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ABSTRACT

Search for novel (quantum) states of matter is one of the prime goals of contemporary

physics. Spin nematic phase, where spins form a state with vanishing dipolar moment while

a more complex operator remains with non zero expectation value, was predicted in one dimen-

sional (1D) spin systems with ferromagnetic (FM) interaction between first and antiferromag-

netic (AFM) interaction between second neighbours in the region near saturation field. After

decades of mainly theoretical work in low dimensional spin systems, the first material candi-

dates started to emerge, albeit no clear experimental evidence for such a phase was presented

so far.

In this thesis, extensive experimental research on LiCuSbO4 compound, a spin nematic

candidate, is presented. This material shows distinct properties: absence of 3D ordering in zero

magnetic field down to 30 mK, saturation field of ≈13 T. Nuclear magnetic resonance (NMR),

muon spin rotation (µSR) and magnetic susceptibility (SQUID) techniques were used to unravel

and tackle different parts of the experimental phase diagram.

We conclude that the search for possible quadrupolar nematic (QN) phase is narrowed down

to a field range 12.5-13 T, and remains a goal for future investigations. Results in this thesis are

compared to the recent work by Grafe et al. [1]. Also, we summarize most important work on

similar compound LiCuVO4, which is investigated for 15 years and available in form of single

crystals.

Keywords: Frustration, 1D, spin chain, NMR, µSR.
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SAŽETAK

Potraga za novim (kvantnim) stanjima materije je jedan od važnijih ciljeva moderne fizike.

Spinska nematska stanja, gdje spinovi formiraju stanja s iščezavajućim dipolnim momentom,

dok kompleksniji operatori imaju neiščezavajuće vrijednosti, predvideni su u jednodimenzion-

alnim (1D) spinskim sustavimna s feromagnetskom interakcijom medu prvim i antiferomag-

netskom interakcijom medu drugim susjedima u području blizu saturacijskog polja. Nakon

desetljeća, uglavnom teorijskih, radova u niskodimenzionalnim spinskim sustavima, prvi spo-

jevi kandidati počeli su se pojavljivati, iako do sada nema jasnih eksperimentalnih dokaza za

postojanje takvih faza.

U ovom radu prezentirano je iscrpno eksperimentalno istraživanje spoja LiCuSbO4, kandi-

data za opažanje spinske nematske faze. Ovaj spoj pokazuje sljedeća svojstva: nepostojanje 3D

uredenja u nultom magnetskom polju na temperaturama iznad 30 mK i saturacijsko polje od

≈13 T. U ovom su radu korištene tehnike nuklearne magnetske rezonancije (NMR), mionske

spinske rotacije (µSR) i magnetske susceptibilnosti (SQUID) kako bi se istražili različiti dijelovi

faznog dijagrama.

Zaključujemo da je potraga za mogućom kvadrupolnom nematskom (QN) fazom sužena na

područje izmedu 12.5 i 13 T i ostaje ciljem za buduća istraživanja. Rezultati predstavljeni u

ovom radu usporedeni su s nedavnim radom Grafea i suradnika [1].

Takoder, saželi smo najvažnije radove na sličnom spoju LiCuVO4, koji je predmet istraživanja

više od 15 godina i dostupan je kao monokristal.
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Chapter 1

Introduction - Why 1D?

One dimensional (1D) physical systems are the most simple ones, but in many cases they show

many interesting phenomena which emerge as a result of interactions and correlations between

electrons. In this chapter we will give a brief introduction and several examples of ongoing

investigations which should challenge the question “What’s new in 1D systems? Everything is

solved there!”.

General increase of computational resources led to development of new methods such as

numerical Monte Carlo method, exact diagonalization, density matrix renormalization group

(DMRG) [2] etc. These methods are powerful theoretical tools for solving 1D, and in some

cases 2D problems, whose validity should be confirmed by experimental results. In physics

(today) there are three scenarios: theory develops ahead of experiment, experiments ahead of

theory or they go in parallel. The physics of 1D systems was a purely theoretical playground

for a long time, by introducing a diversity of various properties (finite size effects, impuri-

ties, Dzyaloshinskii-Moriya interaction, single ion anisotropy, elements of frustration etc). The

number of models increased rapidly, but experimental evidences for predicted phases remained

lacking for a long period, due to the absence of clean materials. We will show a few examples

of why low dimensional physics is of great interest for scientific research.

High-temperature superconductors

A large stimulus for experimental research and synthesis of new materials was the discov-

ery of high temperature superconductors (HTSC-s). Soon after the discovery, scientists started

to construct phase diagrams depending on charge carrier doping, which always included both

AFM phase and superconducting (SC) phase (Fig 1.1). Since 2D Cu-O conducting planes

1



Figure 1.1: Schematic phase diagram of cuprate HTSC-s.
In dependence on charge carrier doping, the phase diagram of HTSC-s generically

feature AFM and SC phases. Even today it is not understood whether these phases

are somehow connected or not. Temperature T ∗ is the one which separates pseudogap

(PG) behavior from the strange metal (SM) phase, Tc is transition temperature to a

SC phase, and TN temperature at which AFM order occurs. Blue phase on the right

represents normal mental (NM) behavior.

2



Figure 1.2: Frustration triangle.
Upper spin and the left one are aligned anti parallel. The right one wants to be anti

parallel to both upper and left spin, which is impossible and leads to frustration.

play a key role in cuprate HTSC, a natural question emerges: are AFM and SC phases some-

how connected or not? For those who believed these effects are connected, understanding low

dimensional magnetism became a key for understanding high temperature superconductivity:

AFM fluctuations [4–8] (in these materials) were then considered as candidates for Cooper pair

binding mechanism [9, 10].

1D and multiferroics

The discovery of multiferroicity, the coexistence and coupling of spin and charge degrees

of freedom created a new boost for researching materials with such properties, with obvious

possibilities for applied sciences. These materials are complex and their behavior is not com-

pletely understood yet. In search for simpler prototypical example, a frustrated 1D material

with multiferroic properties was discovered: LiCu2O2 [11, 12]. In this frustrated chain cuprate

compound, competition between ferromagnetic nearest neighbours (NN) exchange coupling J1

and antiferromagnetic next nearestneighbours (NNN) exchange coupling J2 leads to frustration,

a common ”ingredient” for many interesting physical properties (see Fig 1.2), such as spin liq-

uids etc. The system exhibits a magnetic phase transition below TN = 25 K to a spin spiral

state. It turns out that ferroelectricity emerges simultaneously, and its polarization depends on

3



the direction and the strength of the applied magnetic field. The polarization P is proportional

to the cross product between two neighboring spins Si × Sj , which is related to the pitch angle

cos(2πθ) =| J1/(4J2) |.

Exotic excitations and new states of matter

Localized spin 1D systems are an even simpler subclass of such examples, since for their

description one has to deal only with spin interactions, but they are still rich enough so they can

”surprise” with their complexity. They are an ideal playground for theoretical calculations, both

numerical and analytical, since it is much easier to calculate in 1D, than in 3D. Just to keep in

mind the scope of the problem: the ground state of the simplest Heisenberg antiferromagnetic

(AFM) Hamiltonian is not known:

H =
∑
i,j

JSiSj, (1.1)

in a system where the spins are located on the corners of kagome lattice, where sum over i goes

over all sites, and sum over j with first neighbors and J < 0 AFM exchange interaction.

Historically, the first example of a classical spin chain was solved by Ernst Ising in 1925

[13]. There were high hopes that this model would be the first one to give microscopic insight

into a thermodynamic phase transition at non-zero temperature. The next crucial discovery was

made by Hans Bethe who managed to solve Heisenberg AFM model in 1D using the Bethe

ansatz in 1931 [14]. Soon, Landau gave [15] a thermodynamic argument which is generally

considered as “a proof” of the non existence of thermodynamic phase transitions in 1D systems

with short range interactions. Many 1D models indeed do not have transition even at 0 K. How-

ever, seven decades later, Questa and Sanchez [15] emphasize that it is not a strict proof, and

give various examples of 1D models which do exhibit a true thermodynamic phase transition.

Hence, the generally accepted argument of non-existence of a phase transition in 1D with short

range interactions is not true. Now we can see that as one gets deeper and deeper into the 1D

physics, more complex problems start to emerge.

Due to the limited phase space, 1D systems are always strongly correlated, furthermore,

these correlations are so strong that the Fermi liquid theory, as a starting approach to many-

body problems, breaks down [16] and one has to use the Luttinger liquid (LL) theory as a

starting point for treatment of 1D systems. Experimental signatures of the LL behavior were

present in various systems such as: organic conductors, quantum wires, carbon nanotubes etc.,

but the first substantial experimental test of the LL behavior was done on spin ladder system

4



a)

b)

c)

S=1

S=1/2 

Figure 1.3: Spinons in 1D.
In AFM ordered spin chain (a), an elementary excitation is a magnon, a single spin

flip that costs 2J of energy, whose spin is S = 1 (b). Two neighbouring spins can

exchange positions without a change in the energy, which breaks magnons into two

S = 1
2
particles (spinons), which can propagate freely (c).

CuBr4(C5H12N)2 [17]. As mentioned before, despite theoretical progress, experimental ob-

servation of quasi 1D systems was lacking for a long period. One-dimensional systems can

be classified as quantum-mechanical ones, which are in general described by some kind of

Heisenberg Hamiltonian (low spin S ≤ 1 together with the presence of quantum fluctua-

tions (Jz ≈ Jx ≈ Jy)), and classical, which are described by Ising Hamiltonian (S > 1 or

Jz ≫ Jx, Jy). In the 1970s experimental realizations of 1D systems started to appear. One

of the first examples of the classical spin chain was the compound CsMnCl2×D2O [18]. Few

years later the first quantum spin chain CuCl2·2N(C5D5) [19] was discovered. The most studied

examples of 1D spin systems are KCuF3 [20,21] and Sr2CuO3 [22,23]. In general, compounds

based on various stoichiometric ratios of strontium, copper and oxygen form various classes of

chains and ladder systems which are widely investigated. It is worth to take a step back and

mention spin-charge separation into spin 1
2
excitations - spinons and holons - which were for

the first time observed in the conducting 1D system SrCuO2 in 1996 [24]. Spinons are spin 1
2

excitations, quite common for 1D spin systems, contrary to the spin waves, whose elementary

excitations are called magnons and carry spin 1. Interaction among spinons, was recently stud-

ied experimentally in the work by Mourigal et al. [25], where they used large single crystals of

CuSO4·D2O, (2 cm3). Although spinons are predicted and confirmed as elementary excitations

in many 1D spin systems [21], they are quite exotic in 2D antiferromagnetic systems. However,

they can appear in 2D spin liquids [21,26]. A cartoon picture which explains this difference is
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a) b)

Figure 1.4: Spinons in 2D.
AFM ordered spins on 2D rectangular lattice. (a) Elementary excitation is again a sin-

gle spin flip, but now with simple exchange of positions between spins, as two spinons

move away from one another, a domain wall is formed which interacts ferromagneti-

cally between neighboring chains (b).

shown in Figures 1.3 and 1.4. In the case of the simplest AFM interaction between neighboring

spins JSiSj - in 1D, spinons are not bound and can propagate freely in 1D. Typically, in 2D

they form a domain wall which interacts with spins from the chains above and below, and the

energy has to increase. In 2D spin liquids, the ground state is highly degenerate and spins form

singlets which can move (as water molecules move inside the water), so there is no interaction

between spinons [26], providing that their density is low.

Spin nematics

In this thesis we will present search for a novel phase in 1D frustrated chain LiCuSbO4

called spin nematic phase. This phase is described by an order parameter which is a tensor rank

2 or higher. More detailed explanation of this phase will be given in the following chapter but let

us mention that such a state is difficult to observe because most techniques are sensitive to order

parameters which are scalars or vectors. When one considers Hamiltonian multipole expansion,

monopole couples to the potential, dipole to the field (gradient of the potential), quadrupole to

the field gradient, etc.

Although, there are many more interesting effects in 1D spin systems, we will stop here hop-

ing that we provided enough arguments to answer the question asked in the beginning “What’s

new in 1D systems? Everything is solved there!”.
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Chapter 2

Quadrupolar nematics

Magnetic order is usually related to some kind of spin pattern alignment with ⟨Sı⟩ ̸= 0. One

can now ask if there are more subtle states that break rotational O(3) symmetry, i.e. for every

projection, where the average value of the spin operator ⟨Sα
ı ⟩ = 0 (α ∈ x, y, z), while a more

complex operator such as some bilinear combination of operator ⟨SαSβ⟩ ̸= 0 where α, β ∈

x, y, z do not vanish. We designate such multipolar states as nematic, with the quadrupolar

one (bilinear combination) being the simplest. A more detailed discussion can be found in

chapter 13 of the book [27]. One can immediately see that such quadruplar nematic (QN) state

does not break the time reversal symmetry. The word “nematic” comes from analogy with the

order parameter in liquid crystals, which is also a tensor rank 2 quantity. In 1888 Reinitzer

tried to measure the melting point of cholesteryl benzoate crystals, but surprisingly he found

two phase transitions instead of one [28], as shown in Fig. 2.1. It took until 1960s, when De

Gennes realized the order parameter that describes the transition is not a simple number, or

vector, but a tensor quantity [29]. A nice description of spin nematics is given by F. Mila in the

Figure 2.1: Phases of cholesteryl benzoate.
Liquid (left), liquid crystalline (middle) and solid (right) phase of cholesteryl benzoate

[30].
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reference [31].

2.1 Simple picture for bound spins S = 1
2

For spin S = 1
2
it is impossible to construct a quadrupolar nematic order which does not break

time reversal symmetry [32], from single up | ↑⟩ and down | ↓⟩ states. However it is possible

to construct such a state based on bond operators [32]. Let us take only two spins and label

them as 1 and 2. We can now decompose the tensor operator Sα
1 S

β
2 into the irreducible tensor

operators: a) Tr(Sα
1 S

β
2 ) ≡ S1 · S2 is a scalar, b) P12 = S1 × S2 is a vector, and c) Qαβ

12 =

Sα
1 S

β
2 +S

β
1S

α
2 − 2

3
(S1 ·S2)δαβ is a symmetric tensor. Both P12 andQαβ

12 are bilinear combinations

and they describe an order where time-reversal symmetry is preserved. One can construct states

which are invariant to the time-reversal:

|s⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩),

|x⟩ = i√
2
(|↑↑⟩ − |↓↓⟩),

|y⟩ = 1√
2
(|↑↑⟩+ |↓↓⟩),

|z⟩ = − i√
2
(|↑↓⟩+ |↓↑⟩).

(2.1)

Time reversal symmetry breaking operators, which have finite magnetic moment are:

Sα
1 + Sβ

2 = −i
∑

β,γ∈{x,y,z}

εαβγ|β⟩⟨γ|,

Sα
1 − Sβ

2 = i(|α⟩⟨s| − |s⟩⟨α|),
(2.2)

where εαβγ is Levi-Civita symbol. Non magnetic operators are:

S1 · S2 =
1

4

∑
α∈{x,y,z}

|α⟩⟨α| − 3

4
|s⟩⟨s|,

Pα
12 =

1

2
(|α⟩⟨s|+ |s⟩⟨α|),

Qαβ
12 = −1

2
(|α⟩⟨β|+ |β⟩⟨α|) + 1

3
δαβ|γ⟩⟨γ|.

(2.3)

Bound wave function can be any linear combination in the base defined as in (2.1); |ψ⟩ =

c|s⟩ +
∑

α dα|α⟩, where α ∈ {x, y, z}. States with real c and d do not break time reversal

symmetry. For c = 1 (d = 0), |ψ⟩ is pure singlet, while for c=0 we refer to a state as n-nematic.

When c > 0 and d is non-vanishing we call the state p-nematic. For further symmetry analysis

one can take a look at the reference [33].
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Figure 2.2: Spin chains and zig-zag ladders.
In the upper panel a chain with ferromagnetic interaction J1 among NN and antifer-

romagnetic interaction J2 among NNN. If we take blue spins and pull them down,

while keeping the same interactions, we can see that spin chains with NN and NNN

interaction are topologically identical to the zig-zag ladders. The rungs represent the

J1, while the legs J2 interaction. Now, it is obvious that J1 prefers FM ordering and

J2 AFM, which makes the “famous” frustrated triangle.

2.2 Theory of 1D frustrated spin chains

In this section we will give an overview on theoretical work where nematic order in 1D systems

is predicted [34–36]. Let’s consider the Heisenberg Hamiltonian:

H =
∑
i

{J1SiSi+1 + J2SiSi+2 − hSz
i }. (2.4)

We take interactions between nearest neighbours (NN) J1 and next nearest neighbours (NNN),

J2 in the presence of the applied magnetic field h, where the sum over i goes over the entire

chain. We will introduce a further constraint and consider only FM interaction between NN

(J1 < 0) and AFM interaction between NNN (J2 > 0). This configuration introduces geo-

metrical frustration which is explained in Fig 2.2. If the energy of applied magnetic field h is

comparable to the energies of J1 and J2, a competition between different interaction leads to the

quantum criticality. A nematic phase in 1D chains was first predicted by Chubukov in 1991 [37].

After further theoretical calculations [34, 35, 38–40], experimentalist started the search for QN

phase in real materials. In the following text we will present the theoretical phase diagram at

T = 0 K [40].
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If one considers the classical limit where a spin at site i is just a vector Si, the ground

state is helical: Si/S = (sin(θ) cos(φi), sin(θ) sin(φi), cos(θ)) where the pitch angle between

two neighboring spins is φ = φi+1 − φi = ± arccos(−J1/4J2)] and the canting angle θ =

arccos(4hJ2/S(J1 + 4J2)
2) [35]. The system is fully polarized at a saturation field above

hs = S(J1 + 4J2)
2/4J2 or at zero field when |J1| > 4J2.

The quantum mechanical case for S = 1
2
is much more complex. Helical order does not sur-

vive quantum fluctuations [35], however there are possibilities for long range algebraic (power

law) correlations in contrast to the usual short range ones which are exponential. We will now

inspect the theoretical phase diagram at T = 0 K (Fig. 2.3). The phases are named after the

dominant correlation functions, and the boundaries between phases are not sharp, but may be

described as crossovers. The variable parameters are the ratio of interactions J1/J2 and the

magnetization which depends on applied field.

Vector chiral (VC) phase appears in the low field (magnetization) region. The spins are not

ordered, their expectation values are zero (⟨S⟩ = 0). The correlation function which shows the

slowest decay is the squared VC order parameter:

κ(r, d) = ⟨[S0 × Sd]
z[Sr × Sr+d]

z⟩, (2.5)

where d = 1 when we consider correlations across J1 bonds, and d = 2 for J2 bonds, while r

represents distance bewteen 0-th and r-th spin.

