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The low-energy structure and β-decay properties of neutron-rich even- and odd-mass Pd and Rh nuclei are
studied using a mapping framework based on the nuclear density-functional theory and the particle-boson
coupling scheme. Constrained Hartree-Fock-Bogoliubov calculations using the Gogny-D1M energy density
functional are performed to obtain microscopic inputs to determine the interacting-boson Hamiltonian employed
to describe the even-even core Pd nuclei. The mean-field calculations also provide single-particle energies for
the odd systems, which are used to determine essential ingredients of the particle-boson interactions for the
odd-nucleon systems, and of the Gamow-Teller and Fermi transition operators. The potential-energy surfaces
obtained for even-even Pd isotopes as well as the spectroscopic properties for the even- and odd-mass systems
suggest a transition from prolate deformed to γ -unstable and to nearly spherical shapes. The predicted β-decay
log f t values are shown to be sensitive to the details of the wave functions for the parent and daughter nuclei and
therefore serve as a stringent test of the employed theoretical approach.

DOI: 10.1103/PhysRevC.106.064304

I. INTRODUCTION

Precise measurements and theoretical descriptions associ-
ated with the low-energy nuclear structure are crucial to the
accurate modeling and better understanding of fundamental
nuclear processes, such as β and double-β (ββ) decays inti-
mately connected to stellar nucleosynthesis. In this context,
the low-energy excitations and decay properties of neutron-
rich nuclei with mass A ≈ 100 and neutron number N ≈ 60
are of particular interest from both the nuclear structure and
astrophysical points of view. Those nuclei exhibit a rich vari-
ety of phenomena such as shell evolution, onset of collectivity,
quantum (shape) phase transitions and shape coexistence.
They are also involved in the rapid neutron-capture (r) pro-
cess responsible for the nucleosynthesis of heavy chemical
elements in explosive environments.

The β decay half-lives of heavy neutron-rich nuclei have
been extensively measured using radioactive-ion beams at
major experimental facilities around the world. For example,
the neutron-rich A ≈ 110 nuclei from Kr to Tc [1], and from
Rb to Sn [2] have been studied at the RIBF facility at RIKEN.
The A ≈ 90 region from Se to Zr isotopic chains has been
studied at the NSCL at MSU [3]. Moreover, several A ≈
100–110 nuclei are of special interest, including 96Zr, 96Mo,
100Mo, 100Ru, 110Pd, and 110Cd, since they correspond to the
parent or daughter nuclei for the possible neutrinoless ββ

decays [4].

*knomura@phy.hr

From a theoretical point of view, the consistent description
of both low-lying nuclear states and β-decay properties repre-
sents a major challenge. Theoretical studies of the β-decay
process have been carried out within the interacting boson
model (IBM) [5–14], the quasiparticle random-phase approx-
imation (QRPA) [15–23], and the large-scale shell model
(LSSM) [24–28]. The calculation of β-decay properties serves
as a stringent test of a given theoretical approach, since the
decay rate of this process is very sensitive to the structure of
the wave functions corresponding to the low-energy states of
both the parent and daughter nuclei.

In this paper, we present a simultaneous description of the
low-energy collective excitations and β-decay properties of
even- and odd-A neutron-rich Pd and Rh isotopes in the mass
range A ≈ 100–120. They represent a region of interest for
future experiments and for astrophysical applications. Calcu-
lations are performed within a theoretical framework based
on the nuclear density-functional theory and the particle-
core coupling scheme. In it even-even nuclei are described
using the IBM [29]. The particle-core couplings for the odd-
mass, and odd-odd nuclei are described using the interacting
boson-fermion model (IBFM) [30,31] and the interacting
boson-fermion-fermion model (IBFFM) [31,32], respectively.
The bosonic-core Hamiltonian is built using microscopic in-
put from self-consistent Hartree-Fock-Bogoliubov (HFB) [33]
calculations based on the parametrization D1M [34] of the
Gogny energy density functional (EDF) [35,36]. Essential
building blocks of the particle-boson interactions and of the
Gamow-Teller (GT) and Fermi (F) transition operators for
the β decay are also determined with the aid of the same
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Gogny-EDF results. The method has already been applied to
study the shape evolution and β decay properties of the odd-A
[11] and even-A [12] nuclei in the mass A ≈ 130 region. It
has also been employed to study even- and odd-A As and
Ge nuclei in the A ≈ 70–80 region using microscopic input
from relativistic Hartree-Bogoliubov calculations, based on
the density-dependent point-coupling interaction [14].

The main goal of this work is to examine the performance
of the method mentioned above in the case of neutron-rich
nuclei, including those for which experimental information
is scarce. The results to be discussed latter on in the paper
also illustrate the predictive power of the EDF-based IBM to
describe the low-lying structure and β decay in this region of
the nuclear chart where future experiments are expected. To
identify the relevance of the low-lying structures of individual
nuclei in the β decay, we perform a detailed analysis of the
wave functions obtained for both the parent and daughter
nuclei of the decay. In addition, we perform conventional IBM
calculations, with the parameters for the even-even boson
core Hamiltonians taken from the earlier phenomenological
calculation [37]. The corresponding results are compared with
those from the EDF-based IBM calculations. Note that the
present study is restricted to both types of allowed β decays,
i.e., the transition conserves parity and takes place between
states that differ in the total angular momentum I by �I = 0
or 1.

To support our choice we note that, like other nonrelativis-
tic [38] and relativistic [39,40] EDFs, theoretical approaches
based on the parametrizations D1M and D1S [41] of the
Gogny-EDF both at the mean-field level and beyond have
been extensively employed to study the low-energy nuclear
structure and dynamics in various regions of the nuclear chart
as well as fundamental nuclear processes (see Ref. [36] for
a review and references therein). In particular spectroscopic
studies involving collective degrees of freedom have been car-
ried out within the symmetry-projected generator coordinate
method (GCM) [33] using the Gogny forces and involving
different levels of sophistication [36,42–48]. Furthermore, the
mapping procedure leading to an IBM Hamiltonian from
microscopic Gogny mean-field input has already shown its
ability to describe spectroscopic properties associated with
shape phase transitions, shape coexistence, and octupole de-
formations in nuclei [49–56].

The paper is organized as follows: The theoretical frame-
work is briefly outlined in Sec. II. The excitation spectra and
electromagnetic transition properties obtained for even-even
Pd (Sec. III), odd-A Pd and Rh (Sec. IV), and odd-odd Rh
nuclei (Sec. V) are discussed. The computed log f t values for
the β decays of the odd- and even-A Rh into Pd nuclei are
discussed in detail in Sec. VI. Finally, Sec. VII is devoted to
the concluding remarks.

II. THEORETICAL FRAMEWORK

In this section, we describe the particle-core Hamiltonian
(Sec. II A), and the procedure to build it (Sec. II B).
Electromagnetic transition operators are discussed in
Sec. II C, and Gamow-Teller and Fermi operators are
introduced in Sec. II D.

A. Particle-core Hamiltonian

In this study, we use the neutron-proton IBM (IBM-2)
[57,58]. In this model both neutron and proton monopole (sν

and sπ ), and quadrupole (dν and dπ ) bosons are considered as
fundamental degrees of freedom. From a microscopic point
of view [57,58], the sν (sπ ) and dν (dπ ) bosons are associated
with the collective Sν (Sπ ) and Dν (Dπ ) pairs of valence
neutrons (protons) with angular momenta and parity 0+ and
2+, respectively. In comparison with the simpler IBM-1, in
which the neutrons and protons are not distinguished, the
IBM-2 appears to be more suitable to treat β decay, since
in this process both proton and neutron degrees of freedom
should be explicitly taken into account. For the model space
the neutron N = 50–82 and proton Z = 28–50 major shells
are used. Hence for 104–124Pd, the number of neutron bosons,
Nν , varies within the range 2 � Nν � 8, while the number of
the proton bosons is fixed, Nπ = 2.

