
Accelerating Numerical Simulation of Multiple
Scattering for Radiation Transport

Požgaj, Stjepan

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:654904

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-20

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:654904
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:10737
https://repozitorij.unizg.hr/islandora/object/pmf:10737
https://dabar.srce.hr/islandora/object/pmf:10737

SVEUČILIŠTE U ZAGREBU

PRIRODOSLOVNO–MATEMATIČKI FAKULTET

MATEMATIČKI ODSJEK

Stjepan Požgaj

ACCELERATING NUMERICAL
SIMULATION OF MULTIPLE

SCATTERING FOR RADIATION
TRANSPORT

Diplomski rad

Voditelji rada:
prof. dr. sc. Zlatko Drmač
dr. sc. Sabine Grießbach

Zagreb, srpanj 2022.

Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom
u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

I sincerely thank Dr. Sabine Grießbach, Dr. Paul F. Baumeister and Dr. Lars Hoffman for
giving me the opportunity to write this thesis in collaboration with them. Furthermore, I

am grateful to prof. dr. sc. Zlatko Drmač for helping me get invited to the summer
program where this journey began.

Zahvaljujem i svojoj obitelji, prijateljima i zaručnici Ani na podršci tijekom studiranja.

Contents

Contents iv

Introduction 1

1 Parallel computing 2
1.1 Supercomputers . 2
1.2 Parallel programming models . 4

2 Simulation of radiation transport 14
2.1 Atmospheric remote sensing . 15
2.2 JURASSIC forward models . 16
2.3 Inverse modeling in JURASSIC . 20

3 Accelerating JURASSIC-scatter 22
3.1 Connecting projects . 22
3.2 JURASSIC-scatter-GPU realization . 24
3.3 Performance results . 25

4 JURASSIC-unified 30
4.1 Merging projects . 31
4.2 Multiple atmospheres feature . 38
4.3 JURASSIC-unified as a library . 40

Bibliography 43

iv

Introduction

Infrared measurements from polar orbiting satellite instruments are an important pillar of
Earth observation systems. In order to derive the state of the atmosphere (temperature,
pressure, trace gas concentrations, aerosol and cloud properties) from the measured spec-
tra, radiative transfer through the atmosphere along a ray path given by the position and
orientation of the satellite instrument has to be modeled. The atmosphere variables can be
varied until the calculated spectra match with the measured spectra. This process is called
retrieval and relies on a fast execution of the radiative transport computation.

The Juelich Rapid Spectral Simulation Code (JURASSIC) [18, 19, 20] is a fast radia-
tive transfer model for the analysis of atmospheric remote sensing measurements in the
mid-infrared spectral region. It performs the radiative transport forward calculation and
provides the retrieval algorithm around it. It was developed by Hoffman [20]. JURASSIC
was originally written in C and has been ported to GPUs using the CUDA programming
language by Baumeister et al. [4, 5, 6]. An important research field is to incorporate parti-
cles (ice and water clouds, volcanic aerosol, dust particles, etc.) into the model. For this,
scattering of the infrared radiation on the liquid or solid particles needs to be accounted
for, so JURASSIC was cloned and extended to JURASSIC-scatter by Grießbach [14, 15].
JURASSIC without scattering is available as vectorized CPU and GPU version and as ref-
erence implementation, however, JURASSIC-scatter so far did not benefit from tuning and
acceleration.

The main goal of this thesis was to accelerate JURASSIC-scatter by using JURASSIC-
GPU in some of its parts to achieve better performance. Benchmarking was done on one
of the world’s top supercomputers. After that, it was decided to develop a separate project
in which there would be no code duplicates and which could be used as a library for the
JURASSIC reference implementation. This new unified code version of JURASSIC is
called JURASSIC-unified.

The thesis is structured as follows: Chapter 1 introduces parallel programming models
which were used in JURASSIC-unified implementation. In Chapter 2 atmospheric re-
mote sensing and the JURASSIC models are presented. Chapter 3 shows how JURASSIC-
scatter was accelerated and in Chapter 4 the JURASSIC-unified code is presented.

1

Chapter 1

Parallel computing

In this chapter a brief history of supercomputing as well as some modern supercomputers
are presented. After that, the basics of the programming models used in the implementation
of the JURASSIC forward model are covered.

1.1 Supercomputers
A supercomputer is a name for a particularly powerful computer. Supercomputers can be
designed to solve a particular real-world computational problem or for general purpose
computing. Supercomputers often have to deal with computation-heavy simulation prob-
lems that common computers cannot handle. These problems come from industry and
various fields of science such as physics, astrophysics, astronomy, atmospheric science,
materials science, genomics, bioinformatics and many others. Supercomputers also play
an important role in artificial intelligence and machine learning, dominant and fast-growing
areas that will require even better computing performance in the future.

The standard way to express the processing power of a supercomputer is by its FLOPS,
which is an acronym for floating point operations per second. While clock speed [Hz] is
a more popular speed measure for PCs, FLOPS is the metric for supercomputers because
it covers multi-core architectures and vectorization. Of course, by increasing the clock
speed of some processor, its FLOPS will be increased, but that does not mean that a com-
puter with a higher clock speed also has to have more FLOPS. This is because the FLOPS
performance is also highly dependent on the computer architecture.

The TOP500 list [3] shows the most powerful computer systems. This ranking started
in 1993 and the list is updated twice a year. The LINPACK benchmark is used to compare
supercomputers. In this benchmark, the time required to solve a dense system of linear
equation using lower-upper (LU) factorization with partial pivoting is measured. Figure

2

CHAPTER 1. PARALLEL COMPUTING 3

1995 2000 2005 2010 2015 2020

1011

1013

1015

1017

Year

FL
O

PS
The best in the year

Figure 1.1: Performance of the year’s top supercomputer on the LINPACK benchmark over
the last three decades. Created based on the data from [3].

1.1 shows the rapid growth of the top supercomputer performance during the last three
decades.

The CDC 6600 is considered the first supercomputer [8]. The CDC 6600 was designed
in 1964 by Seymour Cray, who is called ”the father of supercomputing”, while he was
working at a relatively small company named Control Data Corporation. It was ten times
faster than the competing IBM computer and also a few times smaller, which makes it
even more incredible. Its speed was 11 megaFLOPS, which is a few orders of magnitude
less than today’s mobile phones. In 1972, the ILLIAC IV was released. Only one model
was built because the cost of production turned out to be 4 times higher than predicted.
Production was delayed for a year and when it was completed some other supercomputers
already had better performance. Nevertheless, ILLIAC IV is very important for the history
of supercomputers because it was the first computer with a parallel architecture, which
means that it had multiple processors working together. After developing the CDC 6600,
Seymour Cray left CDC and founded his own company Cray where in 1976 the Cray-1
supercomputer was released. This single processor supercomputer was the first to suc-
cessfully implement the vector processor design in which instruction operates on multiple
data elements, rather than single data values. The last world-class supercomputer to use the
classical vector processing design approach was the Earth Simulator developed in 2002. Its
speed was 35.86 teraFLOPS and it was the fastest supercomputer in the world until 2004,
when it was replaced by the IBM Blue Gene, which could perform 500 teraFLOPS. The
Blue Gene/L had 131,000 processors, which were small enough to fit 32 dual processors in

CHAPTER 1. PARALLEL COMPUTING 4

a single microchip. Therefore, its size was significantly smaller than that of its competitors.
More than 80% of all supercomputers from the current TOP500 list are based on com-

puter clusters [26]. A cluster is a set of independent computer systems integrated in a
interconnection communication network. Developed in 2012, the Titan was the first super-
computer based on graphics processing units (GPUs) in addition to conventional central
processing units (CPUs) to perform over 10 petaFLOPS. The combination of CPUs and
GPUs for computing is called heterogeneous computing, and it has dominated the TOP500
list in recent years, because of the absolute performance and better performance per watt,
which makes it more energy efficient. The fastest supercomputer at the moment is called
Frontier [1]. It is the first supercomputer whose score on the LINPACK benchmark ex-
ceeded one exaFLOPS (1018 FLOPS).

All performance results reported in this thesis were obtained on the Jülich Wizzard for
European Leadership Science (JUWELS) supercomputing system at the Jülich Supercom-
puting Centre, which consists of two partitions: Cluster and Booster [27]. The JUWELS
Cluster nodes comprise a Dual Intel Xeon Platinum 8168 CPU with 2 × 24 cores. The
JUWELS Booster nodes comprise a Dual AMD EPYC Rome 7402 CPU with 2× 24 cores
and four NVIDIA A100 GPUs. JUWELS Booster’s score on the LINPACK benchmark is
44.12 petaFLOPS, which puts it in 11th place on the TOP500 list as of 1 June 2022, and
makes it one of the three fastest European supercomputers [3].

1.2 Parallel programming models
The JURASSIC model is implemented as a hybrid of three parallel programming models:
MPI, OpenMP and CUDA. The concept of these programming models needs to be under-
stood first before speeding up and restructuring the code is explained. This is not meant to
be a tutorial, but a brief overview of the models with simple examples.

MPI
The Message Passing Interface (MPI) [12] is a specification of message passing operations.
This is the dominating programming interface for distributed memory programming. It
is often used for computing clusters because it offers a set of application programming
interface (API) functions for communication between processes. The communication is
achieved by moving data from the address space of one process to that of another. MPI is
implemented as a library with language bindings for Fortran and C.

Listing 1.1 shows how MPI is used to run JURASSIC forward simulations of multiple
tests simultaneously and to determine the time required to perform the entire calculation. In
the C programming language, to use MPI, one has to include the mpi.h header file and ini-
tialize the MPI library before MPI functions can be used. Also, after using MPI functions,

CHAPTER 1. PARALLEL COMPUTING 5

the MPI library has to be finalized. MPICH [2] is a high-performance implementation of
MPI. The mpicc wrapper compiler is used to compile and link MPI programs written in C.
To run an executable on multiple processes with a specified number of processes mpiexec
has to be used. When an MPI program runs on multiple processes we are talking about the
single program, multiple data (SPMD) programming technique, which is the most com-
mon style of parallel programming, but mpiexec also allows to run different executables
on multiple processes which are able to communicate with each other (multiple programs,
multiple data), which is for example exploited in modular supercomputing.

Listing 1.1: Simple MPI program. Shows how MPI is used in the implementation of the
JURASSIC forward model.

#include <stdio.h>

#include <mpi.h>

int main(int argc, char* argv[]) {

int myrank, numprocs;

double start_time, end_time, duration;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

start_time = MPI_Wtime();

/***

JURASSIC forward model calculations for test

myrank, myrank+numprocs, myrank+2*numprocs,...