Spin density wave phase of p bound spins (SDWp) appears as we increase the applied mag-

netic field. Elementary excitations here are spin flips of p bounded spins (∆Sz = p), however,

the dominant correlation function is:

⟨Sz
0S

z
r ⟩ − ⟨Sz

0⟩⟨Sz
r ⟩ ∝ cos[

(1−m/msat)πr

p
]
1

rK
, (2.6)

where we note that ⟨Sz
0⟩ = ⟨Sz

r ⟩ = m. K is the Luttinger liquid (LL) parameter which is a

function ofm(h), J1 and J2.

Nematic (N) phase appears just below the saturation field, separated by the dashed line from

the SDW phases. The dominant correlation function in this phase is:⟨
p−1∏
n=0

S+
0+n

p−1∏
n=0

S−r+n

⟩
∝ (−1)r

1

r1/K
, (2.7)

For p = 2, the phase is called quadrupolar, for p = 3 octupolar, and for p = 4 hexadecupolar.

At this point, we mention that the compound LiCuSbO4 studied in this work has the value of

J1/J2 ≈ −2.2 [41], and in the rest of the manuscript we will focus only on the part of the phase
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Figure 2.3: Phase diagram of the frustrated J1 − J2 chains
In the region of low magnetization (gray), the system is in the chiral phase. Above

that the system behaves as LL, whose elementary excitations are flips of p bound

spins (colored regions). Horizontal dashed lines are boundaries where the dominant

correlation function changes from SDWp− type to the nematic one (see text for further

discussion). Magnetizationm implicitly depends on the applied magnetic field h, and

it is scaled with the saturation value (ms, hs). Vertical blue line represents position of

LiCuSbO4 in the phase diagram. The circles and squares are numerically evaluated

points. [40]
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diagram in which quadrupolar nematic (QN) phase is theoretically predicted. In section 2.1 we

referred to a QN operator as any bilinear combination of spin operators. From this point on,

we will reserve this term to the operator defined in equation (2.7), when p = 2, i.e. for the

symmetric tensor Qαβ
12 in equation (2.3).

Fig. 2.4 shows the decay of the correlation functions in different phases, evaluated by

density matrix renormalization group (DMRG).

Figure 2.4: Decay of correlation functions in different phases.

Result of the DMRG simulation. Saturation magnetization isMs = 0.5 [36].

We will now take a closer look at the ground state at, and just below, the saturation field

where a QN phase is expected [35, 36]. A mapping onto the LL Hamiltonian with hard core

bosons is done in the following way. We start with a fully polarized state |FM⟩. The elementary

excitation is a spin flop of two bound spins (−1)rS−r S
−
r+1 which corresponds to a boson creation

operator b†r. The boson density is nr ≡ b†rbr =
1
2
(1
2
− Sz

r ), where br is the annihilation operator

at position r. The transverse spin correlations ⟨S+
0 S
−
r ⟩ are short-range, because it takes a finite

amount of energy to break the bound magnon state. It is convenient to consider the excited

magnon states with center of mass momentum k, with relative distance l between magnons:

|l; k⟩ = 1√
N

∑
r

eik(2r+l)/2S−r S
−
r+l|FM⟩, (2.8)

where N is the number of spins. The matrix elements are ⟨l; k|H|l′; k′⟩ = δk,k′Hl,l′ , with

nonvanishing elements of Hl,l′:

Hl,l = J1(δl,1 − 2) + J2(δl,1 cos k + δl,2 − 2) + 2h,

Hl,l+1 = Hl+1,l = J1 cos(k/2),

Hl,l+2 = Hl+2,l = J2 cos k

(2.9)

Taking the result of [35], we state that for the QN phase in the range −2.67 ≤ J1/J2 < 0, the
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Figure 2.5: Energy ε(k) dependence of (multi)magnon excitations
For J1/J2 = −1.0 (a) and J1/J2 = −2.7 (b) at the saturation field. One can see that

the lowest energy excitation for quadrupolar phase is at k = π [35]

Figure 2.6: Magnetization curves at T = 0K.
Magnetization curves calculated using DMRG technique on chains with L = 168

spins for two different ratios of J1/J2 [36]. On the boundary between the V C and

SDW2 phases, the magnetization increases in steps from ∆Sz = 1 to ∆Sz = 2. This

”S−shape” curve is the signature of 1-dimensionality, to our knowledge experimen-

tally first reported by Klanjšek et al. [17]. Saturation magnetization isM = 0.5.

lowest energy excitation has momentum k = π:

ε(π) = −J1 − 3J2 +
J2
2

J1 − J2
+ 2h, (2.10)

and a cartoon picture where one can think about excitation as a sphere of two neighboring spin

flips, corresponds very well to the real situation. The dispersion relation for ε(k) is shown in

Fig. 2.5.

A crossover between the VC phase where excitations are single spin flips, to a SDW2/QN ,
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was verified by DMRG simulations and is shown in Fig. 2.6.

The first theoretical predictions for experimental observables, such as magnetic susceptibil-

ity and heat capacity, were made by Heidrich-Meisner et al. in 2006 [34]. However, these are

macroscopic probes. The former is very sensitive to impurities, while the latter does not probe

the spin subsystem in isolation. Most experimental techniques measure two-point correlation

functions and therefore the four-point correlation functions as in (2.7) for p = 2 are easily

missed. Sato et al. have proposed an indirect way of probing the QN phase through NMR or

neutron scattering experiments [42, 43]. NMR is especially convenient because its sensitivity

increases with the strength of applied magnetic field. We will give a more detailed description

of NMR observables in Chapter 3.2., but at the moment let us mention that NMR probes the

dynamical correlations through the spin-lattice relaxation time T1. In SDW2 or QN phase, its

behavior is expected to change asymptotically when T → 0 K [42], 1/T1 is predicted to diverge

as T → 0 in the SDW2 phase, while in QN phase 1/T1 → 0 as system is cooled towards abso-

lute zero. In the regime ω/kB ≪ T ≪ J2, where ω is NMR frequency and kB the Boltzmann

constant, the temperature dependence of the spin-lattice relaxation rate 1/T1 is [43]:

1

T1
= D

∥
1T +D

∥
2T

2K−1 + ..., (2.11)

where D∥1 and D∥2 are temperature independent constants. Albeit this expression is similar to

the one with dipolar field magnetism, parameters D∥1 and D
∥
2 are different, and a goal of future

theoretical research [17]. In contrast, spin 1/2 AF chains without frustration, under applied

magnetic field have a relaxation rate [44]:

1

T1
= E

∥
1T + E

∥
2T

2K−1 + E⊥1 T
1/(2K)−1..., (2.12)

where E∥1 , E
∥
2 and E⊥1 are again temperature independent constants. The LL parameter K

increases monotonically with applied magnetic field from 0 to 1. If one considers equation

(2.11), forK = 1
2
the asymptotic behavior of the relaxation rate changes due to the term related

toD∥2. ForK < 1
2
it diverges when T → 0 K, while forK > 1

2
it approaches zero. On the other

hand the last term in equation (2.12) ensures divergence for T → 0K when K > 1
2
and does

not exist in equation (2.11), i.e. one of the terms E∥2 or E⊥1 always ensures divergence when

T → 0K irrespective whether we are inK < 1
2
orK > 1

2
regime. The valueK = 1

2
determines

the border between the SDW2 and the QN phase. This is shown in Fig. 2.7.

Due to this difference in 1/T1 asymptotic behavior when T → 0K between AF and J1 − J2

chains, one could indirectly give an experimental proof for the existence of QN phase.
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Figure 2.7: Temperature dependence of the NMR relaxation rate 1/T1
In: (a) Multipolar LL (J1−J2 chains) in the low and high field region and (b) standard

LL (AF chains). In the standard LL, there are contributions from two terms, where

one of them always diverges when T → 0K [42].

2.3 Experimental realizations of 1D frustrated spin chains

Experimentally, a high ratio of J1(J2)/TN indicates the existence of frustration and/or low

dimensionality. Table 2.1 shows experimentally determined parameters of some compounds

described by the J1 − J2 Hamiltonian. Although we considered so far ideal chains, which do

not order at T = 0K, in real materials it is possible that a small interchain interaction J ′ leads to

a true 3D order at s finite temperature TN . The values of TN at zero magnetic field are given in

Table 2.1. As the magnetic field is increased it can stabilize or change the nature of the ground

state. However, at high field where a nematic phase is expected, the field can suppress 3D or-

dering at TN so existence of TN at zero field does not play a determining role, since energy of

the applied field is much stronger than the energy of thermal fluctuations (1 T magnetic field

corresponds to ≈ 1.4 K). The first row of table 2.1 lists the parameters for the compound inves-

tigated in this work, whose properties will be presented in details in the following section. Its

advantage is a low saturation field, accessible by standard laboratory magnets, but it is available

only in the powder form. The most investigated compound listed in the table is LiCuVO4. It

has been synthesized in form of single crystals [45], which allows better experimental accuracy

of the data. The main disadvantage of this compound is a high saturation field, which can not

be reached at the present moment with persistent magnets. In the recent work [47, 55], authors

have been debating the existence of a QN phase in this compound, however this question re-

mains unsolved [31]. Other listed compounds show a variety of interesting phenomena, not

only related to multipolar phases. The compound PbCuSO4(OH)2 drew attention due to a very

interesting and complicated experimental phase diagram shown in Fig 2.8.
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Table 2.1: J1 − J2 compounds.

Experimentally determined properties of most known materials described by a J1−J2
Hamiltonian. H denotes saturation field while TN denotes ordering temperature.

Compound J 1[K] J 2[K] J 1/J 2 µ0H[T] TN [K] |J1/TN | Ref.

LiCuSbO4 -75 34 -2.2 13 <0.03 >2500 [41]

LiCuVO4 -18.5 44 -0.42 45-52 1.7-2.3 9.3 [45–47]

LiCu2O2 -66-94 168 -0.41 est. 110 9,22,24 10.4 [48, 49]

Li2CuO2 -100 60 -1.7 ? 9 11.1 [50]

Cs2Cu2Mo3O12 -93 33 -2.8 ≈ 10 1.85 50.3 [51]

Rb2Cu2Mo3O12 -138 51 -2.7 14 < 2 69 [52]

PbCuSO4 -100 36 -2.8 ≈ 10 2.8 36 [53]

NaCu2O2 -16.4 90 -0.18 ? 12 1.3 [54]

2.4 LiCuSbO4 - previous knowledge

The first report on LiCuSbO4 was given by Dutton et al. in 2012 [41]. In that work both, basic

characterization (synthesis, SQUID, X-ray diffraction, EPR) and more detailed experiments

have been made (neutron scattering, heat capacity in dilution refigerator).

Characterization using X ray diffraction revealed that the compound crystallizes in the space

group Cmc21 with a orthorhombic unit cell (a = 5.74260Å, b = 10.86925Å, c = 9.73048Å).

The copper ions Cu2+ carry s = 1/2 unpaired spins. The structure is shown in Fig 2.9. The

basic building blocks are CuO6 edge-sharing octahedra which form chains along the a axis.

Jahn-Teller distortion elongates Cu-O bonds in the direction of the local z axis (see Figure 2.9).

Figure 2.10 shows the bulk magnetic properties (magnetization and susceptibility) of the

compound. A maximum in temperature dependence of magnetic susceptibility is observed in

fields below 11 T, typical for the existence of short range correlations. In higher fields, χ

monotonically increases. Figure (2.10b) shows magnetization measurements. At the lowest

temperature (2 K) the magnetization curve bends, indicating that saturation regime is reached.

The saturation field is estimated from the inflection point at µ0Hs ≈ 12 T. We emphasize that

at the saturation field, a sharp vertical slope of the magnetization is expected, as in Fig 2.6. The

nonexistence of such a sharp cusp in Fig (2.10b) possibly indicates that the temperature is too

high for the precise determination of the saturation field. A simulation of the magnetization

curve, shown by dashed line in Fig 2.10b was done using 24 spin system. In order to achieve
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Figure 2.8: Experimental phase diagram of PbCuSO4(OH)2.
(I) ground state of eliptical magnetic helix, (II) magnetic hysteresis is observed, (III)

longe range FM ordered phase; (IV) weak FM phase: (IVa) - region with negative

slope in susceptibility,(IVb) the slope is positive indicating saturation of of this weak

FM phase. Phase V is unknown, with possible multipolar correlations. The following

techniques were used to sample phase diagram [53]: specific heat (Cp), the mag-

netocaloric effect (MCE), magnetization (M), susceptibility(χ), magnetostriction (β)

and thermal expansion (α).

better agreement with measured data additional anisotropy to the Hamiltonian (2.4) was intro-

duced where ∆ quantifies the anisotropy (∆ = 1 isotropic model, ∆ > 1 Ising type anisotropy,

∆ < 1 easy plane anisotropy):

H = J1
∑
i

(
3

2 + ∆
(Sx

i S
x
i+1 + Sy

i S
x
i+1 +∆Sz

i S
z
1+1) +

J2
J1

SiSi+2 − h(Sz
i cos θ + Sx

i sin θ)),

(2.13)

The angle θ is the one between the applied field h and molecular axis z. This model revealed the

following: J1 = −75K, J2 = 34K and∆ = 0.83, with 10% error bars. From a crystallographic

point of view, there is a single distance between Cu-Cu bonds, but two different exchange paths

exist between the atoms, so J1−J ′1−J2 model could be an improved model Hamiltonian. Within

this thesis we will assume that Hamiltonian 2.13 is a good starting point for the interpretation

of our experimental data. Electron paramagnetic resonance measurements reveal an average g
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Figure 2.9: Crystal structure of LiCuSbO4.
Unpaired spins are localized on Cu2+ ions (Blue) centered in CuO6 octahedra. Edge

sharing octahedra form spin chains parallel to the a axis. The local z axes, which

points in the direction of the Jahn-Teller elongation, of two adjacent spin chains are

canted by 34◦ in opposite directions with respect to the b axis. Distribution of Li(1)

(Green) is supposed to be in the direction of b axis, while Li(2) in the direction of a

axis. Oxygen atoms are labeled in red color. Antimony ions are omitted for clarity.

factor gav = 2.10 [41].

Heat capacity (Cp) measurements presented in Fig. 2.11 show a broad peak at T = 7 K

for zero field, which corresponds to a peak in Cp/T at 4.3 K. Upon applying higher fields,

this peak shifts towards lower temperatures and in B = 10 T it is completely suppressed. The

lattice contribution to Cp was modeled with the Debye law (θD = 410 K). Magnetic entropy

∆S =
∫
Cp/TdT was extracted above 0.1 K. The magnetic entropy approaches the expected

value (Rln2) around 50 K, as shown in the inset of Fig. 2.11a.

At lower temperatures a second peak, enhanced by the applied magnetic field, emerges

around T = 0.6 − 0.7 K. Its intensity increases with fields up to B = 11 T, and then quickly

diminishes, and vanishes completely in B = 14 T. In the cartoon picture one would expect that

the energy of the quadrupolar excitations does not change with applied field (it couples to the

gradient of the magnetic field in the Hamiltonian), but the number of excitations is dependent
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Figure 2.10: Magnetization measurements on LiCuSbO4.
(a) Susceptibility measurements in 0.1 and 16 T field together with calculated sus-

ceptibility curves in respective fields (full and black dashed lines). A maximum in

susceptibility (χ) such as the one in 0.1 T occurs in fields below 11 T. Above 11 T χ

increases monotonically with lowering temperature. Inset shows a Curie-Weiss plot

in 8 T field. (b) Magnetization measurements at various temperatures. At a lowest

measured temperature of 2 K, an inflection point occurs around 12 T indicating the

entrance in saturation regime. The full and dashed black lines are the result of sim-

ulation using Hamiltonian (2.13) with J1 = −75 K, J2/J1 = −0.45 and ∆ = 0.83.

Brown dashed line accounts for∆ = 1 and J1 = −68Kwith same ratio of J2/J1 [41].

on the applied field (intensity of the peak). This, together with accessible saturation field values,

gave a strong motivation for further investigations of LiCuSbO4 presented in this thesis.

In addition to the so far presented experimental data, inelastic neutron scattering experi-

ments in zero magnetic field were performed [41] (Fig 2.12). Figure 2.12a and b show the

powder averaged structure factor S(Q,ω), at T =1.5 K and 6 K, respectively. Figure 2.12a

and b show the absence of gap in the magnetic excitations down to 0.07 meV, which is the

resolution of the instrument. Figure 2.12c shows powder averaged S(Q,ω) calculated by exact

diagonalization method for 16 spins, and parameters J1 = −75 K, J2 = 34 K with ∆ = 0.83.
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Figure 2.11: Heat capacity measurements on LiCuSbO4.
(a) Cp as a function of temperature. Full lines represent theoretical results from exact

diagonalization of a ring model with 16 spins in various fields. The inset shows the

recovery of magnetic entropy. (0 T, 9 T, 16 T) (b) Cp/T vs. temperature in logarithmic

scale. (c) Phase diagram from the heat capacity data, blue points show occurence of

the peak in magnetic susceptibility. SRO stands for short range order/correlations.

Agreement between observed and calculated excitation spectra in the region 0.5 meV<~ω<1.5

meV is quite good. At low temperatures (1.5 K compared to 6 K), below 0.30 meV a magnetic

quasielastic signal appears. As a function of momentum transfer, the signal is strongest for

Q = 0.52 Å−1, which is in accordance with Q = 0.475π/a (0.26 Å−1) expected for short-range

correlations from [56].
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Figure 2.12: Neutron measurements on LiCuSbO4.
Averaged dynamical structure factors S(Q,ω) at (a) T = 1.5 K and (b) T = 6 K.

(c) Exact diagonalisation calculation of S(Q,ω) for 16 spin chain. (d) Momentum-

transfer dependence of the higher-energy signal 0.50< ~ω <1.75meV. (e) Quasielastic

signal 0.18< ~ω <0.31meV. [41]

21



Chapter 3

Experimental methods

In this chapter we will give a short overview of muon spin rotation (µSR) and nuclear magnetic

resonance (NMR) techniques, with emphasis on observables that provide useful information on

magnetic insulators such as LiCuSbO4 compound. The operation of the dilution refrigerator

will be explained briefly, together with sample preparation.

3.1 Muon spin rotation

Muon spin rotation has become a common local technique for exploring condensed matter

physics. Its high sensitivity to small magnetic fields (down to 0.1 G) makes it an ideal probe for

exploring magnetic properties of materials. It can also probe magnetic fluctuations in a wide

frequency range (104 to 1012 Hz). This unique time window makes it useful in the intermediate

region (105 to 108 Hz) where nuclear magnetic resonance and neutron scattering techniques are

less suitable.

