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Octupole deformations and related collective excitations are analyzed using the framework of nuclear density
functional theory. Axially symmetric quadrupole-octupole constrained self-consistent mean-field (SCMF) cal-
culations with a choice of universal energy density functional and a pairing interaction are performed for Xe,
Ba, and Ce isotopes from proton-rich to neutron-rich regions, and neutron-rich Se, Kr, and Sr isotopes, in which
enhanced octupole correlations are expected to occur. Low-energy positive- and negative-parity spectra and
transition strengths are computed by solving the quadrupole-octupole collective Hamiltonian, with the inertia
parameters and collective potential determined by the constrained SCMF calculations. Octupole-deformed
equilibrium states are found in the potential energy surfaces of the Ba and Ce isotopes with N ≈ 56 and 88.
The evolution of spectroscopic properties indicates enhanced octupole correlations in the regions corresponding
to N ≈ Z ≈ 56, Z ≈ 88 and Z ≈ 56, and N ≈ 56 and Z ≈ 34. The average β30 deformation parameter and its
fluctuation exhibit signatures of octupole shape-phase transition around N = 56 and 88.

DOI: 10.1103/PhysRevC.103.054301

I. INTRODUCTION

The intrinsic shapes of most medium-heavy and heavy
nuclei are characterized by reflection-symmetric, quadrupole
deformations. Reflection-asymmetric or octupole deforma-
tions occur in specific mass regions with the proton Z and
neutron numbers N near 34, 56, 88, and 134 [1,2]. Oc-
tupole correlations determine the systematics of low-lying
negative-parity states, which form approximate alternating-
parity doublets with the positive-parity ground-state bands,
and the electric dipole and octupole transition strengths. The
exploration of stable octupole deformations is a very active
research field in both experimental and theoretical low-energy
nuclear physics. In recent years, experiments with radioactive
ion beams have identified octupole-deformed nuclei, e.g., in
light actinides (220Rn, 222,224,228Ra, and 228Th) [3–5] and lan-
thanides (144,146Ba) [6,7]. Experimental studies of octupole
deformations have also been reported in lighter mass regions,
e.g., the neutron-deficient nuclei with N ≈ Z ≈ 56 [8–12],
and neutron-rich nuclei with N ≈ 56 and Z ≈ 34 [13,14].

Theoretical analyses of octupole deformations have used a
variety of nuclear structure models, such as the self-consistent
mean-field (SCMF) methods [15–19], the interacting boson
model (IBM) [20–24], the geometric collective model [25,26],
and the cluster model [27,28]. Most of these studies have
been focused on the regions corresponding to Z ≈ 88 and
N ≈ 134, and Z ≈ 56 and N ≈ 88. However, octupole cor-
relations in nuclei with particle numbers close to 34 and/or
56 have not been analyzed in much detail. A possible reason
is that, especially because the N ≈ Z ≈ 56 nuclei are close to
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the proton drip line, experimental information is insufficient.
Few exceptions are perhaps the Nilsson-Strutinsky calculation
based on the Woods-Saxon potential in Refs. [15,29], the
constrained Hartree-Fock+BCS calculation with the Skyrme
force [30] of the light Xe and Ba isotopes in Ref. [31], and the
global analysis of ground-state octupole deformation within
the nuclear density functional theory (DFT) in Ref. [19].
However, in those studies calculations were carried out at the
mean-field level or only for restricted spectroscopic proper-
ties. Because of renewed experimental interest in octupole
shapes in extended mass regions, it is meaningful to carry
out a new theoretical analysis of octupole deformations and
related spectroscopy that also includes the lighter mass region
with N/Z ≈ 34 and 56.

Nuclear DFT provides an accurate and economic micro-
scopic approach to nuclear structure that enables systematic
studies [32,33]. Both relativistic [34,35] and nonrelativistic
[32,36] energy density functionals (EDFs) have successfully
been applied in the global description of the ground-state
properties and collective excitations. The basic implementa-
tion is in terms of SCMF calculations that produce energy
surfaces as functions of shape and/or pairing collective
variables. To compute spectroscopic properties, the SCMF
framework must be extended to include dynamical correla-
tions that arise from the restoration of broken symmetries and
fluctuations around the mean-field minima. A straightforward
approach is the generator coordinate method (GCM) [37] with
symmetry projections and configuration mixing included. The
GCM has been employed to study octupole correlations with
axial quadrupole and octupole deformations as collective co-
ordinates [38–43]. In practical applications to medium-heavy
and heavy nuclei, however, the GCM is computation-
ally challenging, especially as the number of nucleons or
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collective coordinates increases. Alternative approaches to
GCM have thus been developed, such as the quadrupole-
octupole collective Hamiltonian (QOCH) [16,44,45] and the
mapped sdf -IBM [23,24].