To deal with even-even, odd-mass, and odd-odd nuclei on
an equal footing, both collective and single-particle degrees
of freedom are treated within the framework of the neutron-
proton IBFFM (IBFFM-2). The IBFFM-2 Hamiltonian reads

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + V̂ ν
BF + V̂ π

BF + V̂νπ , (1)

where ĤB is the IBM-2 Hamiltonian representing the bosonic
even-even core, Ĥ ν

F (Ĥπ
F ) is the one-body, single-neutron (-

proton) Hamiltonian, and V̂ ν
BF (V̂ π

BF) stands for the interaction
between the odd neutron (proton) and the even-even IBM-2
core. The last term V̂νπ represents the residual interaction
between the odd neutron and the odd proton.

The IBM-2 Hamiltonian takes the form

ĤB = εd (n̂dν
+ n̂dπ

) + κQ̂ν · Q̂π , (2)

where in the first term, n̂dρ
= d†

ρ · d̃ρ (ρ = ν or π ) is the
d-boson number operator, with εd the single d-boson en-
ergy relative to the s-boson one, and d̃ρμ = (−1)μdρ−μ.
The second term stands for the quadrupole-quadrupole in-
teraction between neutron and proton boson systems with
strength κ , and Q̂ρ = d†

ρsρ + s†
ρ d̃ρ + χρ (d†

ρ × d̃ρ )(2) repre-
sents the bosonic quadrupole operator, with the dimensionless
parameter χρ .

The single-nucleon Hamiltonian Ĥρ
F takes the form

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1

(
a†

jρ
× ã jρ

)(0)
, (3)

where ε jρ stands for the single-particle energy of the odd
neutron (ρ = ν) or proton (ρ = π ) orbital jρ . a jρ and a†

jρ
are annihilation and creation operators of the single par-
ticle, respectively. The operator ã jρ is defined as ã jρmρ

=
(−1) jρ−mρ a jρ−mρ

.
In this study, we employ the following boson-fermion in-

teraction V̂ ρ
BF [31]

V̂ ρ
BF = �ρV̂ ρ

dyn + �ρV̂ ρ
exc + AρV̂ ρ

mon. (4)

The first, second, and third terms are dynamical quadrupole,
exchange, and monopole interactions, respectively. Within the
generalized seniority scheme [31,59], the dynamical and ex-
change terms are assumed to be dominated by the interaction
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TABLE I. Even-even Pd core, and the neighboring odd-N Pd,
odd-Z Rh, and odd-odd Rh nuclei considered in this study.

Even-even core Odd-N Odd-Z Odd-odd

A
46PdN (58 � N � 64) A+1

46 PdN+1
A−1
45 RhN

A
45RhN+1

112
46 Pd66

111
45 Rh66

A
46PdN (68 � N � 78) A−1

46 PdN−1
A−1
45 RhN

A−2
45 RhN−1

between unlike particles. On the other hand, the monopole
term is assumed to be dominated by the interaction between
like particles. The explicit form of the different terms in
Eq. (4) then read

V̂ ρ
dyn =

∑
jρ j′ρ

γ jρ j′ρ

(
a†

jρ
× ã j′ρ

)(2) · Q̂ρ ′ , (5)

V̂ ρ
exc = −(s†

ρ ′ × d̃ρ ′ )(2) ·
∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ

:
((

d†
ρ × ã j′′ρ

)( jρ ) × (
a†

j′ρ
× s̃ρ

)( j′ρ ))(2)
: +(H.c.), (6)

V̂ ρ
mon = −n̂dρ

∑
jρ

√
2 jρ + 1(a†

jρ
× ã jρ )(0), (7)

where the coefficients γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ , and
β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ are proportional to the matrix
elements of the fermion quadrupole operator in the single-
particle basis Qjρ j′ρ = 〈ρ

1
2 jρ‖Y (2)‖′

ρ
1
2 j′ρ〉. The operator Q̂ρ ′

in Eq. (5) is the same boson quadrupole operator as in the
boson Hamiltonian (2). In Eq. (6) the notation : (· · · ) : stands
for normal ordering. Within this formalism, the single-particle
energy ε jρ in Eq. (3) is replaced with the quasiparticle energy
ε̃ jρ .

For the residual neutron-proton interaction V̂νπ in Eq. (1),
we adopt the form [60]

V̂νπ = 4πvdδ(r)δ(rν − r0)δ(rπ − r0)

+ vt

[
3(σν · r)(σπ · r)

r2
− σν · σπ

]
, (8)

where the first and second terms are surface-delta and tensor
interactions with strength parameters vd, and vt , respectively.
Note that r = rν − rπ and r0 = 1.2A1/3 fm.

Table I summarizes the even-even Pd core nuclei, neigh-
boring odd-A Pd and Rh, and odd-odd Rh nuclei considered
in this study.

B. Procedure to build the Hamiltonian

In the initial step a set of constrained HFB calculations for
even-even Pd isotopes based on the parametrization D1M of
the Gogny-EDF is carried out to obtain the microscopic input
to build the IBFFM-2 Hamiltonian. For each even-even Pd
isotope, those calculations provide the corresponding energy
surfaces, i.e., the total mean-field energies as functions of
the triaxial quadrupole deformations β and γ [61]. For each
nucleus, the Gogny-D1M HFB energy surface is mapped onto
the expectation value of the IBM-2 Hamiltonian ĤB (2) in
the boson condensate state [62]. This procedure specifies the

parameters of the boson Hamiltonian, i.e., εd , κ , χν , and χπ .
For more details about the mapping procedure, the reader is
referred to Refs. [63,64].

Next, the Hamiltonian ĤF of Eq. (3) and the boson-fermion
interactions V̂BF of Eq. (4) are determined using the procedure
of Refs. [65,66]. The single-particle energies ε jρ of the odd nu-
cleon are obtained from HFB calculations constrained to zero
quadrupole deformation. Once the single-particle energies are
available, the quasiparticle energies ε̃ jρ and occupation prob-
abilities v2

jρ are computed within the BCS approximation,
separately for neutron and proton single-particle spaces. The
empirical pairing gap 12A−1/2 is used. We include in the
BCS calculations the 2s1/2, 1d3/2, 1d5/2, 0g7/2, 0g9/2, and
0h11/2 orbitals for the odd neutron, and the 1d5/2, 0g7/2, 0g9/2,
2p1/2, 2p3/2, and 1 f5/2 orbitals for the odd proton. The cor-
responding quasiparticle energies ε̃ jν (ε̃ jπ ), and occupation
probabilities v2

jν (v2
jπ ) for the odd neutron (proton) 2s1/2, 1d3/2,

1d5/2, and 0g7/2 (1d5/2, 0g7/2, and 0g9/2) orbitals are taken
as the inputs to Ĥ ν

F (Ĥπ
F ) and V̂ ν

BF (V̂ π
BF), respectively. The

strength parameters �ρ , �ρ , and Aρ for V̂ ρ
BF are then fixed

so that the observed low-energy positive-parity levels for the
odd-A Pd (ρ = ν) or odd-Z Rh (ρ = π ) nuclei are reproduced
reasonably well.