3.1.1 Production of Muons

First, we are going to describe how muons are produced at the ISIS facility at the Rutherford

Appleton Laboratory (RAL) in the United Kingdom, where the measurements in this thesis

were performed (Figure 3.1). H− ions are produced at the ion source and accelerated to 665

keV. Ions then enter into a linear accelerator where they are accelerated to 70 MeV. At the

last stage H− ions are stripped to protons and accelerated to 800 MeV (84% of speed of light)

into the synchrotron. Proton beams are then guided to their targets where neutrons and muons

are produced. Graphite or beryllium target are usually used for muon production. Pions are

produced during the collision of the incident protons with the target nuclei. They have a short

22



Figure 3.1: Experimental scheme at the RAL in UK.

Muon and neutron production and beam lines at ISIS (RAL, UK)

lifetime (26 ns) after which they decay into muon and neutrino

π+ → µ+ + νµ. (3.1)

Only pions which are at rest in the laboratory frame are used. Muon and neutrino must

have opposite momenta to conserve momentum which is initially zero. The neutrino has its

spin directed opposite to the momentum (negative helicity) and since the pion has zero spin,

muon’s spin is also antiparallel to its momentum. This allows us to get muon beams which

are 100% polarized, which is an advantage compared with other microscopic techniques, NMR

or electron spin resonance (ESR), where strong external magnetic field are needed to obtain
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Figure 3.2: Distribution of emitted positrons
The angular distribution of emitted positrons with respect to the initial muon spin

direction (green arrow). Distributions for several values of a0 = −1/3 (purple), a0 =

1/3 (blue) and a0 = 1 (red) are plotted. Values of a0 and ε are given in equation 3.3.

partial polarisation, given by Boltzman’s distribution over spin levels. The muons produced out

of stationary pions near the surface of graphite target are called surface muons, their kinetic

energy is 4.119 MeV and momentum 29.8 MeV/c. Muon beams are then guided towards the

sample with a series of dipole and quadrupole magnets. After implantation of muons inside

the sample they lose energy quickly (0.1-1 ns) by ionization of atoms and by scattering with

electrons to a few keV. The remaining energy is lost through a series of successive electron

capture and loss reactions. All these processes are Coulombic so muons spins remain conserved

until they stop in the sample.

Muons stopped in the sample decay after time t with probability e−t/τµ where τµ = 2.2 µs is

the lifetime of the muon (we are neglecting the time between the decay of the pion and slowing

down of the muon which is small compared to the muon’s lifetime τµ). The muon undergoes a

three body decay process:

µ+ → e+ + νe + νµ, (3.2)

where only the positron is detectable. This decay occurs via weak interaction and does not
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Figure 3.3: Typical muon spectrometer
Simplified scheme of typical muon spectrometer. Polarized muon beam enters through

backward positron detector and falls in the sample. Detectors count the number of

emitted positrons detected in either forward or backward detectors. [57]

conserve parity. In practice this means that the positron will be preferentially emitted in the di-

rection of muon spin. This is an essential feature which allows us to directly relate the direction

of the positron momentum to the muon’s spin. The angular distribution of the emitted positrons

is given by:

p(θ) = 1 + a0(ε) cos θ; a0(ε) =
2ε− 1

3− 2ε
, (3.3)

where ε = E/Emax is the ratio of positron energy E divided by its maximum value Emax = 52

MeV. The angular distribution for several values of parameter a0 is shown in Figure 3.2.

If all emitted positrons are detected with the same efficiency irrespective of their energy,

after averaging a0(ε) over all possible energies of positrons, one gets a0 = 1/3, which reflects

the fact that positrons are dominantly emitted in the direction of muons spins, as stated before.

3.1.2 Positron Detection and Muon Decay Asymmetry

The experimental setup is schematically shown in Figure 3.3. As already mentioned, the only

detectable particle in the experiment is the positron. Detectors are usually located near the
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Figure 3.4: Asymmetry function
Number of positrons vs time detected by forward (F) and backward (B) detector if a

small transverse field is applied (left). Corresponding asymmetry function 3.4. (right)

sample so that they cover a large solid angle around the sample. In such a way the number of

positrons which escape without detection is minimized. Detectors are made out of plastic scin-

tillators that produce light which is then guided to photomultiplier using lightguides. Usually

there are two sets of Helmholtz coils around the sample space which can produce a magnetic

field in x or y direction (so called transverse field (TF) setup) or z direction, when magnetic

field points in the direction of incident muon beam (longitudinal field (LF) setup). We will not

go further into the technical aspects of experiment.

Let us assume that a small transverse field is applied, and for simplicity that there are no

internal magnetic fields inside the sample. If a muon decays immediately after its implantation

into the sample (time t = 0), the emitted positron will most probably be detected by the back-

ward detector. For t > 0 the muon spin precesses around the applied field and after some time

it will point towards the forward detector, then again towards the backward detector and so on.

The time evolution of the number of positrons in backward and forward detectors NB(t) and

NF (t) are shown in Figure 3.4. The average exponential decay reflects the finite lifetime of the

muon. After definingNB(t) andNF (t)we can track the time evolution of the muon polarization

through the asymmetry function (assuming perfectly symmetric detectors):

A(t) =
NB(t)−NF (t)

NB(t) +NF (t)
. (3.4)

The normalization to the sum of the number of detected positrons allows us to elegantly cancel

out the exponential decay of muon number e−t/τµ . We end up with a function that directly links
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muon spin direction with experimentally measurable asymmetry A(t) (see Fig. 3.4).

Due to intrinsic asymmetry of muon decay and efficiency of detectors for positrons with

different energies, maximal asymmetry turns out to be around AMax ≈ 25%.

The time resolution of the experiment depends on the source of proton (and later muon)

beams. There are two types of facilities: continuous sources of protons and “pulsed” sources

which produce bunches of protons.

Continuous facilities deliver protons at a constant rate in time. When a muon enters the

detector a clock is triggered and time is running until positron is detected, then the next event

can take place. The main advantage of this method is high time resolution (100 ps), which

allows high magnetic fields to be measured. A drawback of this method is that it is hard to

measure long lived muons because after the first muon started the clock, the second tends to

come in the sample. Such event must be disregarded since one is not able to distinguish whether

the detected positron came from the first or the second muon. This can be improved by use

of electrostatic deflectors which prevent a second muon from entering in the sample until the

positron is detected, however statistics at longer times remains poor.

Pulsed beam facilities ensure that the proton beam consists of a series of bunched pulses.

Typical width of the pulses is ≈ 80 ns, which puts an upper limit on the time resolution. Fast

relaxation rates in case of strong fields cannot be measured. However, now one can measure

long living muons and slow relaxation up to ≈ 20 µs.

3.1.3 Muons in Magnetic Materials

The large magnetic moment of the muon (3.18µp, where µp = 1.41× 10−26 J/T is the magnetic

moment of the proton) makes it an ideal local probe to measure small magnetic fields (down

to 10−5 T) in materials. Muons stop in the sample and each signal contributes to asymmetry

proportional to its volume fraction. That makes muons a useful probe even in samples where

there are several phases, or when the magnetic state is inhomogeneous.

Let us consider a muon stopped in a magnetic sample. It “feels” a local magnetic field B

forming an angle θ with respect to its initial muon spin sµ(0). Such a configuration is shown in

figure (3.5). The muon starts to precess around the magnetic field B with the Larmor frequency

γµB. The normalized positron decay asymmetry function will be:

A(t)/Amax = cos2(θ) + sin2(θ) cos(γµBt), (3.5)

where γµ = 851.37 Mrad·s−1·T−1 is the gyromagnetic ratio of the muon. If the magnetic field
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Figure 3.5: Muon precession
Muon spin precesses sµ around the local magnetic field B, where θ is the angle be-

tween the local field and muon spin.

is randomly oriented, which is always the case for powder samples, after averaging over all

possible directions θ one gets:

A(t)/Amax =
1

3
+

2

3
cos(γµBt). (3.6)

To describe the situation in real materials we can take into account a possible distribution of

magnetic field strengths. Muons situated at places with different local magnetic field strengths

are precessing with different frequencies which is shown in Figure 3.6a. In case of a dense

network of magnetic centers, according to the central limit theorem, the magnetic field strength

is distributed according to a gaussian distribution of width ∆/γµ around zero:

P (B) ∝ e−
γ2µB2

2∆2 4πB2. (3.7)

After averaging
∫∞
0
A(B, t)P (B)dB one gets:

A(t)/Amax ≡ g(t) =
1

3
+

2

3
e−∆

2t2/2(1−∆2t2), (3.8)

which is the well known Kubo-Toyabe function [59]. This relaxation function is shown in

Figure 3.6b and represents the sum of functions shown in Figure 3.6a. Initially, the relaxation

function starts as a cosine, then a minimum is reached after which the Kubo-Toyabe function

recovers to its average value 1/3 which is usually called a “1
3
-tail”- a clear signature of a static

magnetic state. Such relaxation is found in some spin glasses, but also accounts for nuclear

magnetization which is static on muon timescale.
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Figure 3.6: Origin of Kubo Toyabe function
a) Muons stopping at different sites will feel slightly different magnetic fields. As a

result they will start to precess with slightly different frequencies so dephasing starts

to take place. b) Asymmetry function is equal to the static Kubo-Toyabe function,

which is obtained as a sum of the functions shown in panel a). The function has a

characteristic dip, after which it reaches a constant value of 1/3. c) Relaxation of

asymmetry when a longitudinal field is applied. For high fields the asymmetry stays

close to unity. d) Asymmetry function is equal to a dynamical Kubo-Toyabe function

G(t, ν,∆) for different values of ν. In case of a small degree of fluctuations (ν < ∆)

only the 1/3 tail is affected. If fluctuations dominate over static field distribution, the

relaxation becomes exponential. [58]

It is also worth considering relaxation in the case of an applied magnetic field along z axis.

The distribution of an internal magnetic fields in x and y direction (perpendicular to the applied

field) remains intact, but the distribution in the z direction is shifted; from zero to the applied
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field BL:

P (Bx,y) =
γµ√
2π∆

e−
γ2µB2

x,y

2∆2

P (Bz) =
γµ√
2π∆

e−
γ2µ(Bz−BL)2

2∆2 . (3.9)

After averaging equation (3.6) with respect to equations (3.9) one gets:

A(t)

Am

= 1− 2∆2

(γµBL)2
(1− e−

1
2
∆2t2 cos γµBLt) +

+
2∆4

(γµBL)3
(

∫ t

0

e−
1
2
∆2τ2 sin(γµBLτ)dτ). (3.10)

Relaxation functions for several ratios γµBL/∆ are plotted in Figure 3.6c. We can see that

applied fields boost the “1
3
tail” to higher values, and for high fields (compared to ∆/γµ) the

asymmetry remains close to unity, and does not change in time. The relaxation is said to be

“fully decoupled” by the applied field.

So far we have considered relaxation which originates from static properties, i.e. field distri-

butions. Now we also consider relaxation arising from dynamical properties (fluctuations). Let

us assume that muons experience sudden changes (fluctuations) of local magnetic fields, after

which the local fields are randomly distributed without correlation to the field directions before

the change. If fluctuations occur at a rate ν, we can write:

⟨B(t)B(0)⟩ = ⟨B2(0)⟩e−νt. (3.11)

The total dynamic relaxation functionG(t, ν,∆) at time t will have contributions of muons that

did not experience fluctuation up to time t (g(0)(t)), muons that experienced one fluctuation up

to the time t (g(1)(t)), two fluctuations (g(2)(t)) and so on...

The relaxation of muons that did not experience any fluctuations is simply a product of their

fraction e−νt and static Kubo-Toyabe function g(t)

g(0)(t) = e−νtg(t). (3.12)

The relaxation of muons that experienced “one” fluctuation at time t1 is given by:

g(1)(t) =

∫ t

0

νdt1e
−ν(t−t1)g(t− t1)e

−νt1g(t1), (3.13)

νdt1 represents the fluctuation probability between t1 and t1+dt, e−νt1g(t1) describes relaxation

before fluctuation at t1 and e−ν(t−t1)g(t− t1) relaxation after fluctuation. One needs to integrate
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the entire expression since fluctuations can occur at any time between 0 and time t. For higher

number of fluctuations the relaxation is described by:

g(n)(t) =

∫ t

0

νdt′g(n−1)(t− t′)g(0)(t′), (3.14)

Finally, the dynamical Kubo-Toyabe function is given by:

A(t)/Amax ≡ G(t, ν,∆) =
∞∑
n=0

g(n)(t). (3.15)

This equation is usually calculated numerically and its shape is shown in figure (3.6d) for several

values of ν (compared to ∆). For low fluctuation rates we see that only the 1
3
tail is affected

by fluctuations. For higher fluctuation rates the relaxation resembles an exponential function.

At first it looks counter-intuitive that the relaxation becomes ”slower” for higher fluctuation

rates, but this effect comes from the so called ”motional narrowing” because a muon feels an

averaged field distribution which effectively decreases as fluctuations increase. In this limit, the

relaxation A(t)/AMax = e−λt where λ ∝ 1/ν in zero field and λ ∝ ν
ν2+γ2

µB
2
LF

, the so called

Redfield [60] formula when a longitudinal field is applied.

It is worth emphasizing that one can clearly distinguish static and dynamic properties in

materials. If one applies high longitudinal magnetic field (compared to ∆), relaxation in the

absence of fluctuations will be close to unity. On the other hand, if fluctuations are responsible

for the relaxation they will lead to exponential decay of asymmetry.

3.2 Nuclear magnetic resonance

Compared to µSR/neutron scattering experiments, which need muon/neutron sources and are

available only in large facilities like RAL, and cost ≈1 billion euros, NMR experimental setups

are much cheaper (on the scale of ≈ 0.5 million euros), and fit into a standard laboratory room.

Solid state nuclear magnetic/quadrupole resonance (NMR/NQR) is one of the few methods,

together with already mentioned µSR, neutron scattering experiment, Mössbauer spectroscopy,

electron paramagnetic resonance (EPR) and perturbed angular correlations (PAC) method which

are known as “local probe”. They measure microscopic effects (local) inside the materials,

rather than measuring macroscopic net properties. The advantage of NMR (and related NQR) is

that powder samples of just a few milligrams can be measured. It is especially convenient when

a high magnetic field needs to be applied because the sensitivity increases quadratically with the

applied field. NMR can detect various phases present in the same material, its inhomogeneities,
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Figure 3.7: NMR levels
By applying an external magnetic field µ0H0, the degenerate nuclear spin ground state

splits into four equidistant levels (for spin I = 3/2), with energy difference hν0 (if one

has a single crystal). Only one line at frequency ν0 appears. If quadrupole interaction

is present as well, it changes the spacing between levels and the spectral line splits

into three, with difference in frequency ±νQ

and it can often distinguish and enable separate studies of impurity contributions from the clean

part of the sample. Also, tiny gaps in the excitation spectrum down to a few mK can be detected.

The main disadvantage compared to neutron scattering is a lack of sensitivity in k space, which

is only partially mitigated if there are several NMR active nuclei in a unit cell and/or by using

specific structures of the hyperfine coupling in the Fourier space.

In the NMR experiment, nuclear magnetism is measured. However nuclear spins interact

with the surrounding electrons, which indirectly allows us a view into the electron subsystem

which in most cases determines solid state properties. Available observables are spectra, T1 and

T2 relaxation times. We will explain their basics in the following subsections.

3.2.1 NMR Hamiltonian

In an NMR experiment we observe nuclei of nuclear magnetic moment µ and spin I . These 2

quantities are related through µ=γ~I , where γ is the gyromagnetic constant, specific for each

NMR active nucleus (the ones that possess spin I≥ 1
2
). By applying a magnetic field µ0H0 in

the z direction on a sample that contains nuclei with spin I , the Zeeman splitting gives rise to

2I + 1 energetically equidistant levels as shown in Figure 3.7, for spin I = 3
2
. The coupling of

the spin to the applied field H0 usually defines the dominant term in the nuclear Hamiltonian

Ĥ0:

Ĥ0 = −γ~µ0H0Iz. (3.16)
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Nuclei with spin I > 1/2 are not spherical, but elliptical, so if there is some charge dis-

tribution which creates an electric field gradient VEFG at the nuclear site, it couples to the

quadrupole moment of the nuclei which is parametrized with the spin operators. This intro-

duces a quadrupolar term in the nuclear Hamiltonian:

ĤEFG =
eQ

4I(2I − 1)
[Vzz(3I

2
z − I2) + (Vxx − Vyy)(I

2
x − I2y )]. (3.17)

Here Vαβ = ∂2V
∂xα∂xβ

are the components of the EFG tensor. Initially equidistant Zeeman levels

change their energies. In the special case when the z principal axis of the EFG tensor coincides

with the direction of the applied magnetic field, the new energy levels are shown in the right

part of Figure 3.7.

The third part of the Hamiltonian, which is usually most interesting in electron spin systems,

is the magnetic coupling between nuclei under inspection and the surrounding electrons:

Ĥel−n = −γ~
∑
i

IαA
i
αβgµBS

i
β, (3.18)

where Sβ are the spin operators of the electron subsystem and Ai
αβ is the hyperfine coupling

tensor. Here we point out that in paramagnetic materials the average value of ⟨Sβ⟩ is zero when

external magnetic field is not applied. The sum over i goes over all the electrons which inter-

act with the given nuclei. We can in principle distinguish two different contributions: orbital

coupling with neighboring electron, which is temperature independent and interaction with un-

paired electron spins which is temperature dependent. In general, coupling with unpaired spins

can be due to the dipolar interaction Dαβ or/and through transferred hyperfine interaction Tαβ .

In addition, these tensors (which add up into Aαβ) are multiplied with gyromagnetic constant

(g ≈ 2) which can in principle also be a tensor. Resolving these different contribution in the

experiment requires measurements on single crystals so all directions can be measured. In the

most simple case equation 3.18 is related experimentally to the NMR shift

K =
ν − ν0
ν0

, (3.19)

which measures local susceptibility. Also, NMR measurements alone are usually not enough to

distinguish these contributions, one needs input from the following techniques: EPR, magnetic

susceptibility measurements (SQUID or VSM) and NMR, together with numerical simulations.

