intermediate variables created and appended to the tape with
each new operation. Lastly, there are m variables which represent the output and serve as a
root for the reverse sweep.

Input variables


v̄1
...
v̄n

Intermediate variables


v̄n+1
...
v̄n+m

(2.10)

Output variables


v̄n+r+1
...
v̄n+r+m

To make all of this work properly, we need 3 types of objects:

1. class Node - to store weights (derivatives) and indices to parent nodes (dependen-
cies).

2. array Tape - to store the nodes generated by the evaluation procedure.

3. main class reverseAD - to overload the operators and build the tape.
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Let us start with class Node. Its definition is as follows:

c l a s s d e f Node
p r o p e r t i e s

w e i g h t s
d e p e n d e n c i e s

end
methods

o b j = Node (w, deps )
end

end
Listing 2.8: class Node definition.

For better understanding on how it works, below is an example on how the node for the
variable a = x ∗ y would look like:

Node {
w e i g h t s : [

y . va lue , % ∂a/∂x
x . va lue , % ∂a/∂y

] ,
deps : [ x . index , y . i n d e x ]

}

Listing 2.9: Node variable a = x * y.

The nodes themselves are stored in a common array - tape. Recall that the tape can be
thought of as a record of all the operations performed during the evaluation procedure,
which in turn contains all the information required to compute its gradient when read in
reverse. Because of that, we will define a new class to perform those operations and build
the tape. Below is the class definition:

c l a s s d e f reverseAD
p r o p e r t i e s

v a l u e
i n d e x

end
methods

o b j = reverseAD ( v a l ) . . .
r e s = p l u s ( a , b ) . . .
r e s = mtimes ( a , b ) . . .

% a l l t h e o t h e r o v e r l o a d e d o p e r a t i o n s
% . . .
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end
end

Listing 2.10: class reverseAD definition.

Here’s how it works: each operation creates a new instance of the reverseAD class, and
assigns the property value to the result of the operation. At the same time, function
add to tape is called in every overloaded method of the class. Its job is to create new
instances of class Node, and append them to the tape. Implementation can be found in
Algorithm 1. Property index, on the other hand, is incremented automatically. This means

Algorithm 1: function add to tape
Input: Weights and indices obtained from performed operation.
Data: tape = Array of Nodes.

1 Create new Node node with properties weights and indices.
2 Push node to the tape.

that internally we keep track of the number of nodes created. Note that number of nodes
is equal to the size of the tape since each node is appended to the tape when created. For
better understanding, let’s take a look at the code of the constructor and a sin function:

% c o n s t r u c t o r
f u n c t i o n o b j = reverseAD ( v a l )

o b j . v a l u e = v a l ;
o b j . i n d e x = reverseAD . i n c r e m e n t c o u n t e r ( ) ;

end

f u n c t i o n r e s = s i n ( a )
r e s = reverseAD ( s i n ( a . v a l u e ) ) ;
r e s . a d d t o t a p e ( cos ( a . v a l u e ) , a . i n d e x ) ;

end
Listing 2.11: class reverseAD - constructor and overloaded sin.

As a recap, main tasks of the class reverseAD are:

1. Calculate the expressions.

2. Create new nodes.

3. Build the tape.
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Algorithm 2: Reverse sweep
Input: w - seed variable for the reverse sweep.
Output: gradient - array containing all adjoints of a variable w.
Data: tape.
// w is of type reverseAD

1 n← size(tape).
2 Initialize gradient as an array of zeros, size n.
3 Initialize the root for the reverse sweep: // ∂w/∂w = 1.
4 gradient(w.index)← 1.
5 for i← n to 1 by −1 do
6 foreach dep in tape(i).dependencies do
7 gradient(dep)← gradient(dep) + tape(i).weights( j) ∗ gradient(i).

Finally, after executing a function or program of interest and simultaneously building
a tape, we are able to perform a reverse sweep. Behind the curtain, chain rule is used to
calculate the adjoints. Algorithm 2 shows the implementation of the reverse pass. At last,
Algorithm 3 shows us a full implementation of the reverse mode of Automatic differentia-
tion. Notice that to compute the entire m×n Jacobian matrix, we have to run the Algorithm
3 m times.

Algorithm 3: Reverse AD
Data: Target function f .
Input: List of input parameters inputs.
Output: Gradient row of the Jacobian matrix.

1 foreach parameter in inputs do
2 Make an instance of reverseAD object with value parameter.

3 Initialize array tape.
4 foreach operation in f do
5 Perform operation.
6 Store its result in a new instance of reverseAD object.
7 Call routine add to tape.