Finally, the parameters vd and vt for the residual neutron-
proton interaction in Eq. (8) are determined [67] so that the
observed low-lying positive-parity states for each odd-odd
Rh nucleus are reasonably well reproduced. Note that the
same strength parameters as those obtained in the previous
step for the neighboring odd-A nuclei are employed in the
IBFFM-2 calculations for odd-odd nuclei. On the other hand,
the quasiparticle energies and occupation probabilities of the
odd particles are independently computed.

Figure 1 shows the neutron and proton spherical single-
particle energies (ε jν and ε jπ ), resulting from the Gogny-HFB
calculations, and the quasiparticle energies (ε̃ jν and ε̃ jπ ) and
occupation probabilities (v2

jν and v2
jπ ) used in the IBFM-2 and

IBFFM-2 calculations.

C. Electromagnetic transition operators

Theories with effective degrees of freedom, like the
IBFFM, require the definition of transition operators to be
used in the evaluation of electromagnetic transition probabil-
ities. For the electric E2 transition the operator T̂ (E2) to be
used in the IBFFM-2 takes the form [31]

T̂ (E2) = T̂ (E2)
B + T̂ (E2)

F , (9)

where the first and second terms are the boson and fermion
parts, respectively. They are given by

T̂ (E2)
B =

∑
ρ=ν,π

eB
ρ Q̂ρ, (10)

and

T̂ (E2)
F = − 1√

5

∑
ρ=ν,π

∑
jρ j′ρ

(
u jρ u j′ρ − v jρ v j′ρ

)

×
〈
ρ

1

2
jρ

∥∥∥∥eF
ρr2Y (2)

∥∥∥∥′
ρ

1

2
j′ρ

〉(
a†

jρ
× ã j′ρ

)(2)
. (11)
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FIG. 1. (a), (b) The single-particle energies ε jρ , obtained from
the Gogny-D1M HFB calculations at the spherical configuration,
(c), (d) the quasiparticle energies ε̃ jρ , and (e), (f) the occupation
probabilities v2

jρ
, obtained from the BCS calculations. Results shown

in the left column are for the odd neutron in the odd-A Pd and even-A
Rh nuclei, and those in the right column are for the odd proton in the
even- and odd-A Rh nuclei.

The fixed values eB
ν = eB

π = 0.1 e b for the boson effec-
tive charges are taken so that the experimental B(E2; 2+

1 →
0+

1 ) transition probabilities are reproduced for even-even Pd
isotopes. The standard neutron and proton effective charges
eF
ν = 0.5 e b, eF

π = 1.5 e b are employed for all the studied
odd-nucleon systems. The M1 transition operator T̂ (M1) is
defined as

T̂ (M1) =
√

3

4π

∑
ρ=ν,π

[
gB

ρ L̂ρ − 1√
3

∑
jρ j′ρ

(
u jρ u j′ρ + v jρ v j′ρ

)

× 〈 jρ‖gρ

l l + gρ
s s‖ j′ρ〉

(
a†

jρ
× ã j′ρ

)(1)

]
. (12)

The empirical g factors gB
ν = 0 μN (nuclear magneton) and

gB
π = 1.0 μN , are adopted for the neutron and proton bosons.

For the neutron (proton) g factors, the standard Schmidt val-
ues gν

l = 0 μN and gν
s = −3.82 μN (gπ

l = 1.0 μN and gπ
s =

5.58 μN ) are used, with gρ
s quenched by 30% with respect to

the free value.

D. Gamow-Teller and Fermi transition operators

As in the electromagnetic case, the transition operators for
allowed β decay have to be redefined in terms of the relevant
degrees of freedom of the model. The Gamow-Teller T̂ GT and
Fermi T̂ F transition operators take the form

T̂ GT =
∑
jν jπ

ηGT
jν jπ

(
P̂jν × P̂jπ

)(1)
, (13)

T̂ F =
∑
jν jπ

ηF
jν jπ

(
P̂jν × P̂jπ

)(0)
, (14)

with the coefficients

ηGT
jν jπ = − 1√

3

〈
ν

1

2
jν

∥∥∥∥σ

∥∥∥∥π

1

2
jπ

〉
δνπ

, (15)

ηF
jν jπ = −

√
2 jν + 1δ jν jπ . (16)

In Eqs. (13) and (14), P̂jρ represents one of the one-particle
creation operators

A†
jρmρ

= ζ jρ a†
jρmρ

+
∑

j′ρ

ζ jρ j′ρ s†
ρ

(
d̃ρ × a†

j′ρ

)( jρ )

mρ

, (17a)

B†
jρmρ

= θ jρ s†
ρ ã jρmρ

+
∑

j′ρ

θ jρ j′ρ

(
d†

ρ × ã j′ρ

)( jρ )
mρ

, (17b)

and the annihilation operators

Ã jρmρ
= (−1) jρ−mρ Ajρ−mρ

, (17c)

B̃ jρmρ
= (−1) jρ−mρ Bjρ−mρ

. (17d)

The operators in Eqs. (17a) and (17c) conserve the boson
number, whereas those in Eqs. (17b) and (17d) do not. The
operators T̂ GT and T̂ F are expressed as a combination of two
of the operators in Eqs. (17a)–(17d), depending on the type of
the β decay studied (i.e., β+ or β−) and on the particle or hole
nature of the valence nucleons. In the present case,

P̂jν =
{

B̃ jν ,mν
(N � 66)

Ã†
jν ,mν

(N � 68)
(18)

for the β− decay of the odd-A Rh, while

P̂jν =
{

Ã jν ,mν
(N � 65)

B̃†
jν ,mν

(N � 67)
(19)

for the β− decay of the even-A Rh. On the other hand, P̂jπ =
Ã jπ ,mπ

for all the considered β− decays. Note that Eqs. (17a)–
(17d) are simplified forms of the most general one-particle
transfer operators in the IBFM-2 [31].

By using the generalized seniority scheme, the coefficients
ζ j , ζ j j′ , θ j , and θ j j′ in Eqs. (17a) and (17b) can be written as
[68]

ζ jρ = u jρ
1

K ′
jρ

, (20a)
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FIG. 2. The Gogny-D1M HFB and mapped IBM-2 potential-energy surfaces as functions of the (β, γ ) deformation parameters for the
even-even 104–124Pd nuclei. The energy difference between neighboring contours is 200 keV. The global minimum is identified by a solid
circle.

ζ jρ j′ρ = −v jρ β j′ρ jρ

√
10

Nρ (2 jρ + 1)

1

KK ′
jρ

, (20b)

θ jρ = v jρ√
Nρ

1

K ′′
jρ

, (20c)

θ jρ j′ρ = u jρ β j′ρ jρ

√
10

2 jρ + 1

1

KK ′′
jρ

. (20d)

The factors K , K ′
jρ , and K ′′

jρ are defined as

K =
⎛
⎝∑

jρ j′ρ

β2
jρ j′ρ

⎞
⎠

1/2

, (21a)

K ′
jρ =

⎡
⎣1 + 2

(
v jρ

u jρ

)2 〈(n̂sρ
+ 1

)
n̂dρ

〉
0+

1

Nρ

(
2 jρ + 1

)
∑

j′ρ
β2

j′ρ jρ

K2

⎤
⎦

1/2

,

(21b)

K ′′
jρ =

⎡
⎣

〈
n̂sρ

〉
0+

1

Nρ

+ 2

(
u jρ

v jρ

)2 〈
n̂dρ

〉
0+

1

2 jρ + 1

∑
j′ρ

β2
j′ρ jρ

K2

⎤
⎦

1/2

, (21c)

where n̂sρ
is the number operator for the sρ boson and 〈· · ·〉0+

1

stands for the expectation value of a given operator in the
0+

1 ground state of the even-even nucleus. The amplitudes
v jρ and u jρ appearing in Eqs. (20a)–(20d) and (21a)–(21c)
are the same as those used in the IBFM-2 (or IBFFM-2)
calculations for the odd-mass (or odd-odd) nuclei. No addi-
tional parameter is introduced for the GT and Fermi operators.
For a more detailed account on β-decay operators within the
IBFM-2 or IBFFM-2 framework, the reader is also referred to
Refs. [6,31,68].