***/

end_time = MPI_Wtime();

duration = end - start;

MPI_Reduce(&duration, &global, 1, MPI_DOUBLE,

MPI_MAX, 0, MPI_COMM_WORLD);

printf("Global runtime is %lf seconds\n", global);

MPI_Finalize();

}

MPI COMM WORLD is an example of the simplest communicator that includes all avail-
able processes in communication. It is practical to use it when one process wants to send
a message to all the others or all processes want to send a message to one of them. It
is sufficient for the JURASSIC implementation, but when the number of MPI processes
becomes quite large, more advanced communicators that group processes in a more effi-
cient way should be used. As mentioned above, the same MPI program is run on different
processes, and to prevent all processes to perform the same instruction flow, they must be

CHAPTER 1. PARALLEL COMPUTING 6

duration = 7.3

Process 0

duration = 9.7

Process 1

duration = 12.4

Process 2

duration = 5.1

Process 3

global = 12.4

Process 0

MPI Reduce: MPI MAX

Figure 1.2: The MPI Reduce procedure is used in JURASSIC for calculating the maximum
execution time among the processes.

distinguished. Processes are identified using MPI ranks. Each process finds out its rank
after calling the MPI Comm rank function. Also, to find out the total number of processes
in a communicator, it is necessary to call the MPI Comm size function.

In Listing 1.1, the MPI Reduce procedure is used to determine the time required to
perform the entire calculation. Figure 1.2 demonstrates this idea. This is an example of
an all-to-one collective procedure, because each process sends information about the time
spent on the calculation to the process with rank zero, and the process with rank zero per-
forms a MAX operation on the values, including its own. A procedure is collective when
all processes need to invoke it. In addition to all-to-one (MPI Reduce, MPI Gather), there
are also one-to-all (MPI Bcast, MPI Scatter) and all-to-all (MPI Allgather, MPI -
Alltotall, MPI Allreduce) collective communication procedures.

In addition to collective communication in which all the processes participate, which
are in the communicator, communication in MPI can also be direct. This type of communi-
cation is called point-to-point communication. In point-to-point communication, a sender
must specify the rank of the process to which it wants to send the message and send it using
the MPI Send procedure. Also, in order to receive a message, the recipient must invoke the
MPI Recv procedure in which it must specify the rank of the process from which it expects
the message.
MPI Reduce, MPI Send and MPI Recv are examples of blocking procedures. In the

MPI Reduce case a process can continue with the execution of the program only when the
procedure is executed, that is when all messages processes have sent their messages and
the process to which it was sent has received the result. Unlike such procedures, there
are also non-blocking procedures in which the execution of the program continues, but
the user is not allowed to reuse resources specified by the call to the procedure before the
communication has been completed using an appropriate completion procedure. This al-

CHAPTER 1. PARALLEL COMPUTING 7

lows communication patterns that would lead to a deadlock if programmed using blocking
variants of the same operations. Non-blocking communication operations are split into
start and completion. For example, the MPI Isend and MPI Irecv (”I” is for immedi-
ate) point-to-point routines produce a request handle that represents the in-flight operation
and is consumed in the completion routine. In the completion part, the user has to use
the MPI Test procedure to find out whether the operation associated to some request han-
dle is completed. Blocking send can be paired with a non-blocking receive procedure and
vice versa. Also, a non-blocking operation immediately followed by the matching wait is
equivalent to the blocking operation.

OpenMP
OpenMP [10] is an application programming interface and a programming language ex-
tension via directives for parallel computing on shared-memory platforms. Unlike MPI,
which takes care of communication between different processes, in the case of OpenMP,
parallelization is done using threads within the same process. The main difference between
the two approaches is that threads do not have to communicate by sending messages be-
cause they have access to a shared memory space. With the shared memory available to all
threads, each thread has its own stack and associated static memory. Threads are executed
on different hardware threads. Therefore, the expected speedup when using OpenMP is
limited by the number of cores, but a programmer must be aware that this is not the only
limiting factor. For example, if the main memory bandwidth is a shared resource, the
speedup is also limited by the number of memory channels in a server-class chip.

An OpenMP program is a program written in a base language (C, C++ or Fortran) an-
notated with OpenMP directives or that calls OpenMP API runtime routines. In the C pro-
gramming language, the #pragma omp directive-name is the way to write an OpenMP
directive. It has to be placed before a structured block to which it is applied. An OpenMP
program starts as one single-threaded process. #pragma omp parallel creates a team
of threads to execute the code contained in the following structured block. Similar to the
number of processes in a communicator and the ranks in the MPI case, here the functions
omp get num threads and omp get thread num are used to determine the number of
threads executing code and to identify threads to which consecutive numbers starting from
zero are assigned, respectively. The number of threads to fork is not fixed, but can be con-
trolled by the programmer. It is also worth mentioning that it is possible to allow OpenMP
to fork a thread that is already part of a group of threads. If OpenMP nested parallelism is
active, the number of threads at each nested level can be set by calling the omp set num -
threads function. [25] Figure 1.3 illustrates an example of nested parallelism.

Listing 1.2 shows three ways to multiply two arrays. In the mul array serial func-
tion arrays a and b of length n are multiplied in serial using a simple for loop. In the

CHAPTER 1. PARALLEL COMPUTING 8

master thread

parellel region nested parallelism

Figure 1.3: Nested parallelism with four threads at the first and two threads at the second
level.

second function in Listing 1.2 the master thread is forked into a team of threads, which
separately multiply arrays for a different sets of indices. If the OpenMP option is not ac-
tivated when compiling a program, an OpenMP directive will be ignored so the following
block will be executed by just one thread. Missing OpenMP functions cannot be ignored,
so the case when the OpenMP library is not included is treated separately using an #ifdef
C preprocessor macro. The mul array parallel for function shows the simplest way
to multiply two arrays. The idea is similar to the one in the previous function because the
#pragma omp for directive divides the loop iterations between the spawned threads.

Listing 1.2: Array multiplication in serial and parallel with OpenMP.
void mul_array_serial(double a[], double const b[], int n) {

for (int i = 0; i < n; i++) {

a[i] *= b[i];

}

}

void mul_array_parallel(double a[], double const b[], int n) {

#pragma omp parallel default(none) shared(a, b, n)

{

#ifdef _OPENMP

int thread_id = omp_get_thread_num();

int num_of_threads = omp_get_num_threads();

#else

int thread_id = 0;

int num_of_threads = 1;

#endif

CHAPTER 1. PARALLEL COMPUTING 9

for(int i = thread_id; i < n; i += num_of_threads)

a[i] *= b[i];

}

}

void mul_array_parallel_for(double a[], double const b[], int n) {

#pragma parallel for

for (int i = 0; i < n; i++) {

a[i] *= b[i];

}

}

Since communication between threads takes place by writing and reading to shared
memory, problems can arise if multiple threads write to the same memory unit at the same
time or if at least one thread tries to write and at least one tries to read from the same
memory unit. In that case, we say that the data race happened. To avoid it, explicit
thread synchronization has to be done. One way to do it is to use barriers. Threads are
only allowed to continue the execution of code after the #pragma omp barrier when all
threads in the current team have reached it. A programmer can also use the #pragma omp
critical directive, which allows only one thread to execute the code in a critical section
that follows the directive.

CUDA
Compute Unified Device Architecture (CUDA) [23] is a parallel computing platform that
allows developers to use the computing power of graphics processing units (GPUs) for
general-purpose processing. It is developed by NVIDIA and specially designed for their
GPUs. In Figure 1.4 the CPU and GPU processor architectures are compared. A central
processing unit has fewer cores with a lot of cache, while a graphics processing unit has
more cores but each of them has less cache memory capacity. Because of this, the main
characteristic of a CPU is low latency which makes it great for serial programming. While
on the other hand, high throughput is the reason why GPUs are so powerful in parallel
processing. The difference between these two performance measures is that latency i.e.
the absolute time required to complete a task, while throughput is the number of tasks that
can be executed per unit time. GPU processors are designed so that a larger proportion
of transistors are intended for processing the data than for data caching and flow control.
Because of that the maximum efficiency on a GPU is achieved if all instructions are of the
same type. Fortunately, this condition is often possible when doing computer graphic com-
putations where a single instruction has to be applied to a large amount of data. Similar
patterns are found in applications for scientific simulation.

CHAPTER 1. PARALLEL COMPUTING 10

Control ALU ALU

ALU ALU

Cache

DRAM

(a) CPU

DRAM

(b) GPU

Figure 1.4: Simplified comparison of multicore CPU and manycore GPU architectures
based on Figure 1 from [9]. In GPUs, registers take the role of the L1 cache, so the green
arithmetic logic unit (ALU) area contains some of what is labelled ”Cache” on the CPU
side. DRAM is an abbreviation of ”dynamic random access memory”.

A CUDA processor contains a set of Streaming Multiprocessors (SM). Depending on
the model, the number of SMs can be up to 130, but is usually around 30. Each streaming
multiprocessor has up to 32 scalar processors (SP) and shared memory. All SMs have
access to the GPUs device memory. There are four types of multiprocessor memory:

• local 32-bit registers

• shared memory, which is shared among the SPs of the same SM - very important for
a program to perform efficiently

• constant cache – again shared by SPs, but read-only, only CPU can write

• texture cache – also read-only

All four types of multiprocessor memory are equally fast and recommended to be used
over the slower device memory.

Flynn’s classification [11] is the basic division of computer architectures. According to
it, computer architectures are divided into four types, depending on the number of instruc-
tion streams and memory streams:

• SISD – Single instruction stream, single data stream

• SIMD – Single instruction stream, multiple data streams

CHAPTER 1. PARALLEL COMPUTING 11

• MISD – Multiple instruction streams, single data stream

• MIMD – Multiple instruction streams, multiple data streams

In addition to this simple classification, there are other types of architectures such as:

• SIMT - Single instruction, multiple threads

• SPMD - Single program, multiple data streams

The style of execution in CUDA corresponds to a SIMT architecture. One instruction
controls the behaviour of multiple processing elements. Programmers can divide the GPU
threads among a multiprocessor using blocks that are executed independently of each other.
The dispatcher inside a multiprocessor has to distribute threads to scalar processors. Each
thread is given to one scalar processor on which it independently executes with its own
set of registers and instruction addresses. When an SIMT unit gets one or more blocks
that a multiprocessor has to process, it first divides the blocks into groups of 32 threads,
which are called warps. Inside a warp identical instructions should ideally be performed. If
threads inside a warp branch to different execution paths, for example, because of different
evaluations of an if statement, the time required for the execution is significantly increased.
This is called warp divergence. To avoid it, the programmer has to distribute threads to
blocks in a way that all threads in a block perform identical instructions.