Based on the fully microscopic framework of nuclear DFT,
here we carry out a systematic analysis of octupole collec-
tive excitations in the mass A ≈ 90–150 regions: Xe, Ba,
and Ce isotopes extending from proton-rich (N ≈ Z ≈ 56) to
neutron-rich (N ≈ 88 and Z ≈ 56) nuclei, and the neutron-
rich Se, Kr, and Sr nuclei with Z ≈ 34 and N ≈ 56. The
starting points are axially symmetric quadrupole-octupole
constrained SCMF calculations using the relativistic Hartree-
Bogoliubov model with the density-dependent point-coupling
(DD-PC1) [46] EDF, and a separable pairing force [47]. The
relevant excitation spectra and transition rates are computed
by solving the collective Schrödinger equation with the axi-
ally symmetric quadrupole β2 and octupole β3 shape degrees
of freedom. The constrained SCMF calculations completely
determine the moment of inertia, three mass parameters,
and collective potential of the QOCH. The diagonaliza-
tion of the QOCH yields the positive- and negative-parity
excitation spectra, as well as the electric quadrupole, oc-
tupole, and dipole transition rates. We note that a similar
SCMF+QOCH spectroscopic calculation, based on the PC-
PK1 [48] EDF, was performed for a large number of medium-
heavy and heavy nuclei: from Rn to Fm, and from Xe to Gd
isotopes [16].

Here we further mention recent EDF-based beyond SCMF
calculations of the octupole-related properties of nuclei. These
include studies of, for instance, the global systematics of
octupole correlations in the ground and excited states of vir-
tually all even-even nuclei within the parity-projected GCM
approach using the Gogny EDFs [49,50], and the onset of oc-
tupole deformations and related spectroscopy in neutron-rich
Ba isotopes within the symmetry conserving configuration
mixing calculations with the Gogny-D1S EDF [40,41], and
within the multireference covariant energy density functional
theory [42] with projections onto angular momentum, particle
numbers, and parity.

This paper is organized as follows. In Sec. II we briefly
review the formalism of the relativistic Hartree-Bogoliubov
(RHB)+QOCH model. The SCMF β2-β3 potential energy
surfaces are discussed in Sec. III. In Sec. IV the systematics of
spectroscopic properties, including excitation energies of low-
lying positive- and negative-parity states, and electromagnetic
transition rates, are compared to available experimental data.
The results for the N = 56 isotones are presented in Sec. V.
Signatures of octupole shape-phase transitions are examined
in Sec. VI. Finally, a brief summary and conclusion are given
in Sec. VII.

II. THEORETICAL FRAMEWORK

A. Relativistic Hartree-Bogoliubov calculation

The first step of the analysis is a set of constrained SCMF
calculations of potential energy surfaces (PESs), performed
using the RHB method [34] with the DD-PC1 [46] functional
for the particle-hole channel, and a separable pairing force

of finite range [47] in the particle-particle channel. The con-
straints imposed in the SCMF calculations are the expectation
values of the axially symmetric quadrupole Q20 and octupole
Q30 moments:

Q̂20 = 2z2 − x2 − y2, (1)

Q̂30 = 2z3 − 3z(x2 + y2). (2)

The corresponding quadrupole and octupole deformation pa-
rameters β2 and β3 are defined by the relations

β2 =
√

5π

3r2
0A5/3

〈Q̂20〉 , (3)

β3 =
√

7π

3r3
0A2

〈Q̂30〉 , (4)

where r0 = 1.2 fm. The calculations are performed in a har-
monic oscillator (HO) basis with the number of oscillator
shells Nf = 10 for the region Z ≈ 34 and N ≈ 56. For heavier
nuclei with Z ≈ 56 and N � 56 a larger basis with NF = 12
is used.

B. Quadrupole-octupole collective Hamiltonian

Collective states are described using an axially symmetric
QOCH, with deformation-dependent parameters determined
microscopically by the constrained RHB calculation. The
QOCH contains the vibrational and rotational kinetic terms,
and the collective potential

Ĥcoll = Tvib + Trot + Vcoll, (5)

where the vibrational kinetic energy is parametrized by the
mass parameters B22, B23, and B33,

Tvib = 1
2 B22β̇

2
2 + B23β̇2β̇3 + 1

2 B33β̇
2
3 , (6)

and the three moments of inertia Ik determine the rotational
kinetic energy,

Trot = 1

2

3∑
k=1

Ikω
2
k . (7)

