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M. Makek,8 H. Merkel,3 D. G. Middleton,3 M. Mihovilovič,2,3,11 U. Müller,3 L. Nungesser,3 M. Paolone,12 J. Pochodzalla,3

S. Sánchez Majos,3 B. S. Schlimme,3 M. Schoth,3 F. Schulz,3 C. Sfienti,3 S. Širca,2,11 N. Sparveris,7 S. Štajner,2 M. Thiel,3

A. Tyukin,3 A. Weber,3 and M. Weinriefer3

(A1 Collaboration)
1Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France

2Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
3Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany

4Mississippi State University, Starkville, Mississippi 39762, USA
5Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA

6RIKEN BNL Research Center, Upton, New York 11973-5000, USA
7Temple University, Philadelphia, Pennsylvania 19122, USA

8Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
9Institute for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, USA

10Laboratory for Nuclear Science, Massachussetts Institute of Technology, Cambridge, Massachusetts 02139, USA
11Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

12New Mexico State University, Las Cruces, New Mexico 88003, USA

(Received 26 August 2020; accepted 26 January 2021; published 24 February 2021)

Background: Generalized polarizabilities (GPs) are important observables to describe the nucleon structure,
and measurements of these observables are still scarce.
Purpose: This paper presents details of a virtual Compton scattering (VCS) experiment, performed at the A1
setup at the Mainz Microtron by studying the ep → epγ reaction. The article focuses on selected aspects of the
analysis.
Method: The experiment extracted the PLL − PTT/ε and PLT structure functions, as well as the electric and
magnetic GPs of the proton, at three new values of the four-momentum transfer squared Q2: 0.10, 0.20, and
0.45 GeV2.
Results: We emphasize the importance of the calibration of experimental parameters. The behavior of the
measured ep → epγ cross section is presented and compared to the theory. A detailed investigation of the
polarizability fits reveals part of their complexity, in connection with the higher-order terms of the low-energy
expansion.
Conclusions: The presented aspects are elements which contribute to minimize the systematic uncertainties and
improve the precision of the physics results.

DOI: 10.1103/PhysRevC.103.025205

I. INTRODUCTION

Nucleon polarizabilities are fundamental observables
which describe how the charge, magnetization, and spin den-
sities in the nucleon are deformed when an external quasistatic
electromagnetic field is applied. They can be accessed through
the Compton scattering process γ N → Nγ , and owe their
small magnitude [1] to the strong binding force of quantum
chromodynamics. Polarizabilities extend to finite momentum
transfer, by replacing the incoming real photon with a space-
like virtual one (γ ∗), of virtuality Q2. This leads to the concept
of generalized polarizabilities (GPs) [2], i.e., Q2-dependent
observables describing the spatial distribution of the

*helene.fonvieille@clermont.in2p3.fr

polarization density in the composite system. Nucleon GPs
are accessed in the virtual Compton scattering (VCS) process
γ ∗N → Nγ , via the eN → eNγ reaction. The associated the-
oretical framework was first established in Ref. [3]. Further
developments [4] led to six independent GPs at lowest order:
two scalar ones, the electric GP αE1(Q2) and the magnetic
GP βM1(Q2), plus four spin GPs. These observables have a
well-defined continuity to the polarizabilities in real Compton
scattering (RCS) at Q2 = 0.

The low-energy regime is defined by small values of the
total energy W in the γ ∗N center-of-mass (c.m.), typically
below the pion production threshold, or slightly above it.
In this regime, the photon electroproduction cross section is
dominated by the so-called Bethe-Heitler(BH)+Born cross
section, dσBH+Born, that contains no polarizability effect and
is entirely calculable in quantum electrodynamics. The effect
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of the GPs consists of a small deviation of the experimental
eN → eNγ cross section from dσBH+Born. The electric and
magnetic GPs of the proton have been measured by several
experiments, at various four-momentum transfers in the Q2

range from 0.06 to 1.76 GeV2 [5–16]. GPs are extracted from
ep → epγ cross sections by fitting methods based either on
the low-energy theorem [3] (low-energy expansion or “LEX
fit”) or the dispersion relation model for VCS [17,18] (“DR
fit”). A more complete presentation can be found in the recent
review [19].

Our VCS experiment has been conducted at the Mainz
Microtron (MAMI) at various times from 2011 to 2015, to
perform new measurements of the electric and magnetic GPs
of the proton in the intermediate Q2 range. The results have
been published in Ref. [16], in terms of GPs and structure
functions. The experiment was performed essentially below
the pion production threshold, and GPs were extracted from
the measurement of absolute ep → epγ cross sections, using
the two fitting methods cited above. The aim of the present
paper is to give complementary accounts of this experiment.
After a brief review of the instrumental configuration (Sec. II),
details of the analysis are provided, with a focus on calibra-
tion aspects (Sec. III), photon electroproduction cross sections
(Sec. IV), and polarizability fits (Sec. V).

Cross-section data are available electronically as supple-
mental material to this article [20] and at arXiv.org in the
source files.

II. THE EXPERIMENT

The experiment uses the unpolarized MAMI electron beam
and the A1 setup with a 5-cm-long liquid hydrogen target
and the two high-resolution, small solid-angle magnetic spec-
trometers A and B in coincidence. We refer to Ref. [21] for
a detailed description of the apparatus. The detector package
comprises a set of vertical drift chambers and scintillators in
each arm, plus a Cherenkov detector in the electron arm. The
beam of intensity 5–15 μA is rastered on the target by 1–2 mm
in both transverse directions. The instantaneous luminosity of
the experiment reaches (0.6−1.8) × 1037 cm−2/s.

The detected particles are the scattered electron and the
outgoing proton of the ep → epγ reaction. The event re-
construction yields the particles’ four-momenta at the vertex,
denoted by k′ and p′ for the final electron and final proton,
respectively. The four-momentum of the missing particle (the
outgoing photon), denoted by q′, can then be reconstructed as
q′ = k + p − k′ − p′, where k and p are the four-momenta of
the incoming electron and the target proton, respectively. The
missing mass squared, noted M2

X = (q′)2, exhibits a clear peak
corresponding to a single undetected photon, the so-called
“VCS events” (cf. Fig. 3). The four-momentum of the virtual
photon is q = k − k′, with Q2 ≡ −q2.

The experiment studies VCS at three yet unexplored values
of Q2: 0.10, 0.20, and 0.45 GeV2. The aim is twofold: to
cover a rather large Q2 range, while surrounding the point at
Q2 = 0.33 GeV2 where previous measurements exist and are
intriguing. An important variable for the design is the modulus
of the three-momentum of the outgoing photon in the (γ ∗ p)
c.m., denoted by q′

c.m.. Two other main kinematical variables

TABLE I. The main kinematical settings, in terms of beam en-
ergy Ebeam, spectrometer central momenta PA and PB, spectrometer
angles relative to the beamline, θA and θB, and the out-of-plane
angle of spectrometer B (OOPB). The scattered electron is detected
in spectrometer B (respectively, A) at Q2 = 0.10 and 0.20 GeV2

(respectively, 0.45 GeV2). A few complementary settings are also
used as slight variants of these ones.

Setting Ebeam PA θA PB θB OOPB

name (MeV) (MeV/c) (deg) (MeV/c) (deg) (deg)

Q2 = 0.10 GeV2

INP 872 425 53.1 700 22.9 0
OOP 872 343 52.6 693 21.9 9.0
LOW 872 365 58.0 745 22.4 0

Q2 = 0.20 GeV2

INP 1002 580 51.5 766 30.4 0
OOP 1002 486 51.0 766 29.2 8.5
LOW 905 462 52.2 723 32.5 0

Q2 = 0.45 GeV2

INP 1034 650 51.2 634 32.7 0
OOP 1034 647 51.0 750 39.2 8.0
LOW 938 645 52.3 713 40.5 0

are the polar and azimuthal angles of the outgoing photon with
respect to the virtual photon in the c.m., denoted by θc.m. and
φc.m. respectively.