The β-decay f t values are given by

f t = K

|M(F)|2 +
(

gA

gV

)2
|M(GT)|2

, (22)

where the numeric constant K takes the value K = 6163 s.
The quantities M(F) and M(GT) are the reduced matrix ele-
ments of the operators T̂ F of Eq. (14) and T̂ GT of Eq. (13),
respectively. Here gV and gA are the vector and axial-vector
coupling constants, respectively. In this study, we use the free
nucleon values, gV = 1 and gA = 1.27, for the β decays of
both even- and odd-A Rh.

064304-5



K. NOMURA et al. PHYSICAL REVIEW C 106, 064304 (2022)

III. EVEN-EVEN NUCLEI

A. Potential-energy surfaces

The Gogny-D1M HFB and mapped IBM-2 potential-
energy surfaces are shown in Fig. 2 as functions of the (β, γ )
deformation parameters for the even-even 104–124Pd nuclei.
The variation of the HFB potential-energy surfaces as func-
tions of the neutron number suggests a transition from prolate
(for N � 62) to γ -soft (64 � N � 70), and to nearly spherical
(N � 72) shapes. In particular, both 112,114Pd exhibit rather
flat potential-energy surfaces along the γ direction. This is
what is expected in the γ -unstable O(6) limit of the IBM [29].
In the case of 116Pd, a flat-bottomed potential with a weak γ

dependence, characteristic of the E(5) critical-point symmetry
[69], is obtained.

For each of the considered nuclei, the Gogny-HFB and
IBM-2 energy surfaces display a similar topology in the
neighborhood of the global minimum (the location of the
minimum, and the softness in the β and γ directions are sim-
ilar). However, the mapped IBM-2 surfaces generally become
flat at large β deformation (β � 0.4). This difference is a
consequence of the fact that in the HFB approach all nucleonic
degrees of freedom are taken into account while the IBM-2 is
built on the more limited model (valence) space of nucleon
pairs. However, since the mean-field configurations most rel-
evant to the low-energy collective excitations are those in the
vicinity of the global minimum, the mapping is considered
specifically in that region [63,64].

B. Spectroscopic properties

The mapped IBM-2 excitation energies of the 2+
1 , 4+

1 , 0+
2 ,

and 2+
2 states in the even-even 104–124Pd nuclei are shown

in Fig. 3 as functions of the neutron number N . Results ob-
tained using the conventional IBM-2 approach (hereinafter
referred to as phenomenological IBM-2), with parameters
adopted from the earlier phenomenological study [37], are
also included in the plot. As can be seen from the figure,
the excitation energies decrease toward the middle of the
major shell, i.e., N = 66. For N � 64, the mapped IBM−22+

1
and 4+

1 excitation energies underestimate the experimental
ones while the energies of the non-yrast 0+

2 and 2+
2 states

are overestimated. In the mapped (phenomenological) IBM-2
approach the ratios R4/2 of the 4+

1 to 2+
1 excitation energies are

2.96 (2.43), 2.86 (2.39), and 2.69 (2.34) for 104Pd, 106Pd, and
108Pd, respectively. These values should be compared with the
experimental ratios of 2.38, 2.40, and 2.41. Thus, the mapped
IBM-2 provides excitation spectra which are more rotational
in character than the phenomenological IBM-2 and experi-
mental ones. Around the neutron midshell N = 66, both the
predicted and experimental 2+

2 levels have the lowest energies,
being even below the 4+

1 state. The 2+
2 state is the bandhead

of the quasi-γ band, and the lowering of this state reflects an
emergence of pronounced γ softness.

The IBM-2 parameters obtained for the even-even Pd iso-
topes from the mapping procedure, and those determined
phenomenologically are shown in Fig. 4. The phenomeno-
logical IBM-2 parameters are extracted from earlier fitting
calculations for Pd and Ru isotopes [37]. In Ref. [37], in
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FIG. 3. Excitation energies of the (a) 2+
1 , (b) 4+

1 , (c) 0+
2 , and

(d) 2+
2 states in the even-even 104–124Pd nuclei. Results are obtained

within the mapped and phenomenological (Phen.) IBM-2. Experi-
mental data are taken from Ref. [70].

addition to the terms that appear in Eq. (2), the like-boson
interactions, and the so-called Majorana terms were included
in the model Hamiltonian. These terms were, however, shown
to play a minor role [37], and are omitted in the present study.
From Fig. 4, one sees that the single-d boson energy εd and

FIG. 4. Parameters for the even-even boson-core Hamiltonian
(2) employed in the mapped and phenomenological (Phen.) IBM-2
calculations for even-even Pd isotopes.
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FIG. 5. The reduced transition probabilities B(E2) for the tran-
sitions (a) 2+

1 → 0+
1 , (b) 4+

1 → 2+
1 , (c) 0+

2 → 2+
1 , and (d) 2+

2 → 2+
1

in even-even Pd isotopes in comparison with the experimental data
[70].

the strength κ have similar nucleon-number dependence for
both the mapped and phenomenological IBM-2 models. A
notable quantitative difference is that the derived κ values for
the former are ≈1.4 larger in magnitude than for the latter.
The behavior of the parameter χν is different in the two ap-
proaches for N � 70. The sign and absolute value of the sum
χν + χπ reflect the extent of γ softness and whether the nu-
cleus is prolate or oblate deformed. In both calculations, the
sum is negative, χν + χπ < 0, for N � 64, indicating prolate

deformation, and takes nearly vanishing values, χν + χπ ≈ 0,
around the neutron midshell N = 66, reflecting γ softness.
However, for N � 70, the sum is negative (positive) in the
mapped (phenomenological) calculations, implying prolate
(oblate) deformation. Note that a fixed value χπ = 0.2 is em-
ployed in the phenomenological IBM-2 calculations, whereas
in the mapped approach this parameter exhibits a strong nu-
cleon number dependence.

The B(E2) transition probabilities, computed within
the mapped and phenomenological IBM-2 models, are
plotted in Fig. 5 as functions of the neutron number N . The
same E2 effective boson charge is used for the quadrupole
operators in the two sets of the IBM-2 calculations. The
B(E2; 2+

1 → 0+
1 ) and B(E2; 4+

1 → 2+
1 ) values obtained in

the mapped IBM-2 calculations agree reasonably well
with the experiment, exception made of 112Pd. Both the
mapped and phenomenological IBM-2 calculations predict
B(E2; 0+

2 → 2+
1 ) and B(E2; 2+

2 → 2+
1 ) rates with similar

trends as functions of N . However, the mapped IBM-2 scheme
provides smaller B(E2; 0+

2 → 2+
1 ) values for Pd isotopes with

58 � N � 62. The enhancement of the predicted B(E2; 2+
2 →

2+
1 ) transition rates around the midshell N = 66 [see Fig. 5(d)]

can be considered as another signature of γ -soft deformation.