A superb analysis of such contribution is given in ref [46].
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3.2.2 NMR measurement

The application of a static magnetic field µ0H0 in the z direction introduces Zeeman splitting,

as previously said. At finite temperature T , the level occupation is given by the Boltzman

distribution and nuclear magnetization in the z direction appears. The sample under study is

located inside the coil whose axis is perpendicular to the applied field H0. Through the coil a

short pulse of current at frequency ν0 = γµ0H0 through the coil creates a magnetic field Hx,

and introduces an additional term in the spin Hamiltonian Ĥpulse:

Ĥpulse = −γ~µ0HxIx cos(2πν0t). (3.20)

Here Hx is magnetic field in x direction and Ix the component of spin angular momentum in x

direction, with freedom to chose the x axis arbitrarily. The component Ix can be written using

raising and lowering operators as Ix = 1
2
(I+ + I−), so the Hamiltonian Ĥpulse can be regarded

as a perturbation to the Hamiltonian in equation 3.16, which creates transitions between nuclear

spin levels.

As soon as the magnetization M and field H0 are not parallel, magnetization will start to

precess around the field H0 with angular frequency ω0 = 2πν0. It is more convenient to follow

the magnetization in a frame of reference that rotates with the same angular frequency ω0,

because we only have to consider the effects of the pulse fieldHx cos(ω0t). The fieldHx is now

static in the rotating frame and causes rotation of the nuclear magnetizationM around x axis:

dM
dt

= M× (γµ0Hx). (3.21)

After time ∆, the angle of rotation of the magnetization around the x-axis is θ = γµ0Hx∆. In

the experiment it is important to determine ∆ for which θ = π/2 and θ = π, these pulses are

referred to as π/2 and π pulse.

The principle of measurement in an NMR experiment is the following. After we have ap-

plied a π/2 pulse around the x axis, the magnetization points towards the y direction. The

magnetization starts to precess around the z axis. The same coil is used to apply the pulse and

pick up the signal from the sample. The precession of the magnetization creates a change of flux

in the coil which creates voltage. However it is not possible to use the coil for detection until

transient effect from the pulse have decayed. Due to local inhomogeneities in solid samples, the

spins feel some field distribution, so some precess faster and some slower than the frequency ν0,

which leads to loss of coherence. This is known as free induction decay (Fig. 3.8) and occurs

during time T ∗2 . This time can be shorter then the transient time in solid samples. This problem
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Figure 3.8: Free induction decay
Dephasing of nuclear magnetization after π/2 pulse around x axis in rotating frame

of reference (x′,y′,z′) [61]. Immediately after the π/2 pulse magnetization point in y′

direction (left figure). Due to local inhomogeneities, magnetization starts to dephase

on a timescale of T ∗2 (central figure). When time t is larger then T ∗2 loss of coherence

is complete (right figure).

was first mitigated by Erwin Hahn. If another π pulse is applied in the x direction after the first

π/2 pulse, the magnetization will refocus at time 2τ in the −y direction. This is called the echo

(Fig. 3.9).

Usually, due to magnetic broadening, the intrinsic width of NMR spectra in magnetic sam-

ples is wider than the frequency width of the pulse (0.6/∆π), i.e. to obtain full spectra one

has to sweep the frequency and sum the individual Fourier transforms of each echo. Typical

π/2 − τ − π − τ − echo sequence for measuring spectra is shown in Figures 3.9. and 3.10a.

For broad spectra the irradiation frequency is swept in such a sequence. Spin-spin T2 relaxation

is measured in the same way, only instead of the frequency one changes the time between two

pulses. From the fit of the integrated signal to the functionM =M0 exp(−t/T2) one can extract

T2, the intrinsic spin-spin relaxation time.

Physically more intuitive and relevant is the so-called spin-lattice relaxation time T1. This

is a measure of the time in which the magnetization returns to its equilibrium - in the direction

of the z axis. It is measured in the following way. First we apply an excitation πx pulse in the

x direction and flip the magnetization into the −z direction, then we wait for a time τ1 during

which the magnetization is relaxing. Keep in mind, that we can measure the magnetization only

in the x − y plane because of the orientation of the coil. This is done by applying the standard

Hahn echo sequence explained above. By varying τ1 and fitting the integrated data to a function

M =M0(1−2 exp(−t/T1)) we extract T1. The sequence is known as inversion recovery and is

shown in the Figure 3.10b. Another possibility for measuring T1 is to use a saturation recovery
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Figure 3.9: Hahn echo
Example of a Hahn echo sequence [61]. We follow magnetization in a rotating frame

of reference (x′,y′,z′). Initially a π/2x′ pulse is applied and magnetization is rotated

from z′ direction into y′ direction. Then, dephasing starts to occur. Some nuclear spins

are precessing faster(f) and some slower(s) than the average(a) depending on the local

inhomogeneities. This is represented by arrows in the x′ − y′ plane. If one at a time

τ applies another πx′ pulse, faster, slower, and average spins will be shifted in x′ − y′

plane according to the third upper figure. Average magnetization will point into −y′

direction, while faster and slower spins will start to approach to the average value. At

a time t = 2τ all nuclear magnetization will refocus at −y′ direction. If one applies

second π pulse in y′ direction, nuclear magnetization will refocus in the y′ direction

instead into −y′ one (bottom right figure).

sequence, where the initial pulse is not π, but π/2. The initial magnetization in z direction is

not −Mz, but 0, so the fit function becomesM =M0(1− exp(−t/T1)).

In practice in NMR the signal to noise ratio is usually very small, so a large number of

acquisitions needs to be averaged in order to get a good signal to noise ratio. Between each

repetition one has to wait ≈ 5T1, for the magnetization to return to its equilibrium value before

repeating the sequence. This makes NMR measurements time consuming.
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a)

b)

2

2

Figure 3.10: NMR sequence
Typical pulse sequence. a) π/2− τ − π − τ − echo sequence in the laboratory frame

of reference, the signal is oscillating at the frequency ν. For measuring broad spectra

frequency ν is varied, while for measuring T2 relaxation time τ is varied. b) π − τ1 −

π/2 − τ − π − τ − echo sequence for measuring T1 relaxation time (τ1 is varied) in

the rotational frame of reference. For small values of τ1 magnetization (given by the

integral of the echo) is inverted. As one increases τ1 magnetization is returning to its

equilibrium and for long τ1 it reaches its full value.

3.2.3 Powder spectra

In Figure 3.7 we showed the simplest spectral shapes where there are three peaks, ideally delta

functions, each corresponding to a transition between different levels. If one has a powder sam-

ple, and the nuclei under study have both anisotropic hyperfine coupling tensor and asymmetric

EFG tensor, the spectra rapidly become complicated. In general, the resonant frequency then

depends on the orientation between axis fixed in the crystal and the direction of the applied

magnetic field µ0H0:

ν = ν(cos θ, φ), (3.22)
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Figure 3.11: Central transition
Instead of a single delta function in single crystal case, if one has to deal with a powder

sample, the central transition broadens and shows many features. Here, νQ is NQR

frequency, ν0 NMR frequency and η asymmetry parameter. Broadening occurs always

with simultaneous loss of amplitude intensity. The integrals of the spectra are the same

in both cases [62].
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where θ and φ are polar angles which determine the directon between the local z′ axis in the

crystal and the direction of the magnetic field. The normalized powder spectra P (ν) are propor-

tional to the probability that crystallites contribute to the “frequency window” between ν and

ν + dν:

P (ν)dν =
1

4π

∫ ν+dν

ν

sin θdθdφ, (3.23)

When ĤEFG is treated as a perturbation to the Ĥ0, within first order perturbation theory one

obtains the frequencies of the transition:

νm↔m−1 = ν0 − νQ

[
3 cos2 θ − 1

2
− 1

2
η sin2 θ cos 2φ

]
(m− 1

2
), (3.24)

where νQ = 3e2qQ
2I(2I−1)h (q ≡ 1/eV33) and η ≡ V11−V22

V33
; Vii are the eigenvalues of the EFG tensor

arranged in such a way that V22 6 V11 6 V33. One notes, that the central transition frequency

remains unchanged to first order in perturbation theory. If the quadrupolar interaction is strong,

the central transition has to be treated up to second order of the perturbation theory, in which

case it becomes [62]:

ν1/2↔−1/2 = ν0 −
R

6ν0
[A(φ) cos4 θ +B(φ) cos2 θ + C(φ)], (3.25)

where the constants, R, A, B and C are:

R = ν2Q[I(I + 1)− 3

4
], (3.26a)

A(φ) = −27

8
− 9

4
η cos 2φ− 3

8
η2 cos2 2φ (3.26b)

B(φ) = −15

4
− η2

2
+ 2η cos 2φ+

3

4
η2 cos2 2φ (3.26c)

C(φ) = −3

8
+
η2

3
+
η

4
cos 2φ− 3

8
η2 cos2 2φ. (3.26d)

The shape of the powder spectra for the central transition is shown in Figure 3.11. However in

case for lithium nuclei in our sample, treatment to the second order will not be necessary.

For magnetic materials, one can extract the most important information about the electron

subsystem from the magnetic shift, related to the equation (3.18). For bare nuclei, in a magnetic

field µ0H0 we expect the signal at frequency ν0. In a material, the nuclei are surrounded by

the electrons which are shielding nuclear spins, so the transition frequency is shifted: ν =

ν0(1 − σαβ). Shift values are typically small 10−2 − 10−5. If one again treats shielding in a

powder sample as a perturbation to the Zeeman term (3.16), the frequency at which one observes

the signal is:

ν = ν0[1− σiso − σax(3 cos
2 θ − 1)− σaniso sin

2 θ cos 2φ], (3.27)
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where σiso = 1
3
(σ1 + σ2 + σ3), σax = 1

6
(2σ3 − σ1 − σ2), σaniso = 1

2
(σ1 − σ2) and σ1, σ2, σ3 are

the principal values of the tensor σαβ .

When taken into account simultaneously, quadrupole effects and anisotropic shifts, the spec-

tra become increasingly complex.

3.2.4 Spin-lattice relaxation time T1

So far we have considered some static properties of the material under study which are visible

in the spectra. The NMR technique provides an insight into dynamic properties as well, through

relaxation times, in particular the spin-lattice relaxation time T1. As in the previous case, by

observing the behaviour of the nuclei in the sample, we indirectly get information about the

dynamical properties of the electron subsystem which usually determines “new” interesting

properties of the material.

The basic idea is the following: by applying a pulse in the x− y plane we rotate the nuclear

magnetization out of equilibrium. It would stay there forever if there was no contact with

the surroundings, which is commonly called “the lattice”. One needs the lattice to produce

fluctuations at the nuclear site in order for nuclear magnetization to relax to its equilibrium state.

In magnetic materials, the ”lattice” usually refers to the electron spin system. A connection

between nuclear and electron subsystems is again ensured through formula (3.18), although

different components of tensor A and spin projections (I and S) contribute to spectra and T1

relaxation time, respectively. We first consider this through Fermi’s golden rule:

Wi←→j =
2π

h
|⟨i|H ′|j⟩|2δ(Ei − Ej − ~ω), (3.28)

where |i⟩ and |j⟩ denote nuclear states, H ′ describes the perturbation that couples electronic

spin fluctuations with nuclear transitions, Ei and Ej are energy levels of the nuclear states

(Ei−Ej = ~ωNMR) and ω is the frequency of the fluctuation. Generally, magnetic moment of a

particle is inversely proportional to the particles massm: µ ∝ 1
m
. Since nuclei are≈ 1000 times

heavier then electrons, their transitions are at ≈ 1000 lower frequency than the single electron

spin flips which are on the scale of 1 eV. This means that electronic spin fluctuations that couple

to nuclei are usually the result of collective low energy excitations. Typical NMR measuring

frequency is ≈ 100 MHz, which corresponds to ≈ 5 mK or ≈ 0.4 µeV. This obviously makes

NMR a superb technique for observing even tiny gaps in magnetic systems (providing that the

temperature is sufficiently low). It is worthy to emphasize that in NMR we are not exciting

nuclear transitions which change angular moment LN of nuclei whose energy is on the scale of
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1 MeV, but only its spin.

For this work it is important to take a closer look at the equation (3.18), and its connection

to (3.28). Nuclear states |i⟩ and |j⟩ are determined by the external field µ0H0 in the z direction.

If the electronic fluctuations at nuclear site produce a field in the z direction (B′ ∝ Iz) the

transfer integral |⟨i|Hel−n|j⟩| vanishes, so such fluctuations do not contribute to the relaxation

process. On the other hand, if fluctuations produce a field in the x − y plane, then B′ ∝∑
β IxAxβSβ +

∑
β IyAyβSβ and |⟨i|Hel−n|j⟩|2 ̸= 0, in matrix form:

Ĥel−n = −γ~gµB

∑
i

[
Ix Iy Iz

]
Ai

xx Ai
xy Ai

xz

Ai
yx Ai

yy Ai
yz

Ai
zx Ai

zy Ai
zz



Si
x

Si
y

Si
z

 , (3.29)

matrix elements Axx, Axy, Ayx and Ayy relate in-plane electron fluctuations with in plane field,

while Axz and Ayz allow coupling of an electron fluctuation in z direction with an in plane

induced field. Existence of these nondiagonal terms is crucial for probing the QN phase with

the NMR technique.

In order to give an idea how to construct a more familiar expression for T1 known in the

literature, we need to change from time-space domain into a frequency-wave vector domain by

using Fourier transforms of hyperfine coupling tensor and the electron spin operators:

Aαβ(q) =
∑
i

Ai
αβe

iqri , Sβ(q) =
1√
N

∑
i

Sβ
i e
−iqri . (3.30)

The transfer integrals |⟨i|Hel−n|j⟩| then become linear combination of the electron spin corre-

lation functions:

Sαβ =
∑
j

e−ikj
∫ ∞
−∞

dteiω⟨Sα
j (t)S

β
0 (0)⟩T , (3.31)

where ⟨· · · ⟩T denotes thermal average.

The transition probabilityWi↔j is connected with the spin lattice relaxation time T1 through

the relation 1/T1 ∝ Wi↔j [60]. It is common to express the spin operators Sx and Sy in terms

of S+ and S−. After combining abovementioned relations and some algebra, one can derive

well known expression for 1/T1:

1

T1
∼

∑
k

{ | A⊥k |2

2
[S+−(k, ω) + S−+(k, ω)]+ | A∥k |

2 Szz(k, ω)
}
, (3.32)

where A⊥k ∝ Axx + Ayy and A
∥
k ∝

√
A2

xz + A2
yz [43] and ω = ωNMR.
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3.2.5 Experimental Setup

Typical experimental setup is shown in Fig 3.12. Liquid nitrogen is used for temperatures down

to 77 K. For even lower temperatures 4He is used, with a boiling point of 4.2 K at 1 bar. If

Figure 3.12: NMR setup
A PC, with appropriate software controls the spectrometer. Spectrometer with a highly

accurate clock inside, sends RF signal (pulse) to power amplifier and simultaniously

a TTL signal to trigger oscilloscope/acqusition board. The amplified pulse is guided

throught transcoupler (or alternatively λ/4 cable) into the probe, preventing the sig-

nal to enter directly into preamplifier. The signal crosses through directional coupler,

connected to the osciloscope, so one can measure both reflection and transmission (in

and out of phase signal). The probe with its resonating circle is matched at 50 Ohms,

and tuned precisely at the frequency where we expect the signal to appear. The probe

is inserted into the VTI at the center of a superconducting magnet with very homoge-

nous field (of the order of part per miliion (PPM) over a 1 cm3). The temperature

is controlled with a temperature controler, which is preferably in connection with a

PC. For sub kelvin measurements instead of a VTI a dilution insert is placed into the

magnet.
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the pressure of the gas column above the liquid is lowered sufficiently, the temperature can be

lowered down to ≈ 1.2 K. If one replaces 4He for 3He, and uses (in principle) the same setup,

due to much higher vapor pressure of 3He, one can reach ≈ 0.3 K. This does not seem like a

big difference on linear scale, but we should have in mind that the “base temperature” for these

two differ for a factor 4! The disadvantage of using 3He is its increasingly high price which is

≈ 2500 euros per liter of gas at standard temperature/pressure.

3.3 Dilution refrigerator

Dilution refrigerator (DR) is an experimental setup which allows continuous measurements

below 1 K, typically down to 30 mK or even lower. It uses a mixture of 3He and 4He iso-

topes, which shows some unexpected properties at low temperatures, due to quantum mechan-

ics. Upon cooling below 870 mK, a phase separation between two phases occurs. The first

phase is a concentrated 3He phase which consist of almost pure 3He, the second phase is a mix-

ture of 6.6% 3He and 93.4% 4He, referred to as the dilute phase. To give a cartoon picture of

how DR works, let us mention that 3He is lighter and therefore has stronger zero-point motion

then 4He. If we also consider the attractive van der Waals forces between atoms, it means that
3He “prefers” to be surrounded with 4He, however, it will fill quantum states up to a point where

the chemical potential of 3He in the diluted phase equals the one of concentrated 3He (because

it is a fermion). This results in finite solubility of 3He in 4He. In practice, the dilute phase is

below the 3He concentrated phase. If one starts pumping on the dilute phase high energy 3He

atoms will start to leave the dilute phase due to higher vapor pressure, and the temperature is go-

ing to decrease. Then, since some quantum levels below the chemical potential are empty, new
3He from the concentrated phase enters the dilute one, which allows for continuous cooling.

Schematic of a DR is shown in Figure 3.13.

Technical problem of NMR experiments with a DR cooling option is that the power of NMR

pulses is typically in kW, while the cooling power (dQ/dt) of DR is quadratically decreasing

with the temperature of the mixture (Tmc) [63]:

dQ

dt
=
dn3

dt
(95T 2

mc − 11T 2
3 ), (3.33)

where n3 is molar circulation of 3He, and T3 is the temperature of 3He entering the concentrated

phase. Typical cooling power of the DR at 30 mK is 50 mW. This means that one has to wait

for a very long time before sending the next NMR pulse. In addition, all the leads (for pulses,

temperature readings etc.) have to be grounded and well thermally anchored before entering
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Figure 3.13: Dilution refrigerator
Simplified scheme of the DR (commercial ©Cryoconcept) used during this work in

the operational mode. Before starting the experiment the mixture of 3He and 4He

is held in the dump. We will skip the part where we explain the preparation of the

experiment, which takes about a week, and just explain the steady state operation.

In the DR insert (box on the right) in the mixing chamber 3He concentrated liquid

phase is above the dilute phase. One pumps 3He from the dilute phase through the

P.G.1 whose pressure is ≈ 1 mbar. After the pump there is a filter (preventing the oil

gases to contaminate the pipeline). After the pump (P.G.2. shows ≈ 100mbar), 3He

passes through a compressor K which compresses the gas to ≈ 2 bars (monitored by

P.G.3). Then it passes through charcoals (to eliminate possible air which would block

the fridge), which are cooled with liquid nitrogen. 3He (still in gas phase) enters into

DR insert, it is first cooled down to 4.2 K by the 4He liquid from the magnet space.