The low-energy theorem [3] is valid only below the pion
production threshold, corresponding to W = mN + mπ and
q′

c.m. = 126 MeV/c. Given the fact that the effect of the
GPs in the cross section increases with q′

c.m., different energy
regions are defined, according to their increasing sensitivity
to the GPs: “low-q′

c.m.” (q′
c.m. < 50 MeV/c) and “high-q′

c.m.”
(q′

c.m. > 50 MeV/c). At each Q2, three kinematical settings
are chosen, each one with a different goal: (i) a high-q′

c.m.,
out-of-plane setting (“OOP”) with large sensitivity to the
electric GP, (ii) a high-q′

c.m., in-plane setting (“INP”) with
mixed sensitivity to the electric and magnetic GPs, and (iii)
a low-q′

c.m. setting (“LOW”) with no sensitivity to the GPs but
useful for normalization. These settings are listed in Table I.
Note that the OOPB angle of 8−9◦ in the laboratory frame
allows one to reach φc.m. = 90◦ in the c.m. At each Q2, the
experiment is performed at a single value of the virtual photon
polarization parameter ε. The settings are designed to maxi-
mize this parameter, since large values of ε enhance the GP
effect in the cross section.

High statistics are achieved in the experiment, with about
900k, 1100k, and 300k VCS events recorded at Q2 = 0.10,
0.20, and 0.45 GeV2, respectively. About one-third of the
statistics corresponds to low-q′

c.m. (q′
c.m. < 50 MeV/c) and is

used for absolute normalization (cf. Sec. IV). The remain-
ing two thirds of events correspond to higher q′

c.m. and are
used in the polarizability fits. The motivation for such high
statistics is driven by considerations on the GP effect at back-
ward θc.m. angles. This angular region is important because
of its high sensitivity to the magnetic GP, via the structure
function PLT . However, in this region the GP effect exhibits
very rapid variations (cf. Fig. 9) and the LEX fit may not be
applicable everywhere (cf. Sec. V). To be able to include this
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region selectively in the fit, one needs a fine 2D binning in
(cos θc.m., φc.m.), with reasonable statistics in each bin.

III. DATA ANALYSIS

The experiment is quite demanding in terms of accuracy
of the measured ep → epγ cross section. Indeed the effect
of the GPs in the cross section is very small, ranging from
a few percent to at most 15%. The quality of the event re-
construction, the calibration of experimental parameters and
the reliability of the simulation are key factors to minimize
the systematic error and achieve competitive uncertainties of
the physics results. A few-percent systematic error on the
cross section induces nonnegligible biases in the polarizability
fits. We therefore aim at a precision of 1% on the knowledge
of the solid angle, a goal that can be reached thanks to the
excellent performances of the MAMI beam and the A1 setup.
Sections III A to III D describe the steps towards this goal.
Sections III E and III F summarize the analysis cuts and the
corrections to the event rate, while Sec. III G recalls a few
features of the simulation.

A. Event reconstruction

The event reconstruction is carried out by the A1 COLA
software. In each spectrometer, vertical drift chambers pro-
vide a track of the detected particle in the focal plane,
characterized by two transverse coordinates (xfp, yfp) and two
projected angles (θfp, φfp). This track is transformed into
variables of the particle at the target by using the spectrom-
eter optics, described by the optical transfer matrix. One
obtains four variables at the vertex: the relative momentum
δ = (P − Pref )/Pref where Pref is the reference momentum,
the projected vertical and horizontal angles, θ0 and φ0, re-
spectively, as well as the transverse horizontal coordinate y0

in the spectrometer frame. Some of this information is then
coupled between the two spectrometers, to build more elab-
orate variables in the laboratory frame, such as the missing
mass squared M2

X . The longitudinal coordinate of the vertex,
Zvertex, is obtained by intersecting the beam direction with
the direction of the particle going into spectrometer B. This
spectrometer is chosen for the vertex reconstruction, since its
point-to-point focusing properties provide the optimal reso-
lution in the y0 coordinate. Zvertex depends therefore directly
on y0(B). The transverse coordinates of the vertex, horizontal
(Yvertex ) and vertical (Xvertex ), are obtained solely from the
beam position, and are formally equal to the instantaneous
values of the beam transverse positions Ybeam and Xbeam,
respectively, corrected for the raster pattern. The time of coin-
cidence between the two detected particles is formed by using
the TDC information of the scintillators in each spectrom-
eter. Three other variables coupling the two spectrometers:
q′

c.m., cos θc.m., and φc.m. are constructed for defining the 3D
cross-section bins.

B. Experimental calibration

An important step of the analysis is the calibration of ex-
perimental parameters. After the raw calibration of detectors
(documented, e.g., in Ref. [22]), a second level of calibra-

tion involves additional items, such as: optical transfer matrix
elements, various offsets in momenta, angles and positions,
and a specific parameter describing the cryogenic deposit on
the walls of the target cell (cf. Sec. III D). A major tool for
judging the overall quality of the calibration is the missing
mass squared M2

X . It is sensitive to almost all parameters,
but as a single variable it does not permit to adjust them all.
Thus, different studies were developed off-line to fix all the
experimental parameters. They are described in Secs. III C
and III D.

C. Optical studies

A first study concerns the optical transfer matrices of the
spectrometers. The work of Ref. [21] has established that,
for spectrometer B, a single set of optical coefficients can be
used for dipole magnetic fields up to 1.2 T, i.e., a reference
momentum of 600 MeV/c. Reference [21] also reports that,
for spectrometer A, no field-dependent effects are seen up
to 600 MeV/c, a value at which first indications of field
saturation effects become visible. Above 600 MeV/c, the op-
tical properties of the spectrometers may change increasingly
due to magnetic saturation. In our experiment, spectrom-
eter magnets are operated in the saturation region all the
time for spectrometer B and about one third of the time for
spectrometer A (cf. Table I). Calibration data taken during
the experiment allow one to make some improvements with
respect to the available spectrometer optics at high fields,
namely for spectrometer B. This optimization work is outlined
below.

Data taken with a stack of thin foils regularly spaced along
the beam axis are used to optimize the optics in y0(B) at
several central momenta between 635 and 765 MeV/c. The
y0(B) variable is of special importance since it determines the
longitudinal coordinate of the interaction point, Zvertex, on
which one of the main analysis cuts is applied (see Fig. 4
and Sec. III E). Data with a sieve-slit collimator are taken to
control the optics in the (θ0, φ0)(B) angles.

For the relative momentum δ(B), a few lowest-order optical
coefficients can be partially adjusted on our (e, e′ p) coinci-
dence data. The method is based on optimizing the width
of the narrow peaks corresponding to nuclear levels in the
missing energy spectrum. Such peaks originate from pro-
cesses of the type A(e, e′ p)A-1(∗) and are observed in various
calibration runs using a carbon target (A = 12). They are also
seen in “VCS runs” when the q′

c.m. variable, which actually
corresponds to the missing energy, is small enough. In this
last case, the nuclear (e, e′ p) events take place at the extreme
ends of the cryotarget, where the beam crosses the walls of the
cell and the cryogenic deposit. An example of nuclear peaks
observed with a carbon target is given in Fig. 1. The figure also
illustrates the high sensitivity one can reach in the adjustment
of the main first-order element (δ|x) [see Eq. (1) for definition]
with such events. Since this method uses both spectrometers
at the same time, it relies on the good knowledge of the
δ-optics of one spectrometer, to tune the δ-optics of the other
spectrometer.