IV. ODD-A Pd and Rh NUCLEI

The excitation energies of the low-lying positive-parity
states obtained for the odd-A Pd isotopes 105–123Pd are de-
picted in Fig. 6. The results obtained within the IBFM-2
model with boson-core Hamiltonian determined by map-
ping the Gogny-D1M EDF [Fig. 6(a)] and those obtained
from phenomenological calculations of Ref. [37] [Fig. 6(b)]
are compared with experimental data [70–72]. The two
IBFM-2 calculations, using different boson-core Hamiltonian
parameters, provide an overall consistent description of the
experimental excitation energies. As can be seen from the
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FIG. 6. Excitation energies of the low-lying positive-parity states obtained for odd-A Pd isotopes within the IBFM-2 with the boson-core
Hamiltonian determined by (a) mapping the Gogny-D1M EDF and (b) using the phenomenological fit. The experimental data included in
panel (c) are taken from Ref. [71] for 117Pd, from Ref. [72] for 119Pd, and from the NNDC database [70] for the other nuclei.
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FIG. 7. The same as Fig. 6, but for odd-Z Rh nuclei. The experimental data are taken from Ref. [70].

figure, the experimental data display a change in the ground-
state spin from N = 67 to 69. The corresponding even-even
core nuclei, 114Pd and 116Pd, are in the transitional region,
for which the potential-energy surfaces are suggested to be
considerably γ soft (see Fig. 2). The sudden change in the
ground-state spin of the odd-A neighbor, therefore, reflects the
transition that takes place in the even-even core systems from
the γ unstable shape, which is associated with an O(6)-like
potential, to the E(5)-like structure characterized by a flat-
bottomed potential.

The excitation energies of the low-lying positive-parity
states obtained for the odd-A isotopes 103–123Rh are depicted
in Fig. 7. Experimentally, the ground states of these isotopes
have spin Iπ = 7/2+. Exceptions are made of some of the
heaviest isotopes, and similar results are predicted within both
the mapped and phenomenological calculations. Both theoret-
ically and experimentally, some of the energy levels exhibit an
approximate parabolic behavior with a minimum around the
middle of the major shell, N ≈ 66. For 103–123Rh, the order
of most of the energy levels remains unchanged in the whole
isotopic chain within both the mapped and phenomenological
IBFM-2 calculations. This situation is in a sharp contrast with
the one in the odd-A Pd (see Fig. 6), in which the structural
change along the isotopic chain occurs more rapidly. Note that
the low-lying states of the odd-A Rh nuclei are accounted for
almost purely by the proton π0g9/2 single-particle configura-
tion while more than one single-particle orbital is considered
for the odd-A Pd. The occupation number of the odd proton in
the π0g9/2 orbital is also nearly constant along the whole Rh
isotopic chain [see Fig. 1(f)], whereas the occupation proba-
bilities for the odd neutron in the odd-A Pd vary significantly
with N [see Fig. 1(e)]. Furthermore, as shown below, the
strength parameters for V̂BF are fixed in the case of odd-A Rh
nuclei while they depend on the boson number for odd-A Pd
isotopes.

The strength parameters of the boson-fermion interaction
(4) for odd-N Pd nuclei are shown in Fig. 8. These param-
eters are chosen so that the ground-state spin and energies
of a few low-lying levels are reproduced reasonably well.

The parameters for the two IBFM-2 calculations are rather
similar, with an exception made of the monopole strength Aν

for 59 � N � 63. Note that common quasiparticle energies
ε̃ jρ and occupation probabilities v2

jρ are used for both IBFM-2

calculations. The parameters for the 123Pd77 nucleus, where
no experimental data are available, are taken to be the same
as those for the adjacent nucleus 121Pd75. As can be seen from
the figure, the IBFM-2 parameters turn out to have a strong N
dependence that reflects the rapid structural change in the odd-
A Pd isotopes. On the other hand, constant strength parameters
�π = 0.6 (0.0) MeV, �π = 0.6 (0.75) MeV, and Aπ = 0.0
(−0.25) MeV reproduce reasonably well the experimental
data for odd-A Rh nuclei in the mapped (phenomenological)
calculations.
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FIG. 8. Parameters of the mapped and phenomenological IBFM-
2 Hamiltonian (2) for odd-N Pd nuclei.
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TABLE II. B(E2) rates (in Weisskopf units, W.u.), quadrupole
moment Q(I ) (in e b), B(M1) rates (in W.u. × 10−3), and magnetic-
dipole moments μ(I ) (in μN ) obtained for odd-A Pd nuclei within the
mapped and phenomenological IBFM-2 calculations. Experimental
data are taken from Refs. [70,73].

Calc.

Mapped Phen. Expt.

105Pd B(E2; 1/2+
1 → 3/2+

1 ) 25 13 2.0+91
−16

B(E2; 1/2+
1 → 5/2+

1 ) 90 45 2.64(15)
B(E2; 1/2+

2 → 3/2+
1 ) 0.6 3.1 0.9+12

−7

B(E2; 1/2+
2 → 5/2+

1 ) 0.04 0.9 8.4(9)
B(E2; 3/2+

1 → 5/2+
1 ) 44 40 4.6(7)

B(E2; 3/2+
1 → 3/2+

3 ) 0.05 5.1 >0.21
B(E2; 3/2+

3 → 5/2+
2 ) 0.01 2.7 >2.2

B(E2; 5/2+
1 → 5/2+

2 ) 15 29 1.8(4)
B(E2; 7/2+

1 → 5/2+
1 ) 24 33 0.30(4)

B(E2; 9/2+
1 → 5/2+

1 ) 57 40 14.3(13)
B(M1; 1/2+

1 → 3/2+
1 ) 372 280 14.9+20

−21

B(M1; 1/2+
1 → 1/2+

2 ) 0.93 1.5 7.8(8)
B(M1; 1/2+

2 → 3/2+
1 ) 37 7 45+6

−5
B(M1; 3/2+

1 → 5/2+
1 ) 31 4.4 20.3(22)

B(M1; 3/2+
1 → 3/2+

3 ) 0.012 0.0004 >5.9
B(M1; 3/2+

3 → 5/2+
2 ) 0.0026 2.9 >47

B(M1; 5/2+
1 → 5/2+

2 ) 13 1.6 19(3)
B(M1; 5/2+

3 → 3/2+
1 ) 4.7 0.47 >0.40

B(M1; 5/2+
3 → 7/2+

2 ) 52 32 >25
B(M1; 7/2+

1 → 5/2+
1 ) 31 3.7 10.6(12)

Q(5/2+
1 ) −0.54 −0.27 +0.660(11)

μ(3/2+
1 ) −0.56 −0.64 −0.074(13)

μ(5/2+
1 ) −1.19 −1.32 −0.642(3)

μ(5/2+
2 ) −0.67 −0.76 +0.95(20)

107Pd B(E2; 1/2+
1 → 5/2+

1 ) 112 90 0.58(7)
μ(5/2+

1 ) −1.06 −1.05 0.735(7)
109Pd B(E2; 1/2+

1 → 5/2+
1 ) 97 76 1.36(18)

B(E2; 3/2+
1 → 5/2+

1 ) 58 48 8(8)
B(M1; 3/2+

1 → 5/2+
1 ) 4.4 4.4 2.2(8)

B(M1; 5/2+
2 → 3/2+

1 ) 159 142 11.7(19)
B(M1; 7/2+

2 → 5/2+
1 ) 3.2 0.13 3.6(4)

Experimental data for electromagnetic transitions and mo-
ments are available for odd-A Pd and Rh nuclei with N � 65.
The predicted B(E2) and B(M1) transition strengths as well
as the electric-quadrupole Q(Iπ ) and magnetic-dipole μ(Iπ )
moments for the low-lying positive-parity states in odd-A Pd
are given in Table II. In most of the cases, the mapped and
phenomenological calculations provide similar results. Large
values are obtained for the B(E2; 1/2+

1 → 5/2+
1 ) (in 105Pd,

107Pd, and 109Pd), B(E2; 3/2+
1 → 5/2+

1 ) (in 105Pd and 109Pd),
and B(E2; 9/2+

1 → 5/2+
1 ) (in 105Pd) transitions. The exper-

imental data, however, suggest that these E2 transitions are
weaker. The B(E2) and B(M1) rates corresponding to some
transitions in odd-A Rh nuclei are given in Table III. The
large B(E2; 5/2+

1 → 7/2+
1 ) and B(E2; 5/2+

1 → 9/2+
1 ) rates

obtained for 103Rh overestimate the experimental rates by
several orders of magnitude.