This particular DR, has a Joule Thompson (JT) stage where precooled 3He gas under

pressure (2 bars) passes through a capillary and expands rapidly (pressure drops down

to ≈0.5 bar and temperature to ≈1 K). Due to JT stage, there is no need of a 1 K

pot in this DR. Before entering the mixing chamber, 3He goes through series of high

impedances made of fine silver powder, which are in thermal contact with cold 3He

which leaves the dilute phase. In such a way 3He is eventually liquified into the 3He

liquid state, inserted into the mixing chamber, and the process starts again.

44



the mixing chamber. Electronics for detection is also specially made, with probing power of

RuO2 temperature sensor on the scale of pW in order to put minimal heat load on the mixing

chamber. Taking all this in mind, albeit first commercial DR appeared in 1967, even these days

it is a state of the art experiment.

3.4 Samples

The sample was prepared by authors of reference [41] from a stoichiometric mixture of predried

Li2CO3, CuO and Sb2O5. Pellets were heated at 700 ◦C for 12 h, followed by a 24 h heating at

1000◦C. Despite substantial efforts to grow single crystals, samples are available only in powder

form.

Contrary to µSR experiments, where we used a simple powder sample, for NMR and mag-

netization measurements we prepared an oriented powder sample in the following way: first we

ground the polycrystalline sample and mixed it with a slowly hardening epoxy glue. During

hardening, the sample was rotated in a room-temperature-bore magnet of ≈ 7 T for 24 h. In

such a way, the easy plane of the crystallites is forced to stay in the plane perpendicular to the

Figure 3.14: Rotation of the sample in the magnetic field during the hardening process.
After the hardening, for NMR experiments, the field was applied along the rotation

axis (black mark on the cylinder); perpendicular to the chain direction a.
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rotation axis, as shown on Fig. 3.14 (yellow plane). The hard axis is then parallel with the

rotation axis and marked on the sample (black line on Fig. 3.14). X ray measurements on the

oriented powder have shown that the oriented hard axis is perpendicular to the a axis implying

that the hard axis is in the bc plane.
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Chapter 4

Results and Discussion

Results presented in this chapter were published in Bosiočić et al. [64].

4.1 µSR Measurements

The principal intention of µSR experiment was to check whether spin freezing occurs or not.

Previous heat capacity measurements [41] were consistent with the absence of spin freezing

in zero field down to 100 mK. However, signatures of static disordered states may be very

weak in such measurements. Confirmation from a highly sensitive local technique like µSR is

certainly needed. Experiments were performed on the MuSR spectrometer at ISIS (RAL,UK).

For temperature control a cryostat with a dilution refrigerator (DR) insert was used. A powder

sample of mass ≈ 1 g was mounted on a thin silver holder with drops of GE-varnish on the

powder for better thermal contact.

In practice there is always some difference in efficiency between forward and backward de-

tectors, the sample is never exactly in the center of the spectrometer etc. In order to compensate

for these effects a slight experimental modification of equation 3.4 is needed:

A(t) =
NB(t)− αNF (t)

NB(t) + αNF (t)
, (4.1)

where α ≈ 1 is a parameter which we need to estimate before each experiment. In order to do

that, a small (20 G) transverse field is applied at high temperature, (in the paramagnetic phase)

around which the muon spins precess. In figure 4.1 precession is shown for several values of α,

with correct value α = 1.214 chosen to give symmetric oscillations of the asymmetry around 0.

All data were analyzed with WiMDA data analysis software [65].
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Figure 4.1: Determination of α coefficient.
For correct α value the asymmetry oscillates around x axis. A Gaussian envelope

appears due to a distribution of the local magnetic fields. Black dashed line is a fit of

the data to a oscillating function with Gaussian damping.
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Figure 4.2: µSR relaxation spectra at different temperatures in zero field.

4.1.1 Zero field Measurements

In order to check whether spin freezing occurs or not, we followed the asymmetry decay from

10 K down to 30 mK in zero field. Corresponding histograms are shown in figure 4.2. For the

fit function we used A(t) = A0G(t, ν,∆) + Ab, where G(t, ν,∆) is the dynamic Kubo-Toyabe

function.

At 10 K the main contribution to the asymmetry decay comes from nuclear moments, which

are static on the timescale of the muon lifetime. The width of the field distribution is ∆/γµ =

2.2 G. At lower temperatures the width of the field distribution increases and reaches a plateau

of ∆/γµ = 4.3 G below 0.7 K. We attributed this change to a small spin freezing of electronic

moments. It is plausible to assume that muons stop near O2− (all other ions are positively

charged), which are ≈ 2 Åaway from Cu2+ sites. The crudest approximation in case of full

ordering with 1µB per Cu ion and dipolar coupling of muons would give a field µ0µB/(4πr
3) ≈

1160 G at O2− sites. With this in mind we can discard typical 3D order since observed fields are

three orders of magnitude lower than expected in case of full ordering of spins at Cu2+ sites. It

is possible that the small observed spin freezing reflects the existence of short range correlations

as suggested in reference [41].
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Figure 4.3: Temperature dependence of λ parameter.

Inset shows histograms with exponential fits (full lines).

4.1.2 Longitudinal Field Measurements

To better follow the changes in dynamical properties we applied a longitudinal field of 50 G to

decouple the static fields and fit spectra to the function form:

A(t) = A0e
−λt + Ab, (4.2)

(inset of figure 4.3) where the intrinsic background contribution was estimated to beAb = 1.4%

from zero field spectra at 10 K with 100 million events, and fixed for all experiments with

applied longitudinal field. The temperature dependence of the parameter λ is shown in figure

4.3. The increase in λ clearly signals a slowing down of the spin dynamics as if the system

was approaching a transition around 1 K. However, instead of a divergence of λ and a decrease

below 1 K, λ levels off indicating that slow fluctuations persist down to T = 0 K. This is a

common feature of frustrated materials. It is worth noticing that λ changes by a factor of 5 from

10 K to 30 mK.

We also performed field-dependent measurements at 40 mK and 1.2 K. If the correlations

decay exponentially, as e−t/τ with a characteristic timescale τ , we can expect that the relaxation

rate λ obeys the Redfield equation [60, 66]:

λ =
2γ2µσ

2τ

1 + γ2µB
2
LF τ

2
, (4.3)
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Figure 4.4: Field dependence of λ parameter

Full lines are fits to the Redfield equation.

where BLF is the longitudinal applied field and σ the magnitude of the dynamical internal field.

To make a more obvious comparison to the Redfield equation we plot λ−1 versus B2
LF , we can

see that the equation is satisfied for applied fields only above 50 mT. From the linear fits we

extracted values for τ = 4.3(2) ps and σ = 22(2) G at 40 mK and τ = 2.4(2) ps and σ = 23(6)

G at 1.2 K.

4.2 NMR Results and Low Temperature Susceptibility

The most suitable nucleus for NMR in LiCuSbO4 is 7Li due to high γ/2π = 16.54607MHz/T.

The spectra above 1.5 K were obtained using a π/2 − τ − π/2 sequence with pulse length

between 1.5µs and 3µs, and 10µs in the dilution fridge. When the width of NMR spectra

was larger than the pulse excitation width, the spectra were acquired by addition of Fourier

transforms of the signal [67]. When precise field values were needed, a solution of LiBr in

deionized water was used to determine the NMR reference frequency ν0.

51



4.2.1 Li NMR Spectra at Room Temperature

Room temperature spectra for various magnetic fields, applied in the direction of rotation axis

(hard axis), in range between 2.2 T and 7.5 T are shown in Fig. 4.5. At fields lower than 5T,

the central line consist of contributions from two crystallographically different lithium sites

Li(1) and Li(2). One of these sites has higher quadrupolar coupling, which is visible from two

quadrupolar satellite peaks on the right and left with νQ = 47(1) kHz. The length of the π/2

pulse was optimized for the central transition, so the satellites lines are suboptimally excited and

the theoretical ratio 3:4:3 of the central line and satellites intensities is not observed. The two Li

sites have different hyperfine coupling, which is obvious when higher fields are applied: as seen

in Fig 4.5. The central peak positions change, and the Li site with the smaller coupling begins

to overlap with the right satellite of the more coupled site. From the quadrupolar effects, we

have tried to assign the NMR lines to the different Li positions in the unit cell using a simulation

of point charge distribution (Appendix A), and later more refined CASTEP calculations [68],

but without conclusive results, maybe because of the distribution of the Li position.

The orientation of the oriented powder sample was checked by comparing NMR spectra

measured with the magnetic field at different angles with respect to the hard axis. This was

done by rotation of the oriented powder in magnetic field of 3 T as shown in Fig. 4.6. The

quadrupolar satellites are most pronounced when the magnetic field is applied along the hard

axis, i.e. the eigenvector of the EFG tensor which corresponds to the eigenvalue Vzz points in

the direction of the hard axis, within an experimental error of ≈ 10◦. The inset of Fig. 4.6
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Figure 4.5: 7Li spectra at 300 K in different magnetic fields (up to 7.5T).
At lower fields one can resolve the quadrupolar satellites of the Li site with the higher

quadrupolar coupling.
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Figure 4.6: Angle dependent spectra, at T = 300 K and µ0H = 3 T.
Room temperature spectra at µ0H = 3T for different orientations of the applied field

with respect to the hard axis. The quadrupolar splitting is the broadest when the

applied field is parallel to the hard axis (0◦). Inset: Unoriented vs. oriented powder

spectrum measured in µ0H = 7.5T. The small peak at zero shift comes from the LiBr

reference signal.

shows the difference between oriented and unoriented powder spectra in a magnetic field of 7.5

T. In the unoriented powder spectra, quadrupolar sites cannot be resolved. Two oriented powder

samples were made, with the same spectra when magnetic field is applied along hard axis.

4.2.2 Low Temperature Magnetic Susceptibility

The magnetization and susceptibility of both, oriented and unoriented powder sample, pre-

pared as previously described, were measured versus temperature in various magnetic fields in

a commercial MPMS-XL7 Quantum Design SQUID magnetometer equipped with a 3He insert

for subkelvin measurements. In the lowest investigated field of 0.01T, a small difference be-

tween the field cooled and zero field cooled susceptibilities is observed below about 15 K (see

Fig. 4.7). This irreversibility is very weak in 0.1T and disappears upon applying higher fields.

The occurrence of some level of spin freezing in low field is consistent with the µSR data.

We have measured the low-temperature magnetic susceptibility of an oriented and unori-

ented powder in several magnetic fields (Fig. 4.8). For oriented powder, when the magnetic

field is applied along the hard axis, a feature at T = 0.7K appears in all curves, which points

to a phase boundary. The feature is a minimum of susceptibility in low fields (1T and 3.5T),

while a slight increase of χ is visible at 5 T and 7 T. These different kinks in magnetic suscep-
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Figure 4.7: Low field susceptibility
Measurement on a non oriented powder sample. In the magnetic field of 0.01 T, FC

and ZFC susceptibility start to differ at 15 K. Upon increasing magnetic field this dif-

ference vanishes. Inset show differences between between FC and ZFC magnetization

curves in a 0.01 T (black) and 0.1 T (red).
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Figure 4.8: Low temperature magnetic susceptibility
Low-temperature magnetic susceptibility of the oriented powder LiCuSbO4 with mag-

netic field parallel to the average hard axis (full symbols). The curves are shifted ver-

tically for clarity. Empty symbols: for comparison, susceptibility of the unoriented

powder sample at 3.5 and 7 T.

tibility point towards different phases i.e. there exist a phase boundary, if the field is increased

at constant temperature between 3.5 T and 5 T. Similar small changes in the signatures of the

transitions were observed in single crystal of linarite PbCuSO4(OH)2 and used to draw its com-

plex magnetic phase diagram. [53]. These kinks are even smaller for LiCuSbO4, and easily
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Figure 4.9: Spectra at µ0H = 7.5T for different temperatures.
Measurements on the oriented powder. The vertical lines denote the reference fre-

quency ν0.

overlooked in the unoriented powder sample (empty symbols in Fig. 4.8).

4.2.3 NMR Line Shift and Saturation Field

The dependence of the spectral lineshape on temperature at 7.5 T is shown in Fig 4.9. The

spectral lines shift towards lower frequencies while simultaneously broadening. Quadrupolar

satellites cannot be distinguished below ≈80 K. In order to check how the Li nuclei experience

the magnetization increase of the electron subsystem in the paramagnetic state we compare the

spectral shiftK = (ν−ν0)/ν0 (probing the local susceptibility) to the macroscopic susceptibil-

ity χmacro measured by SQUID at similar fields respectively 7.5T and 8T (see Fig. 4.10), using

the general relation:

K = Ahfχmacro +K0 , (4.4)

where K0 is the temperature independent orbital shift, and Ahf is the hyperfine coupling con-

stant. Despite the existence of two lithium sites, we were able to follow the shift consistently

with temperature by following the position of the peak of the spectra, with a more significant

contribution of the more coupled Li site (see below Fig. 4.11). Jaccarino plot in the inset of

4.10. Eq. (4.4), is valid for a large temperature range down to about 9 K, which provides the

hyperfine couping constant value Ahf = −0.57(2) kOe/µB and K0 = 0(6) ppm. Below 9

K, NMR shift and macroscopic susceptibility do not match any more. There are two possible
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Figure 4.10: NMR shift and SQUID susceptibility
Temperature dependence of the NMR shift (red circles) and macroscopic SQUID sus-

ceptibility (line). Inset: The Jaccarino plot shows the dependence of the NMR shift

on the macroscopic magnetic susceptibility measured at 8 T.

reasons for that: (i) NMR spectra and susceptibility were obtained on oriented and unoriented

powders, respectively, (ii) a small amount of impurities or edge defects on chains can cause a

Curie-like tail in χmacro: these are contributing to the edge of the spectral line, not the peak

position. However, the small difference between K and χmacro, where both show a maximum,

demonstrate the high quality of the sample and set an upper limit of the impurity concentration,

such as Li/Cu or Sb/Cu intersite mixing, of 1%, in agreement with the structural refinement [41].

When the magnetic moment increases (either by applying a higher magnetic field or by

lowering the temperature), the typical spectral shape resembles the one shown in Fig. 4.11

(µ0H0 = 12T at 1.55K). The spectrum is well described by a Lorentzian line for the strongly

coupled site and a Gaussian line for the weakly coupled one. The ratio of their intensities

is 55:45 in favor of the Lorentzian line. The contribution of the weakly coupled site to the

amplitude of the main peak is ≈ 28%.

Below 1 K, the spectral shape changes and starts to be field dependent as shown in Fig. 4.12.

The vertical line shows the maximum shift (0.057T) of the peak position when 1µB is frozen at

the Cu site, as obtained from the hyperfine constant. The spectral width at 0.125 K is consider-

ably larger than the one at 1.55 K in the corresponding fields. These broad spectra are obtained

at fixed irradiation frequencies ν0 by field sweeps around the reference field µ0H0 = 2πν/γ.

The spectrum at 5.2 T and 0.125 K, shows a squarish shape, typical for a magnetically

ordered system in powder form, where all nuclei experience the same magnetic moment but
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Figure 4.11: Spectrum at T = 1.55K in 12T field
Spectrum recorded at T = 1.55 K in magnetic field µ0H0 = 12 T (black). The red

line is a simulation composed of a Lorentzian (green) and Gaussian (blue) line. Ratio

of integrated intensities is 55:45 in favor of the Lorentzian line. The contribution of

the Gaussian line at the main peak position is≈ 28%. The vertical line shows the shift

reference.
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Figure 4.12: Spectra at T=0.125K
Spectra obtained by field sweeps at different frequencies (ν = γµ0H0) at T =

0.125K. The vertical line represents the maximum hyperfine field of 0.057T corre-

sponding to 1µB per Cu site This value was obtained independently from Jaccarino

plot, hence, the peak positions of the spectra in saturation regime are right where we

expect them to be. In 5.2T and 8T spectra are squarish in shape indicating SDW state.

As the field increases, the system polarizes and the spectra narrow.

57



with different orientations with respect to the applied field (Appendix C). From the width of the

spectra we estimate the moment on the Cu sites to be ≈ 0.75 µB. The narrower component on

the top of the squarish one is probably due to the site with smaller coupling.

With an increase of frequency, i.e. increase of external magnetic field, the spectra become

narrower, and more shifted. This occurs due to the increase in polarization of the electron spin

towards saturation where all spins point along the applied magnetic field. Spectra at 13 T and

13.3 T overlap, which implies that saturation is reached in that field range. The shift of the

peak position in 13 T and 13.3 T is 0.057 T, which coincides perfectly with magnetic shift from

the Jaccarino plot when 1µB per Cu site is reached. These two independent arguments provide

strong evidence that the system is saturated above 13 T in the ground state.

In previous work [41] (and section 2.4) the saturation field value of LiCuSbO4 was estimated

to be 12 T from the magnetization curve of bulk powder at 2 K (full red line in Fig. 4.13). The

full saturation is not reached even at 16T most likely due to a too high temperature. Also,

for bulk magnetization, an unoriented powder was used. These two facts prevented a precise

determination of the saturation field which is crucial to explore the possible QN phase.

Alternatively, the magnetization curve can be determined from the peak shift of the 7Li

strongly coupled line (Fig. 4.12). The shift is proportional to the magnetization value, and the

additional benefit is the use of oriented powder sample. The field dependence of the NMR shift

at T = 0.125K is shown by full circles in Fig. 4.13. The maximum shift (i.e. local magneti-

zation) is not reached at 12 T, but is saturated above 13 T. Compared to the bulk magnetization

data taken at T = 2 K on unoriented powder [1], the increase of the NMR shift is much steeper

around 12T.

In order to ascertain that we are probing the ground state of the electron system we measured

the shift at 1.55 K. These data (squares in fig 4.13) correspond more closely to the macroscopic

magnetization at 2 K. From all of the above arguments we conclude that the saturation field is

above 12.5 T, probably slighty under 13 T. The full saturation is reached at T =0.125 K while

the increased temperature and/or the lack of orientation smear out this transition at 2 K. Hence,

we emphasize the advantage of NMR for the determination of the saturation field to investigate

the local magnetization at very low temperatures, preferably on oriented powder.