8 Choose output variable to get the desired row of the Jacobian.
9 Call routine reverse sweep with the argument output and save the result to

gradient.
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2.3.6 Forward or reverse?
By now one should already see a difference between forward and reverse mode of AD.
Suppose that for a function f : Rn −→ Rm we wish to compute the entire m × n Jacobian
matrix. The question that we want to answer is which mode of AD should we use? We
already know that one sweep of the forward mode computes one column of the Jacobian
matrix, and the reverse mode on the contrary computes one row per sweep. Therefore,

Hunch 2.3.16. Forward mode performs better when n < m.

There is an important thing that should be mentioned here: when comparing the two
modes, we ignore the overhead of building the expression graph. More on that will be
discussed in the subsection 2.3.7. That said, with the relatively small overhead, the perfor-
mance of reverse mode AD is superior when n ≫ m. A proof of that statement is shown
in Table 2.1 where the relative runtime of the reverse and forward mode are compared.
Reverse mode is extremely useful and highly applicable to high-level modeling.

Dimension of input, n 2 4 8 16
Relative runtime 0.06362 0.58879 3.10207 8.1683

Table 2.1: Relative runtime to compute a Jacobian matrix with reverse mode when com-
pared to forward mode. The table summarizes results of measuring runtimes by differenti-
ating f : Rn −→ R3 with various number of inputs n.

2.3.7 Optimizing the performance of reverse mode
There is a big setback time-wise for the reverse mode of AD and that’s tape building. The
experiment on the same data as in Table 2.1 shows that the ratio of time to build the tape
and to build a Jacobian from it is quite big. More precisely:

Time to build the tape
Time to build the Jacobian from that tape

≈ 13.

Because of that, we don’t want to build the tape from scratch every time we wish to com-
pute the Jacobian. The goal is to build the tape (preferably once) and reuse it in multiple
reverse sweeps. But there is a natural question that arises: if we have multiple points in
which we wish to compute derivatives of the same function, the intermediate values should
change from point to point, which which causes changes to the tape?
Luckily, there are solutions for this problem. One is the method called retaping. To be
able to perform retaping, there is a one condition that has to be met. The control flow of
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the function or a program must not change from sweep to sweep. If our target function
contains conditional statements, those control the expression graph our program generates.
Effectively, we have a different graph for each of the conditions. But if the control flow
doesn’t change, the expression graph stays the same and doesn’t change from sweep to
sweep. Therefore, a single tape for the expression graph can be employed to compute
AD sweeps at multiple points. More thorough explanations and implementations of this
method can be found in [17] or [2].
Another problem that could arise, especially in big-size problems, is peak memory usage.
Here, the computational graph gets large and complicated, which takes a toll on memory
and with it, on the efficiency of entire program. There are solutions for this specific prob-
lem as well. The two possible approaches are: checkpointing and reducing the number of
operations in a function. More on these and other similar methods can be found in [10].

2.3.8 Alternative implementations

There are multiple ways of implementing AD. Reverse mode especially has its share of
different approaches. When it comes to operator overloading approach, the basic idea is
always the same; build the tape and then traverse it backwards to get the desired gradient
or Jacobian. That said, the tape itself, its implementations and memory representations is a
different story. One way that is widely used is to represent the tape as 3-address code, where
in addition to intermediate values and indices that we stored (subsection 2.3.5), one stores
the performed operations in a third array. So the difference here is that rather than having a
one array that stores the intermediate values, the tape is a structure that holds three different
arrays. This is nicely illustrated in Figure 2.8. The two arrays storing values and indices
can be intuitively thought of as equal to the weights and dependencies in our class Node,
although there are subtle differences. To build the operation codes array, the programmer
needs to take care of assigning the codes, i.e. integers to different operation. For instance,
addition could have the code 1, multiplication 2, sin function 10 and so on. After building
the tape this way, the reverse sweep is carried out by a simultaneous interpretation of the
three arrays. More details on this approach is in [7].

Aside from using the operator overloading feature (or object-oriented programming in
general), there is a completely different way of implementing AD: Source transformation.
This is a more classic approach as it uses a preprocessor, which applies differentiation rules
to the source code of a computer program that implements the target function. Essentially,
it generates a new source code, which calculates the derivatives. Finally, both source codes
are then run and evaluated together producing the desired result. There are severe limita-
tions to this approach. One being that it can use the information available only at compile
time. This prevents a programmer from using sophisticated programming features such
as while loops, object-oriented features, etc. Therefore, implementing source transforma-
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Figure 2.8: Representation of the tape - 3-address code approach.

tion takes a considerable amount of effort and that’s why operator overloading is today the
appropriate technology. More on this topic can be found in [1] and [3].