Finally, the collective potential Vcoll includes zero-point en-
ergy (ZPE) corrections. After quantization the collective
Hamiltonian reads

Ĥcoll = − h̄2

2
√

ωI

[
∂

∂β2

√
I
ω

B33
∂

∂β2
− ∂

∂β2

√
I
ω

B23
∂

∂β3

− ∂

∂β3

√
I
ω

B23
∂

∂β2
+ ∂

∂β3

√
I
ω

B22
∂

∂β3

]

+ Ĵ2

2I + Vcoll(β2, β3), (8)

where ω = B22B33 − B2
23. The mass parameters, moments of

inertia, and collective potentials as functions of the collective
coordinates (β2, β3), are specified by the deformation-
constrained self-consistent RHB calculations for a specific
choice of the nuclear energy density functional and pair-
ing interaction. In the present version of the model, the
mass parameters defined as the inverse of the mass tensor,

054301-2



MICROSCOPIC DESCRIPTION OF OCTUPOLE … PHYSICAL REVIEW C 103, 054301 (2021)

Bi j (q) = M−1
i j (q), are calculated in the perturbative cranking

approximation

MCp = h̄2M−1
(1)M(3)M

−1
(1) , (9)

where

[M(k)]i j =
∑
μν

〈0|Q̂i|μν〉〈μν|Q̂ j |0〉
(Eμ + Eν )k

. (10)

|μν〉 are two-quasiparticle wave functions, and Eμ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that correspond to the collective degrees of
freedom. The collective potential Vcoll is obtained by sub-
tracting the vibrational ZPE from the total RHB deformation
energy:

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
. (11)

The microscopic self-consistent solutions of the constrained
RHB equations, that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions of
the deformations, provide the microscopic input for the cal-
culation of both the collective inertia and zero-point energy.
The Inglis-Belyaev formula is used for the rotational moment
of inertia. From the diagonalization of the collective Hamil-
tonian (5) one obtains the collective energy spectrum and
eigenfunction. The eigenfunctions are expanded in terms of a
complete set of basis functions. For each value of the angular
momentum I , the basis is defined as

|n2n3IMK〉 = (ωI )−1/4φn2 (β2)φn3 (β3) |IMK〉 , (12)

where φnλ
denotes the one-dimensional HO functions of βλ.

For positive-parity (negative-parity) states, n3 and I take even
(odd) numbers. For axially symmetric shapes, the intrinsic
projection of the total angular momentum K = 0. The collec-
tive wave function is then expressed as

	IMπ
α (β2, β3,�) = ψ Iπ

α (β2, β3) |IM0〉 , (13)

with � representing three Euler angles. The corresponding
probability density distribution is defined as

ρIπ
α (β2, β3) =

√
ωI

∣∣ψ Iπ
α (β2, β3)

∣∣2
, (14)

with the normalization∫
ρIπ

α (β2, β3)dβ2dβ3 = 1. (15)

The reduced transition probabilities B(Eλ) are calculated
from the relation

B(Eλ; Ii → I f )

= (Ii0λ0|I f 0)2

∣∣∣∣∣
∫

dβ2dβ3

√
ωIψiMEλ(β2, β3)ψ∗

f

∣∣∣∣∣
2

,

(16)

where MEλ(β2, β3) is the electric moment of order λ, and
the factor in parentheses on the right-hand side of the above
expression is the Clebsch-Gordan coefficient. The electric
moment is calculated as 〈�(β2, β3)|M̂Eλ|�(β2, β3)〉, with
�(β2, β3) representing the wave functions obtained from the

RHB calculations. The corresponding operators M̂Eλ for
dipole, quadrupole, and octupole transitions read

D1 =
√

3

4π
e

(
N

A
zp − Z

A
zn

)
, (17)

Qp
2 =

√
5

16π
e
(
2z2

p − x2
p − y2

p

)
, (18)

Qp
3 =

√
7

16π
e
(
2z3

p − 3zp
(
x2

p + y2
p

))
, (19)

respectively, where bare electric charge e is used, and this
means no effective charges need to be introduced to calculate
electromagnetic transition rates.