The basic task of the CUDA programming model is to enable efficient and transparent
communication with parallel hardware. This is achieved by a minimal upgrade of the
C programming language – CUDA C. Similarly, CUDA C++ is an extension of the C++
programming language. It is done by allowing the programmer to define functions, called
kernels, that, when called, are executed in parallel by different CUDA threads. CUDA
distinguishes three types of kernels according to where they are performed and who has
the right to call them:

• host – standard CPU function which can be called only from the CPU

• global – executes on the GPU, but can be called only from the CPU

• device – executes on and can be called only from the GPU

CUDA kernel functions, which execute on a GPU (global and device) differ from
standard CPU functions because:

• they must not be recursive

• static variables cannot be declared inside the function body

CHAPTER 1. PARALLEL COMPUTING 12

• they cannot call upper-level functions which are not adapted to it, such as qsort

• global kernels must be of void type

One CPU can control more than one GPU, but one CPU thread cannot control multi-
ple GPUs simultaneously. For that multiple CPU threads are needed. Before executing a
CUDA kernel, GPU and CPU memory must be declared and allocated. After that, initial-
ized host data should be transferred from host to device. Similarly, after kernel execution,
the result should be transferred from the device to the host. Modern NVIDIA GPUs also
support the unified memory model in which memory transfers are hidden from the user
so managed memory can be used by both host and device code without explicitly coded
memory transfers.

It was already mentioned that CUDA threads are divided into blocks to distribute
them among streaming multiprocessors. Threads are organized into one-dimensional, two-
dimensional, or three-dimensional blocks. Just like threads, blocks are organized into a
one-dimensional, two-dimensional, or three-dimensional grid of thread blocks. In Figure
1.5 you can see one-dimensional blocks of threads inside a one-dimensional grid of blocks.
It corresponds to the kernel mul array kernel, which is launched in the mul array func-
tion presented in Listing 1.3. Blocks and threads inside a kernel can be identified using
inbuilt variables blockIdx.x and threadIdx.x, respectively, which is analogous to the
result of omp get thread num() in OpenMP. Since the number of elements in the array
can be greater than the total number of threads, the number of blocks gridDim.x, the
number of threads per block blockDim.x and a grid stride loop [16] are used. The argu-
ments grid size and block size of the function mul array from Listing 1.3 are the number
of blocks and the number of CUDA threads in each block. A kernel launch is valid if
grid size ≥ 1 and 1 ≤ block size ≤ 1024. Tuning of these parameters can be done to
achieve the best possible performance.

Listing 1.3: Array multiplication with CUDA.
__global__ mul_array_kernel(double a[], double const b[], int n) {

for(int i = blockIdx.x*blockDim.x + threadIdx.x; i < n;

i += blockDim.x*gridDim.x) // grid stride loop

a[i] *= b[i];

}

__host__ mul_array(double a[], double const b[], int n,

int grid_size, int block_size) {

mul_array_kernel<<<grid_size, block_size>>> (a, b, n);

}

CHAPTER 1. PARALLEL COMPUTING 13

block 0 block 1 block 2 block 3

Grid

thread 0 thread 1 thread 2 thread 3thread 3 thread 4 thread 5 thread 6 thread 7

block 1

Figure 1.5: Schematic representation of CUDA’s hierarchical threading model with a one-
dimensional grid of one-dimensional blocks. Adapted from Figure 4 from [9].

Chapter 2

Simulation of radiation transport

JURASSIC is a coupled forward and retrieval fast radiative transfer model, which allows
analyses of different remote sensing measurements. In this chapter the idea of atmospheric
remote sensing is presented. After that, the JURASSIC forward models and their imple-
mentations as well as inverse modeling in JURASSIC are explained.

(a) Limb path through a clear atmosphere. (b) Limb path through a cloudy atmosphere.

Figure 2.1: The clear air case can be treated using JURASSIC or JURASSIC-GPU. In
the cloudy case incoming radiance from all directions is scattered towards the detector by
cloud particles and radiation along the line of sight is scattered out of the line of sight. The
scattering process is treated by JURASSIC-scatter. The figures are based on Figure 1 from
[15].

14

CHAPTER 2. SIMULATION OF RADIATION TRANSPORT 15

2.1 Atmospheric remote sensing
By measuring we want to determine the value of a quantity. An example of this quantity is
height or width, as well as temperature and air pressure. A key feature of remote sensing
theory is not that measurements are made from a distance, but that they are indirect. Such
indirect measurements are used to determine the state of the atmosphere, but also in other
areas because they are often simpler and cheaper than direct measurements. They are often
used in medicine because such measurements are usually not physically invasive.

There are only a few instruments that directly measure the quantity of interest. Instead,
indirect or remote measurement of the effect caused by the measurand is used. Retrieval
methods are then used to determine the value of the desired quantity from the measure-
ments. The retrieval problem consists of two separable key parts: the forward model and
the inverse problem. The task of the forward model is to simulate the measurement of the
effect measured by a measuring instrument for some hypothetical target quantity. In the
case of determining the state of the atmosphere, the forward model must, for given target
quantities such as temperature, pressure and gas concentrations, calculate the radiation that
the measuring instrument on the satellite would measure. Figure 2.1a illustrates a satellite
measuring the radiance in limb geometry1.

To be more precise, terminology from [24] will be introduced. The quantities that are
actually measured can be represented by the m-dimensional measurement vector y, where
m is the number of measurements. In the same way, n target quantities can be represented
with the n-dimensional state vector x. For each state vector there is a corresponding ideal
measurement vector yI , for which states

yI = f(x), (2.1)

where f formally describes the physics of the measurement. However, in addition to the
fact that it is impossible to avoid experimental errors, in practice it is often necessary to
approximate detailed physics with some forward model F(x) in order to make the model
simpler and faster to perform. For the forward model F(x), the connection between the
state vector and the measurement can be expressed with the following formula:

y = F(x) + ϵ, (2.2)

where ϵ is the measurement error vector. The JURASSIC forward models for both clear air
and cloudy scenarios is presented in Section 2.2. In inverse modeling the goal is to find the
best state vector x′ for a given forward model F(x) and measurement vector y. In Section
2.3 the inverse modeling in JURASSIC is explained.

1In limb viewing geometry, the remote sensing instrument looks towards the limb (horizon) of the atmo-
sphere, so the line of sight is pointed nearly tangentially to the Earth’s surface.

CHAPTER 2. SIMULATION OF RADIATION TRANSPORT 16

raytracing

cloudy?

compute radia-
tive transport

compute Mie
parameter or look

up in database

calculate inci-
dent radiance

spectrum

line of sight

noyes

βe,βs,P

βe,βs,S

scamult

atmosphere

p,T ,vmr
ni,µi,σi

input parameter
nre f

dsv,dsh

scamult

pre-calculated tables

E(p, T , u)

Figure 2.2: Forward models. Dotted arrows and underlined variables indicate the difference
between the JURASSIC and the JURASSIC-scatter model. The figure is based on Figure
2 from [15].

2.2 JURASSIC forward models

JURASSIC forward model
The JURASSIC forward model is a radiative transfer model for the mid-infrared spectral
region. It is shown in solid rectangles of Figure 2.2. In the input block, the pre-calculated
emissivity tables, the atmospheric data containing pressure, temperature, volume mixing
ratios of atmospheric gases, and the control file are given. Pre-calculated emissivity look-
up tables of spectrally averaged emissivities have been prepared for JURASSIC by means
of line-by-line calculations [19]. For generating the emissivity look-up tables, any radiative
transfer model which allows the calculation of the transmission of a homogeneous gas cell
depending on pressure, temperature and emitter column density can be used. The control
file contains a list of emitters and radiation channels to be considered, as well as parameters
such as, for example, the step length in the raytracing, which is one of the most important
parameter for the accuracy and performance of JURASSIC.

At the beginning of a radiative transfer calculation the atmospheric state has to be

CHAPTER 2. SIMULATION OF RADIATION TRANSPORT 17

defined. The field quantities such as pressure, temperature and volume mixing ratios are
given for some vertical profiles, and the values for the heights between them are determined
using linear interpolation.

After that, the path of a single ray through the atmosphere, which is referred to as pencil
beam, has to be calculated. In the case of a limb geometry the pencil beam is not just a
straight line tangentially through the atmosphere but a curve refracted towards the Earth’s
surface. The positions along a single ray path are calculated using the Eikonal equation
[7],

d
ds

(
n

dr
ds

)
= ∇n, (2.3)

where s is the spatial coordinate along the ray r(s) with the origin s = 0 being located at
the position of the observing instrument. The degree of curvature depends on the change
of the refractive index n of the atmosphere with altitude and the refractive index, in return,
depends on atmospheric conditions. Equation 2.3 is solved numerically using an itera-
tive scheme described by Hase and Hopfner [17]. The step length chosen for determining
segments in raytracing has to fulfil two constraints: on the one hand fewer steps are ad-
vantageous when considering the computation time and on the other hand the step length
must be short enough so that the atmosphere properties along one step can be assumed as
constant. An example of a limb path through an atmosphere is given in Figure 2.1a.

After raytracing, the evaluation of the radiative transfer is done by calculating spectrally
averaged radiances, emissivities and Planck’s functions applying pre-calculated emissivity
tables according to the instrument’s characteristics. Segment emissivities are computed
according to the emissivity growth approximation (EGA) method. In Figure 2.2 we refer
to those three calculations as ”computing radiative transport”. In the case of clear air
conditions in the infrared and in case of local thermodynamical equilibrium, scattering can
be neglected and the radiative transfer along an arbitrary ray path can be described by the
Schwarzschild equation,

dI(v, s) = βa(v, s)[B(v, s) − I(v, s)]ds, (2.4)

where I is the radiance, v the wavenumber, s is again the spatial coordinate along the ray
path, βa the absorption coefficient of the trace gases and particles, and B(v, s) is Planck’s
function.

This original version of JURASSIC [18] was written in C by Lars Hoffman [20] and
features an MPI/OpenMP hybrid parallelization for efficient use on supercomputers.

JURASSIC-GPU forward model
JURASSIC has been ported to GPUs using CUDA by Baumeister et al [4, 5, 6]. In addition
to adding some GPU parameters that were not required in the reference version, the internal

CHAPTER 2. SIMULATION OF RADIATION TRANSPORT 18

jr common.h

GPUdrivers.cu

include

CPUdrivers.c

include

formod.c

formod CPU formod GPU

Figure 2.3: Common source code. The figure is based on Figure 4 from [4].

shape of some data structures was changed to achieve better performance, when porting
that version to the GPU. For example, the structure in which the line of sight obtained by
raytracing is stored and the struct in charge of emissivity look-up tables were changed.
These differences are the main obstacle for connecting and merging JURASSIC-GPU and
JURASSIC-scatter in a straightforward fashion.