4.2.4 Relaxation Measurements

Saturation recovery pulse sequence was used to measure spin-lattice relaxation times T1. First, a

saturation pulse was used (4-5 µs) which rotates the nuclear magnetization in the xy plane. Then
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Figure 4.13: Shift and width of NMR lines
Field dependence of the NMR peak position at T = 0.125K (black circles) and T =

1.55 K (green squares) compared to the bulk magnetization at 2 K from ref. [41] (red

line). The purple line is a guide to the eyes for the T = 0.125K NMR data. Right

axis: FWHM of the spectra at 0.125K (blue empty circles). The dashed line is guide

to the eyes.

one waits for τ1. In the meantime the nuclear magnetization starts to recover into z direction

determined by applied magnetic field. At the time τ1 an amount of nuclear magnetization in

z direction is detected by standard solid echo sequence with 3 µs long π/2 pulses. Several

relaxation curves are shown in Fig 4.14. In all fields below 12 T, and temperatures above 1.5

K, a single exponential recovery curve fits the data well giving a single T1 (Fig. 4.14a – red

circles). Above 12T and below 5K, the shape of the recovery changes and is not consistent

with a single exponential function (Fig. 4.14a and c). This is due to the presence of different

relaxation times for different frequencies (Fig. 4.14b), namely the left part of the spectrum

(strongly coupled line) is relaxing slower than the right one. To take into account these different

contributions of the two Li sites at the main peak position (see Fig. 4.11), we used a function of

the general form:

1− M(τ1)

M∞
= ae−(τ1/T1)β + (1− a)f(τ1) (4.5)

whereM∞ is the magnetization at equilibrium, a represents the contribution of the strongly cou-

pled site, and is fixed to 0.72 from the analysis of the spectral shape in Fig 4.11, and f(t) is the

relaxation attributed to the weakly coupled site which is determined independently on the right
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Figure 4.14: Relaxation curves
a) Spin-lattice relaxation (central peak) measured at T = 1.55K at µ0H = 10T

(red circles) and at µ0H = 13T (black squares). The lines are single-exponential

fits; b) Relaxation of the magnetization at different parts of spectra at the temperature

T = 1.55 K. Arrows on the spectra correspond to frequencies where relaxation was

measured. Lines are guide for the eyes; c) Relaxation curves at the main peak at

various temperatures. Full lines are obtained by the fit to Eq. (4.5).

side of the spectrum (see Appendix A). The temperature dependent stretch exponent β < 1 ac-

counts for an increasing width of the local T1 distribution at low T < 5K (see inset Fig. 4.16b).
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Such a distribution may be due to some local excitations which can be an intrinsic property of

the chains or due to impurities (switching Cu with Li or Sb [41]) or defects (vacancies and chain

edges). The upper limit for the impurity concentration is 1% so they can significantly perturb a

dozen of neighboring spins differently [69–71], leading to a distribution of relaxation times and

the appearance of stretched exponentials [72]. For β values around β ≈ 0.5, width of relaxation

rate distribution is on the order of magnitude [73].

We have measured the field dependence of T1 at two different temperatures, 1.55K and

4.6K (Fig. 4.15). At T = 1.55 K there is a peak in the relaxation rate (1/T1) around 6 T. From

the local magnetization (NMR shift) in Fig. 4.13, we know that the magnetization is at ≈20%

of its saturation value Ms. Theoretical work by Sudan et al. [40, 74], predicts that at 20%

of saturation magnetization a crossover from vector chiral to SDW2 phase occurs. With this in

mind, the above mentioned peak in 1/T1 could be related to the vicinity of VC-SDW2 boundary.
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Figure 4.15: Field dependence of relaxation rate.
Field dependence of the relaxation rate at T = 1.55K and T = 4.6K. The peak around

6T at T = 1.55K, may be a finite-temperature remnant of the crossover between

the VC and SDW2 phases. T1 drastically changes above µ0H ≈ 12T, and above

µ0H = 13T the system is in the field induced gap phase. Between 12T and 13T it is

plausible to search for the existence of a QN phase.

A quadrupolar nematic phase is predicted above 70% of Ms. The magnetization curve is

very steep in that region, and the QN phase would be expected to occur in the narrow range

between 12 T and 13 T. This is a reason for dramatic change in 1/T1 above 12 T in Fig. 4.15.

More specifically, from theory in strictly 1D systems, a magnetic transition only allowed at
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T = 0K, 1/T1 at very low temperatures should follow a power law 1/T1 ∝ T 2K−1 in both

SDW2 and QN phases, with K ∈ [0, 1] being a field-dependent Tomonaga-Luttinger parameter

[42,43]. The boundary between the two phases occurs at a field whereK = 1/2, roughly when

70% of saturation magnetization is reached [40, 42]. In SDW2 phase (K < 1/2) one therefore

expects a power-law divergence of 1/T1 at low temperatures, while for the QN phase (K > 1/2)

a power-law drop towards zero is predicted. This should appear below≈ 10 K where 1D is well

defined. Above the saturation field, the system is gapped and 1/T1 should decay exponentially

towards zero. With this in mind, we chose the fields of µ0H0 = 4, 8, 12 and 13T to follow the

temperature dependence of the relaxation rate (Fig. 4.16).

In µ0H0 = 4T, where the VC phase is expected, 1/T1 shows traces of divergence down

to 1.55K with a critical exponent 1/T1 ∝ T−0.55(2) (K = 0.24(1)). In µ0H0 = 8T, where

the SDW2 phase is expected, 1/T1 shows a similar behavior down to 1.55K with a critical

exponent 1/T1 ∝ T−0.30(1) (K = 0.38(1)). The exact values ofK are sensitive to the range over

which they are fitted, but it is clear that they monotonically increase with field, as theoretically

expected [36]. Macroscopic magnetization measurements indicate that µ0H0 = 12T is close

to SDW2/QN phase boundary. The temperature dependence of 1/T1 shows a broad maximum

around 2.5K which might indicate the proximity of the QN phase.

In µ0H0 = 13T a maximum in the relaxation rate occurs at much higher temperature,

around 6 K, but below 2.2 K the drop is too steep to be associated with a QN phase. If we

take into account DR measurements, the critical exponent is 1/T1 ∝ T 3.6, which would give

a nonphysical value of K = 2.3(1). A more likely explanation, consistent with the formerly

discussed static measurements, is that the magnetization is already saturated at µ0H0 = 13T,

and the 1/T1 shows a gapped (exponential) behaviour. The 13T data below 2.9 K were then

fitted to the function 1/T1 = C1exp(−∆/T ) + C2, where ∆ = 3.24(19) K, C1 = 0.396(47)

ms−1 and C2 = 5.1(1.4) × 10−5 ms−1. The latter T -independent term likely accounts for the

contribution of a tiny amount of impurities or defects. Hence, the temperature dependence of

the spin-lattice relaxation time changes qualitatively and quantitatively in the narrow field range

12− 13T, from a power-law divergence characteristic of the SDW2 phase to a gapped behavior

characteristic for the saturation regime.

Finally, the relaxation rate measured at a single temperature point T = 0.125K in the field

µ0H0 = 5.2T gave a significantly longer T1 (86ms) than at 1.55K, showing that there exists

a maximum in the relaxation rate somewhere in between these two temperatures. As already

noted, a peak in the heat capacity is observed at 700mK, [41] which, together with an anomaly
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Figure 4.16: Temperature dependence of the spin lattice relaxation T−11

(a) Temperature dependence of the spin lattice relaxation T−11 in magnetic fields

µ0H = 4, 8, 12 and 13T. In 4T and 8T relaxation rate obeys power law be-

haviour down to 1.55K with critical exponents -0.55(2) and -0.27(1), respectively.

At 12T and 13T a broad maxima appears, but the drop in 13T below 2.2K is too

steep to be assigned to a QN phase. (b) Additional low temperature (DR) mea-

surements down to 125 mK. 13 T data below 2.9 K were fitted to the function

1/T1 = C1 exp(−∆/T ) + C2, where ∆ = 3.24(19) K, with C1 = 0.396(47) ms−1

and C2 = 5.1(1.4) × 10−5 ms−1. Inset: T -dependence of the stretched exponent β,

indicating a broad distribution of relaxation times at low temperatures.

in the susceptibility measurements, may mark a phase transition causing the non-monotonous

behavior of the relaxation rates.

4.2.5 Discussion

In the following, we discuss the various low temperature phases of LiCuSbO4 in the light of

known data from the present study and Ref. [41] and summarize our current understanding in the

tentative phase diagram shown in Fig. 4.17. We will compare our results to recently published

work by Grafe et. al. [1] and give a short overview on LiCuVO4, a compound which has been
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Figure 4.17: Low-temperature phase diagram of LiCuSbO4.
Above 9 K, the system is in the paramagnetic regime (PM - white). As the temperature

is lowered short range correlations (SRC) among neighboring spins appear (yellow).

However, from the width of NMR spectra at temperatures down to 1.5 K at various

fields (4 T, 8 T, 12 T, 13 T), one can clearly dismiss any kind of 3D order (these points

are omitted from the phase diagram for clarity). Below 0.7 K, the system enters in a

vector chiral (VC) regime with no static order in the fields up to ≈ 4 T. Above 4 T a

crossover to an ordered SDW2 phase occurs, as evidenced by NMR (blue). At high

field and low temperature there is a narrow possibility for the existence of QN phase

(orange), just below the saturation regime (red).

thoroughly investigated for more than two decades now. To label the various field-induced

phases, we rely on the theoretical work by Sudan et al. [40]. From the latter study of frustrated

spin chains, in LiCuSbO4 with J1/J2 = −2.22, the magnetic excitations of p = 2 bound spin

flips should govern the phase diagram. Several field-induced ground states are predicted: (i) a

vector chiral phase (VC) for M/Msat < 0.15, (ii) an SDW2 phase for 0.15 < M/Msat < 0.7,

and (iii) a QN phase for 0.7 < M/Msat < 1. Using the NMR shift at 0.125 K from Fig. 4.13

as a measure of the magnetization, one estimates that M/Msat = 0.15 occurs at µ0H ≈ 5T,

M/Msat = 0.7 occurs at µ0H ≈ 12T, andM =Msat occurs at µ0H ≈ 13T.

Vector chiral phase. From the µSR measurements, we drew the main conclusion that in the

zero magnetic field, there are no traces of typical 3D magnetic ordering. Dutton et al. [41]
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suggested that this may be due to the fact that adjacent chains are not parallel, but canted one

with one respect to the other. These µSR data are labeled by stars in Fig. 4.17. Together

with SQUID data (Fig. 4.8) in 1 T and 3.5 T, where a dip in magnetic susceptibility at 0.7 K

is observed we can draw the boundaries of the VC phase (green area in Fig. 4.17). Above 5

T susceptibility shows a different shape of curve indicating a different magnetic phase than the

VC one. Additionally, the heat capacity curves shown in in Figure 3b of Ref. [41] are similar at

0 and 2 T and evolve gradually only above 4 T with the growing of a peak around T = 0.7 K.

Therefore the boundary between the two phases seems to occur between 4 and 5 T. The gradual

evolution of the heat capacity suggest a crossover rather than a sharp transition from the VC

phase to the SDW2 phase.

The NMR spectra measured at T = 125mK in µ0H = 5.2 T and 8T (Fig. 4.12) clearly

show that magnetic ordering has occurred. This is confirmed by specific heat measurements

where a peak at T = 0.7K clearly indicates a transition in this intermediate field range. NMR

relaxation measurements at µ0H = 8T above the transition temperature show the temperature

dependence 1/T1 ∝ T−0.30(1) consistent with a SDW2 phase (negative exponent less than 1).

These results give strong indication that in the intermediate field range between µ0H ≈ 5, and

12T the theoretically predicted SDW2 phase is indeed stabilized by the magnetic field.

Possible quadrupolar nematic phase. NMR relaxation measurements at µ0H = 12T show

a negative slope above T = 2.5K, consistent with SDW2 phase, but below T = 2.5K the slope

changes to positive which could be consistent with a QN phase (positive exponent less than

1). This behavior may point to the proximity of the crossover between SDW2 and QN phases.

Contrary to the SDW2 phase, the QN phase should not broaden the NMR spectrum, which was

recently pointed out by Orlova et al. [55] in LiCuVO4 just below the saturation field. Inspection

of Fig. 4.12 shows that the spectrum at µ0H = 12T is narrower than the spectra at µ0H = 5.2T

and 8T, but still broader than the spectra at higher fields. This again points to the proximity of

QN phase. The spectrum at µ0H = 12.5T is narrower, consistent with the appearance of a QN

phase. From the line shift, the magnetizationM/Msat = 0.85 is theoretically in the QN phase

(M/Msat > 0.7) but the QN phase could be pushed to even higher magnetization for systems

with hard-axis anisotropy [74]. NMR relaxation measurements down to the lowest temperatures

may help to decide whether the QN phase is present at this field. In any case the lower boundary

of the QN phase should be close to 12.5 T. On the other hand at µ0H = 13T the full saturation

is reached, giving the upper boundary for the possible QN phase.

Saturation regime. When the saturation is reached one expects a gap in the excitation spec-
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trum. This is confirmed by our relaxation measurements in the dilution refrigerator shown in

Fig. 4.16.b which yield the gap value ∆ ≈ 3.2K at 13 T. A theoretical model for the isotropic

case [35] predicts the opening of the gap (ie the entrance in the saturation regime) when the ratio

of the spin magnetic energy εs = gµBµ0Hs and the NNN interaction J2 reaches εs/J2 ≈ 0.5

which is in excellent agreement with our case (for g=2.21 [41] in field of µ0H0 = 13 T εs = 18.2

K while J2 = 34 K). So far we have interpreted our results guided by the theory for isotropic

J1 − J2 chains, while our compound possesses a small easy plane anisotropy (≈ 0.8) [41]. A

detailed analysis of the phase diagram for such an anisotropic case is given in Ref. [74]. Easy

plane anisotropy favors the vector chiral phase, but if the anisotropy is not pronounced, the QN

phase may still exist in the high field regime. This is a possible reason why the QN phase is

restricted to so narrow field range just below saturation. The presence of a small interchain

coupling may further narrow the QN stability domain [75].

Grafe et al. [1] recently reported an extensive experimental and theoretical investigation of

LiCuSbO4. NMR measurements were performed up to 16 T on an unoriented powder sample,

at temperatures down to 2 K, so the T →0 K phase diagram was not accessible. Nonetheless,

in the temperature and field range common to our study, the NMR results are consistent. In

particular at 13 T they also observed a gapped behavior of T1, with a gap value ∆ ≈ 2.4 K

which is similar to our value. The main discrepancy with the present study is the determination

of the saturation field which is of great importance in order to put an upper boundary on QN

phase. In ref. [1], the magnetization curve obtained from macroscopic measurements using

pulsed fields at 0.45 K did not reach saturation up to the highest measured field of 20 T (Fig.

4.18), which was interpreted as a signature of in-plane exchange anisotropy (Jx
1 ̸= Jy

1 ). In

contrast, our NMR shift data point to a well defined saturation field close to 13T and do not

demand modifications of the magnetic model. Their tentative phase diagram is shown on Fig.

4.18.

For comparative purposes, it is worth here taking a look at the most investigated compound

among J1 − J2 candidates, LiCuVO4 [45]. This compound is available in the form of single

crystals, which is a big experimental advantage, however it has quite high saturation field, above

40 T. The work of Svistove et al. [76] was the first (and for a long time, the only) investigation of

the high-field regime. A small kink in the dM/dH curve was detected, as shown in the Fig 4.19

(a) and (b) in the 41-44 T field range. Several groups have reported follow-up investigations of

different parts of LiCuVO4 phase diagram [77–80], and a superb analysis of hyperfine coupling

tensors was given in a paper by Nawa et al. [46], followed by a high field NMR study by Büttgen
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Figure 4.18: Magnetization and phase diagram of LiCuSbO4

(Left) Magnetization Curve obtained by pulse fields at T = 0.45 K (orange), and the

one calculated by DMRG at T = 0 K (green) (Right) Proposed phase diagram. (Both

from ref. [1]).

Figure 4.19: High field magnetization and shift of 51V in LiCuVO4

(a) dM/dH curve measured with a pulse field technique. (b)M(H) curves at T = 1.3

K, obtained by integration of the curves shown in (a). A small regionHc3 < H < Hsat

was related with the presence of quadrupolar phase [76]. (c) 51V Spectra obtained at

T = 380 mK in the high field region [47].
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Figure 4.20: NMR spectral shift and width of LiCuVO4.
(a) 51V Spectra obtained at T = 1.3 K in the high field region. (b) Field dependence

of spin polarization Sz/Ssat and distribution widths of internal magnetic field ∆Hint

[55].

et al. [47]. In the latter work, bulk magnetization, 51V NMR spectra and relaxation above 40

T was measured. The data are presented in Fig 4.19 (c). Below 40 T the spectra have square-

like shape with two horns, typical for the SDW phase. In the region 40.5 T< µ0H <41.4 T,

the spectra become narrower and the peak shifts. Above 41.4 T the peak shape and shift is

constant indicating that the system saturated. The discrepancy between peak shift and change

of the slope above Hc3 in magnetization measurements was attributed to defects. Later, Orlova

et al. [55], performed a similar study on LiCuVO4, but on samples from a different batch. These

measurements are shown in Fig 4.20. Contrary to the results of Büttgen [47], Orlova et al report

that the spectra of 51V in the region between 42.41 T and 43.55 T have the same width while

the peak simultaneously shifts with field. The discrepancy between these these two results was

explained by the absence of defects in the sample used in the work by Orlova. Yet the absence

of T1 measurements due to the high saturation field remains a severe drawback, and definitive

proof of the existence of a QN phase is still lacking.

To summarize, our investigation of LiCuSbO4 has shown that in the future one should look

for QN phase in the field range 12.5−13 T at temperatures below 1.5 K.
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Chapter 5

Conclusion and Outlook

This thesis describes my exhaustive experimental work on the J1 − J2 compound LiCuSbO4,

a candidate for observing quadrupolar nematic state, which was theoretically predicted more

than thirty years ago. Several experimental techniques were used: NMR, µSR and SQUID, to

investigate different parts of the temperature-field phase diagram. Special attention was given to

the T → 0K part of phase diagram where different field-induced, quantum phases exist and can

be identified with the help of theoretical results. From µSR measurements in zero field we have

excluded conventional 3D ordering down to 30mK, and together with SQUIDmeasurements we

concluded that this vector chiral phase extends up to ≈4 T. From NMR results we concluded

that in higher magnetic fields from ≈ 5 T to ≈ 12.5 T a field induced SDW2 phase is stabilized.

It is crucial to determine the value of the saturation field, since the nematic phase is expected

just below the saturation field. From NMR shift measurements we have confirmed that the

magnetization is saturated at B = 13 T. From the above we narrowed down the possibility for

the existence of a quadrupolar nematic phase in LiCuSbO4 in the field interval between 12.5

and 13 T. Conclusive proof of the presence of this phase remains a goal for future investigation.