III. SCMF RESULTS

A. Neutron-deficient Z ≈ 56 nuclei

The axially symmetric (β2, β3) PESs for neutron-deficient
nuclei 108–118Xe, 110–120Ba, and 112–122Ce are depicted in
Fig. 1. Already at the most neutron-deficient isotopes with
N = 54, the potential is considerably soft in β3 deformation,
even though the minimum is on the β3 = 0 axis. Octupole-
deformed equilibrium states with β3 �= 0 occur in the N ≈
Z nuclei 112,114Ba and 114Ce. There is no stable octupole-
deformed minimum for the neighboring Xe isotopes, but the
potential exhibits a narrow valley on the prolate side (β2 > 0)
that is soft over a range of β3 values. Previous mean-field
calculations have also suggested there are a few N ≈ Z ≈ 56
nuclei that exhibit octupole-deformed equilibrium states on
the potential energy surfaces [17,19,29,31]. For N > 64, not
shown in the figure, the potential becomes rather softer in
the β2 direction and the prolate deformation becomes larger
around the middle of the major shell N = 66, but no oc-
tupole minima are found on the corresponding SCMF PESs.
When approaching the neutron shell closure at N = 82, nearly
spherical global minima are obtained with both the β2 and β3

deformations converging to zero.

B. Neutron-rich Z ≈ 56 nuclei

Figure 2 displays the (β2, β3) PESs for the isotopes
140–150Xe, 142–152Ba, and 144–154Ce beyond the N = 82 neutron
shell closure. These neutron-rich isotopes are close to the
empirical octupole magic number N = 88, and more exten-
sive experimental and theoretical studies have been reported
in this region compared to the neutron-deficient one with
N ≈ Z ≈ 56. In all three isotopic chains the potential sur-
faces shown in Fig. 2 are more rigid in β2, and pronounced
octupole correlations are predicted. In particular, a number
of neutron-rich Ba and Ce nuclei exhibit octupole-deformed
global minima with nonzero value of β3, that is, the isotopes
144–152Ba and 146–152Ce. The most pronounced octupole global
minimum is found in nuclei with N ≈ 88, in agreement with
experimental findings. The β2-β3 PESs obtained in the present
analysis for the neutron-rich lanthanides are also consistent
with many of the recent SCMF calculations using both rela-
tivistic [16,17,24,42] and nonrelativistic EDFs [19,40,41].
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FIG. 1. SCMF (β2, β3) PESs for 108–118Xe, 110–120Ba, and 112–122Ce. Global minima are identified by the red dots. Contours join points on
the surface with the same energy, and the difference between neighboring contours is 1 MeV.

C. Z ≈ 34 nuclei around N = 56

We also explore another mass region in which octupole
correlations could develop. In Fig. 3 we plot the SCMF β2-β3

PESs for the neutron-rich nuclei 86–96Se, 88–98Kr, and 90–100Sr,
close to the proton Z = 34 and neutron N = 56 octupole

magic numbers. Even though octupole correlations are empir-
ically expected to occur at proton number Z = 34, the PESs
in the figure do not exhibit octupole global minima for these
nuclei. In general, the (β2, β3) PESs for the Z ≈ 34 neutron-
rich nuclei appear rather soft in β2 deformation. Taking as

FIG. 2. Same as in the caption to Fig. 1 but for 140–150Xe, 142–152Ba, and 144–154Ce.
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FIG. 3. Same as in the caption to Fig. 1 but for the neutron-rich nuclei 86–96Se, 88–98Kr, and 90–100Sr.

example 96,98Kr, one notices two shallow local minima on
the prolate side. For many nuclei in this region a number of
both microscopic and empirical studies point to the presence
of shape coexistence and/or γ -soft shapes. The present calcu-
lation is restricted to only axially symmetric shapes and, thus,
a more realistic analysis should take into account the triaxial
degrees of freedom.

D. N = 56 isotones

To analyze the evolution of the empirical N = 56 octupole
magic number, we performed constrained SCMF calculations
along the isotonic chain N = 56. Figure 4 displays the re-
sulting β2-β3 PESs for the N = 56 even-even isotones from
Z = 34 (90Se) to Z = 56 (112Ba). In the (β2, β3) PESs, nei-
ther an octupole-deformed equilibrium state nor octupole-soft
potential is observed below the proton magic number Z = 50.
For N = 56 isotones beyond Sn, however, the potentials start
to become more rigid in β2 and softer in β3. Among the
N = 56 isotones depicted in the figure, the most pronounced
octupole minimum is obtained for the nucleus 112Ba with
N = Z = 56.

IV. SPECTROSCOPIC RESULTS

In the following we present QOCH results for the spec-
troscopic properties relevant to quadrupole and octupole
collective excitations. Note that the calculation also includes
N ≈ Z ≈ 56 nuclei that are close to the proton drip line.
For these nuclei only very limited experimental information
is available: the lightest known Xe, Ba, and Ce isotopes
are 110Xe, 114Ba [12], and 118Ce. For completeness, and

considering the signatures of octupole correlations on the
corresponding (β2, β3) PESs in Fig. 1, we also discuss the
spectroscopy of proton drip-line nuclei.