The single source code policy of JURASSIC-GPU facilitates connecting the projects,
because it makes the code easier to understand and maintain. The idea of separating func-
tions in the files, shown in Figure 2.3, is that all functions that will run on both the CPU and
the GPU are kept in a separate jr common.h file and are included in architecture-specific
implementations CPUdrivers.c and GPUdrivers.cu. At Listing 2.1 you can see how calcu-
lating Planck’s function was done using this policy.

Listing 2.1: Shared code base for GPU and CPU implementation.
// jr_common.h:

inline double __host__ __device__

Planck(double nu, double T) {

return nu*nu*nu/(exp(nu/T) - 1);

}

// CPU_drivers.c including jr_common.h:

#pragma omp for

for(int i = 0; i < N; i++)

s[i] = Planck(nu[i], temperature);

// GPU_drivers.cu including jr_common.h:

for(int i = blockIdx.x*blockDim.x + threadId.x; i < N;

i += blockDim.x*gridDim.x) // grid stride loop

CHAPTER 2. SIMULATION OF RADIATION TRANSPORT 19

s[i] = Planck(nu[i], temperature);

JURASSIC-scatter forward model
The implementation of scattering into JURASSIC is schematically shown in Figure 2.2,
but in this case the dotted rectangles and the diamond also have to be included. Com-
pared to the JURASSIC model without scattering, JURASSIC-scatter contains some new
input parameters: scattering order, number of scattering modules, and log-normal param-
eters of the particle size distribution (particle number concentration, median radius and
standard deviation). The scattering order scamult defines the number of scattering levels in
the forward model (see Section 3.2). The other three new input parameters are not part
of the JURASSIC forward model without scattering because those are aerosol and cloud
properties.

In the JURASSIC-scatter forward model, the raytracing of the line of sight is again
calculated first. But in this case, segments located in the cloud are determined and for each
of these segments the extinction and scattering coefficients as well as the phase function are
determined and new ray paths ending at that segment are set up to determine the incoming
radiance from all directions. The incoming ray paths also pass through the cloud and
undergo scattering processes. This process can be, from the computer science point of
view, seen as a recursion with the two base cases. The first base case is when a segment is
not part of the cloud, so no rays have to be generated from it. The second base case is when
the recursion depth reaches the scattering order scamult. Based on this approach single or
multiple scattering, depending on scattering order, can be computed. An example of a limb
path through a cloudy atmosphere is shown in Figure 2.1b.

Similar to the equation 2.3 in the clear air case, the modeling radiative transfer with
presence of clouds or aerosols corresponds to solving the following equation:

dI(v, s) = [−βe(v, s)I(v, s) + βa(v, s)B(v, s) + βsp(v, s)S (v, s)]ds, (2.5)

where βe is the extinction coefficient, βa is the absorption coefficient and βsp is the particles
scattering coefficient. The scattering source term

S (v, s) =
1

4π

∫ 4π

0
P(v, ω′, ω, s)I(v, ω′, s)dω′ (2.6)

contains incident radiance from all directions ω′ scattered into direction ω of the line of
sight and weighted with the phase function P(v, ω′, ω, s).

JURASSIC-scatter [14], which has been developed by Griessbach at al. [15] is, as
an upgrade of JURASSIC, also written in C and also features an MPI/OpenMP hybrid
parallelization. We see that it is equivalent to JURASSIC without scattering in its base

CHAPTER 2. SIMULATION OF RADIATION TRANSPORT 20

cases. This is precisely the motivation for merging the JURASSIC and JURASSIC-GPU
models to create an accelerated JURASSIC-scatter-GPU version, which was the main task
in this project.

2.3 Inverse modeling in JURASSIC
As mentioned above, in inverse modeling the goal is to find the best state vector x′ for a
given forward model F(x) and measurement vector y [21]. For some measurements there
are usually infinitely many possible state vectors, which, applied with the forward model,
return a vector that is close to the measurement vector. These potential state vectors can
differ considerably from each other. In order to decide on the best possible estimate of the
quantity of interest, we are allowed to use knowledge about that quantity that is independent
of the obtained measurements.

Optimal estimation
The idea is to use a priori knowledge of the quantity of interest. In the case of a retrieval
of an atmospheric state from observed radiances, this knowledge may be previous mea-
surements or the average value of the quantity in the past. Let P(x) be the probability
distribution function (pdf) of the state vector x before the measurements are made, that is,
the a priori pdf. Also, let P(x|y) be the a posteriori pdf of state vector x for a given mea-
surement vector y. It is a common assumption that both distributions are Gaussian with
some mean vectors and covariance matrices. In general, for mean vector µ and covariance
matrix S, the probability density function of a Gaussian random variable is

P(x) =
1

(2π)
n
2 |S| 12

exp(−
1
2

(x − µ)T S−1(x − µ)). (2.7)

The optimal or maximum a posteriori (MAP) solution for x is given by the maximum of
P(x|y). Bayes’ theorem tells us that:

P(x|y) =
P(y|x)P(x)

P(y)
. (2.8)

Using this, we get that finding the MAP solution is equivalent to finding the vector x for
which the expression

− 2 ln P(x|y) = (x − xa)T Sa
−1(x − xa) + (y − F(x))T Sy

−1(y − F(x)) (2.9)

is minimal. In equation 2.9 xa and Sa represent the mean vector and the covariance matrix
of the a priori distribution, while Sy is an experimental error covariance.

CHAPTER 2. SIMULATION OF RADIATION TRANSPORT 21

Nonlinear optimization
The expression on the right side of equation 2.9 is moderately non-linear, so the standard
approaches such as Newton’s method or the inverse Hessian method can be used for mini-
mizing such a function.

When minimizing any cost function C(x) using the inverse Hessian method, a minimum
is obtained by the following iterative scheme:

xi+1 = xi − [∇g(xi)]−1g(xi), (2.10)

where g(x) = ∇C(x) is the first derivative of the cost function. This method looks for a
place where the gradient of C is zero, so it may find a minimum, but it may also head off
towards some other stationary point. Gradient descent is a simple method in which the idea
is to move xi in the direction which seems to make C become smaller faster than any other
direction. Combining it with the inverse Hessian we get a method with more sophisticated
iterations:

xi+1 = xi − [γ + ∇g(xi)]−1g(xi). (2.11)

This is known as the Levenberg-Marquardt formula. The scalar parameter γ can be adjusted
during iterations. For large γ the formula is similar to the gradient descent so it is more
reliable, but converges slowly. On the other hand, when γ is small, the formula is similar
to the inverse Hessian method which could move xi towards the wrong stationary point of
g, but converges faster.

Chapter 3

Accelerating JURASSIC-scatter

The main task in this master’s thesis project was to accelerate the JURASSIC-scatter for-
ward model. As mentioned in Chapter 2, the JURASSIC forward model has been ported
to GPUs using CUDA, while JURASSIC-scatter, in which scattering of infrared radiation
on liquid or solid particles is accounted for, does not support GPUs. Figure 3.1 presents
how the JURASSIC-scatter and JURASSIC-GPU implementations were connected to get
the accelerated forward model, which takes scattering into account.

JURASSIC JURASSIC-scatter

JURASSIC-GPU JURASSIC-scatter-GPU

Figure 3.1: Projects based on JURASSIC. JURASSIC-scatter-GPU is created by combin-
ing JURASSIC-scatter and JURASSIC-GPU.

3.1 Connecting projects
This section shows how the JURASSIC-scatter code and the JURASSIC-GPU code are
connected. Each of these codes is in a separate GitHub repository. The design question is
whether a new repository should be created for JURASSIC-scatter-GPU or if it is better to
combine these two projects to not further complicate code structures and maintainability.

Figure 3.2 shows the file organization of the JURASSIC-scatter-GPU project. There are
actually more files than shown, but it is restricted to the most important ones. It was decided
to use the git clone --branch feature to put JURASSIC-scatter and JURASSIC-GPU
in the same place. In Chapter 4 is shown how the JURASSIC-scatter and JURASSIC-GPU

22

CHAPTER 3. ACCELERATING JURASSIC-SCATTER 23

jurassic-scatter

jurassic-gpu

example

src

jurassic structs.h

jurassic functions.h

jurassic.h

CPUdrivers.c, GPUdrivers.cu,...

formod.c

Makefile

interface.c

inter-folder

interface.h

common-header

jr scatter gpu.h

example

src

jurassic.h

atmosphere.h, control.h,...

atmosphere.c, control.c,...

formod.c

Makefile

Figure 3.2: Connected repositories. In this phase of the master’s thesis project it was de-
cided to connect the projects by cloning the JURASSIC-GPU git repository in a subfolder
inside JURASSIC-scatter. Similar folders and files from the two projects are colored the
same.

project were merged into a new repository after it was verified that JURASSIC-scatter-
GPU was working properly and was achieving better performance results than JURASSIC-
scatter.

JURASSIC-scatter and JURASSIC-GPU both have their own header files that contain
macros, constants and declarations of important structures. One way to connect them is to
leave these header files separated and convert one type to another when needed, but since
the ultimate goal of this project is to have a unified JURASSIC code, for the connecting it
was decided to use a common header file that both projects must include. When connecting,
declarations of all the functions from JURASSIC-GPU that JURASSIC-scatter directly
uses were put in the header file inter-folder/interface.h inside the JURASSIC-
GPU project and this file was included by the JURASSIC-scatter files from which the
JURASSC-GPU functionalities are used. The projects have a number of functions with the
same name, so the name collision problem was solved by adding the prefix ”jur ” to the
names of such functions of the JURASSIC-GPU project.

Since the JURASSIC-scatter and JURASSIC-GPU projects were not developed at the
same time nor by the same person, an important part of connecting them was to determine

CHAPTER 3. ACCELERATING JURASSIC-SCATTER 24

all differences between them. When connecting the projects to accelerate JURASSIC-
scatter, it was not necessary to resolve all the differences in the best possible way, but rather
make sure that the correctness of the program is not compromised. All the differences
between the codes as well as the way in which they were resolved are given in Chapter 4.

3.2 JURASSIC-scatter-GPU realization
The number of scattering levels scamult is one of the input parameters of the JURASSIC-
scatter forward model, which is not present in the JURASSIC forward model. This param-
eter can be considered as the depth of recursion. If scamult = 0, then JURASSIC-scatter
calculates only primary rays, which are treated without scattering, so this case is equivalent
to JURASSIC without scattering. If scamult = 1, then there are primary rays treated with
scattering and secondary rays treated without scattering. This single scattering case is the
most common in practice. In Figure 3.3 a scattering scenario for scamult = 2 is presented.
Note that each ray at the lowest level of recursion will exactly perform the operations pro-
vided by the forward model in JURASSIC-GPU. This allows to limit the efforts of porting
the scattering module to a restructuring of the high-level routines. This is done following
the approach in JURASSIC-GPU. JURASSIC-scatter-GPU is divided into 3 phases:

1. CPU-Prepare

2. GPU-Execute

3. CPU-Collect

In the following subsections these three phases are explained in more detail.