Based on the above adjustments, dedicated transfer matri-
ces for spectrometer B have been devised and used at each
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FIG. 1. Top plot: nuclear levels in the reaction 12C(e, e′ p)X
where the missing energy Emiss (corrected for kinematical broaden-
ing) represents the excitation energy of the 11B nucleus. The peak
FWHM is 0.30 MeV. Middle plot: the nuclear peaks versus the
focal plane coordinate xfp(B), for a well-adjusted first-order coefficient
(δ|x) of spectrometer B. Bottom plot: the same thing for (δ|x) of
spectrometer B decreased by 1%.

central momentum setting. The optical transport is expressed
by a polynomial expansion of the focal plane variables, given
by the following set of equations (we adopt notations similar
to Ref. [21]):

δ = (δ|x) xfp + (δ|θ ) θfp + ...,

θ0 = (θ |x) xfp + (θ |θ ) θfp + ...,

φ0 = (φ|y) yfp + (φ|φ) φfp + ...,

y0 = (y|y) yfp + (y|φ) φfp + ....

(1)

Here, only the eight first-order (and dominant) terms have
been explicitly written out, and the dots indicate the series
of higher-order terms, which are proportional to xi

fp θ
j

fp yk
fp φl

fp.
Figure 2 shows the eight first-order elements of the spectrome-
ter B transfer matrices used in the experiment, as a function of
the central momentum PB. Although not deduced from a ded-
icated calibration campaign, and therefore not very accurate,
they give an idea of the magnitude of the saturation effects in
this spectrometer. Overall, the observed variations are smooth
versus PB. The main terms, (δ|x), (θ |θ ), (y|y), and (φ|φ), are
only slightly affected by saturation effects, showing at most a
2.5% relative change in the displayed momentum range. For
instance, the element (y|y), which essentially gives the scale
of the y0(B) reconstruction, is found to vary only by ≈1% in
the saturation region. However, ignoring this change would
induce an error of up to 1% on the scale of the target length,
and hence a systematic error of similar size on the measured
cross section. Other first-order terms in Fig. 2, such as (δ|θ )
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FIG. 2. The eight first-order elements [cf. Eq. (1)] of spectrom-
eter B optics as a function of the central momentum, used in the
VCS analysis. The experiment covers the region PB ∈ [634–770]
MeV/c. The starred point indicates the nonsaturated value at PB =
495 MeV/c. The units in ordinate combine cm, mrad, and percent.

or (y|φ), show larger relative variations, but their contribution
is comparatively small.

For spectrometer A, the same optimization work has not
been done, since available optics in the saturation region
(at PA = 645 MeV/c) give essentially satisfactory results, in
terms of sieve-slit reconstruction, M2

X width or nuclear peaks
width. We just note that hints of saturation are observed for a
central momentum PA as low as 580 MeV/c.

D. Offsets and other calibration parameters

Many parameters are continuously monitored on-line to
ensure stable data taking conditions. While the AQUA
program performs data acquisition, the MEZZO software per-
forms the slow control of basically every instrumental device
in the A1 Hall: magnets, detectors, cryotarget, beam delivery,
etc., and most of these items are known with high precision
in real time. Table II gives a list of the parameters that have
an impact on either the particle reconstruction, the missing
mass squared M2

X , or the acceptance as calculated by the
simulation. Some of these items do not need adjustment since
they are measured with high precision: ≈10−4 relative for
the beam energy Ebeam, ≈0.1 mr for the spectrometer angles,
and <10−4 relative for the central momentum PA. The other
items of Table II potentially need to be adjusted, essentially
by off-line recalibrations. The corresponding methods, listed
in Table II, are outlined below.

Method I focuses on a set of variables pertaining to the
horizontal plane, and treats them altogether. For convenience,
time-independent offsets are introduced for the y0(A) and
y0(B) coordinates, and for the φ0(A) and φ0(B) angles of the
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TABLE II. Various parameters having a direct impact on the reconstructed missing mass squared and/or the simulated acceptance. Items
are listed in the first column. The second column indicates the existence of a real-time measuring device, or the origin of the offset. The third
column specifies the potential need for an off-line adjustment. How often the latter should be done is indicated in the fourth column. The
different adjustment methods are numbered in the last column.

Type of offset or Source of information or Need to
calibration constant measuring device adjust? Time basis Method

Beam energy Ebeam Measured by MAMI No
Spectrometer angles relative to the beam On-line readout No
Spectrometer A central momentum PA Measured by NMR probe No
Transverse beam position, horizontal Ybeam Punctual screenshots Yes Per run I
Offset in horizontal angles φ0(A) and φ0(B) Related to spectrom. optics Yes Once for all I
Offset in horiz. coordinates y0(A) and y0(B) Related to spectrom. optics Yes Once for all I
Cryotarget longitudinal centering Ztarget Pre-experiment surveys Yes Per cooldown I
Transverse beam position, vertical Xbeam Punctual screenshots Yes Per run II
Offset in vertical angles θ0(A) and θ0(B) Related to spectrom. optics Yes Once for all III
Cryogenic deposit on target walls efrost None Yes Per run IV
Spectrometer B central momentum PB Measured by Hall probe Yes Per field setting IV

reconstructed particles. The longitudinal position of the center
of the cryotarget along the beamline, Ztarget, is known only to a
limited precision. Indeed, the target may slightly move when
going from warm to cold state, with a degree of reproducibil-
ity that is unknown. We therefore consider one adjustable
value of Ztarget for each new establishment of the cold state.
The beam position on the target is not continuously monitored
during the experiment, but only inspected visually at discrete
times, by inserting a scintillating Al2O3 screen. The Ybeam

parameter (averaged over the raster) is thus re-determined for
each run.

A global fit of these different parameters is realized, based
on several constraints on reconstructed variables: (i) the target
center, Ztarget, must be the same when seen by both spec-
trometers A and B, and must be constant over given periods
of time; (ii) the Z-position of the thin carbon target used
in calibration runs must be as close as possible to zero, to
agree with precise pre-experiment surveys; (iii) the edges of
the entrance collimators must display a left-right symmetry
in their positioning. Indeed, each collimator is centered by
construction on the spectrometer’s optical axis. The variable
allowing this test is the reconstructed impact coordinate at
the collimator plane: Ycolli = y0 + D tan φ0, where D is the
target-to-collimator distance.

As a result of this global optimization, performed on the
entire data set, the center of the cryotarget is found to be
shifted upstream along the beamline, by 1.4 to 3.3 mm de-
pending on the data taking period. This knowledge serves
as an input to the simulation. The beam horizontal position
is found to be very stable in time, with excursions smaller
than ±1 mm relative to the nominal setpoint. Incidentally, this
study also allows to quantify potential (horizontal) mispoint-
ings of spectrometer B when the latter, weighing 2000 kN,
is moved out-of-plane. In these uplifted configurations, and
within the precision of the method, we observe no extra-offset
in φ0(B), and an extra-offset in y0(B) in the range (0.5–0.9) mm.
These very small values testify to the remarkable stability of
the spectrometer’s mechanical alignment during out-of-plane
motions.

Method II allows to adjust the vertical beam position Xbeam

in-between the daily visual inspections. It uses the fact that
variations in Xbeam induce visible shifts in the sharp edges
of the θ0(A) distribution (the vertical angle of the particle),
due to the very small target-to-collimator distance (0.56 m) in
spectrometer A. Fitting the centroid of the θ0(A) spectrum for
each run provides an efficient follow-up of the Xbeam variations
with time. Observed excursions with respect to the nominal
setpoint do not exceed ±1 mm.