Chapter 3

Results and examples

In this chapter the results collected from an application to real data and examples will be
presented. One of the main focuses will be on efficiency of the methods. More precisely,
average runtimes will be taken to see which methods perform best in a variety of cases.
Also, the tests presented here will also give an insight into how good numerical methods
are in the specific cases we are going to look at. These results are obtained on the specific
coordinate system transformations that were described in Section 2.1.

3.1 Jacobian in context of Coordinate systems
transformation

As described in section 2.1, the goal is to compute the Jacobian matrix J of a function
f : Rn −→ R3 (see Figure 2.3). Since this transformation is close to linear, except of
course the rotation which is function of sin and cos, we expect the cumulative error in
the numerical methods to be quite small. An important thing to note here is that all the
discrepancies and comparisons in this subsection are obtained with respect to AD, since
we know that the latter method yields the exact solution. First, we will make an accuracy
comparison which will give us an insight into how good and correct the numerical methods
are. After that, the results of the time measurement experiments will be presented. Here
we will get a real glimpse into how efficient the two AD methods are. Finally, we will wrap
up this section with a conclusion and give an opinion and advice on which method would
be best utilized in this specific framework.

3.1.1 Accuracy comparison
Before diving into the details of the experiments performed, there is one thing that we
should take care of, and it concerns the step-size h when using the numerical methods de-
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scribed in section 2.2.1. So first things first, the optimal step size h needs to be chosen for
the finite step and complex step approximation methods. Figure 2.4 shows us that expected
optimal step size for FDA methods should be around 10−5 or 10−6.

That assumption proves correct, as shown in Figure 3.1. Here, the errors for different

Figure 3.1: Boxplot shows the cumulative error of FDA methods with respect to step size
h. It summarizes the results from an experiment for a Jacobian of a function f : R20 −→ R3.
All the discrepancies from all input parameters are collected and grouped by step size h.

input parameters are accumulated with respect to the step size h. There are 16 different
step size values chosen, the smallest one being 10−16 and the biggest one 0.1. It is obvious
that overall best results are obtained for 10−5 and 10−6, as expected. Thus, for future tests
we choose an optimal step size hFDA = 10−6.

The same question pops up when working with complex step approximation. Here,
the results are way more accurate than for the FDA, which is expected since the dominant
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Figure 3.2: Cumulative error wrt to step size - Finite step and complex-step approximation
comparison.

error term is on the order of h2. Also, since CSD isn’t a difference based method as the
FDA methods are, there is no ”large number” + ”small number” additions. Thus, the
errors due to floating point precision are almost non-existent. One example where this is
especially important and where CSD has the upper hand on FDA methods are the linear
functions. Suppose that we have a linear function f . Because of the above mentioned
addition, smallest error when calculating a derivative of f is when we have the biggest step
size, i.e. h = 0.1. Luckily, the error when h = 10−6 is acceptable. This is shown in Figure
3.2. With that said, using the data from Table 3.1, we choose step size hCS D = 10−8.
Now that the step sizes are chosen, we are ready to do the final comparison in terms of
accuracy. Both the absolute and relative errors will be taken into account. Again, we make
use of MATLAB’s boxplot to nicely represent the discrepancies. From Figures 3.3 and 3.4
one can conclude that the numerical methods perform very well. To be more specific, we
can see that the error in case of CSD is almost non-existent, while for FDA methods is also
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Step size Maximum discrepancy wrt AD
10−1 2.28 × 10−5

10−2 2.28 × 10−7

10−3 2.28 × 10−9

10−4 2.28 × 10−11

10−5 2.28 × 10−13

10−6 2.28 × 10−15

10−7 5.55 × 10−17

10−8 5.55 × 10−17

10−9 5.55 × 10−17

10−10 5.55 × 10−17

10−11 5.55 × 10−17

10−12 5.55 × 10−17

10−13 1.11 × 10−16

10−14 1.11 × 10−16

10−15 1.11 × 10−16

10−16 5.55 × 10−16

Table 3.1: Maximum discrepancy of CSD method for each step size h.

acceptable. Table 3.2 shows that the maximum error for FDA is in range of 10−9 and 10−10,
while for CSD that number goes to -15.

Method CSD BFDA CFDA FFDA
Maximum discrepancy 2.14 × 10−10 6.35 × 10−9 1.18 × 10−10 6.36 × 10−9

Table 3.2: Maximum absolute discrepancy of numerical methods when compared to AD.

3.1.2 Timing and efficiency
Before diving into runtimes of the different methods, there is one important thing to men-
tion. Let us recall the discussion from Subsection 2.3.7. There we proved that there is a
setback when using the reverse mode - tape building. Therefore, we ignore the overhead of
building the expression graph when measuring the runtime of reverse AD, having in mind
that with the relatively small overhead the performance of reverse AD is superior when
compared to the other methods, as we are about to prove.
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Figure 3.3: Absolute discrepancy - numerical methods when compared to AD.