CPU-Prepare
The main idea is that raytracing and recursively calculating the radiance of rays with scat-
tering stays on the CPU and only in the case without scattering it is executed on the GPU,
leveraging JURASSIC-GPU CUDA kernels. Hence, the CPU-Prepare phase, until coming
to the lowest level of recursion, does the same as JURASSIC-scatter and at the lowest level
the rays are saved in memory and sent to JURASSIC-GPU. There were multiple options
of data structures to save the lowest level rays. One solution could be using an array, but
for scamult > 1 it might be difficult to determine the size of the array and ray indices if
allocating memory is done statically. To circumvent this, a queue structure, which is called
work-queue, is used and in the CPU-Prepare phase the information about rays from the
lowest level of recursion is pushed into it. Figure 3.3 shows a call-tree, which represents
the recursive function calls. The highlighted leaf nodes of the graph represent the work-
queue to which the information about rays from the leaf nodes is written into. First In, First

CHAPTER 3. ACCELERATING JURASSIC-SCATTER 25

Out (FIFO) is the most important property of the queue structure. It means that leaf nodes
of the tree have to be visited in the same order in the CPU-Prepare and CPU-Collect phases,
and therefore the CPU-prepare phase cannot be parallelized without further modification.

GPU-Execute
In the GPU-Execute phase the radiation for each ray in the work-queue is calculated using
functions from the JURASSIC-GPU project. Rays in the work-queue are divided into
smaller packages, which are passed to JURASSIC-GPU kernel functions in parallel using
OpenMP parallelism. More precisely, the number of packages that can be processed at
the same time on one GPU is calculated and the corresponding GPU memory for these
packages is allocated at start. Then this number of OpenMP threads is used to calculate the
radiances for the rays in the given packages in parallel. With this mechanism GPU memory
balancing is ensured.

CPU-Collect
The CPU-Collect phase is very similar to the CPU-Prepare phase. The difference is that in
this case instead of pushing information about leaf nodes of the call-tree to the work-queue,
its radiances calculated in the GPU-execute phase have to be read and passed to the parent
node. For levels that are not the lowest level, the calculation is again exactly the same as
in the original JURASSIC-scatter.

Because of the FIFO property of the work-queue an additional adjustment was done
to parallelize the CPU-Prepare and CPU-Collect phases. Therefore multiple work-queues
are introduced. Each primary ray has its own work-queue, so inside a subtree of a primary
ray node the calculation is performed in serial, but OpenMP can be used to parallelize over
primary rays. Figure 3.4 visualizes this idea.

3.3 Performance results
All performance results reported here were obtained on the Jülich Wizzard for European
Leadership Science (JUWELS) supercomputing system, which is introduced in Section
1.1. JURASSIC-scatter-GPU was benchmarked on the JUWELS Booster and JURASSIC-
scatter on the JUWELS Cluster. Since a JUWELS Booster node contains four GPUs, four
MPI ranks per node were used in both cases to exploit their full capacity. Consequently, for
JURASSIC-scatter-GPU each MPI rank has its own GPU and for both JURASSIC-scatter-
GPU and JURASSIC-scatter there are twelve CPU cores and OpenMP threads per MPI
rank. The CUDA runtime and compiler version were 11.3, while GCC version 9.3.0 was

CHAPTER 3. ACCELERATING JURASSIC-SCATTER 26

JURASSIC-scatter

primary rays

secondary rays

ternary rays

JURASSIC-gpu input JURASSIC-gpu output

Figure 3.3: JURASSIC-scatter-GPU. Leaf nodes of the tree submit work packages to a
work-queue, which is then processed on the GPU.

Ray #0 Ray #1

Figure 3.4: Multiple queues. Separate queues are necessary to exploit CPU thread paral-
lelism during the prepare and collect phase.

CHAPTER 3. ACCELERATING JURASSIC-SCATTER 27

employed to compile the CPU code. In addition, the GSL/2.6 module was loaded to run
the programs.

Test cases:

• simulated data for the CRyogenic Infrared Spectrometers and Telescopes for the
Atmosphere - New Frontiers (CRISTA-NF) instrument that it would measure in the
presence of clouds [22]

• CRISTA-NF measures the thermal emissions of the atmosphere in the mid-infrared
region from 4 to 15 µm in an altitude range from flight altitude (up to 20 km) down
to approximately 5 km

• ∼2000 test cases

• test cases depend on:

1. profile of 13 trace gases, temperature and pressure

2. cloud vertical thickness

3. cloud layer bottom altitude

4. particle size distribution (log-normal)

• 32 spectral radiance channels1

• 84 primary rays per test case

• scamult = 1: only primary and secondary rays – single scattering

Figure 3.5 shows a comparison of execution times of JURASSIC-scatter-GPU and the
reference JURASSIC-scatter program for ten different cloud scenarios. In each scenario
the number of primary rays equals 84, but the number of secondary rays depends on the
thickness of the cloud, because in a thicker cloud more secondary rays are generated per
primary ray so both programs need a longer execution time. In the first two scenarios the
cloud vertical thickness is 0.5 km, in the second two 1 km, in the third two 2 km, in the
fourth two 4 km, and in the last two 8 km. It can be seen that in all scenarios the achieved
speedup is around 10×.

In Figure 3.6 the execution times of JURASSIC-scatter-GPU and JURASSIC-scatter
are compared, for the same cloud scenario, but different numbers of primary rays. In each

1In the original CRISTA-NF data there are actually 33 spectral radiance channels, but it was decided to
ignore one in this benchmark because the CUDA warp size is 32 and vectorization is done over radiance
channels [4].

CHAPTER 3. ACCELERATING JURASSIC-SCATTER 28

1 2 3 4 5 6 7 8 9 10
0

500

1,000

1,500

2,000

scenario number

ex
ec

ut
io

n
tim

e
(s

)

JURASSIC-scatter JURASSIC-scatter-GPU

Figure 3.5: Execution times for different scenarios. JURASSIC-scatter-GPU was bench-
marked on JUWELS Booster. JURASSIC-scatter was benchmarked on JUWELS Cluster
because in practice is not efficient to occupy more expensive GPU nodes when not doing
computations on GPUs. The execution times of JURASSIC-scatter were internally also
measured on JUWELS booster, and in this case the speedup factor was even better because
the EPYC CPU was on average 12% slower than the Intel CPU.

of these test cases there are around 2300 secondary rays per primary ray. The execution
time of JURASSIC-scatter-GPU increases linearly with the number of primary rays. The
execution time of the JURASSIC-scatter also increases linearly with the number of pri-
mary rays, although at first it may not seem so. The reason why JURASSIC-scatter in the
scenario with 50 rays and the scenario with 60 rays has a similar execution time is that in
both cases, since twelve CPU cores are used, at least one core must calculate the radiation
for five rays. For the test case with 80 rays the achieved speedup is again around 10×, and
for a smaller number of rays the speedup is even better. For example, the speedup for the
test case with 10 rays is around 20×.

An additional reason for merging the JURASSIC-scatter and JURASSIC-GPU codes
is that in JURASSIC-scatter-GPU, whose execution times are presented in Figures 3.5 and
3.6, raytracing is performed on CPUs. After removing duplicates from JURASSIC-scatter-
GPU and porting its raytracer to GPUs, an even better speedup factors can be expected.
Hence, in Chapter 4, merging the JURASSIC-scatter and JURASSIC-GPU projects into
the unified code project as well as accelerating the raytracer that includes scattering is
presented.

CHAPTER 3. ACCELERATING JURASSIC-SCATTER 29

10 20 30 40 50 60 70 80
0

500

1,000

1,500

2,000

number of primary rays

ex
ec

ut
io

n
tim

e
(s

)

JURASSIC-scatter JURASSIC-scatter-GPU

Figure 3.6: Execution times for different numbers of primary rays. The achieved speedup
ranges from 10 (80 rays) to 20 (10 rays).

Chapter 4

JURASSIC-unified

After connecting the JURASSIC-GPU and JURASSIC-scatter projects to accelerate the
numerical simulation of multiple scattering, the next step was to merge these two projects
and JURASSIC-scatter-GPU – the accelerated version of JURASSIC-scatter – into the new
separated project JURASSIC-unified. Figure 4.1 illustrates this idea. This was done be-
cause JURASSIC-scatter-GPU had a lot of code duplications, which made the code difficult
to understand and to maintain.

In this chapter the main differences between the merged projects as well as the way
in which they have been resolved are explained. One additional feature – simultaneous
calculation of radiation transport for rays with different atmospheres, which is not part of
any previous version, is presented. In the last part of this chapter it is explained how to link
the JURASSIC-unified project as a library into the JURASSIC reference implementation
to take advantage of the accelerated code and new features.

JURASSIC JURASSIC-scatter

JURASSIC-GPU JURASSIC-scatter-GPU

JURASSIC-unified

Figure 4.1: JURASSIC-scatter, JURASSIC-GPU and JURASSIC-scatter-GPU are merged
into the new unified code project, which includes the GPU acceleration and (multiple)
aerosol scattering. The JURASSIC-unified model is available at https://github.com/
slcs-jsc/jurassic-unified (last access: 3 July 2022).

30

https://github.com/slcs-jsc/jurassic-unified
https://github.com/slcs-jsc/jurassic-unified

CHAPTER 4. JURASSIC-UNIFIED 31

jurassic-unified

example

include

jurassic unified library.h/c

src

Makefile

single source policy files

header files

modules

hardcoded tables

forward and retrieval model files

scatter files

Figure 4.2: Files organization in the JURASSIC-unified project. Unlike Figure 3.2, there
is a single source folder.

4.1 Merging projects

Files organization
When accelerating JURASSIC-scatter, the JURASSIC-GPU project was cloned into the
JURASSIC-scatter repository, compiled and wrapped into the C static library, and then
linked to JURASSIC-scatter. There were also a lot of name collisions of files, structs
and functions from the projects. Figure 4.2 shows how files in JURASSIC-unified are
organized. Again, not all files and folders are shown, but the most important ones are
there. Also the source files are represented by their groups, which will be explained below
in this section.