The remaining methods, III and IV, make use of the miss-
ing mass squared in VCS. The aim is to optimize the M2

X
photon peak, i.e., to center it on its nominal position and
minimize its width. This peak width is representative of the
resolution achieved by the apparatus. As already mentioned,
the M2

X variable is kinematically sensitive to all particles’
momenta and angles, and to the thickness of the cryogenic
deposit on the target walls. A wrong value of these parameters
causes distortions of the M2

X peak, which in turn allow for
diagnostics on some global offsets.

Method III focuses on possible global offsets attached to
the vertical angles θ0(A) and θ0(B) of the reconstructed particles.
The M2

X optimization does not constrain both parameters, but
only a linear combination of them, of the type (PA sin θ0(A) +
PB sin θ0(B) ). The main finding is that the adjustment hints at a
small but noticeable vertical misalignment with respect to an
ideal setup. An offset is needed that de-centers the distribution
of either the θ0(A) angle or the θ0(B) angle. In the absence of
further identification of its origin, this misbalance is entirely
attributed to the θ0(A) angle, decentering its distribution by
about 3.2 mr for the settings at Q2 = 0.10 and 0.20 GeV2, and
0.6 mr for the settings at Q2 = 0.45 GeV2. In the simulation,
this departure from an ideal setup is reproduced by shifting
the entrance collimator of spectrometer A by about 1.8 mm
downwards for the settings at Q2 = 0.10 and 0.20 GeV2, and
0.3 mm downwards for the settings at Q2 = 0.45 GeV2.

Method IV determines the last two unknown parameters.
The first one is related to the cryogenic deposit around the
target cell, due to residual nitrogen, oxygen and water vapor
present in the scattering chamber. This deposit varies with

025205-5



H. FONVIEILLE et al. PHYSICAL REVIEW C 103, 025205 (2021)

0

1000

-1000 0 1000
0

1000

-1000 0 1000
Mx

2 (MeV2)
co

u
n

ts

0

2000

-2000 0 2000
0

2000

-2000 0 2000
Mx

2 (MeV2)

0

200

400

-2000 0 2000 4000
0

200

400

-2000 0 2000 4000
Mx

2 (MeV2)

0

5000

-1000 0 1000
0

5000

-1000 0 1000
Mx

2 (MeV2)

0

5000

-2000 0 2000
0

5000

-2000 0 2000
Mx

2 (MeV2)

0

2000

4000

-2000 0 2000 4000
0

2000

4000

-2000 0 2000 4000
Mx

2 (MeV2)

0

2000

4000

-1000 0 1000
0

2000

4000

-1000 0 1000
Mx

2 (MeV2)

0

200

400

-2000 0 2000 4000
0

200

400

-2000 0 2000 4000
Mx

2 (MeV2)

0

2000

-2000 0 2000 4000
0

2000

-2000 0 2000 4000
Mx

2 (MeV2)

LOW INP OOP

LOW INP OOP

LOW INP OOP

(a)

(b)

(c)

FIG. 3. The experimental (solid red) and simulated (dotted blue) distributions of the missing mass squared, for each type of setting. Plots in
columns refers to LOW, INP, and OOP settings, while rows (a), (b), (c) refer to Q2 = 0.10, 0.20, and 0.45 GeV2, respectively. All the analysis
cuts are applied. Both the experimental and simulated distributions are normalized to the same luminosity (i.e., there is no free adjustment).
The lower and upper cuts in M2

X (vertical dashed green lines) correspond to −6 and +7 σ , where σ is the r.m.s. of the photon peak.

time in an unpredictable way, and affects the acceptance
through particle energy losses. This extra-material is modeled
in the analysis codes by a uniform layer over the cell, leading
to one single adjustable item: the layer thickness, efrost, in
g.cm−2. The second parameter is the value of the central
momentum in spectrometer B, PB. It is measured with a rather
limited accuracy (a few per mil or more) by a Hall probe and
needs to be more finely determined at each new field setting.

The key variables to optimize these two parameters are
the position and the width of the M2

X photon peak. Contrarily
to the previous methods based solely on experimental data,
here the simulation is also used. One can then exploit the
two most-sensitive features: the high sensitivity of the peak
position to PB in the experiment, and the high sensitivity of
the peak width to efrost in the simulation. We note in passing
that, apart from the cryogenic deposit, all other sources con-
tributing to the resolution in the simulation (cf. Sec. III G) are
well constrained by other means.

This twofold optimization leads to a unique solution in
terms of PB and the cryogenic deposit 〈efrost〉 averaged over
the setting. As a last step, efrost is finely tuned run-per-run in
the experimental sample, by requiring the position of the M2

X
photon peak to be stable in time. Overall, the thickness of the
cryogenic deposit is found to vary in the range (0–0.1) g.cm−2

throughout the whole data taking. The adjusted values of PB

depart from the Hall probe readings by ≈ a few per mil, which
is consistent with the expected accuracy of the measuring
device.

The resulting M2
X distributions of Fig. 3 show the good

level of agreement obtained between the experiment and the
simulation. Depending on the setting, the photon peak is
centered on values ranging from 20 to 100 MeV2 and the
optimized width is in the range (300−1300) MeV2 (FWHM).

On average, the simulation and the experiment agree to ≈
±10 MeV2 on the peak centering, and to ≈ ±20 MeV2 on
the peak width. This good agreement is also verified locally in
the VCS phase space.

As a conclusion to this section, a good calibration of all
the mentioned parameters is important to get the correct ex-
perimental event rate, as well as a faithful simulation. The
accuracy reached by the above methods is estimated to be
below ±0.5 mm on the beam position (Xbeam and Ybeam) and
on y0 offsets, ±0.5 mr on the offsets in the (θ0, φ0) angles,
± 0.3 MeV/c on PB and ±0.01 g.cm−2 on 〈efrost〉. Dedi-
cated simulation studies show that, for each parameter varying
within its quoted precision, the corresponding uncertainty, or
systematic error on the integrated solid angle is in most cases
well below 1% relative. The most crucial case is the knowl-
edge of 〈efrost〉 for the settings at Q2 = 0.10 GeV2. In these
kinematics, the outgoing protons have the lowest momenta
(kinetic energies of 70–90 MeV) and the simulated acceptance
is very sensitive to the proton’s energy loss through the layer
of cryogenic deposit. This parameter has to be known to better
than ±0.01 g.cm−2 to control the solid angle to ±1%.

For further insight, we refer to Fig. 13 in Sec. V E, which
shows the contribution of uncertainties in the calibration pa-
rameters to the systematic error on the physics observables.
Nine such parameters are included; note that the y0(A) and
y0(B) offsets are replaced by a single offset in Ztarget (known
to better than ±0.5 mm). As can be seen from Fig. 13, the
outcome is rather complex and cannot be anticipated easily,
apart from the decreasing importance of the efrost parameter
(sector 8) when Q2 increases. The results differ from one Q2

to another; dominant calibration uncertainties come from efrost

at Q2 = 0.10 GeV2, Ztarget at Q2 = 0.20 GeV2 and Xbeam at
Q2 = 0.45 GeV2.
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FIG. 4. The experimental (solid red) and simulated (dotted blue) distributions of the longitudinal vertex coordinate Zvertex, for each type
of setting, with the same nomenclature for the plots as in the previous figure. The selected events are true coincidences within the M2

X cut.
Both the experimental and simulated distributions are normalized to the same luminosity. The useful part of the spectrum is the central region,
delimited by the two vertical dashed green lines.

E. Analysis cuts

The VCS sample is obtained from the experimental data
by selecting the true coincidences via a timing cut, and essen-
tially applying two main analysis cuts, in Zvertex and M2

X .
The coincidence time spectrum exhibits a narrow peak,

over a wide plateau formed by random events. The FWHM
of the peak is in the range (0.8–1.7) ns. The true coincidences
are kept in a window of ±5 ns around the peak center, and the
random coincidences are subtracted by using the side bands
of the spectrum. The level of random events under the peak
is usually very low, typically a few percent of the true co-
incidences (after having applied the two main analysis cuts).
However, it still reaches 20–40% for a few settings.