FIG. 4. Same as in the caption to Fig. 1 but for the N = 56
isotones from 90Se (Z = 34) to 112Ba (Z = 56).
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FIG. 5. Comparison of the QOCH and experimental low-energy
excitation spectra for the positive- and negative-parity yrast states
of 144Ba and 112Xe. Solid and dashed arrows denote E2 and E3
transitions, respectively, and the corresponding B(E2) and B(E3)
values are given in Weisskopf units. Experimental results are from
Refs. [6,51].

A. Benchmark calculation: 144Ba and 112Xe

As a test case, we consider the QOCH results for the low-
energy positive-parity (π = +1) and negative-parity (π =
−1) bands of 144Ba and 112Xe. These nuclei are specifically
considered here as representative of the regions close to the
neutron octupole magic numbers N ≈ 88 and 56. In particular,
recent experiments performed at the Argonne National Labo-
ratory [6,7] have indicated that the neutron-rich nucleus 144Ba
and neighboring Ba isotopes are characterized by pronounced
ground-state octupole deformations. In Fig. 5 we compare the
lowest π = +1 and π = −1 QOCH bands of 144Ba and 112Xe
to the available data [6,51]. The predicted bands with both
parities obtained from the present model calculation are in a
reasonable agreement with the experimental ones. The model
also reproduces the data on E2 transitions in the π = +1
band of 144Ba, and predicts B(E3) values for transitions be-
tween the π = +1 and π = −1 bands. In 144Ba the calculated
B(E3; 3−

1 → 0+
1 ) value of 16 W.u. is within the range of ex-

perimental uncertainty. Previous GCM calculations for 144Ba
based on the Gogny-D1S EDF provide [40,41] both positive-

FIG. 6. Probability density distributions for the lowest positive-
parity (0+

1 ) and negative-parity (1−
1 ) states of 144Ba (upper) and 112Xe

(lower) in the β2-β3 plane.

and negative-parity bands that are stretched as compared to
the experimental data, while the energy of the bandhead state
1−

1 is accurately reproduced. Moreover, the B(E3; 3−
1 → 0+

1 )
transition rates of 144Ba predicted by the recent GCM calcula-
tions with both the Gogny-D1S EDF [40] and the relativistic
functional PC-PK1 [42] are more or less similar to the one
obtained in the present calculation. In the neutron-deficient
N ≈ Z ≈ 56 region, 112Xe is the lightest nucleus for which
experimental information is available. The theoretical exci-
tation spectrum is in qualitative agreement with the data,
though we note that the calculated π = +1 band appears to
be somewhat more compressed than the experimental one.

Figure 6 plots the probability density distributions
ρIπ

α (β2, β3) (14) of the lowest energy positive- (0+
1 ) and

negative-parity (1−
1 ) states in the (β2, β3)-deformation space.

One notices that, for both nuclei, the ground state 0+
1 prob-

ability density is peaked at β2 ≈ β2,min, where the global
minimum occurs on the PES, and β3 ≈ 0. The collective wave
functions for the 1−

1 state are, however, concentrated at the
same values of β2 as the corresponding ground states, but at
finite values of the octupole deformation β3 ≈ 0.1–0.15.

B. Low-energy excitation spectra

The calculated excitation spectra for both even-spin
positive-parity and odd-spin negative-parity yrast states are
shown in Figs. 7 and 8, respectively, for the Xe, Ba,
and Ce isotopic chains in comparison with available data.
The theoretical positive-parity states are in good agreement
with experimental results (Fig. 7), with the exception of
nuclei in the immediate vicinity of the neutron magic num-
ber N = 82. For these nuclei the purely collective states
of the QOCH cannot reproduce the empirical excitation
spectrum on a quantitative level. Within the present calcu-
lation, the positive-parity bands in the three isotopic chains
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FIG. 7. Evolution of QOCH excitation spectra for the positive-parity yrast states along the chains of Xe, Ba, and Ce isotopes. Experimental
values are from the ENSDF database [51].

are somewhat compressed as compared to the experimental
values for 52 � N � 72 and N � 86. This reflects the fact
that the SCMF potential surfaces for the corresponding nuclei
exhibit more pronounced β2 deformations (Figs. 1 and 2).
In addition, there is a noticeable staggering pattern of the
predicted 6+

1 and 8+
1 excitation energies around N = 56, in

particular, in the Xe isotopes [Fig. 1(a1)]. As seen from the
SCMF results in Fig. 1, the topology of the PES varies rather
rapidly from 110Xe to 114Xe; that is, the degree of β2 soft-
ness increases. As a consequence, structures of the resultant
positive-parity states could be significantly different between
neighboring isotopes.