The deviation of the predicted B(E2) and B(M1) transi-
tion rates for odd-A systems with respect to the experiment

TABLE III. The same as in Table II, but for odd-A Rh nuclei.

Calc.

Mapped Phen. Expt.

103Rh B(E2; 5/2+
1 → 7/2+

1 ) 33 31 2.0(6)
B(E2; 5/2+

1 → 9/2+
1 ) 28 13 0.107(33)

B(M1; 5/2+
1 → 7/2+

1 ) 471 354 40(12)
B(M1; 9/2+

1 → 7/2+
1 ) 1.0 1.9 43(12)

μ(7/2+
1 ) 4.85 4.88 +4.540(11)

μ(9/2+
1 ) 5.69 5.62 +4.9(8)

107Rh B(E2; 3/2+
1 → 7/2+

1 ) 4.73 1.62 0.16(2)
109Rh B(E2; 3/2+

1 → 3/2+
2 ) 0.14 0.18 1.7 × 102(5)

B(E2; 3/2+
1 → 7/2+

1 ) 4.41 0.01 0.0174(5)
B(E2; 3/2+

2 → 7/2+
1 ) 5.3 5.9 26.1(19)

B(E2; 5/2+
1 → 9/2+

1 ) 7.9 5.3 >23
B(E2; 5/2+

2 → 3/2+
1 ) 12 5.8 1.7(7)

B(E2; 5/2+
2 → 3/2+

2 ) 22 9 7.E+1(3)
B(E2; 7/2+

2 → 3/2+
1 ) 8 15 131(12)

B(M1; 5/2+
1 → 3/2+

3 ) 5.2 8.6 >220
B(M1; 5/2+

1 → 3/2+
1 ) 818 414 >0.40

B(M1; 5/2+
2 → 3/2+

1 ) 37 289 2.4(3)
B(M1; 5/2+

2 → 3/2+
2 ) 152 207 2.2(15)

B(M1; 5/2+
2 → 3/2+

3 ) 18 210 2.5(4)
B(M1; 5/2+

2 → 7/2+
1 ) 231 112 4.1×10−2(6)

B(M1; 7/2+
2 → 9/2+

1 ) 318 611 0.25(6)
B(M1; 7/2+

1 → 7/2+
2 ) 7.6 8.9 6.6×10−2(8)

B(M1; 3/2+
1 → 3/2+

2 ) 27 48 0.58(12)
B(M1; 3/2+

1 → 3/2+
3 ) 158 256 1.18(11)

B(M1; 3/2+
2 → 3/2+

3 ) 276 32 0.32(10)
B(M1; 5/2+

1 → 7/2+
1 ) 233 172 >3.2

B(M1; 9/2+
1 → 7/2+

1 ) 4.3 18 >58

could be interpreted in terms of the structure of the corre-
sponding IBFM-2 wave functions. The components of the
IBFM-2 wave functions for the low-lying states of odd-A
Pd isotopes are shown in Fig. 9. They are associated with
the single(quasi)-particle orbitals ν2s1/2, ν1d3/2, ν1d5/2, and
ν0g7/2. Only components obtained within the mapped frame-
work are shown as illustrative examples, while qualitatively
similar results are obtained using the phenomenological ap-
proach. The states considered for odd-A Rh nuclei are almost
purely made of the proton 0g9/2 configuration (with a weight
of ≈99%). Therefore, the corresponding wave-function con-
tents are not shown in the plot. As can be seen from the figure,
the neutron 1d5/2 configuration accounts for most of the
IBFM-2 wave functions for the 1/2+

1 , 3/2+
1 , 5/2+

1 , and 7/2+
1

in odd-A Pd nuclei with N � 67. However, the description of
these wave functions in both the mapped and phenomeno-
logical IBFM-2 calculations in the present study may not
be adequate, and this leads to some of the considerable
disagreements between the calculated and experimental elec-
tromagnetic properties, including the B(E2; 1/2+

1 → 5/2+
1 )

values in 105Pd, 107Pd, and 109Pd (see Table II). The deficiency
of the IBFM-2 wave functions could arise from various defi-
ciencies of the present model calculations, such as the choice
of the single-particle space, the quasiparticle energies and
occupation probabilities of the odd particle, and the effective
charges involved in the transition operators, which are kept
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FIG. 9. Fractions (in percent) of the neutron ν2s1/2, ν1d3/2,
ν1d5/2, and ν0g7/2 single-particle configurations in the wave func-
tions for the (a) 1/2+

1 , (b) 3/2+
1 , (c) 5/2+

1 , and (d) 7/2+
1 states in

odd-A Pd nuclei. The wave functions are obtained within the mapped
IBFM-2 scheme based on Gogny-D1M EDF calculations.

constant for all nuclei. On the other hand, earlier IBFM-2
fitting calculations in the same mass region [7,74] obtained
E2 and M1 properties consistent with experiment.

V. ODD-ODD Rh NUCLEI

The excitation energies of the low-lying positive-parity
states obtained for odd-odd Rh isotopes are depicted in
Fig. 10. The available experimental data [70] suggest that for
N � 71 the ground state has spin Iπ = 1+. Excited 1+ states
are also observed at low energy. Both the mapped [Fig. 10(a)]
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FIG. 11. Parameters for the residual neutron-proton interactions
(8) employed for odd-odd Rh isotopes in the mapped and phe-
nomenological IBM approaches.

and phenomenological [Fig. 10(b)] IBFFM-2 calculations ac-
count for the ground-state spin 1+. The calculations also
reproduce reasonably well the energies of the 1+

2 states. From
N ≈ 71 to 73, both types of calculations suggest a change
in the ground-state spin to Iπ = 5+. There are no spectro-
scopic data to compare with for even-A Rh isotopes with
N � 73. Note, that a ground-state spin different from Iπ = 1+
is experimentally found in the neighboring odd-odd Ag and
In isotopes. For instance, for 120Ag, 122Ag, 124Ag, and 126In
the ground state has spin Iπ = 3+. A low-lying 5+ level is
observed in 122In at an excitation energy around 40 keV above
the 1+ ground state.

The strength parameters vd and vt of the neutron-proton
residual interaction V̂νπ in Eq. (8) are shown in Fig. 11 for
odd-odd Rh isotopes as functions of the neutron number.
Those parameters are determined so that the correct ground-
state spin Iπ

g.s. = 1+
1 as well as the energy of the 1+

2 state are
reproduced reasonably well. For N � 73, where experimental
data are not available, the same values of the parameters as
for 116Rh71 are employed. As can be seen from Fig. 11(a),
the parameter vd changes suddenly from N = 63 to 67. This
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FIG. 10. The same as Fig. 6, but for the odd-odd Rh isotopes.
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FIG. 12. Fraction (in percent) of the neutron-proton pair components in the wave functions for the (a) 1+
1 and (b) 5+

1 states of the odd-odd
104−122Rh isotopes under study. The wave functions are obtained within the mapped IBFFM-2 formalism based on the Gogny-D1M EDF.

sudden change accounts for the experimental [see Fig. 10(c)]
lowering of the 1+

2 level toward the middle of the major shell,
N ≈ 67. On the other hand, the tensor interaction strength
exhibits a smooth decrease with N .