The need for a cut in Zvertex is obvious from Fig. 4, which
compares the experiment and the simulation at the same level
of cuts. While both event rates agree well in the central part of
the target cell, they disagree at the extreme ends. For most set-
tings, this region of the target shows an excess of experimental
events relative to the simulation, due to (e, e′ p) reactions on
nuclei, not considered in the simulation. In one case (setting
“LOW” at Q2 = 0.20 GeV2), a loss of experimental events,
instead of an excess, is seen at the downstream end of the
target. It may come from particles absorbed in the magnets
for the events most close to elastic ep → ep kinematics. The
cut (dashed vertical lines in Fig. 4) selects the central part of
the Zvertex spectrum, reducing the usable target cell length to
about 3 cm.

As the second main cut, events are required to be in the
photon peak of the missing mass squared spectrum. The wide
selection window around the peak center (cf. Fig. 3) allows
one to include a large fraction of the radiative tail that devel-
ops on the positive-M2

X side. These radiative events are well
reproduced by the simulation.

The cut in Zvertex is the only one that eliminates a large
fraction of VCS events. The cut in M2

X just removes the distant
part of the radiative tail. We now mention a few auxiliary cuts,
which remove even smaller fractions of good events. First,
events are excluded when they are reconstructed far out of
the nominal acceptance, either in the (θ0, φ0) angles, or in the
impact point at the collimator, or in the relative momentum δ.
The selected window for δ is (−6,+16)% in spectrometer A,
and (−7,+7)% in spectrometer B. Second, for some settings
a 2D-cut in the (M2

X , q′
c.m.) plane is designed to eliminate the

few events at the most negative values of M2
X , which are seen

in the experiment but not in the simulation. These events may
come from ep → ep elastic scattering followed by particle
rescattering inside the spectrometers.

After having applied all the cuts, one obtains a “pure VCS”
experimental sample, very clean, as seen from Fig. 3. In
particular, there is no need for particle-identification (PID)
cuts. This can be checked by testing the response of the PID
detectors, i.e., the Cherenkov detector in the electron arm
and the scintillators in the proton arm. At this stage of the
analysis, there is extremely small trace, if any, of π− in the
distribution of the Cherenkov signal, or π+ in the distribution
of scintillator ADC signals.

F. Event rate corrections and luminosity

The rate of experimental events, obtained after all cuts
and the subtraction of random coincidences, is corrected for
data acquisition deadtime. Since the scintillators are trigger
elements, the event rate is also corrected for scintillator in-
efficiency. The latter is mapped in the (x, y) coordinates in
the scintillator planes, and found to be negligible almost ev-
erywhere, except in some localized regions at the overlap of
the scintillator paddles. The efficiency of the vertical drift
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chambers is considered to be 100% in all cases. At this stage,
one obtains the number of experimental events Nexp in each
of the 3D cross-section bins. The precise measurement of the
experimental luminosity Lexp relies on two inputs: the beam
current, given by a fluxgate magnetometer, and the liquid
hydrogen density, determined from pressure and temperature
sensors. The continuous monitoring of these target parame-
ters, together with the beam rastering, ensure a very stable
liquid hydrogen density.

G. Simulation

The acceptance, or solid angle �� that is needed to de-
termine the ep → epγ cross section, is too complex to be
calculated by simple means. It requires the use of a simulation,
as complete and faithful to the experiment as possible. We
only summarize here the main features of the calculation of
this acceptance, noted hereafter ��sim. A more detailed de-
scription can be found in Ref. [23]. The simulation only deals
with ep → epγ events in the hydrogen volume of the cell,
and does not consider any physical background or secondary
processes. ��sim is an “effective” and not purely geometrical
solid angle, in the sense that all resolution effects are taken
into account. The simulation includes the radiative effects
which generate the tail in missing mass squared, and the effect
of the cryogenic deposit around the target cell. Other sources
of resolution consist in multiple Coulomb scattering, energy
losses and straggling in the known materials, tracking errors
in the focal plane and reconstruction errors at the target level.
The description of the apparatus is based on the nominal
characteristics (cf. Ref. [21]). Namely, the acceptance of the
spectrometers is defined solely by the geometrical aperture of
their entrance collimator, plus the nominal momentum accep-
tance. The simulation incorporates furthermore the results of
the calibration described in Sec. III, using setting-averaged
parameter values. A simulated sample is obtained for each
kinematical setting separately, together with its associated
luminosity Lsim. The simulated events are weighed by the real-
istic BH + Born cross section. Analysis cuts are then applied
to the simulated sample in a way similar to the experiment.

IV. CROSS SECTIONS AND NORMALIZATION

The ep → epγ absolute cross section is the five-fold quan-
tity d5σexp/(dE ′

ed�′
ed cos θc.m.dφc.m.), denoted hereafter by

dσexp. dE ′
e and d�′

e are the differential energy and solid
angle of the scattered electron in the laboratory frame, while
(d cos θc.m.dφc.m.) is the differential solid angle of the emitted
photon in the c.m. At each of the three Q2, dσexp is determined
at fixed qc.m. and fixed ε, in a three-dimensional binning in the
variables (q′

c.m., cos θc.m., φc.m.). One obtains dσexp(i) in each
bin i as (cf. Ref. [23]):

dσexp(i) = Nexp(i)

Lexp

[
Lsim

Nsim(i)
dσBH+Born(i)

]
, (2)

where Nexp(i) is the number of experimental events in the bin,
and Nsim(i) the weighed sum of simulated events in this bin.
The cross section dσBH+Born(i) is evaluated at the center of

TABLE III. Results of the normalization test at each Q2, us-
ing the data of the “LOW” settings (and their variants) at q′

c.m. =
37.5 MeV/c. The fitted value of the normalization factor is given in
the third column, together with its statistical uncertainty obtained at
(χ 2

min + 1) (nonreduced χ 2). The reduced χ 2 of the fit and the number
of degrees of freedom are given in the fourth and fifth columns,
respectively. The test uses the proton form factors parametrization
of Ref. [24] for calculating dσBH+Born.

Q2 Setting Fitted Fnorm χ 2 n.d.f.

0.10 GeV2 LOW (I) 0.9856 ± 0.0063 1.22 400
0.10 GeV2 LOW (II) 1.0092 ± 0.0042 1.10 483
0.10 GeV2 LOW (III) 0.9704 ± 0.0029 1.10 600

0.20 GeV2 LOW (I) 0.9894 ± 0.0032 1.25 903
0.20 GeV2 LOW (II) 0.9885 ± 0.0034 1.10 817

0.45 GeV2 LOW 1.0173 ± 0.0041 1.11 712

each bin, and the bracket represents the inverse of the five-fold
solid angle ��sim.

The chosen bin size is small: 25 MeV/c in q′
c.m., 0.05 in

cos θc.m., and 10◦ in φc.m., allowing one to follow the rapidly
varying effect of the GPs in this 3D phase space. As a result,
many cross-section points are generated, of the order of a
thousand at each Q2. Our measured cross-section data are
provided as supplemental material to this article [20].

As explained in Ref. [16], the final normalization of the
experiment is based on the very low-q′

c.m. data, here q′
c.m. =

37.5 MeV/c. The method uses the fact that, at these low final
photon energies, the measured cross section must coincide
with the theoretical one, composed of the BH + Born cross
section plus a very small GP effect (<1%). dσBH+Born is
entirely calculable when one makes a choice for the electric
and magnetic form factors of the proton, Gp

E (Q2) and Gp
M (Q2).