The results of this work show that further investigation of the possible QN phase in LiCuSbO4

is feasible, owing to low saturation fields, accessible in standard DC magnets.
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Chapter 6

Prošireni sažetak

6.1 Uvod

Jednodimezionalni (1D) fizikalni sustavi jedni su od najjednostavnijih, ali unatoč tome, za-

hvaljujući različitim tipovima interakcija i jakih korelacija, i dalje zadržavaju bogata fizikalna

svojstva. Lokalizirani 1D sustavi su još jednostavnija podklasa tih sustava, s obzirom na to da se

u njima mora voditi računa samo o spinskom podsustavu. U takvim, jednostavnijim sustavima,

moguća je i lakša provjera analitičkih i numeričkih modela. Možemo se podsjetiti kako us-

prkos jednostavnosti, do danas nije poznato osnovno stanje najjednostavnijeg Heisenbergovog

anitferomagnetskog hamiltonijana u tri dimenzije.

Poticaj istraživanju antiferomagnetskih sustava bilo je i otkriće visokotemperaturnih sup-

ravodiča krajem osamdesetih godina prošlog stoljeća, u čijem se faznom dijagramu uz supra-

vodljivu uvijek nalazila i antiferomagnetska faza. Postavlja se pitanje jesu li to dva neovisna

ili vezana fenomena. Antiferomagetske fluktuacije bile su smatrane i kandidatom za vezanje

elektrona u Cooperovim parovima.

Jednodimezionalni spoj LiCu2O2 jedan je prototip spoja u kojem se uz feromagnetsku in-

terakciju medu prvim susjedima (J1 < 0) javlja i antiferomagnetska medu drugim susjedima

(J2 >0). Takve interakcije vode do frustracije, zajedničkog sastojka za mnoge zanimljive sus-

tave. Ispostavlja se da se u tom spoju simultano s magnetskim uredenjem javlja i feroelek-

tričnost, što je vrlo zanimljivo za potencijalnu industrijsku primjenu takvih materijala.

U jednodimenzionalnim sustavima moguća su i egzotična solitonska pobudenja kao i nova

stanja materije. Zbog ograničenog faznog prostora u jednoj dimenziji i jakih korelacija, teorija

Fermijeve tekućine nije adekvatna, već se mora koristiti teorija Luttingerovih tekućina kao

početna točka za teorijski opis fizikalnih sustava. Prvi čvrsti eksperimentalni dokaz posto-
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janja spojeva u kojima je Luttingerov opis jednodimezinalnih svojstava materijala opažen bio

je sustav spinskih ljestvi BPCB.

U ovom radu proučavali smo spoj LiCuSbO4, kadidat za opažanje magnetske nematičnosti,

svojstva materije u kojem postoji skriveni magnetski red koji nije opisan vektorom nego ten-

zorom višeg reda.

6.2 Kvadrupolarni nematici

Magnetski red obično je povezan s nekom vrstom spinskog uredenja u kojemu na pojedinom

mjestu vrijedi ⟨Si⟩ ̸= 0. Možemo se pitati može li postojati neka vrsta uredenja koja narušava

rotacijskuO(3) simetriju, a da pritom ⟨Sı⟩ = 0? Takav red u najjednostavnijem slučaju mogla bi

parametrizirati bilinearna kombinacija spinskih operatora koja je neiščezavajuća ⟨SαSβ⟩ ̸= 0,

pri čemu su α, β ∈ x, y, z. Takav red se naziva još i nematski po uzoru na nematsko uredenje u

tekućim kristalima u kojima je red opisan tenzorom drugog reda, što je prvi puta predložio de

Gennes. Najjednostavnija bilinearna kombinacija operatora naziva se i kvadrupolarnom.

Takvo se uredenje može dogoditi u spinskim lancima u kojima postoji feromagnetska inter-

akcija prvih susjeda (J2 < 0) i antiferomagnetska interakcija izmedu drugih susjeda (J2 > 0).

Topološki gledano, takvi su lanci ekvivalentni cik-cak ljestvama, odakle je vidljivo da interak-

cija drugih susjeda uvodi frustraciju. Primjena magnetskog polja sumjerljiva energiji interakcija

J1 i J2 u takvim sustavima dovodi do kvantne kritičnosti.

Ovisno o jakosti primijenjenog magnetskog polja i omjera interakcije prvih i drugih susjeda,

pojavljuju se tri različite faze.

Vektor-kiralna (VC) faza u području malog magnetskog polja, u kojoj je prosječna vrijed-

nost spina na svakom mjestu iščezavajuća (⟨S⟩ = 0), a korelacija koja se najsporije raspada u

prostoru je opisana parametrom reda:

κ(r, d) = ⟨[S0 × Sd]
z[Sr × Sr+d]

z⟩, (6.1)

gdje je d = 1 kada se računa korelacija medu J1 vezama, a d = 2 u slučaju J2 veza, dok je r

udaljenost izmedu nultog i r-tog spina.

Val gustoće spina p vezanih spinova (SDWp) javlja se kad povećamo magnetsko polje.

Elementarno pobudenje je okretanje p vezanih spinova (∆Sz = p), a dominantna korelacijska

funkcija:

⟨Sz
0S

z
r ⟩ − ⟨Sz

0⟩⟨Sz
r ⟩ ∝ cos

[
(1−m/msat)πr

p

]
1

rK
, (6.2)
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gdje uočavamo da je ⟨Sz
0⟩ = ⟨Sz

r ⟩ = m, pri čemu jemmikroskopska magnetizacija,msat = 1/2

saturacijska magnetizacija, a K Luttingerov parametar koji ovisi o J1, J2 i magnetskom polju

h.

Nematska faza (N) javlja se prije saturacijskog polja, dominantna korelacijska funkcija u toj

fazi je: ⟨
p−1∏
n=0

S+
0+n

p−1∏
n=0

S−r+n

⟩
∝ (−1)r

1

r1/K
, (6.3)

Za p = 2, faza se zove kvadrupolna, za p = 3 oktupolna, za p = 4 heksadekupolna. Spoj

LiCuSbO4 koji je proučavan u ovom radu ima omjer interakcija J1/J2 ≈ −2.2, za koje se u

područjima jakog magnetskog polja očekuje kvadrupolna nematska (QN) faza.

Većina eksperimentalnih tehnika mjeri korelacije drugog reda, pa je korelacije višeg reda

lako previdjeti. Sato i suradnici predložili su NMR i neutronska raspršenja kao tehnike koje bi

indirektno mogle mjeriti korelacije višeg reda [42]. NMR je posebno pogodan jer osjetljivost i

rezolucija eksperimenta raste s magnetskim poljem. Opservabla koja je osjetljiva na promjenu

dominantnih korelacija je spin-rešetka relaksacija T1. Naime kad temperatura T → 0 K u

SDW2 fazi 1/T1 divergira dok u QN fazi 1/T1 → 0. U temperaturnom režimu ω/kB ≪ T ≪

J2 ovisnost 1/T1 o temperaturi iznosi:

1

T1
= D

∥
1T +D

∥
2T

2K−1 + ..., (6.4)

gdje je K Luttingerov parametar koji je jednak 1
2
upravo na granici izmedu SDW2 i QN faze,

dok su D1 i D2 temperaturno neovisne konstante. Usporedbe radi, za standardni antiferomag-

netski lanac s interakcijom prvih susjeda, relaksacija iznosi:

1

T1
= E

∥
1T + E

∥
2T

2K−1 + E⊥1 T
1/(2K)−1..., (6.5)

gdje su E∥1 , E
∥
2 i E⊥1 ponovno temperaturno neovisne konstante. Treći član u jednadžbi 6.5

divergira i za K > 1
2
.

Medu dosad poznatim materijalima opisanim J1 − J2 hamiltonijanom (6.1) najistraživaniji

spoj je LiCuVO4, koji ima prilično visoko saturacijsko polje od ≈ 45 T. Spoj LiCuSbO4, is-

traživan u ovom radu, opisan je parametrima J1 = −75 K, J2 = 34 K i blagom anizotropijom

lake magnetizacijske ravnine ∆ = 0.83. U nultom polju postojanje 3D uredenja isključeno je

do temperature 100 mK, a saturacijsko polje procijenjeno je na ≈ 12 T [41]. U radu Dutton i

suradnika [41] materijal je temeljito karakteriziran mjerenjima rendgenske difrakcije, suscepti-

bilnosti, magnetizacije, toplinskog kapaciteta i neutronske difrakcije. Na niskim temperaturama
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Table 6.1: J1 − J2 spojevi.

Eksperimentalno odredena svojstva materijala opisanih J1 − J2 hamiltonijanom

Spoj J 1[K] J 2[K] J 1/J 2 µ0H[T] TN [K] |J1/TN | Ref.

LiCuSbO4 -75 34 -2.2 13 <0.03 >2500 [41]

LiCuVO4 -18.5 44 -0.42 45-52 1.7-2.3 9.3 [45–47]

LiCu2O2 -66-94 168 -0.41 est. 110 9,22,24 10.4 [48, 49]

Li2CuO2 -100 60 -1.7 ? 9 11.1 [50]

Cs2Cu2Mo3O12 -93 33 -2.8 ≈ 10 1.85 50.3 [51]

Rb2Cu2Mo3O12 -138 51 -2.7 14 <2 69 [52]

PbCuSO4 -100 36 -2.8 ≈ 10 2.8 36 [53]

NaCu2O2 -16.4 90 -0.18 ? 12 1.3 [54]

(T < 9 K), razvijaju se kratkodosežne korelacije. Posebno je zanimljiva pojava vrha u toplin-

skom kapacitetu na T = 0.7 K koji se povećava s povećanjem magnetskog polja do 11 T, da

bi u polju 14 T gotovo potpuno iščeznuo. Neutronska mjerenja pokazuju dobro slaganje s nu-

meričkim računom egzaktne dijagonalizacije spinskog lanca sa 16 spinova i ranije navedenim

parametrima.

6.3 Metode

6.3.1 Mionska spinska rotacija

Mionska spinska rotacija (µSR) je uz tehniku neutronske difrakcije i nuklearne magnetske re-

zonancije (NMR) jedna od najčešće korištenih ”lokalnih proba” u fizici čvrsog stanja. Ovdje

nećemo ulaziti u detalje kako se proizvode (pozitivni) mioni već samo iznijeti nekoliko ele-

mentarnih svojstava miona i što nam mogu reći o magnetskim svojstvima mate-rijala. Mioni

koji upadaju na uzorak su 100% polarizirani, sa spinom obrnutim od smjera upada u materijal.

Zbog velikog magnetskog momenta (≈ 3 puta većeg od mometa protona), mion je kratkoživuća

čestica s vremenom života τµ = 2.2 µs, koja se raspada na pozitron, elektronski neutrino i

mionski antineutrino, pri čemu je opaziv jedino pozitron. Zbog prirode slabe sile odgovorne za

raspad miona, emitirani pozitron se raspada dominantno u smjeru mionskog spina.

Tipični mionski spektrometar sastoji se od detektora stražnjeg (”backward”) i prednjeg (”for-

ward”) detektora. Inicijalno spinovi miona pokazuju u smjeru stražnjeg detektora, pa će on de-
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tektirati većinu pozitrona, medutim, ako u materijalu postoji statično ili dinamično magnetsko

polje, mioni počinju precesirati oko njega ili može doći do promjene stanja spina zbog magnet-

skih fluktuacija. U tom će slučaju stražnji i prednji detektor registrirati odreden broj miona čiji

broj ovisi o vremenu. Neka jeNB(t) broj pozitrona koji detektira stražnji detektor, aNF (t) broj

pozitrona koji detektira prednji detektor. Veličina koja se mjeri naziva se asimetrija:

A(t) =
NB(t)−NF (t)

NB(t) +NF (t)
. (6.6)

Ovisno o magnetskim svojstvima materijala i modela kojim su ona opisana, može se usporediti

teorijski očekivana asimetrija s opaženom i izvršiti prilagodba podataka iz koje se dobivaju

informacije o lokalnim statičkim i dinamičkim poljima u materijalu.

6.3.2 Nuklearna magnetska rezonancija

Nuklearna magnetska rezonancija je tehnika u kojoj mjereći nuklearnu magnetizaciju jezgri do-

bivamo informaciju o stanju ”okoline” koja je odredena elektronskim svojstvima materijala koji

promatramo. Ovdje nećemo opisivati tehniku pulsnog NMR-a nego pokazati poveznicu izmedu

nuklearnog hamiltonijana i elektronskog sustava, te opisati opservable spektra i T1 relaksacije.

Prvi i najčešće glavni doprinos nuklearnom hamiltonijanu dolazi od primijenjenog vanjskog

magnetskog polja H0 u z smjeru:

Ĥ0 = −γ~µ0H0Iz. (6.7)

Primijenjeno magnetsko polje cijepa degenerirano spinsko stanje I jezgre na 2I + 1 ekvidis-

tantnih nivoa, koji se pobuduju pulsevima. Jezgre spina većeg od I > 1
2
su elipsoidne, što

znači da će se u prisustvu gradijenta električnog (EFG) polja htjeti usmjeriti u pravcu najvećeg

gradijenta. Ta interakcija opisana je hamiltonijanom:

ĤEFG =
eQ

4I(2I − 1)
[Vzz(3I

2
z − I2) + (Vxx − Vyy)(I

2
x − I2y )]. (6.8)

Ovdje su Vαβ = ∂2V
∂xα∂xβ

komponente EFG tenzora, a Q kvadrupolni moment jezgre. Treći dio

hamiltonijana opisuje interakciju medu elektronskim i nuklearnim spinovima:

Ĥel−n = −γ~
∑
i

IαA
i
αβgµBS

i
β, (6.9)

gdje su Si elektronski spinski operatori, Ai
αβ hiperfini tenzor, a suma po i ide po svim elektron-

ima s kojima interagira promatrana jezgra. Hiperfini tenzor u sebi ima komponentu spin-orbit

vezanja, transferirane interakcije i dipolnog vezanja izmedu jezgre i elektrona.
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Spektar

Prva opservabla koja se u NMR-u mjeri je spektar. On nam daje informacije o statičkim svo-

jstvima elektronskog podsustava. Za dani žiromagnetski faktor γ promatrane jezgre očekuje

se signal na frekvenciji ν0 = γµ0H0. Medutim, zbog postojanja elektrona signal je pomaknut

i nalazi se na frekvenciji ν = (1 + K)γµ0H0, pri čemu je K pomak. Egzaktno gledajući K

je tenzor povezan s hiperfinom interakcijom Aαβ . Za paramagnetske spojeve, prateći ovisnost

pomaka o temperaturi i usporedbom makroskopske susceptibilnosti u slučaju kad na raspola-

ganju imamo monokristal, mogu se odrediti sve komponente hiperfinog tenzora. Izgled spektra,

odnosno njegova promjena može nam dati informaciju u postojanju uredenja elektronskog pod-

sustava. U praškastim uzorcima, dolazi do distribucije frekvencija na kojima opažamo signal,

pa je tako detaljna analiza otežana, a često i nemoguća.

Relaksacijsko vrijepme spin-rešetka

Nakon što se pulsom nuklearna magnetizacija zarotira u x − y ravninu u odnosu na ravnotežu

(smjer z osi), ona se nakon vremena T1 vraća u ravnotežno stanje. Elektronski podsustav u

ovom slučaju se naziva ”rešetkom”. Fluktuacije elektronskih spinova uzrokuju povratak nuk-

learne magnetizacije u z smjer. Spin rešetka relaksacijsko vrijeme T1 nam dakle pruža uvid u

dinamiku elekronskog spinskog sustava koji nas zanima. Egzaktan izraz glasi:

1

T1
∼

∑
k

{| A
⊥
k |2

2
[S+−(k, ω) + S−+(k, ω)]+ | A∥k |

2 Szz(k, ω)}, (6.10)

gdje su A∥k i A
⊥
k Fourierovi transformati tenzora hiperfine interakcije, a S+−(k, ω), S−+(k, ω) i

Szz(k, ω) korelacijske funkcije.

6.4 Rezultati i diskusija

Rezultati prezentirani u ovom poglavlju objavljeni su u radu Bosiočić et al. [64].

6.4.1 µSR mjerenja

Glavni cilj mjerenja mionske relaksacije u uzorku bio je provjeriti postoji li magnetsko uredenje

ili ne. Mjerena su obavljena na praškastom uzorku mase ≈ 1 g. U odsustvu longitudinalnog

polja, asimetrija je opisana formulom A(t) = A0G(t, ν,∆) + Ab, gdje G(t, ν,∆) dimanička

Kubo-Toyabe funkcija, a parametri A0 početna asimetrija i Ab pozadina. Na temperaturi 10

K, glavni doprinos raspadu asimetrije dolazi od nuklearnih momenata. Širina distribucije polja

iznosi ∆/γµ = 2.2 G. Na nižim temperaturama distribucija se širi i dostiže plato vrijednosti
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∆/γµ = 4.3 G ispod 0.7K. Tu promjenu širine pripisali smo malom uredenju elektronskih

spinova. Plauzibilno je pretpostaviti da se pozitivno nabijeni mioni zaustavljaju oko kiskovih

O2− iona (jedini negativni), koji su ≈ 2 Åudaljeni od Cu2+ iona. Najjednostavnija aproksi-

macija u slučaju potpunog uredenja spinova na bakrovim ionima dala bi polje od µ0µB/(4πr
3) ≈

1160 G na kisikovim mjestima, dok mi opažamo tri reda veličine manju vrijednost. To vodi do

zaključka da možemo odbaciti tipično 3D uredenje u našem spoju. Moguće je da je opaženi

efekt posljedica kratkodosežnih korelacija koji su sugerirani u radu Dutton i suradnika [41].

6.4.2 Niskotemperaturna magnetska susceptibilnost

Mjerenja niskotemperaturne magnetske susceptibilnosti obavljena su na praškastom uzorku i

na orijentiranom prahu (slika 4.8). Na orijentiranom prahu, kada je polje usmjeno duž teške

osi, pojavljuje se diskontinuitet na T = 0.7 K na svim krivuljama. Diskontinuitet je mininum u

niskim poljima (1 T i 3.5 T), dok u višim poljima (5 T i 7 T) izgleda kao blaga theta funkcija.

Različitost oblika diskontinuiteta ukazuje na različite faze tj. negdje izmedu 3.5 T i 5 T postoji

fazni prijelaz. Mjerenjem na neorijentiranom prahu se ti diskontinuiteti gube.