The main difference between the file organization in JURASSIC-scatter and JURASSIC-
GPU is that in JURASSIC-scatter functions are divided into files depending on the part
of the model they are performing. A single source code policy has been introduced in
JURASSIC-GPU. JURASSIC-unified also has the single source code policy and all its
functionalities related to raytracing and radiative transfer that should run both on CPU and
GPU are defined in the jr common.h header file, which is then included to the architecture-

CHAPTER 4. JURASSIC-UNIFIED 32

specific implementations CPUdrivers.c and GPUdrivers.cu. Functionalities that are
run only on the CPU, such as reading control parameters and reading observations data are
defined in jurassic.c.

All radiative transfer functionalities in JURASSIC-scatter that are not part of JURASSIC-
GPU, i.e. the functions in charge of scattering, run only on the CPU. When developing the
JURASSIC-unified project, it was decided not to put these functions to the jurassic.c
file, but instead to have them in files with the similar name as the files in which they
were in JURASSIC-scatter project to distinguish functions in charge of scattering from the
functions adopted from the JURASSIC-GPU project and to make it easier for JURASSIC-
scatter project users to switch to JURASSIC-unified. Raytracing from JURASSIC-scatter
in the JURASSIC-unified implementation should run on both CPUs and GPUs, so the
raytrace function had to be adapted to make it possible to run it on the GPU. Since
JURASSIC-unified is also adapted to be used by the reference project as a library, function
name collisions are avoided by adding the ”jur ” prefix to all function names. To make
the functions introduced from the JURASSIC-scatter project even easier to distinguish, the
prefix ”jur sca ” has been added to them.

In addition to the standard .gitignore and Makefile files, the source folder contains
source files that are divided into several logical groups:

• single source policy files: CPUdrivers.c, GPUdrivers.c, jr common.h – already
described above.

• header files: jurassic.h, jurassic dimensions.h, jurassic functions.h,
jurassic structs.h, sca gpu interface.h – the header file from JURASSIC-
GPU is here divided into multiple files for easier development and maintenance. This
was necessary when preparing the JURASSIC-unified library because the JURAS-
SIC reference project has to include its structs, but should not include all func-
tions. Definitions of the functions declared in jurassic functions.h are found
in jurassic.c. The sca gpu interface.h file differs from the others because it
contains declarations of functions in CPUdrivers.c and is included by the scatter-
ing files.

• modules: module brightness.c, module climatology.c, module interpola-
te.c, module kernel.c, module limb.c, module nadir.c, module planck.c,
module raytrace.c – contain main functions, used to independently run parts of
the model and to create climatologies.

• hardcoded tables: climatology.tbl, ctmco2.tbl, ctmh2o.tbl, ctmn2.tbl,
ctmo2.tbl – used for creating climatologies and for evaluating the emission con-
tinua of the trace gases.

CHAPTER 4. JURASSIC-UNIFIED 33

• forward and retrieval model files: formod.c, sca formod.c, multi atm formod.c,
sca retrieval.c – contain main functions, modules for running the forward model
without scattering, the forward model with scattering, the forward model without
scattering for rays with possibly different atmospheres and the retrieval model with
scattering, respectively.

• scatter files: sca forwardmodel.h/c, sca scatter.h/c, sca retrievalm-
odel.h/c, sca workqueue.h/c – files that contain functionality that allows the
simulation including aerosol scattering.

After each code change, the program was tested on a set of test cases to make sure it was
still working properly. To run the program on a supercomputer, submit.sh, which may
take the type of the forward/retrieval model as an argument, can be ran. The python script
diff.py is used to compare the calculated radiations with the reference data, calculated
by the reference projects. In the testing folder, which is not contained in JURASSIC-
scatter and JURASSIC-GPU repositories, tests used during the development of the project
are contained. Five types of tests were used:

• clear air test – to test the forward model without scattering.

• large testset – to test and benchmark the forward model with scattering.

• multiple atmospheres – to test the multiple atmospheres feature.

• small testset – similar to large testest, but smaller workload.

• retrieval – to test a retrieval run with scattering.

Source code differences
The first observed difference between JURASSIC-scatter and JURASSIC-GPU were the
different names of the constants for dimensions, e.g. in JURASSIC-scatter, the constant
which describes the number of rays is called NRMAX, while the same constant in JURASSIC-
GPU and in the JURASSIC reference project is called NR. It was decided to use the option
from JURASSIC-scatter in the JURASSIC-unified project. In Section 4.3 will be explained
why having ”MAX” in dimension variables names is necessary when preparing JURASSIC-
unified as a library.

The main difference between the JURASSIC-scatter and JURASSIC-GPU projects
were the different data structures they use, so here the purpose of all structs, their dif-
ferences and the way how they were resolved are presented:

CHAPTER 4. JURASSIC-UNIFIED 34

• ctl t – forward model control parameters: minor differences, control parameters
from JURASSIC-scatter which were not contained in JURASSIC-GPU were added
to get the ctl t struct in JURASSIC-unified. Also, the function that reads the con-
trol parameters had to be changed so that the control parameters from both JURASSIC-
scatter and JURASSIC-GPU are included.

• los t – line-of-sight data: in JURASSIC-scatter a structure of arrays (SoA) is used
to represent the segments of the line of sight, while in JURASSIC-GPU that is done
by array of structures (AoS). During accelerating JURASSIC-scatter, both were used
and the C structs were converted one to another when necessary. For JURASSIC-
unified it was decided to use only an array of structures to represent the segments of
the line of sight.

• obs t – observation geometry and radiance data: structs from the two projects are
almost equal, but the difference is that the indices of the 2d-array rad are not in the
same order. In JURASSIC-scatter it is declared as rad[ND][NR] and in JURASSIC-
GPU as rad[NR][ND], where NR is number of rays and ND number of detectors
or radiance channels. It was decided to use rad[NR][ND] in JURASSIC-unified,
because of more efficient memory access.

• tbl t – emissivity look-up tables: here was the similar problem as with obs t.
JURASSIC-scatter uses the same array-ordering to store emissivity look-up tables
as the JURASSIC reference implementation, and in JURASSIC-GPU arrays were
restructured to achieve vectorization over radiance channels to get the best possible
exploitation of the GPU memory bandwidth [4]. During accelerating JURASSIC-
scatter both JURASSIC-scatter and JURASSIC-GPU tables were used, so the read-
ing of the tables was performed twice. One more difference between them is that
JURASSIC-GPU tables are optimized to be read in ASCII format and JURASSIC-
scatter can also be read in binary format. For JURASSIC-unified, it was decided
to use only the tables from the JURASSIC-GPU project. In the JURASSIC-scatter
project, tbl t is used when computing the segment emissivities according to the
EGA method so the intpol tbl function from JURASSIC-scatter was replaced by
the apply ega core from the JURASSIC-GPU project. Similarly, in order to avoid
the duplication of code in charge of evaluating the emission continua of trace gasses
and evaluating the Planck source function, the formod continua was replaced by
continua core CPU and srcfunc planck was replaced by the src planck core
function from the JURASSIC-GPU project.

• atm t – atmospheric data: This is the only structure which was completely the same
in both projects.

CHAPTER 4. JURASSIC-UNIFIED 35

• aero t – aerosol and cloud properties: this is not part of JURASSIC-GPU and there-
fore it was simple to introduce it to JURASSIC-scatter-GPU.

• ret t – retrieval control parameters: This is only a part of JURASSIC-scatter.

Accelerating the raytracer
The raytrace algorithm should run on both, CPUs and GPUs, so the JURASSIC-scatter
implementation has to be adapted to make it possible to run it on GPUs. The main differ-
ence between the JURASSIC-scatter raytracer and the JURASSIC-GPU raytracer is that
in the version with scattering the function add aerosol layers is called after raytracing.
This function adds additional points to the computed line of sight to make sure that points
with altitudes similar to the altitudes of the borders of the aerosol layers are added. In
the original JURASSIC-scatter implementation the line of sight points were copied to a
dynamically allocated array and after that points around cloud edges were added. To avoid
this dynamic allocations, the procedure was adapted in a way that new points are added to
an existing array. One more problem with porting the function add aerosol layers to
the GPU was the use of upper-level functions such as gsl stats min, gsl stats min -
index and gsl sort. The first two were easily replaced, but the sorting function had to
be written from scratch. Two different sorting algorithms were tried: iterative merge sort
and bubble sort, and one of them had to be chosen. Merge sort has to be iterative because
recursions are not allowed inside CUDA kernels. Bubble sort has an inferior time com-
plexity then merge sort, but does not use additional memory, and since the array which has
to be sorted usually has around a hundred elements, bubble sort is chosen for the current
version, but it can be easily replaced with iterative merge sort in the future.

GPU register tuning similar to the one in [4] was performed to decrease the number
of used registers and the cumulative stack size. The NVIDIA C compiler can report on
register usage, spill load/stores and cumulative stack size for each CUDA kernel. The
raytracer kernel in the JURASSIC-GPU implementation used 130 registers and had 1272
bytes cumulative stack size. After the add aerosol layers function, which is called in
the simulation of radiance with scattering, was added to the end of the raytracer, the kernel
used 136 registers and had 2014 bytes cumulative stack size. The number of registers used
by the kernel as well as its cumulative stack size is determined during compilation. Since in
the case without scattering the add aerosol layers function is not called, registers and
stack memory allocated for this functions are superfluous. Because of that, multiversioning
has been applied to generate two versions of the raytracer with a single code. After that, the
raytracer kernel for the version without scattering used 130 registers and had 1288 bytes
cumulative stack size, which is very similar to the JURASSIC-GPU raytracer kernel. The
JURASSIC-unified raytracer kernel with scattering now uses 136 registers and has 2096

CHAPTER 4. JURASSIC-UNIFIED 36

bytes cumulative stack size, which is again very similar to the JURASSIC-unified raytracer
kernel before multiversioning.

After determining the lines of sight with the raytracer, radiative transfer among those
lines has to be calculated. These two parts are in the CUDA implementation written in
two CUDA kernels which are launched one after another. CUDA kernel launches are
asynchronous, which means that the CPU thread continues processing host code before the
launched GPU kernel has actually begun executing. On the GPU side, if CUDA kernels
are launched in the same stream, as in the JURASSIC-unified, they will be executed in
the order of calling. Adding a cudaDeviceSynchronize() barrier after the first CUDA
call, to force the CPU thread to wait for the compute device to finish, further improved the
overall execution time. The most probable reason for this is that, after separating the two
kernel with the synchronization, the GPU cache memory usage became more efficient. An
in-depth analysis would be required to proof this hypothesis.

In addition to the execution times of the JURASSIC-scatter and JURASSIC-scatter-
GPU implementations presented in Figure 3.5, Figure 4.3 contains the execution times of
the JURASSIC-unified implementation.