Here and in all the following, the form-factor parametrization
of Ref. [24] is used. The comparison of the experimental and
the theoretical cross sections at low q′

c.m. is then realized by a
χ2-minimization, in which the fitted parameter is the global
normalization factor Fnorm to apply to dσexp. As shown in
Table III, we obtain in all cases a very good fit (reduced
χ2 of ≈1, for about 400 to 900 data points involved) and a
normalization factor Fnorm very close to 1.00, within ≈1−2%.
It is an important test that confirms the consistency of all the
prior analysis steps.

If one uses another parametrization of the proton form
factors, i.e., other values of Gp

E (Q2) and Gp
M (Q2), then the

normalization factors of Table III may change. However, the
physics results of the experiment, i.e., the fitted GPs and
structure functions, remain essentially unchanged, as long as
the same form factor choice is used for the normalization of
dσexp and for the polarizability fits (see Ref. [19] for more
details).

The next four figures show selected examples of our cross-
section data. Figure 5 displays the low-q′

c.m. cross section
obtained at Q2 = 0.45 GeV2. As expected, no polarizabil-
ity effect is observed here, and the measurement matches
well the BH + Born cross section. Figures 6 and 7 display
the high-q′

c.m. data obtained at Q2 = 0.10 and 0.20 GeV2,
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FIG. 5. An example of the measured cross section at Q2 =
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c.m. = 37.5 MeV/c. The solid (red) curve is the
BH + Born calculation. Error bars are statistical only.

respectively. On these figures one can discern in some angular
regions the small departure from dσBH+Born due to the GPs
(the dashed green curves include the GP effect). Figure 7
shows the quality of the symmetry of the cross section rel-
ative to φc.m. = 0◦, a property that is required theoretically
for an unpolarized experiment. Our final cross-section data
[20] are subsequently symmetrized in φc.m.. An overview of
the experimental coverage in the (cos θc.m., φc.m.) phase space
is given in Fig. 8, for the three q′

c.m.-bins considered in the
LEX fit. Each plot of this figure receives contributions from
several kinematical settings, which are in some cases visible
as isolated angular regions. Although most of the events are
below the pion production threshold, the acceptance extends
slightly beyond this limit. Namely, a small subset of cross-
section values is obtained for the q′

c.m.-bins [125–150] MeV/c
and [150–175] MeV/c and will be considered in the DR fit.

V. EXTRACTION OF THE GENERALIZED
POLARIZABILITIES

We refer to Ref. [19] for the detailed aspects of the formal-
ism of VCS at low energy and methodologies for extracting
the GPs from data. This section recalls the ingredients of the
two fits using cross-section measurements below the pion pro-
duction threshold: the LEX and DR fits. We further develop on
an estimator of the higher-order terms of the low-energy ex-
pansion, which is used to make a detailed presentation of the
fit results. Statistical and systematic errors are also discussed.
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A. Theoretical tools

The LEX fit is based on the low-energy theorem [3], a
model-independent approach which expresses the ep → epγ
cross section as

dσ = dσBH+Born + (�q′
c.m.) �0 + O(

q′2
c.m.

)
,

�0 = V1 (PLL − PTT/ε) + V2 PLT , (3)

where �q′
c.m.,V1,V2 are known kinematical factors. The three

VCS response functions are the structure functions PLL ∝
αE1(Q2), PLT ∝ (βM1(Q2) + spin GPs), and PTT ∝ spin GPs
(see Ref. [25] for details). The dσBH+Born cross section con-
tains no polarizability effect and represents typically 90%
or more of the cross section below the pion production
threshold. �0 is the first-order polarizability term, and the
quantity [dσBH+Born + (�q′

c.m.) �0] will be denoted hereafter
by dσLEX. The higher-order terms O(q′2

c.m.) are unknown and
supposed to be small. They are neglected in the standard
LEX fit, which therefore uses Eq. (3) in its truncated form
without the O(q′2

c.m.) term. A linear χ2-minimization com-
pares dσexp with dσLEX and yields the two structure functions
PLL − PTT/ε and PLT , at a given value of Q2 and ε. The
electric and magnetic GPs are obtained only indirectly by
this approach; an input from a model (here the DR model)
is needed to subtract the spin-GP part of the fitted structure
functions. The LEX fit is performed for q′

c.m.-bins below the
pion threshold, in our case including the three bins [50–
75], [75–100], and [100–125] MeV/c. The lowest q′

c.m. bin

[25–50] MeV/c serves essentially to fix the normalization and
does not bring further constraint to the polarizability fit.

The DR fit is based on the dispersion relations model
for VCS [17,18], which has a wide range of applicability in
energy, up to the � resonance region. In the DR formalism,
the electric and magnetic GPs have an unconstrained part,
which can be fitted to the experiment. αE1(Q2) and βM1(Q2)
then become the two free parameters of the adjustment. dσexp

is compared with the model cross section, dσDR, calculated
for all possible values of the free parameters, and αE1(Q2)
and βM1(Q2) are fitted by a numerical χ2-minimization. The
structure functions PLL − PTT/ε and PLT are obtained from
the scalar GPs in a straightforward way, by adding the con-
tribution of the spin GPs, which is entirely fixed in the DR
model. The DR fit uses the same q′

c.m. bins as the LEX fit,
with the optional inclusion of bins at higher q′

c.m., above the
pion production threshold.

B. Higher-order estimator

The LEX and DR fits are a priori very different, in the sense
that dσLEX ignores the higher-order terms O(q′2

c.m.), while
dσDR includes by construction all orders in q′

c.m.. When these
two fits are performed on the same data set, the appropriate
comparison between their results is at the level of the structure
functions PLL − PTT/ε and PLT , since these are the only direct
outputs of the LEX fit. If both types of results agree, then
it is a strong indication that the higher-order terms O(q′2

c.m.)
of the LEX are indeed negligible. Among the various VCS
experiments performed [5,6,8,10,16], some find an agreement
between the two types of fits, while others find a significant
disagreement (see Ref. [19] for more details). As a general
statement, not much is known yet about these higher-order
terms of the q′

c.m. expansion and their impact on the polar-
izability fits. In the present experiment, we have studied this
question more systematically, using a novel method which is
described in the remainder of this section.

Among its many advantages, the DR model can be utilized
to provide an estimate of the higher-order terms of the LEX
expansion. One just needs to calculate both theoretical cross
sections, dσLEX and dσDR, using the same input values of
structure functions PLL − PTT/ε and PLT . Since dσDR includes
all orders in q′

c.m., the difference (dσDR − dσLEX) is a measure
of the higher-order terms O(q′2

c.m.) of Eq. (3), as given by the
DR model. Accordingly, we build the following dimension-
less estimator:

O(
q′2

c.m.

)
DR = dσDR − dσLEX

dσBH+Born
(4)

at each point in the VCS phase space. Figure 9 shows an
example of the GP effect calculated from the LEX, from the
DR model, and their difference.

This (model-dependent) estimator has been used first in
the design of the experiment [26], to define kinematics where
O(q′2

c.m.)DR is expected to be small. It is further employed in
the analysis phase, to study the behavior of the LEX fit under
varying conditions. More precisely, we perform the LEX fit
of Eq. (3) in its truncated form, including a varying number
of experimental bins, corresponding to gradually increased
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ε = 0.9. Left: the GP effect from the LEX, defined as
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values of the O(q′2
c.m.)DR estimator. This is realized by setting

the condition ∣∣O(
q′2

c.m.

)
DR

∣∣ � K, (5)

and letting the threshold K vary. An example of the accepted
bins is given in Fig. 10. In principle, this “cursor” for higher-
order terms is not relevant for the DR fit, since the DR
calculation is a priori valid in the whole VCS phase space.
We have nevertheless performed the same study versus K for
the DR fit as well.