6.4.3 NMR mjerenja

NMR mjerenja sustavno su izvodena na orijetiranom prahu tako da je magnetsko polje prim-

ijenjeno duž čvrste osi. Mjeren je signal izotopa 7Li. Prvi korak bio je odrediti jakost hiperfinog

vezanjaAhf usporedbom pomaka linijeK i makroskopske susceptibilnosti χmacro prema relaciji

(4.4) iz podataka sa slike 4.10. Dobivena je vrijednost hiperfinog vezanja Ahf = −0.57(2)

kOe/µB, koja nam govori o jakosti vezanja izmedu nuklearnih spinova litija i elektronskih

spinova na bakrovim ionima. Tipičan oblik spektra izgleda poput onoga na slici 4.11 (µ0H0 =

12T na 1.55K). U jediničnoj ćeliji postoje dvije pozicije litija, koji prema tome spektru dopri-

nose s dvije linije. Jače vezana linija opisana je gausijanom, a slabije vezana lorencijanom, s

tim da je udio jače vezane linije u glavnom vrhu 72%, a slabije vezane 28%.

U dilucijskom hladnjaku oblik spektara ovisi o primijenjenom polju (slika 4.12). Vertikalna

linija pokazuje maksimalan pomak vrha (0.057 T), kada je postignut 1µB po atomu bakra. Na

nižim poljima (5.2 T, 8 T) spektar je širok i blago pravokutnog oblika što ukazuje da je došlo

do uredenja (Appendix C). Spektri u polju 13 T i 13.3 T se preklapaju, a vrhovi spektara se

poklapaju upravo s najvećim mogućim pomakom vrha, što ukazuje da je iznad 13 T sistem ušao

u saturacijsko područje.
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Relaksacijske krivulje ispod 12 T i iznad 5 K prilično su dobro opisane jednoeksponencijal-

nim krivuljama. Iznad 12 T i ispod 5 K korištena je preciznija funkcija koja ima u vidu da su u

glavnom vrhu prisutni signali s dvije pozicije litija:

1− M(τ1)

M∞
= ae−(τ1/T1)β + (1− a)f(τ1), (6.11)

pri čemu jeM∞ vrijednost magnetizacije u ravnoteži, a predstavlja doprinos jače vezane linije

u spektru i fiksiran je na 0.72, dok je f(τ1) relaksacija slabije vezane linije, koja je nezav-

isno odredena mjerenjem na desnoj strani spektra. Mjerili smo ovisnost T1 o polju na dvije

temperature: 1.55 K i 4.6 K. Iz mjerenja lokalne magnetizacije (pomaka linije), znamo da

je vrijednost magnetizacije na ≈ 20% saturacijske vrijednosti Ms na otprilike 6 T. Sudan i

suradnici predvidaju promjenu iz vektor-kiralne u SDW2 fazu na otprilike 20% magnetizacije,

pa vrh u 1/T1 na 6 T možemo pripisati blizini V C − SDW2 granice. Kvadrupolarna ne-

matska faza predvidena je iznad 70% saturacijske magnetizacije Ms. Krivulja magnetizacije

je jako oštra u tom području i moguće je da QN faza postoji u uskom području izmedu 12

T i 13 T. S obzirom na ranije navedeno izabrali smo polja µ0H0 = 4, 8, 12 and 13 T na ko-

jima smo odlučili mjeriti ovisnost 1/T1 o temperaturi. U polju µ0H0 = 4 T, gdje je očekiva

VC faza, 1/T1 pokazuje tragove divergencije do temperature 1.55 K, s kritičnim eksponentom

1/T1 ∝ T−0.55(2) (K = 0.24(1)). U polju µ0H0 = 8 T, gdje se očekuje SDW2 faza, 1/T1

pokazuje slično ponašanje s kritičnim eksponentom 1/T1 ∝ T−0.30(1) (K = 0.38(1)). Precizne

vrijednosti parametra K su osjetljive na područje u kojem vršimo prilagodbu, ali je jasno da se

K monotono povećava s poljem, kao što je teorijski predvidno. Temperarutarna ovisnost 1/T1

u magnetskom polju µ0H0=12 T pokazuje široki maksimum oko 2.5 K što moguće ukazuje na

blizinu QN faze. U polju µ0H0 =13 T, vrh se pomiče na višu temperaturu od 6K, ali ispod 2.2

K pad je preoštar da bi se pripisaoQN fazi. Ako uzmemo u obzir mjerenja u dilucijskom hladn-

jaku, kritični eksponent je 1/T1 ∝ T 3.6, što daje nefizikalnu vrijednostK = 2.3(1). Vjerojatnije

objašnjenje, u skladu s rezultatima statičkih mjerenja, je da sustav ulazi u saturacijski režim na

13T i da 1/T1 pokazuje eksponencijalni procjep u spektru pobudenja. Podaci u polju 13 T is-

pod 2.9 K prilagodeni su na funkciju 1/T1 = C1exp(−∆/T ) + C2, gdje je ∆ = 3.24(19)K,

C1 = 0.396(47) ms−1 i C2 = 5.1(1.4) × 10−5 ms−1. Posljednja, temperaturno neovisna, kon-

stanta uzima u obzir doprinose nečistoća i/ili defekata. Možemo zaključiti da se ovisnost spin

rešetka relaksacije mijenja kvalitativno i kvantitativno u uskom području izmedu 12 i 13 T, od

divergencije, karakteristične za SDW2 fazu do eksponencijalnog procjepa karakterističnog za

saturacijski režim.
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6.4.4 Diskusija

U razmatranju faznog dijagrama vodit ćemo se radom Sudana i suradnika [40], za omjer interak-

cije prvih i drugih susjeda J1/J2 = −2.22. Predvidene su sljedeće faze: (i) vektor-kiralna (VC)

za M/Msat < 0.15, (ii) SDW2 faza za 0.15 < M/Msat < 0.7, i (iii) kvadrupolna nematska

(QN) za 0.7 < M/Msat < 1. Koristeći NMR pomak na temperaturi T = 0.125 K (slika 4.13)

kao mjeru magnetizacije, možemo procijeniti da se M/Msat = 0.15 postiže za µ0H ≈ 5T,

M/Msat = 0.7 za µ0H ≈ 12T, iM =Msat na µ0H ≈ 13T.

Vektor-kiralna faza. Iz µSR mjerenja, zaključujemo da nema klasičnog 3D uredenja u nul-

tom polju do 30 mK. Ti podaci su označeni zvjezdicama na slici 4.17. Dutton i suradnici [41]

sugeriraju da je mogući razlog za to činjenica da susjedni lanci nisu paralelni, nego nakošeni

jedni spram drugih. Uzmemo li u obzir SQUID podatke na 1 T i 3.5 T, gdje se vidi singularitet

na 0.7 K u magnetskoj susceptibilnosti možemo zaključiti o granicama VC faze. Iznad 5 T

suscpetibilnost pokazuje drugačiju ovisnost i možemo zaključiti da se radi o drugačijoj fazi u

odnosu na onu u nižim poljima. Uz to, krivulje toplinskog kapaciteta su vrlo slične u polju 0 T

i 2 T, i polako se mijenjaju iznad 4 T. Iz toga možemo zaključiti da se granica izmedu te dvije

faze dogada negdje izmedu 4T i 5T.

SDW2 faza. NMR spektri na 125 mK u poljima 5.2 T i 8 T jasno ukazuju da je došlo

do magnetskog uredenja. NMR relaksacija u polju 8 T iznad temperature prijelaza pokazuje

ovisnost 1/T1 ∝ T−0.30(1) što je konzistentno sa SDW2 fazom (negativni eksponent manji od

1). Ta opažanja ukazuju da je u poljima od ≈5 T do ≈ 12 T SDW2 faza stabilizirana vanjskim

magnetskim poljem.

Moguća kvadrupolarna nematska (QN) faza. Relaksacijska NMR mjerenja u polju 12 T

pokazuju negativni nagib krivulje iznat T = 2.5K, u skladu s SDW2 fazom, ali ispod 2.5 K

nagib se počinje mijenjati u pozitivni, što bi moglo biti konzistentno s QN fazom (pozitivni

eksponent manji od 1). Takvo ponašanje moguće ukazuje na blizinu prijelaza izmedu SDW2 i

QN faze. Suprotno SDW2 fazi, QN faza ne bi trebala širiti NMR spektar [55]. Spektar u polju

12 T sa slike 4.12 je uži nego spektri u polju 5.2 i 8 T, ali širi od onih u višem polju. To takoder

ukazuje na blizinu QN faze. Spektar u polju 12.5 T je uži, a pomak ukazuje da je magnetizacija

u 12.5T na razini M/Msat = 0.85 što bi prema teorijskom faznom dijagramu bilo u QN fazi

(M/Msat > 0.7). Teorijski je predvideno da u sustavima s anizotropijom čvrste osi, QN faza

može biti realizirana za veće vrijednosti magnetizacije. U svakom slučaju, donja granica za QN

fazu trebala bi biti blizu 12.5 T. S druge strane u polju 13 T opažena je saturacija što daje gornju

granicu za QN fazu.
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Saturacija. U saturacijskom području očekuje se procjep u spektru pobudenja. To je

potvrdeno u našim relaksacijskim mjerenjima iz kojih je vrijednost procijepa ∆ ≈ 3.2K u

polju 13 T. Teorijski model za izotropni lanac [35] predvida otvaranje procjepa (tj. ulazak u

saturacijsko područje) kada je omjer energije spina u polju εs = gµBµ0Hs i interakcije drugih

susjeda J2 jednak εs/J2 ≈ 0.5, što je u izvrsnom slaganju s našim opažajima (za g = 2.21 u

polju µ0H0 =13 T, εs = 18.2 K dok je J2 = 34 K).

6.5 Zaključak

U ovom smo radu prikazali istraživanje J1 − J2 spoja LiCuSbO4, kandidata za opažanje kvad-

rupolne nematske faze, koja je teorijski predvidena prije više od 30 godina. Korišteno je više

tehnika: NMR, µSR i SQUID kako bismo dobili informacije o različitim dijelovima faznog

dijagrama. Posebna je pažnja dana niskotemperaturnim mjerenjima T → 0 K gdje se očekuju

različita kvantna svojstva osnovnog stanja koja ovise o primijenjenom magnetskom polju. Iz

µSR mjerenja u nultom polju isključili smo tipično 3D uredenje do temperature 30 mK. Iz toga,

zajedno sa SQUID rezultatima zaključujemo o postojanju vektor kiralne faze do ≈4 T. Iz NMR

mjerenja proizlazi da u višim poljima od ≈ 5 T do ≈12.5 T postoji SDW2 faza koja je stabi-

lizirana vanjskim magnetskim poljem. Presudno je odrediti vrijednost saturacijskog polja, jer

se nematska faza nalazi tik ispod njega. Iz mjerenja NMR pomaka, pouzdano smo utvrdili sat-

uracijsko polje od 13 T. Iz prethodno navedenog, suzili smo mogućnost postojanja kvarupolne

nematske faze u LiCuSbO4 u intervalu izmedu 12.5 i 13 T. Jak dokaz za postojanjem te faze os-

taje cilj za buduća istraživanja. Rezultat ovog rada pokazuje da su buduća istraživanja QN faze

u LiCuSbO4 moguća, naročito s obzirom na nisko saturacijsko polje dostupno u standardnim

laboratorijskim magnetima.
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Appendix A

Relaxation of weakly coupled site

At the peak position the spectra have contributions from both the strongly and weakly coupled

lines, with different relaxation times. To determine the contribution of the weakly coupled line

which corresponds to the function f(τ1) in Eq. (4.5) we measured the relaxation on the right

side of the spectra at 30% of the peak value where the contribution of the strongly coupled site

is negligible. The relaxation curves of the weakly coupled line reveal two different relaxation

regimes: a fast one with a relaxation time T1b shorter than T1 of the strongly coupled site, but

of the same order of magnitude, and a long one T1c which is several orders of magnitude longer

than T1 and T1b at low temperatures as shown on Fig A.1.
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Figure A.1: Relaxation of the weakly coupled site

Our main goal was to fix T1b so we could isolate T1 in Eq. (4.5). We used the function f(τ1)

(for the weakly coupled site):

f(τ1) = be−(τ1/T1b)
βb + ce−(τ1/T1c)βc . (A.1)
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Having set (1 − a) = 0.28 in Eq. 4.5, the weights b = 0.22
0.28

and c = 0.06
0.28

were determined, we

were able to fit the contributions of the fast and slow relaxation processes. The stretch param-

eters βb and βc were fixed to 1 above 1.55 K and left as free parameters at lower temperature

measurements.

Spectra taken in µ0H0 =12 T at different temperatures show indeed that the spectral shape

does not change appreciably between 1.55 K and 30 K, and we take the coefficients a, b and c

as temperature independent. The spectral shape does not change either between 12 T and 13 T

at 1.55 K, and we conclude that these parameters are field independent as well (for high fields).

The parameterM∞ was taken from the last measured point at τ1 > 7× T1(T1b), limited by the

repetition time which had to be reasonably short in order to make measurements possible. The

total signal did not relax completely between two acquisitions, but this affects only the value

of the longest relaxation time T1c. Since T1c is an order of magnitude longer than T1 and T1b,

it turns out that its exact values are not critical for the determination of T1. The values of T1b

was determined for each temperature and fixed before the T1 in Eq. (4.5) was calculated. The

stretch parameter βb ranges from 0.51 at lowest temperature to 1 at 1.55 K.
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Appendix B

Calculation of EFG tensor

Calculation of EFG parameters using point charge distribution in python. We assumed point

charge distribution on each ion inside the unit cell. The code first reads position of the atoms

in unit cell from an ASCII file, and adds up contribution ∂2V/∂xα∂xβ of each atom within a

given distance to a selected nuclei inside unit cell. After summation, the matrix ∂2V/∂xα∂xβ

is diagonalized, end eigenvectors are calculated.

from math import*

from numpy import*

hmax=12

kmax=12

lmax=4

nn=30

g=13

distance=30

a=5.7925

b=5.7925

c=14.2918

br=0;

print ”atom broj:”, g

print ”hkl maximum:”,hmax, kmax, lmax,”maksimalna udaljenosti u angstremima”,

hmax*a,kmax*b,lmax*c;

print ”max distance”,distance

norm=[[a,b,c]]
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structure=zeros((nn,3))

details=zeros((nn,2))

Vxx=0

Vxy=0

Vxz=0

Vyx=0

Vyy=0

Vyz=0

Vzx=0

Vzy=0

Vzz=0

ulaz=open(”LiCuSbO4.dat”,”r”)

for i in range(0,nn):

red=ulaz.readline()

razdvajanje=red.split(”�”)

for j in range(0,5):

if j¡3:

structure[i][j]=float(razdvajanje[j])

else: details[i][j-3]=float(razdvajanje[j])

ulaz.close()

v0=mat([[a*structure[g-1][0]+b*0.5*structure[g-1][1],b*sqrt(3)*0.5*structure[g-1][1],c*structure[g-

1][2]]])

for h in range(-hmax,hmax+1):

for k in range(-kmax,hmax+1):

for l in range (-lmax,lmax+1):

for i in range(0,nn):

vip=mat(structure[i])+mat([[h,k,l]])

vi=mat([[a*vip[0,0]+b*0.5*vip[0,1],b*sqrt(3)*0.5*vip[0,1],c*vip[0,2]]])

r=v0-viif h==0 and k==0 and l==0 and i==(g-1)

:t=2

print ”izbjegao sam”, vi

elif linalg.norm(r)¡distance:

br=br+1
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r5=pow(linalg.norm(r),5)

if r5==0: print h,k,l,i

Vxx=Vxx+details[i][0]*details[i][1]*(2*r[0,0]*r[0,0]-r[0,1]*r[0,1]-r[0,2]*r[0,2])/r5

Vyy=Vyy+details[i][0]*details[i][1]*(2*r[0,1]*r[0,1]-r[0,0]*r[0,0]-r[0,2]*r[0,2])/r5

Vzz=Vzz+details[i][0]*details[i][1]*(2*r[0,2]*r[0,2]-r[0,0]*r[0,0]-r[0,1]*r[0,1])/r5

Vxy=Vxy+details[i][0]*details[i][1]*3*r[0,0]*r[0,1]/r5

Vxz=Vxz+details[i][0]*details[i][1]*3*r[0,0]*r[0,2]/r5

Vyz=Vyz+details[i][0]*details[i][1]*3*r[0,1]*r[0,2]/r5

print ”pozicija atoma”, v0, ”broj”, g

print ”broja atoma unutar DISTANCE”, br

print ”Vxx”, Vxx

print ”Vyy”, Vyy

print ”Vzz”, Vzz

print ”Vxy”, Vxy

print ”Vxz”, Vxz

print ”Vyz”, Vyz

V=zeros((3,3))

V[0][0]=Vxx

V[1][1]=Vyy

V[2][2]=Vzz

V[0][1]=Vxy

V[0][2]=Vxz

V[1][2]=Vyz

V[1][0]=Vxy

V[2][0]=Vxz

V[2][1]=Vyz

VV=mat(V)

print ”EFG tenzor”, VV

print linalg.eigh(VV)
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Appendix C

Spectral shape in case of a simple spin

freezing

Simulation of spectra when simple magnetic freezing occurs where nuclei experience random

distribution of the direction of antiferromagnetic internal fields. The intensity distribution in

case of a sweep field is [81]:

I(H) =
1

4HA

|1 + H2
0 −H2

A

H2
|, (C.1)

where HA is local magnetic field, H external applied field and H0 resonant field. Equation C.1

is valid for |H0 −HA| ≤ H ≤ H0 +HA. Intensity distribution is plotted on fig C.1.

from math import*

from numpy import*

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter

import matplotlib.pyplot as plt

import numpy as np

H0=5

HA=0.043

dH=0.0005

D=round(HA/dH)+100

Y=[]

X=[]

for i in range(-D,D):
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Figure C.1: Spectral shape in case of simple spin freezing.

Y.append(0)

X.append(H0+i*dH)

print(Y)

print(X)

for i in range(-D,D):

H=X[i]

if ((H0-HA)¡=H) and (H¡=(H0+HA)):

Y[i]=1./(4*HA)*(1+(H0**2-HA**2)/H**2)

print(Y)

plt.plot(X,Y,’r-’)

plt.ylabel(’Intensity(a.u.)’)

plt.xlabel(’H(T)’)

plt.savefig(’spektar’, dpi=300)

plt.show()
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3. M. Bosiočić, F. Bert, S. E. Dutton, R. J. Cava, P. J. Baker, M. Požek, P. Mendels, Postoji li
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