The results for the negative-parity states, shown in Fig. 8,
are more interesting. The calculated levels for each isotopic
chain exhibit evident signatures of enhanced octupole col-
lectivity, that is, a parabolic behavior of excitation energies
with neutron number, centered at around N ≈ 56 and N ≈ 88.
At these neutron numbers the levels become lowest in en-
ergy. This is consistent with the observed trend of the SCMF
(β2, β3) PESs in Figs. 1 and 2: in most of the nuclei around
N = 56 and 88 the corresponding PESs display global minima

at nonzero β3. A marked difference between the predicted
and experimental π = −1 spectra is that the former increase
rapidly as the neutron major shell N = 82 is approached,
while the latter shows a flatter behavior. Moreover, the quanti-
tative agreement is not satisfactory for the J = 3−, 5−, and 7−
excitation energies. As already mentioned, such discrepancies
occur mainly because the present QOCH framework only
deals with the collective states. Particularly for the low-lying
negative-parity states in those nuclei near the magic numbers,
noncollective degrees of freedom come to play a more relevant
role. In such a case, phenomena like octupole vibrations of
spherical shape emerge, but they cannot be fully accounted
for within the present approach.

In Figs. 9 and 10 we display the QOCH results for the
excitation energies of the lowest positive- and negative-parity
states in neutron-rich Se, Kr, and Sr isotopes, respectively.
There are only few tentative assignments of negative-parity
states in neutron-rich Z = 34, 36, 38 isotopes. Only few data
for Kr isotopes are available. Also in this case one notices a
kind of parabolic behavior centered at N = 56, but much less
pronounced than in the proton-rich Xe, Ba, and Ce nuclei.
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FIG. 8. Same as in the caption to Fig. 7 but for the negative-parity states.

Obviously in the latter case the Z ≈ 56 proton and N = 56
numbers reinforce octupole correlations, and global minima
at nonzero β3 are predicted. This does occur for the neutron-
rich Se, Kr, and Sr isotopes, for which the corresponding
PESs are at most soft in the β3 collective coordinates, as
shown in Fig. 3. In fact, it is well known that for these
nuclei it is far more important to include the triaxial degree
of freedom in order to describe the excitation spectra at a
quantitative level, and especially the shape transition at N =
60. A number of previous empirical and microscopic studies
have confirmed that the effects of triaxial deformations and
coexistence of different equilibrium shapes play an important
role in determining the low-energy nuclear structure around
N ≈ 60. The present version of the QOCH model is restricted
to axially symmetric shapes and, therefore, the calculated
positive-parity spectra can only qualitatively reproduce the
empirical isotopic trend (Fig. 9). Similarly to the experimental
trend, the predicted positive-parity levels decrease as func-
tions of N . The experimental data for the considered Se and Kr
isotopes are reasonably described, except for the nearly spher-
ical nucleus 88Kr (N = 52). Note that especially in Sr isotopes

[Fig. 9(a2)] the experimental π = +1 spectra show a marked
peak at N = 56. This points to the N = 56 neutron subshell
closure due to filling of the 2d5/2 orbital. This systematics is
not observed in the predicted spectra. This is expected from
the fact that the corresponding SCMF β2-β3 map for 94Sr is
well deformed (Fig. 3).

C. Electromagnetic properties

The results for the B(E2; 2+
1 → 0+

1 ), B(E3; 3−
1 → 0+

1 ), and
B(E1; 1−

1 → 0+
1 ) reduced transition probabilities along the

Xe, Ba, and Ce isotopic chains are shown in Fig. 11. We
note a reasonable agreement with the experimental B(E2)
values, especially considering that bare charges are used in the
calculation. Much less information is available on the B(E3)
values. What is interesting is that the theoretical B(E3) values
exhibit two peaks, one at N ≈ 56 and the other at N ≈ 88.
These neutron numbers, of course, correspond to the ones
at which octupole collectivity is most enhanced. Consider-
ing the results on a more quantitative level, in each isotopic
chain the QOCH results for the B(E3) rates systematically
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FIG. 9. Same as in the caption to Fig. 7 but for the positive-parity
states in Se, Kr, and Sr isotopes.

underestimate the experimental values. The exceptions are
144,146Ba, for which the experimental values are character-
ized by large uncertainties (see also Fig. 5). The reason why
the QOCH cannot quantitatively reproduce the experimental
B(E3) values is probably because of the fact that, for those
nuclei that are close to the neutron magic number N = 82, the
calculated energies of the 3− state are also not in a particularly
good agreement with experimental results (cf. Fig. 8). As
shown in Fig. 2, for those nuclei that are nearly spherical,
there is no octupole deformation or octupole softness at the
SCMF level, so the collective model is not expected to provide
a very good description of E3 transition strength. There is no
experimental information for the E1 transition strengths. The
systematics of the calculated B(E1) values exhibits certain
peaks for particular nuclei, but they are not necessarily the
same as for the B(E3) values. The E1 transitions are less
collective in nature compared to the E2 and E3 ones; hence
the collective model does not necessarily provide accurate
predictions for the B(E1) values.