The K parameter acts as a threshold for bin exclusion, or
“bin masking.” A very tight cut, e.g., K = 0.005, eliminates
many bins in the (q′

c.m., cos θc.m., φc.m.) phase space, mainly at
high q′

c.m.. In these conditions, The LEX and DR fits should
give very similar results, since dσexp is compared to two model
calculations, dσLEX and dσDR, that almost do not differ. As
the cut threshold loosens, e.g., to K = 0.02 or 0.03, more
bins are included, larger differences between the two model
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c.m. = 112.5 MeV/c. The plots
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K , from 1% to 4%. Bins filled in green correspond to the condition
O(q′2

c.m.)DR � K . The calculation of O(q′2
c.m.)DR uses PLL − PTT/ε =

15.5 GeV−2 and PLT = −5.1 GeV−2 as input values.
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FIG. 11. The behavior of the LEX fit (red filled circles) and
the DR fit (blue open circles) as a function of the cut threshold K
(see text) for the structure function PLL − PTT/ε. Plots (a), (b), and
(c) refer to Q2 = 0.10, 0.20, and 0.45 GeV2, respectively. In each
plot, the rightmost filled (red) and open (blue) circles correspond to
the inclusion of all data points in the q′

c.m. range (50–125) MeV/c
(i.e., the K-cut is inactive). The cyan starred points are placed at
arbitrarily abscissa and refer to the DR fit with the inclusion of the
q′

c.m. bin [125–150] MeV/c [plot (a)] and additionally the q′
c.m. bin

[150–175] MeV/c [plots (b) and (c)]. Error bars are statistical. The
supplementary (green) error bar at K = 0.025 represents the total
systematic error, for our final choice of fit results.

calculations are allowed, and the LEX and DR fits may yield
more different results. At the largest value of the cut, e.g., K =
0.18 at Q2 = 0.20 GeV2, all bins below the pion production
threshold are included, and the LEX and DR fits become fully
independent. This configuration is the one of the published
LEX fits of all previous experiments [5,8,10,14].

C. Fit results

Results of our fine scan in K are shown in Figs. 11 and
12 for the LEX and DR fits at each Q2. At very small val-
ues of K , the two types of fits give very similar results, as
expected. When K increases, the two fits tend to deviate,
more or less quickly, indicating the effect of the higher-order
terms O(q′2

c.m.) that are neglected in the LEX fit. The diver-
gence between the two types of fits versus K is maximal
for Q2 = 0.10 GeV2, and decreases when Q2 increases. At
Q2 = 0.45 GeV2, the two fits show no difference, suggesting
that the higher-order terms, as given by the DR model, are
very small.
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Conventions are the same as described in the caption of Fig. 11.

Another clear feature of Figs. 11 and 12 is the better sta-
bility of the DR fit versus K relative to the LEX fit, in most
cases. This demonstrates the good ability of DRs to evaluate
the higher-order terms in q′

c.m. and to model the ep → epγ
cross section over a large phase space. One notices a few
localized exceptions to the stability of the DR fit versus K ,
for which possible origins can be invoked. At very small K
[Fig. 12, plots (b) and (c) for K � 0.02], both the LEX and DR
fits lack sensitivity to the GPs, due to the elimination of many
high-q′

c.m. bins, and possible biases may arise. At the other end
of the K “cursor” [Fig. 11, starred point in plot (a), and Fig. 12,
starred points in plots (a) and (b)], the added cross-section data
above the pion production threshold correspond to acceptance
edges, where experimental systematics may be larger.

We now discuss how to choose the optimal value of K ,
for the LEX fit with bin exclusion. For Eq. (3) to be valid
in its truncated form, the higher-order terms should be small
relative to the overall magnitude of the first-order GP effect,
i.e., the �0 term. One is then led to choose small K values,
typically Koptimal < 3–4%. A second qualitative argument is
that higher-order terms will not bias the LEX fit significantly
as long as their magnitude does not exceed the systematics of
the experiment. This suggests Koptimal � 0.015, corresponding
to our total systematic error of ±1.5% on the measured cross
sections (cf. Sec. V E). Last, as mentioned above, the stability
plateau for the DR fit in Figs. 11 and 12 does not always start
at the smallest value of K but sometimes at K � 0.02. Based
on the above arguments, Koptimal = 0.025 is finally chosen,
and considered as providing the most reliable LEX fit. This

point is represented in Figs. 11 and 12 with the attached total
systematic error (thick solid green error bar).

In practice, the computation of O(q′2
c.m.)DR depends on

input values for the structure functions, therefore the whole
procedure (bin masking + polarizability fit) needs a few it-
erations. Figures 11 and 12 are produced at the last iteration
step. The results of both LEX and DR fits, obtained without
bin masking and with bin masking at K = 0.025, have been
reported in Ref. [16] for the structure functions and the scalar
GPs. We also briefly report them here in Table IV for the final
choice of bin masking. Note the good quality of the fits, with
reduced χ2 between 1.1 and 1.3, for ≈400 to 1000 degrees of
freedom.

We consider the results with bin masking (at K = 0.025)
as the final results of the experiment. However, one should
keep in mind that they are a shorthand for a deeper complexity
of the polarizability fits, of which some aspects have been
explored and presented here.

D. Statistical errors

Statistical errors on the physics observables are provided
for each fit by the minimization itself, in which each term
contributing to the χ2 is weighed by the statistical error on
the measured cross section. The contour at (χ2

min + 1) (nonre-
duced χ2) is used, corresponding to a confidence level of 70%
on each parameter separately. Error correlations between the
two fitted parameters are small in all cases.

E. Systematic errors

The dominant errors are the systematic ones. The nor-
malization method based on the low-q′

c.m. data (cf. Sec. IV)
helps to reduce them substantially, in the sense that all the
global normalization uncertainties common to all settings,
related for instance to the experimental luminosity or radia-
tive corrections, are absorbed in the Fnorm factor. However,
residual normalization differences may still exist from set-
ting to setting. They are taken into account in a simplified
way by considering an overall, intrinsic error of ±0.01 on
Fnorm. Another uncertainty comes from the calibration of ex-
perimental parameters and the solid angle calculation. Here
again, the problem is simplified by considering the error glob-
ally, instead of possible point-to-point error correlations. The
resulting uncertainty is estimated to be ±1% on the cross
section, relying on the work exposed in Sec. III D. Last, an-
other ±0.5% uncertainty on the cross section is added as a
way to take into account auxiliary, less significant sources of
error, such as: possible nonuniformity of the virtual radiative
correction factor in the (q′

c.m., cos θc.m., φc.m.) phase space,
residual dependence of the physics results on the proton form
factor choice, or versus the cut threshold K , etc.

Figure 13 displays the systematic error budget at each
Q2, with the detailed contribution of each calibration param-
eter (corresponding to the nine colored sectors), as coming
from simulation studies mentioned in the concluding part of
Sec. III D. Summed quadratically, the eleven sources of error
of Fig. 13 yield a total systematic error of ±1.5% on the cross
section. The latter is propagated to the physics results, by
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TABLE IV. Results of the LEX and DR fits, obtained with bin masking at K = 0.025 (see text). The q′
c.m.-bins cover the range

(50, 125) MeV/c. The first error is statistical. The second one is the total systematic error, whose sign indicates the correlation to the (±)
sign of the overall normalization change. In the LEX part of the table, the GPs are obtained only indirectly, by subtracting from the structure
functions the spin-GP contribution calculated by the DR model.

Q2 PLL − PTT/ε PLT αE1(Q2) βM1(Q2) Reduced χ 2

(GeV2) ε (GeV−2) (GeV−2) (10−4 fm3) (10−4 fm3) /n.d.f.