The nature of the low-lying states in odd-odd Rh isotopes
can be analyzed in terms of various neutron-proton pair com-
ponents in the IBFFM-2 wave functions. The corresponding
results for the 1+

1 and 5+
1 states, obtained within the mapped

IBFFM-2 formalism, are shown in Fig. 12. For nuclei with
A � 118, the 1+

1 state is mostly based on the configuration
associated with the [ν0g7/2 ⊗ π0g9/2](J ) neutron-proton pairs
coupled to the even-even boson core, with the total angu-
lar momentum of the fermion system J = 1, 2, . . ., 8. For
120Rh and 122Rh, the contributions of the [ν1d3/2 ⊗ π0g9/2](J )

(J = 3, 4, 5, 6) pairs also play a prominent role. As one can
see from Fig. 12(b), the dominant contribution to the 5+

1
wave function for Rh isotopes with mass A � 112 comes
from the [ν1d5/2 ⊗ π0g9/2](J ) pair components, while the
[ν0g7/2 ⊗ π0g9/2](J ) pair components play a negligible role.
For heavier Rh isotopes, with A � 114, the other pair com-
ponents that involve the π0g9/2 state, i.e., those based on
the [ν2s1/2 ⊗ π0g9/2](J ), [ν1d3/2 ⊗ π0g9/2](J ), and [ν0g7/2 ⊗
π0g9/2](J ) pairs, are rather fragmented in the Iπ = 5+

1 wave
functions. Qualitatively similar results are obtained using phe-
nomenological IBFFM-2 wave functions.

The experimental information on the electromagnetic prop-
erties of the considered odd-odd Rh nuclei is rather limited.
Table IV compares the predicted and experimental B(E2),
B(M1), and magnetic-dipole moment μ(1+

1 ) for 104Rh and
106Rh. Both the mapped and phenomenological IBFFM-2 cal-
culations provide a reasonable description of the experimental

data for these odd-odd nuclei. Nevertheless, a more detailed
assessment of the quality of the IBFFM-2 wave functions is
difficult in this case due to the lack of data.

VI. β DECAY

A. β decays between odd-A nuclei

Figure 13 shows the log f t values for the β− decays of
the 7/2+

1 state of the odd-A Rh into several low-lying states
of the odd-A Pd nuclei. Results are obtained using mapped
and phenomenological IBFM-2 wave functions. In both cases,
the predicted trend of the log f t values, as functions of the
nucleon number, reflects the structural change in the parent
and daughter odd-A nuclei. An illustrative example is a kink
emerging at the mass A ≈ 113 or 115 in the predicted log f t
values for the 7/2+

1 → 5/2+
1 [Fig. 13(a)] and 7/2+

1 → 7/2+
1

TABLE IV. B(E2), B(M1) (in W.u.), and magnetic-dipole mo-
ment μ(1+

1 ) (in μN ) for odd-odd Rh isotopes, computed within
the mapped IBFFM-2 based on the Gogny-D1M EDF and the
phenomenological IBFFM-2. Experimental data are taken from
Refs. [70,73].

Calc.

Mapped Phen. Expt.

104Rh B(E2; 1+
3 → 2+

1 ) 1.35 13 >5.2
B(M1; 2+

1 → 1+
1 ) 0.03 0.06 >0.029

B(M1; 1+
3 → 1+

1 ) 0.03 0.05 >0.00098
106Rh μ(1+

1 ) 2.13 2.20 2.575(7)
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FIG. 13. log f t values for the β− decays from the odd-A Rh
into Pd nuclei, (a) 7/2+

1 → 5/2+
1 , (b) 7/2+

1 → 7/2+
1 , (c) 7/2+

1 →
5/2+

2 , and (d) 7/2+
1 → 7/2+

2 computed using wave functions ob-
tained within the mapped and phenomenological IBFM-2 models.
The available experimental data [70] are also included in the plot.

[Fig. 13(b)] decays. The mass number at which the kink
emerges corresponds to the transitional region, where the
ground-state spin changes, observed in the odd-A Pd daughter
(see Fig. 6). The mass dependence of the predicted log f t
values is similar in the mapped and phenomenological cal-
culations, exception made of the results from A = 113 to 115
in the 7/2+

1 → 7/2+
1 decay and from A = 117 to 119 in the

7/2+
1 → 5/2+

2 decay.
Both within the mapped and phenomenological schemes,

the present calculations overestimate the observed log f t
values for the decays 105,107Rh(7/2+

1 ) → 105,107Pd(5/2+
1 )

[Fig. 13(a)]. At both A = 105 and 107, the 5/2+
1 final-state

wave function has been shown to be almost purely made of
the ν1d5/2 configuration [see Fig. 9(c)], while the parent state
7/2+

1 is of almost pure π0g9/2 nature.
The dominant contribution to the GT matrix element for

the above 7/2+
1 → 5/2+

1 decays indeed comes from the term
that corresponds to the coupling of the ν1d5/2 with π0g9/2

single-particle states, which is of the form

[[d̃ν × a†
ν1d5/2

](7/2) × ãπ0g9/2 ](J=1). (23)

The matrix element of this term is, however, rather small:
0.041 and −0.091 (0.069 and −0.118), for the 105Rh and
107Rh decays in the mapped (phenomenological) approach.
There are many other terms similar to the one in Eq. (23),
but their matrix elements are small and cancel each other,
leading to a small GT transition rate. The same is true for
the 105,107Rh(7/2+

1 ) → 105,107Pd(7/2+
1 ) decays [Fig. 13(b)].

In this case, the Fermi transition matrix is also negligibly
small.

The calculations underestimate the log f t values for the
113Rh(7/2+

1 ) → 113Pd(5/2+
1 ) decay. For this decay, approx-

imately 75% and 25% of the wave function of the 5/2+
1 final

state are comprised of the ν1d5/2 and ν0g7/2 configurations,
respectively [see Fig. 9(c)]. Due to the large admixture of the
ν0g7/2 components into the 5/2+

1 state of 113Pd, the term that
is proportional to [

a†
0νg7/2

× ãπ0g9/2

](1)
(24)

makes a sizable contribution to the GT transition strength. The
matrix element of this component, which amounts to −0.788
(0.850) in the mapped (phenomenological) calculation, is so
large that the corresponding log f t value is too small as com-
pared with the experimental value.

As noted above, there are notable quantitative differ-
ences between the mapped and phenomenological predictions
for the log f t values in the case of the 113Rh(7/2+

1 ) →
113Pd(7/2+

1 ) decay. The GT transition matrix element ob-
tained in the phenomenological calculation is two orders of
magnitude smaller than the one obtained within the mapped
scheme. This difference stems from a subtle balance between
matrix elements of different terms in the GT transition oper-
ator. The dominant contribution to the GT matrix element in
the former calculation come from the term proportional to the
expression in Eq. (24), and the one of the form

s†
ν

[[
d̃ν × a†

ν0g7/2

](7/2) × aπ0g9/2

](1)
. (25)

Their matrix elements are of the same order of magnitude but
have the opposite signs, hence cancellation occurs between
these terms. The degree of the cancellation, however, is much
smaller in the mapped calculation. The contribution of the
Fermi matrix element is negligibly small in both the mapped
and phenomenological cases.