As far as the numerical methods go, we expect CSD to be slower then FDA methods. Rea-
son for that being that the complex method performs complex arithmetic as well as unused
computations. For instance, the real part is calculated but never used.
To measure runtime, we calculate the Jacobian 1000 times using each method, and then
take the average. Results are shown in Table 3.3. Immediately we see that forward mode

Method BFDA CFDA FFDA CSD FAD RAD
Time per call (in milliseconds) 2.4 4 2.3 2.9 13 1.2

Table 3.3: Runtimes to compute the Jacobian. This experiment is done by calculating the
Jacobian matrix of a function f : R20 −→ R3 1000 times. Results in the table show the
average runtime for each of the different methods.

of AD does not yield acceptable results in terms of efficiency. That is an expected behavior
(see the discussion in subsection 2.3.6). On the other hand, reverse mode gives the best
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Figure 3.4: Relative discrepancy FDA/CSD - AD
AD .

results for the specified parameter set at the specific reference point. The results for the
numerical methods are as expected - with BFDA and FFDA yielding the best result.

3.1.3 Conclusion
Looking back at the conducted tests, there are a few things to conclude. First, it is obvious
that forward mode of AD is not a good option for this specific problem. Even though
exact, forward AD is inefficient and takes too much time to build the Jacobian matrix. On
the other hand, reverse AD seems to solve the time efficiency issue, since it is the fastest
method of all. With that said, reverse AD should be the obvious choice. The only problem
with reverse AD is the software effort that needs to be made in order to make it work
properly. As seen in the subsection 2.3.5, it takes a considerable amount of time and effort
to implement it and integrate it into your own system. For that reason, one could opt in for
a simpler solution which makes use of numerical methods. As shown in the discussions
above, numerical methods are, in this specific case, really accurate as well as efficient.
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Taken that into account, with its straightforward implementation, FFDA and BFDA seem
like a good choice as well. One could even make the case for CSD, where the error is
shown to be almost non-existent. To conclude this section, there is a choice to be made
between reverse AD and first-order FDA methods. If one is willing to put in effort and
time in implementing reverse AD, it is a no brainer. But in most cases and examples with
different parameters, FDA methods can be more than acceptable, which makes them a good
alternative.
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Sažetak

Kao i mnoge industrije, fotolitografija zahtjeva preciznost i učinkovitost u računanju derivacija
u svrhu optimizacije finalnog proizvoda. Točnije, korištena transformacija koordinatnih
sustava je optimizirana ispravljanjem grešaka u ulaznim podacima, što zahtjeva najbolje
moguće metode za računanje Jacobijeve matrice dane transformacije.
U ovom radu prezentirali smo razne metode za računanje derivacija u smislu transformacija
koordinatnih sustava. Upoznali smo razlike u performansama i implentacijama različitih
pristupa. Pokazalo se da jednostavnost numeričkih metoda nije bila kobna, pošto je točnost
istih bila više nego zadovoljavajuća. Medutim, automatsko deriviranje nam je pokazalo da
egzaktnost i efikasnost mogu ići jedno s drugim. Ta tvrdnja je bila posebice točna za obrnuti
AD, koja se pokazala najbržom metodom od svih. Jedina manjkavost te metode je zaht-
jevnost tehničke implementacije koja je potrebna za izvedbu iste. Zbog toga je potrebno
donijeti odluku - uložiti vrijeme i trud za malo poboljšanje u efikasnosti ili prihvatiti malo
losiju metodu, u svrhu jednostavnije izvedbe.





Summary

Like many industrial applications, photolithography requires accurate and efficient deriva-
tive computation to optimize its resulting product. More specifically, its coordinate system
transformation is optimized by error correction in input data, which requires the best pos-
sible method to compute the Jacobian matrix of a given transformation.
In this work we presented different methods for computing derivatives in the context of
coordinate system transformations. We have seen the implementation, as well as the per-
formance differences between the various approaches. It turned out that the simplicity of
the numerical methods - finite step and complex step approximations - didn’t come back
to bite us, since accuracy wise they proved to be more then acceptable. With that said, AD
showed us that an exact and efficient solution can come hand in hand. That was especially
true when reverse AD was used as it proved to be the fastest method of all. One knock
on the reverse AD is the technical effort required for its implementation, as it forces one
to make a decision between a software effort and a slight improvement in efficiency or a
simpler, but in general worse, solution.
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na Prirodoslovno-matematičkom fakultetu u Zagrebu. 2019. godine, stječem titulu prvos-
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