LEX fit
0.10 0.91 33.15 ± 1.53 ∓ 4.53 −8.54 ± 0.60 ∓ 1.62 6.06 ± 0.30 ∓ 0.90 2.82 ± 0.23 ± 0.63 1.30/460
0.20 0.85 14.57 ± 0.55 ∓ 3.47 −5.37 ± 0.33 ∓ 1.25 3.02 ± 0.14 ∓ 0.87 2.01 ± 0.16 ± 0.61 1.29/1034
0.45 0.63 4.21 ± 0.65 ∓ 2.24 −1.00 ± 0.37 ∓ 0.50 0.92 ± 0.26 ∓ 0.92 0.19 ± 0.28 ± 0.38 1.17/820

DR fit
0.10 0.91 35.95 ± 1.80 ∓ 5.21 −9.03 ± 0.98 ∓ 1.82 6.60 ± 0.36 ∓ 1.03 3.02 ± 0.38 ± 0.72 1.34/460
0.20 0.85 14.94 ± 0.60 ∓ 4.06 −5.31 ± 0.44 ∓ 1.40 3.11 ± 0.15 ∓ 1.02 1.98 ± 0.22 ± 0.68 1.31/1034
0.45 0.63 4.10 ± 0.62 ∓ 2.48 −1.36 ± 0.29 ∓ 0.40 0.87 ± 0.25 ∓ 1.01 0.47 ± 0.22 ± 0.30 1.14/820

re-doing the polarizability fits with dσexp changed globally by
±1.5%. This method yields errors on the physics results that
are fully correlated in sign, due to the strong dependence of
the two fitted parameters on the Fnorm factor. This “one-shot”
method for obtaining the final systematic error is quick and
efficient, but in some cases it is not realistic enough. We
have tested the validity of this method by comparing it to
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FIG. 13. The detailed contributions to the total systematic er-
ror, for each Q2. The pie chart represents the relative weights wi

of each source of error (i = 1, . . . , 11). The indices i = 1, . . . , 9
correspond to uncertainties on the calibration parameters quoted in
the concluding part of Sec. III D. Here i = 10 corresponds to the
intrinsic uncertainty of Fnorm and i = 11 corresponds to the other
auxiliary sources of error (see text, Sec. V E). Due to our method of
calculation, these charts apply equally well to the cross section, the
structure functions and the GPs. Note that the total systematic error
δtot is given by the quadratic sum (

∑11
i=1 δ2

i )1/2, so that each partial
error δi is given by δtotwi(

∑11
i=1 w2

i )−1/2 (with
∑11

i=1 wi = 1).

more traditional means, such as performing various analyses
with different calibrations, cut conditions, etc., and measuring
the corresponding spread of the fitted results. On the one
hand, the “quick method” works well at Q2 = 0.20 GeV2,
as shown explicitly in Ref. [27], and is further assumed to
work satisfactorily at Q2 = 0.10 GeV2, due to highly simi-
lar (q′

c.m., cos θc.m., φc.m.) kinematics. On the other hand, this
quick method works only partly at Q2 = 0.45 GeV2, giving
in particular an excessively small systematic error on PLT (of
± 0.05 GeV−2 for the LEX fit). The more traditional test
of multiple analyses gives an error about ten times larger
(±0.5 GeV−2), which is clearly more realistic, and chosen as
the final value. Besides, both methods give a similar system-
atic error on PLL − PTT/ε at Q2 = 0.45 GeV2. Although such
disparities in the behavior of systematic errors are not fully
traced, they could originate in differences of angular coverage
in (cos θc.m., φc.m.) versus Q2, which induce differences in the
weighing factors V1 and V2 of the low-energy theorem (cf.
Eq. (3)). We refer in particular to the angular coverage of
the in-plane setting (“INP”), which corresponds to backward
θc.m. angles at Q2 = 0.10 and 0.20 GeV2, and to forward θc.m.

angles at Q2 = 0.45 GeV2 (cf. in Fig. 8 the isolated region in
green at cos θc.m. > 0 for Q2 = 0.45 GeV2).

VI. PHYSICS RESULTS AND CONCLUSIONS

Our final results are shown in Figs. 14 and 15, including
the world data in terms of structure functions and scalar GPs
of the proton. These results have been discussed in Ref. [16]
and in a broader context in Ref. [19], so we just summarize
here the main findings. The present measurements provide
important new insights into the Q2-behavior of the VCS
observables under study. A consistent and smooth behavior
starts to emerge in the whole Q2 range from 0 to 1 GeV2,
with the exception of the existing data at Q2 = 0.33 GeV2

[5,6,14]. The tension or lack of smoothness at this value of
Q2, observed especially for the PLL − PTT/ε structure func-
tion and the electric GP, remains presently unexplained and
would require new investigations. A recently performed VCS
experiment at Jefferson Lab [29] is expected to shed light on
this anomaly, by measuring the electric and magnetic GPs
in the Q2 range from 0.3 to 0.7 GeV2. At Q2 = 0.20 GeV2,
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proton (see text for details). Filled (magenta) circles and filled (red)
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The triangular (cyan) point in the upper plot is from the recent
measurement of the electric GP at Q2 = 0.20 GeV2 [15], converted
to PLL − PTT/ε using the DR model. The RCS point (�) is from
Ref. [1]. The dashed curve is obtained using the DR model [17] with
dipole mass parameters �α = �β = 0.7 GeV. The solid curve with
its error band (shaded area) is from covariant BChPT [28]. Some
data points are slightly shifted in abscissa for visibility. The inner
and outer error bars are statistical and total, respectively.

results from the two most recent and independent experiments
are shown for the electric GP and the PLL − PTT/ε structure
function: the present measurement (filled circles and squares
in the figures) and the one of Ref. [15] (cyan triangular point).
These two results show a rather good compatibility, although
they involve different c.m. energy regimes: below the pion
production threshold (our experiment) and the � resonance
region [15].

The DR model does not give a prediction of the electric and
magnetic GPs. However, it uses a convenient parametrization
of their Q2-dependence, that allows to provide predictions for
VCS observables. This is realized by assuming a single dipole
behavior for the unconstrained part of the scalar GPs [17,18].
Namely, with dipole mass parameter values �α = �β = 0.7
GeV (dashed curve in the figures), the DR model agrees well
with the Q2-behavior suggested by the world data. The low-
Q2 data for the magnetic GP and the PLT structure function
show also good agreement with the recent covariant BChPT
calculation of Ref. [28] (solid curve in the figures), despite
the large theoretical uncertainty. Our experiment provides for
the first time a precise measurement of βM1(Q2) at very low
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FIG. 15. The electric and magnetic GPs of the proton (top and
bottom plots, respectively). The notations and conventions are the
same as described in the caption of Fig. 14.

Q2 (0.10 GeV2), strongly constraining the way the two large
components, diamagnetic and paramagnetic, nearly cancel in
this polarizability.

In conclusion, a new, high-statistics VCS experiment per-
formed at MAMI has yielded precise measurements of the
proton electric and magnetic GPs at three yet unexplored
values of Q2. Although measurements of low-energy VCS
observables are still rather scarce, they gradually improve in
precision, as experiments are better designed and GP extrac-
tion methods become more mature. Examples along these
lines have been given in this article. We have demonstrated
how one can minimize systematic errors, by performing a
careful experimental calibration and using the normaliza-
tion constraint provided by low-q′

c.m. data. We have also
shown how one can deepen the study of the polarizabil-
ity fits themselves, in relation with the higher-order terms
of the low-energy expansion. Nucleon GPs are valuable
observables which bring specific constraints to models of
nucleon structure. Improving their knowledge is a long-
term challenge that will require inventive strategies for
new measurements. The DR model, with its unique ad-
vantages and evolutive capabilities, serves as a precious
and reliable tool for designing and analyzing VCS experi-
ments, and will help in pursuing further developments in the
field.
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