V. SYSTEMATICS ALONG THE N = 56 ISOTONIC CHAINS

We also explored the systematics of excitation energies
along the N = 56 isotones. The QOCH results for the low-
energy positive-parity and negative-parity spectra are shown
in Fig. 12. The predicted positive-parity levels remain almost

FIG. 10. Same as in the caption to Fig. 7 but for the negative-
parity states in Se, Kr, and Sr isotopes.

constant with proton number Z , except for the Z = 50 shell
closure. The model qualitatively reproduces the correspond-
ing experimental π = +1 spectra, with the exception of a
pronounced proton-number dependence observed in the re-
gion 36 � Z � 42. The cusp in the experimental yrast states
indicates the Z = 40 proton subshell closure, which is not
properly accounted for in the present calculation restricted
to axial symmetry. The failure in describing this experimen-
tal pattern could also be attributed to the fact that both the
employed energy density functional and pairing property are
not specifically adjusted to reproduce the Z = 40 subshell clo-
sure. The computed π = −1 states become lowest in energy at
Z ≈ 40 for the Z < 50 region. Beyond the proton magic num-
ber Z = 50, level spacing between the negative-parity states
is strongly reduced, and their energies display the parabolic
trend characteristic of pronounced octupole correlations. The
calculation also reproduces the empirical B(E2) values, but
underestimates the two known B(E3; 3−

1 → 0+
1 ) at Z = 42

and Z = 44 by approximately a factor of 2.

VI. SIGNATURES OF OCTUPOLE SHAPE TRANSITIONS

As signatures of quadrupole and octupole shape transi-
tions, we plot in Fig. 13 the average values of the axial
quadrupole β2 [Fig. 13(a)] and β3 [Fig. 13(b)] deformation
parameters in the QOCH ground states 0+

1 , and their fluctu-
ations δβ2/β2 and δβ3/β3, respectively, for the Ce, Ba, Xe,
Sr, Kr, and Se isotopes, as functions of the neutron number.
Here the average βλ (λ = 2, 3) is defined as βλ =

√
〈β2

λ〉, and
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FIG. 11. B(E2; 2+
1 → 0+

1 ) (top), B(E3; 3−
1 → 0+

1 ) (middle), and B(E1; 1−
1 → 0+

1 ) (bottom) reduced transition probabilities for the Xe, Ba,
and Ce isotopes. Solid symbols connected by lines denote the QOCH results. Experimental values (open symbols) are taken from the ENSDF
database [51].

δβλ denotes the variance δβλ =
√

〈β4
λ〉 − 〈β2

λ〉2
/2βλ [52,53].

In Fig. 13(a), as expected from both the SCMF (β2, β30)
PESs and the calculated excitation spectra, the average de-
formation β2 increases towards the middle of the major shell,
as the quadrupole collectivity becomes larger. The octupole
deformation β3 exhibits a parabolic behavior in two regions,
centered at the neutron numbers N = 56 and 88, at which it
reaches maximum values larger than β3 ≈ 0.15.

In Fig. 13(c), fluctuations of the β2 deformation for the
Se, Kr, and Sr isotopes change abruptly from N = 58 to 60.
This reflects the rapid structural evolution in these nuclei,
most noticeably in Kr, the relevant spectroscopic properties
indicating phase-transitional behavior at N = 60. The fluctu-
ations of β2 for the Xe, Ba, and Ce isotopes exhibit only a
moderate change. This is consistent with the SCMF results
that the minima are more rigid in β2.

The fluctuation in octupole deformation β3, depicted in
Fig. 13(d), presents a measure for octupole softness. Espe-
cially for the Sr and Kr nuclei near N = 54–56, and for
the Ba and Ce nuclei from N = 88 to 90, we observe a
marked discontinuity characteristic of octupole shape-phase
transitions. The isotopic dependence of the fluctuation in

Fig. 13(d) correlates with the systematics of spectroscopic
properties.