1 2 3 4 5 6 7 8 9 10
0

500

1,000

1,500

2,000

scenario number

ex
ec

ut
io

n
tim

e
(s

)

JURASSIC-scatter JURASSIC-scatter-GPU JURASSIC-unified

Figure 4.3: Execution times for different scenarios. Along with results shown in Figure 3.5,
the results for a radiative transport calculation with scattering, after accelerating the ray-
tracer, are shown in green. Both GPU implementations are executed on JUWELS Booster
nodes whereas the reference code has been timed on JUWELS Cluster nodes comprising
CPUs only.

CHAPTER 4. JURASSIC-UNIFIED 37

Figure 4.4 shows the speed factors achieved by the JURASSIC-scatter-GPU and JURASSIC-
unified implementation comparing the JURASSIC-scatter model, which executes only on
CPUs. Unifying the code and accelerating the raytracer significantly increased the speedup
factor.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

scenario number

sp
ee

du
p

fa
ct

or

JURASSIC-scatter-GPU JURASSIC-unified

Figure 4.4: Comparison of the speedup factors. By unifying the code and accelerating the
raytracer, the average speedup factor was increased from 10 to 24. The JURASSIC-scatter
reference version v1.3 has been taken as baseline (dotted line).

New control parameters
Compared to the JURASSIC-scatter v1.3 documentation [13], JURASSIC-unified has two
new control parameters. You can see more information about the new parameters in Table
4.1. Depending on the values of these two new parameters different modules are activated:

• if MAX QUEUE=0: the work-queue is not used, so this module is very similar to the
original JURASSIC-scatter v1.3

• if MAX QUEUE<0: the memory for |MAX QUEUE| rays is statically allocated for the
work-queue, but in this scenario the Execute phase is performed on CPUs, as part of
the JURASSIC-scatter implementation

• if MAX QUEUE>0 and USEGPU=0: the Execute phase is again performed on CPUs, but
as part of the JURASSIC-GPU implementation

CHAPTER 4. JURASSIC-UNIFIED 38

• if MAX QUEUE>0 and USEGPU=1: the Execute phase is performed on GPUs, if the
code is not compiled with CUDA, the program will abort with an error

• if MAX QUEUE>0 and USEGPU=−1: the Execute phase is tried to be performed on
GPUs, if the code is not compiled with CUDA, the CPU-Execute phase will be per-
formed

These different modules are also shown in Figure 4.5.

Table 4.1: New control flags for JURASSIC-unified.

flag name purpose default options
Accelerating parameters
MAX QUEUE upper bound of number of 106 0: do not use work-queue

rays in the work-queue >0: call JURASSIC-GPU functions
<0: do not call JURASSIC-GPU functions,
in that case size of the work-queue
is |MAX QUEUE|

USEGPU Use GPU-accelerated formod −1 0: never
implementation 1: always

−1: if compiled with CUDA

input jurassic-scatter jurassic-scatter core
MAX QUEUE=0

work-queue
|MAX QUEUE|>0

jurassic-gpu
MAX QUEUE>0

GPU
|USEGPU|>0

WQ + jurassic-scatter core

MAX QUEUE<0
CPU

USEGPU=0

result

Figure 4.5: Control and data flow of JURASSIC-scatter-GPU. Using a work-queue struc-
ture, JURASSIC-scatter can call JURASSIC-GPU as solver.

4.2 Multiple atmospheres feature
One of the most important features that is supported in JURASSIC-unified and was not
part of the previous JURASSIC versions is simultaneous simulation of radiation transport
for observations with different atmospheric data. This feature is supported only when sim-
ulating radiance without scattering, because it was developed for the JURASSIC-unified

CHAPTER 4. JURASSIC-UNIFIED 39

library, which will be used by the JURASSIC reference model. Listing 4.1 shows the dec-
laration of the function that enables the use of the multiple atmospheres feature as well
as the definition of the function which is similar to the standard formod function in the
JURASSIC models.

Listing 4.1: Declaration of the jur formod multiple packages function and definition
of the jur formod function in the JURASSIC-unified implementation.
void jur_formod_multiple_packages(ctl_t const *ctl,

atm_t *atm,

obs_t *obs, int n,

int32_t const *atm_id,

aero_t const *aero);

void jur_formod(ctl_t const *ctl, atm_t *atm, obs_t *obs) {

jur_formod_multiple_packages(ctl, atm, obs, 1, NULL, NULL);

}

In each obs t instance, a package of up to NR (or NRMAX) observations is stored, where
NR is the predetermined maximum number of rays in one package. To simulate the radiance
for more then NR rays simultaneously, multiple packages have to be used. For example, if
NR = 1000 and the radiance of 2500 rays has to be calculated, three packages of sizes
1000, 1000 and 500, respectively, will be used. The fourth parameter n in the jur -
formod multiple packages function is the number of packages and the third argument,
pointer obs, should point to the first element of the array of n observations packages. When
simulating the radiance without scattering, the last argument, aero, must be set to NULL.

The formod function from the JURASSIC reference implementation takes the pointers
to the ctl t, atm t and obs t instances as arguments. The jur formod multiple -
packages is similar, but to be able to use the multiple atmospheres feature, the pointer to
the first element of the array of atm t instances should be given as the second argument.
The atm id array is used to determine which atmosphere belongs to which observation.
Because of that, the length of the atm id array must be equal to the number of rays for
which the radiance is simulated. The elements of this array should be non-negative inte-
gers, strictly less than the number of atmospheres in the array atm. Each number in the
atm id represents the index of the corresponding atmosphere from the atm array.

In the previous example scenario with 2500 rays, when calculating the radiance with
multiple atmospheres, the atm id should have 2500 elements. If each ray had its own
atmosphere, the atm would also have 2500 elements, and the atm id would contain 0, 1,
2,..., 2499, respectively. Of course, rays can also share an atmosphere, but in that case the
length of the atm array would be less than 2500. The jur formod multiple packages
function can also be used to calculate the radiance for the rays with the same atmosphere.

CHAPTER 4. JURASSIC-UNIFIED 40

For that the atm id argument should be set to NULL or contain all zeros.

4.3 JURASSIC-unified as a library
JURASSIC-unified successfully replaces the JURASSIC-GPU and JURASSIC-scatter im-
plementations, and even offers some new features. Although it would be best if JURASSIC-
unified completely replaced the JURASSIC reference implementation, due to some new
features of the JURASSIC reference model, it was decided to adapt JURASSIC-unified so
that scientists who are using the JURASSIC reference model can use the benefits of GPU
acceleration of the model, with minimal change of their code. Because of that, JURASSIC-
unified was adapted to be used from the JURASSIC reference project as a library.

The main challenge in preparing the JURASSIC-unified project to be a library was the
fact that many structs and functions share the name with those from the JURASSIC ref-
erence implementation. The function name collisions were resolved by adding the ”jur ”
prefix to the names of the functions from the JURASSIC-unified project. The similar thing
could be done for the structs, but this would impair the readability of the code, so it was
decided to leave the original struct names as ctl t, obs t and atm t.

Figure 4.6 illustrates how the JURASSIC-unified library should be integrated into the
JURASSIC reference project. At the beginning, one has to run the shell script generate -
library.sh inside the JURASSIC-unified home directory. This shell script copies the
JURASSIC-unified source files into the folder ”unified library” and adds the ”jur ”
prefix to the copied code struct names. At the end of the script, the code is compiled and
wrapped into the C static library libjurassic unified.a.

This C static library has to be linked when compiling the JURASSIC reference project,
but to use it, the files from the include folder have to be included into the JURASSIC ref-
erence code. More precisely, the jurassic unified library.h file has to be included
into the JURASSIC reference files from which the library functions will be used. The
jurassic unified library.h file contains declarations of the functions offered by the
JURASSIC-unified library.

In the JURASSIC projects dimensions are stored as C macro constants. The differ-
ence between the dimension names in JURASSIC reference and JURASSIC-unified is
that those from the JURASSIC-unified project have the suffix ”MAX”. For example, the
number of rays in the package is in the JURASSIC reference project called NR and in
the JURASSIC-unified project NRMAX. The jurassic unified library.h, using #if,
#error and #endif directives, takes care of the dimension macros. The compilation
fails if the corresponding dimension from the JURASSIC-unified project is not greater
than or equal to that from the JURASSIC reference project. When that happens, the
JURASSIC-unified dimensions declared inside the src/jurassic dimensions.h have

CHAPTER 4. JURASSIC-UNIFIED 41

src/

unified library/

./generate library.sh

libjurassic unified.a

building

include/

jurassic unified library.c

jurassic unified library.h

JURASSIC-unified

src/

formod.c

#include

Makefile

formod.exe

make

JURASSIC

-ljurassic unified

Figure 4.6: Integration of the JURASSIC-unified library into the reference project.

to be increased, and the generate library.sh script must be run again to update the C
static library file.

The jurassic unified library.c file with definitions of this functions has to be
compiled and linked when compiling the JURASSIC reference project. In the home folder
of the JURASSIC-unified repository you can find the ”reference Makefile” file which
can be used as a Makefile for the JURASSIC reference implementation when connecting it
with the JURASSIC-unified library.

To be simple for usage, the JURASSIC-unified library offers just two functions, whose
declarations are shown in Listing 4.2.

Listing 4.2: Declaration of the functions offered by the JURASSIC-unified library.
jur_ctl_t *jur_unified_init(int argc, char *argv[]);

void jur_unified_formod_multiple_packages(atm_t const *atm,

obs_t *obs,

int num_of_obs_packages,

CHAPTER 4. JURASSIC-UNIFIED 42

int32_t const *atm_id);

At the beginning of the program, jur unified init(argc, argv) must be called.
This function reads the control parameters and stores them into a static variable. Similarly,
the emissivity look-up table is initialized in this function.

Since the JURASSIC reference model ignores scattering, the jur unified formod -
multiple packages function does not have aero among its parameters. It also does
not take ctl and tbl as arguments, because they are already stored in the static variables
initialized in the jur unified init function. The jur unified formod multiple -
packages function offers similar functionality as jur formod multiple packages pre-
sented in Section 4.2, it supports simultaneous calculation of the radiances for possibly
multiple observation packages, for rays with possibly different atmospheres.

Bibliography

[1] Frontier First to Break the Exaflop Ceiling, https://www.top500.org/news/
ornls-frontier-first-to-break-the-exaflop-ceiling/, visited on 2022-
06-20.

[2] MPICH, https://www.mpich.org/about/overview/, visited on 2022-06-20.

[3] TOP500 list, https://www.top500.org/project/, visited on 2022-06-20.

[4] P. F. Baumeister and L. Hoffmann, Fast infrared radiative transfer calculations using
graphics processing units: Jurassic-gpu v2.0, Geoscientific Model Development 15
(2022), 1855–1874.

[5] P. F. Baumeister and L. Hoffmann, GitHub Source Repository of JURASSIC-GPU,
https://github.com/slcs-jsc/jurassic-gpu, 2022.