We note that in Fig. 13(a) the average β2 has a finite value
≈0.05 for those Xe, Ba, and Ce nuclei near the magic number
N = 82. This is at variance with the SCMF result, in which
the equilibrium minimum is found at (β2, β3) ≈ (0, 0) for the
N ≈ 82 nuclei. However, the average β2 is here obtained by
using the wave functions resulting from the diagonalization
of the QOCH and, therefore, does not necessarily coincide
with the equilibrium minimum in the SCMF calculation.
Similar results were obtained in a previous SCMF plus five-
dimensional collective Hamiltonian approach [54]. We have
also confirmed that the calculated 0+

1 wave functions for the
Ba isotopes with N = 80, 82, and 84 have the largest probabil-
ity amplitudes at |β2| ≈ 0.05. Finally, the large β2 fluctuations
at the N = 82 magic number are due to vanishing values of β2

in the denominator in spherical nuclei.

VII. CONCLUSIONS

Octupole collective excitations were analyzed using the
fully microscopic framework of nuclear density functional
theory. Axially symmetric quadrupole-octupole constrained
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FIG. 12. Excitation spectra of the low-lying positive- (top row)
and negative-parity (bottom row) yrast states of the N = 56 isotones
as functions of the proton number Z . The excitation spectra computed
with the QOCH are plotted on the left-hand side of the figure, and are
compared with the available experimental data [51] on the right.

SCMF calculations based on a choice of universal energy
density functional and pairing interaction were performed in
three mass regions of the nuclear chart in which enhanced
octupole correlations are empirically expected to occur:
neutron-deficient nuclei with Z ≈ 56 and N ≈ 56, neutron-
rich nuclei with Z ≈ 56 and N ≈ 88, and the neutron-rich
nuclei with Z ≈ 34 and N ≈ 56. The resulting potential en-
ergy surfaces in the (β2, β3) plane indicate octupole-deformed
equilibrium states at the SCMF level in 112,114Ba and 114Ce on
the neutron-deficient side, and in a number of neutron-rich Ba
and Ce nuclei around N = 88.

The SCMF calculations completely determine the ingredi-
ents of the quadrupole-octupole collective Hamiltonian: the
moment of inertia, three mass parameters, and the collective
potential. The diagonalization of the QOCH subsequently
yields the positive- and negative-parity excitation spectra
and the electric quadrupole, octupole, and dipole transition
strengths that are relevant to the quadrupole and octupole
modes of collective excitations. The predicted excitation spec-
tra for both parities and the B(E2) and B(E3) values of
the neutron-deficient and neutron-rich Z ≈ 56 nuclei are in
a reasonable agreement with the experimental data. These
quantities indicate a parabolic systematics around the neutron
numbers N = 56 and 88, at which the SCMF (β2, β3) PESs
exhibit pronounced octupole-deformed minima. The calcu-
lated spectroscopic properties for the neutron-rich nuclei with
Z ≈ 34 and N ≈ 56 also indicate a signature of enhanced
octupole collectivity around N ≈ 56, though not as distinct as

FIG. 13. Average values of the (a) β2 and (b) β3 deformation
parameters in the 0+

1 ground state, βλ = √〈β2
λ〉, and the fluctuations

(c) δβ2/β2 and (d) δβ3/β3, for the Xe, Ba, Ce, Se, Kr, and Sr isotopes
as functions of the neutron number N . The variance δβλ is defined as

δβλ =
√

〈β4
λ〉 − 〈β2

λ〉2
/2βλ.

in the case of the Z ≈ 56 isotopes. We further explored spec-
troscopic properties along the N = 56 isotones, from Z = 34
to 58. The relevant quantities, i.e., negative-parity spectra and
B(E3) transitions, again point to an enhancement of octupole
correlations around Z = 34 and 56. In general, octupole col-
lectivity appears to be more enhanced in the N ≈ 88 region
than around N ≈ 56. The present fully microscopic spectro-
scopic calculation has predicted several nuclei with stable
octupole deformation in the neutron-deficient Z ≈ 56 nuclei
that have not been investigated so far. The average β2 and
β3 deformations calculated in the QOCH ground states, as
well as their fluctuations, exhibit signatures of quadrupole and
octupole shape-phase transitions.

The current implementation of the QOCH method is
restricted to axially symmetric shapes. Hence some discrep-
ancies with the experimental spectroscopic properties could
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be traced back to this limitation. In particular, the fact that the
positive-parity states for the neutron-rich Z ≈ 34 and N ≈ 56
nuclei have not been reproduced quantitatively indicates that
triaxial shape degrees of freedom need to be included as
additional collective coordinates. This requires the inclusion
of several new terms in the collective Schrödinger equation,
but in practical applications such an extension would be very
complicated. Thus, a method that consists in mapping the
SCMF solutions onto the interacting-boson Hamiltonian [55]
could be more feasible for the inclusion of triaxial degrees of
freedom. Work in this direction presents an interesting future
study.
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