[6] P. F. Baumeister, B. Rombach, T. Hater, S. Griessbach, L. Hoffmann, M. Bühler, and
D. Pleiter, Strategies for forward modelling of infrared radiative transfer on GPUs,
Parallel Computing is Everywhere 32 (2017), 369–380.

[7] M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M.
Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of Light, 7th ed., Cambridge
University Press, 1999.

[8] Pawsey Supercomputing Centre, A brief history of supercomputing,
2019, https://pawsey.org.au/wp-content/uploads/2019/01/

PawseyHistorySupercomputing2018v3.pdf, visited on 2022-06-20.

[9] NVIDIA Corporation, Cuda c++ programming guide, https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html, visited on 2022-06-20.

[10] L. Dagum and R. Menon, OpenMP: an industry standard API for shared-memory
programming, Computational Science & Engineering, IEEE 5 (1998), no. 1, 46–55.

43

https://www.top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/
https://www.top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/
https://www.mpich.org/about/overview/
https://www.top500.org/project/
https://github.com/slcs-jsc/jurassic-gpu
https://pawsey.org.au/wp-content/uploads/2019/01/PawseyHistorySupercomputing2018v3.pdf
https://pawsey.org.au/wp-content/uploads/2019/01/PawseyHistorySupercomputing2018v3.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CHAPTER 4. JURASSIC-UNIFIED 44

[11] M. J. Flynn, Very high speed computers, Proceedings of the IEEE 54 (1966), no. 12,
1901–1909.

[12] MPI Forum, MPI: A Message-Passing Interface Standard, Techn. rep., USA, 1994.

[13] S. Griessbach and L. Hoffmann, JURASSIC-scatter v1.3 documentation,
https://github.com/slcs-jsc/jurassic-scatter/blob/v1.3/docu/

jurassic.pdf, 2019.

[14] S. Griessbach and L. Hoffmann, GitHub Source Repository of JURASSIC-scatter,
https://github.com/slcs-jsc/jurassic-scatter, 2022.

[15] S. Griessbach, L. Hoffmann, M. Höpfner, M. Riese, and R. Spang, Scattering
in infrared radiative transfer: A comparison between the spectrally averaging
model JURASSIC and the line-by-line model KOPRA, Journal of Quantitative Spec-
troscopy and Radiative Transfer 127 (2013), 102–118, ISSN 0022-4073, https:
//www.sciencedirect.com/science/article/pii/S0022407313001969.

[16] M. Harris, CUDA Pro Tip: Write Flexible Kernels with
Gride-Stride Loops, https://developer.nvidia.com/blog/

cuda-pro-tip-write-flexible-kernels-grid-stride-loops/, 2013.

[17] F. Hase and M. Höpfner, Atmospheric ray path modeling for radiative transfer algo-
rithms, Appl. Opt. 38 (1999), no. 15, 3129–3133, http://opg.optica.org/ao/
abstract.cfm?URI=ao-38-15-3129.

[18] L. Hoffmann, GitHub Source Repository of JURASSIC, https://github.com/
slcs-jsc/jurassic, 2022.

[19] L. Hoffmann and M. J. Alexander, Retrieval of stratospheric temperatures from At-
mospheric Infrared Sounder radiance measurements for gravity wave studies, J. Geo-
phys. 114 (2009).

[20] L. Hoffmann, M. Kaufmann, R. Spang, R. Müller, J. J. Remedios, D. P. Moore, C.
M. Volk, T. von Clarmann, and M. Riese, Envisat MIPAS measurements of CFC-11:
retrieval, validation, and climatology, Atmos. Chem. Phys. 8 (2008), 3671–3688.

[21] D. J. Jacob, Inverse modeling techniques. in observing systems for atmospheric com-
position, (2007), 230–237.

[22] C. Kalicinsky, S. Griessbach, and R. Spang, Radiative transfer simulations and ob-
servations of infrared spectra in the presence of polar stratospheric clouds: Detection
and discrimination of cloud types, (2020).

https://github.com/slcs-jsc/jurassic-scatter/blob/v1.3/docu/jurassic.pdf
https://github.com/slcs-jsc/jurassic-scatter/blob/v1.3/docu/jurassic.pdf
https://github.com/slcs-jsc/jurassic-scatter
https://www.sciencedirect.com/science/article/pii/S0022407313001969
https://www.sciencedirect.com/science/article/pii/S0022407313001969
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
http://opg.optica.org/ao/abstract.cfm?URI=ao-38-15-3129
http://opg.optica.org/ao/abstract.cfm?URI=ao-38-15-3129
https://github.com/slcs-jsc/jurassic
https://github.com/slcs-jsc/jurassic

[23] NVIDIA, P. Vingelmann, and F.H.P. Fitzek, Cuda, release: 10.2.89, 2020, https:
//developer.nvidia.com/cuda-toolkit, visited on 2022-06-20.

[24] C.D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Prac-
tice, Series on atmospheric, oceanic and planetary physics, World Scientific, 2000,
ISBN 9789810227401, https://books.google.hr/books?id=p3b3ngEACAAJ.

[25] B. Slivnik, R. Trobec, B. Robic, and P. Bulić, Introduction to Parallel Computing,
October 2018, ISBN 978-3-319-98832-0.

[26] T. Sterling, M. Anderson, and M. Brodowicz, Chapter 3 - Commodity Clusters,
High Performance Computing (T. Sterling, M. Anderson, and M. Brodowicz, eds.),
Morgan Kaufmann, Boston, 2018, pp. 83–114, ISBN 978-0-12-420158-3, https:
//www.sciencedirect.com/science/article/pii/B9780124201583000034.

[27] Supercomputing Support, JUWELS: Modular Tier-0/1 Supercomputer at Jülich Su-
percomputing Centre, Journal of large-scale research facilities JLSRF 5 (2019).

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://books.google.hr/books?id=p3b3ngEACAAJ
https://www.sciencedirect.com/science/article/pii/B9780124201583000034
https://www.sciencedirect.com/science/article/pii/B9780124201583000034

Sažetak

Juelich Rapid Spectral Simulation Code (JURASSIC) je model radijacijskog transporta
koji se koristi u analizi atmosferskih daljinskih mjerenja zračenja iz srednje infracrvenog
područja. Služi za otkrivanje stanja atmosfere na temelju zadanih mjerenja. Napisan
je u programskom jeziku C i pomoću MPI/OpenMP hibridne paralelizacije prilagoden
za izvodenje na superračunalima. JURASSIC-GPU je verzija JURASSIC-a kojoj je uz
pomoć programskog jezika CUDA omogućeno efikasnije izvršavanje na grafičkim proce-
sorima. Kako bi se u model uključile čestice, raspršenje infracrvenog zračenja je dodano
u JURASSIC-scatter modelu, no taj model još nije imao koristi od ubrzavanja JURASSIC
modela koji zanemaruje čestice.

Glavni cilj ovog diplomskog rada bio je ubrzati JURASSIC-scatter model. To je napravl-
jeno njegovim kombiniranjem s JURASSIC-GPU modelom. Performanse implementacije
koja koristi oba modela izmjerene su na JUWELS-u – jednom on najboljih svjetskih su-
perračunala, i postignuto je ubrzanje od oko 10 puta. Nakon toga, kako bi se maknuli dup-
likati iz ta dva projekta i napravio razumljiviji kod koji će biti jednostavniji za održavanje,
odlučeno je da se JURASSIC-scatter i JURASSIC-GPU spoje u novi projekt – JURASSIC-
unified. Takva jedinstvena implementacija ima još bolje performanse – ubrzanje u odnosu
na JURASSIC-scatter je oko 24 puta. Uz dodavanje jedne nove funkcionalnosti, JURASSIC-
unified projekt je prilagoden tako da ga i model koji zanemaruje čestice može koristiti kao
biblioteku.

Summary

The Juelich Rapid Spectral Simulation Code (JURASSIC) is a fast radiative transfer model
for the analysis of atmospheric remote sensing measurements in the mid-infrared spectral
region. It is used to derive the state of the atmosphere from the measurements. It was
written in C and features an MPI/OpenMP hybrid parallelization for use on supercomput-
ers. JURASSIC-GPU was developed by porting JURASSIC to GPUs using the CUDA
programming language. To incorporate particles into the model, scattering of the infrared
radiation on the particles was accounted for in the JURASSIC-scatter model, but this model
so far did not benefit from tuning and acceleration of the reference model.

The goal of the work in this thesis was to accelerate the JURASSIC-scatter forward
model. It was done by combining it with JURASSIC-GPU. The implementation that uses
both models was benchmarked on JUWELS – one of the world’s top supercomputers, and
the achieved speedup was around 10×. After that, to remove code duplicates and to make
the code easier to understand and maintain, JURASSIC-scatter and JURASSIC-GPU were
merged into the new unified code project named JURASSIC-unified. This unified imple-
mentation has even better performance – it is around 24× faster then the initial JURASSIC-
scatter implementation. In addition to a new feature, the JURASSIC-unified project was
adapted so that even the JURASSIC reference project can use it as a library.

Životopis

Roden sam u Čakovcu, 3. prosinca 1997. godine. Završio sam Osnovnu školu Belica,
a 2012. upisao Gimnaziju Josipa Slavenskog Čakovec. Preddiplomski sveučilišni studij
matematike na Prirodoslovno-matematičkom fakultetu Sveučilišta u Zagrebu upisao sam
2016., a završio 2019. godine. Iste godine upisao sam diplomski studij Računarstvo i
matematika, takoder na Prirodoslovno-matematičkom fakultetu. Tijekom studiranja sam tri
puta sudjelovao na Srednjoeuropskom studentskom ICPC natjecanju (CERC) i pet godina
bio jedan od sastavljača zadataka na Državnom natjecanju iz informatike. Za izuzetan us-
pjeh na diplomskom studiju dodijeljene su mi Nagrada Matematičkog odsjeka i Dekanova
nagrada. Od kolovoza do listopada 2021. sudjelovao sam na ljetnoj školi koju je orga-
nizirao institut Forschungszentrum Jülich – Jülich Supercomputing Centre, jedan od na-
jvećih HPC centara u Europi, u suradnji s kojim je napravljen i ovaj diplomski rad.

	Contents
	Introduction
	Parallel computing
	Supercomputers
	Parallel programming models

	Simulation of radiation transport
	Atmospheric remote sensing
	JURASSIC forward models
	Inverse modeling in JURASSIC

	Accelerating JURASSIC-scatter
	Connecting projects
	JURASSIC-scatter-GPU realization
	Performance results

	JURASSIC-unified
	Merging projects
	Multiple atmospheres feature
	JURASSIC-unified as a library

	Bibliography