The log f t values for the Rh decays into the non-yrast
states, 5/2+

2 and 7/2+
2 , of the odd-A Pd are shown in

Figs. 13(c) and 13(d), respectively. The predicted log f t val-
ues for the ARh(7/2+

1 ) → APd(5/2+
2 ) decay in the two sets

of calculations are generally large, log f t � 7 for A � 111.
In particular, they overestimate the experimental values for
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TABLE V. log f t values for the β− decays from odd-A Rh into Pd
nuclei, computed using wave functions obtained within the mapped
IBFM-2 scheme based on the Gogny-D1M EDF and within the
phenomenological IBFM-2 model. The experimental data are taken
from Ref. [70].

Calc.

Decay Ii → If Mapped Phen. Expt.

105Rh → 105Pd 7/2+
1 → 5/2+

1 7.45 6.88 5.710(7)
7/2+

1 → 7/2+
1 8.12 7.66 5.797(16)

7/2+
1 → 5/2+

2 7.19 7.41 5.152(20)
7/2+

1 → 7/2+
2 9.01 10.08 6.91(3)

107Rh → 107Pd 7/2+
1 → 5/2+

1 6.81 6.47 6.1(2)
7/2+

1 → 5/2+
2 7.81 7.39 5.0(1)

7/2+
1 → 7/2+

1 7.78 6.99 6.2(1)
7/2+

1 → 7/2+
2 6.23 8.05 5.8(1)

7/2+
1 → 5/2+

3 8.00 7.45 6.1(1)
7/2+

1 → 5/2+
4 5.82 7.87 5.3(1)

109Rh → 109Pd 7/2+
1 → 5/2+

1 6.05 5.86 5.8(3)
7/2+

1 → 7/2+
1 7.02 6.19 6.69(12)

7/2+
1 → 5/2+

2 6.92 6.58 4.86(5)
7/2+

1 → 7/2+
2 5.68 5.57 5.69(6)

7/2+
1 → 5/2+

3 6.83 7.39 5.53(5)
7/2+

1 → 9/2+
1 7.32 6.84 7.26(19)

113Rh → 113Pd 7/2+
1 → 5/2+

1 4.58 4.51 5.4(1)
7/2+

1 → 7/2+
1 6.46 8.07 5.90(5)

7/2+
1 → 5/2+

2 4.35 4.28 5.00(4)a

7/2+
1 → 7/2+

2 5.71 5.57 5.00(4)a

7/2+
1 → 5/2+

3 5.42 5.59 6.7(2)b

7/2+
1 → 7/2+

3 5.07 4.81 6.7(2)b

117Rh → 117Pd 7/2+
1 → 5/2+

1 5.61 5.09 6.0c

7/2+
1 → 5/2+

2 5.81 5.31 5.7c

7/2+
1 → 5/2+

3 4.27 5.34 5.8c

7/2+
1 → 7/2+

1 5.22 5.27 6.3c

7/2+
1 → 5/2+

4 7.64 4.56 6.3c

7/2+
1 → 5/2+

5 5.82 5.50 6.0d

7/2+
1 → 7/2+

2 4.97 5.28 6.0d

a(5/2+, 7/2+) at 349 keV [70].
b(5/2+, 7/2+) at 373 keV based on the XUNDL datasets [70].
cUncertainties are not given with the log f t .
d(5/2+, 7/2+) level at 436 keV, based on the XUNDL datasets [70].
Uncertainties are not given.

the 105Rh, 107Rh, and 109Rh decays by a factor of two. The
discrepancy could be attributed to the nature of the IBFM-
2 wave functions and the components of the GT operator.
The computed log f t values for the ARh(7/2+

1 ) → APd(7/2+
2 )

decay in the mapped scheme are close to the experimental
values, with an exception made of the 105Rh decay.

Table V gives complementary results for the log f t values
of the β− decays ARh(7/2+

1 ) → APd(I+
f ), with final states

other than those already discussed above. The predicted log f t
values are compared with the available experimental data [70].

Previous IBFM-2 calculations [7] provided log f t val-
ues for the β− decays 7/2+

1 → 5/2+
1 and 7/2+

1 → 7/2+
1 in

105,107,109Rh which are consistent with the experimental ones.
However, for the same nuclei the values log f t ≈ 4 were ob-
tained for the 7/2+

1 → 5/2+
2 β− decay. Such log f t values are

systematically smaller than the experimental values and those
obtained in this work. A more recent IBFM-2 calculation for
the 115,117Rh → 115,117Pd β− decay [13] obtained a value
log f t = 5.90 for the 7/2+

1 → 5/2+
1 decay of 115Rh. This

log f t value is close to the one obtained in this study. On the
other hand, for the 7/2+

1 → 5/2+
1 and 7/2+

1 → 7/2+
1 decays

of 117Rh, the values log f t = 6.78 and 6.68 were reported
in Ref. [13]. They are approximately 20% larger than those
obtained in the present work.

B. β decays of even-A nuclei

The log f t values for the β− decays of the even-A Rh into
Pd nuclei are plotted in Fig. 14. One immediately sees from
Fig. 14(a) that the mapped and phenomenological log f t val-
ues for the ARh(1+

1 ) → APd(0+
1 ) decays are, approximately,

a factor two smaller than the experimental ones. The corre-
sponding GT matrix elements are almost purely determined
by the contributions of the terms associated with the ν0g7/2 −
π0g9/2 coupling, i.e.,[

ãν0g7/2 × ãπ0g9/2

](1)
, (26)

for N � 65 and

s†
ν[ãν0g7/2 × ãπ0g9/2 ](1), (27)

for N � 67. As shown in Fig. 15(a), the matrix elements of
these terms are particularly large for the mass A � 116. Note
also that the IBFFM-2 wave functions for the initial 1+

1 state
mainly consist of the pair configuration [ν0g7/2 ⊗ π0g9/2](J )

for the even-A Rh with A � 118 [see Fig. 12(a)]. For the larger
mass A � 120, this pair configuration becomes less important
in the 1+

1 wave function of the final nucleus. As a conse-
quence, the GT transition strength decreases with increasing
A [see Fig. 15(a)].

To reproduce the β-decay log f t data, effective values of
the gA factor, gA,eff , are often employed. Here we compare
the predicted log f t value for the ARh(1+

1 ) → APd(0+
1 ) de-

cay with the corresponding experimental one, and extract
the gA,eff values for those decays for which log f t data are
available. The resulting gA,eff values are, on average, gA,eff ≈
0.152 (0.205) in the mapped (phenomenological) scheme.
This amounts to a reduction of the free value by approximately
by 88 (84)%. In the previous IBM-2/IBFFM-2 study of the β

and ββ decays of the Te and Xe isotopes with A ≈ 130 [9], the
gA,eff values extracted from a comparison with the log f t data
for the single-β decays are 0.313 for the β+ decay 128I(1+

1 ) →
128Te(0+

1 ), and 0.255 for the β− decay 128I(1+
1 ) → 128Xe(0+

1 ).
As can be seen from Fig. 14(b), the log f t values ob-

tained within the mapped and phenomenological approaches
for the ARh(1+

1 ) → APd(2+
1 ) decay differ considerably. The

difference between the two calculations is especially large
at A = 110 and 116. One sees from Fig. 15(b), that the GT
matrix element M(GT; 1+

1 → 2+
1 ) for the 116Rh decay in the

phenomenological calculations is much larger in magnitude
than the one obtained within the mapped approach, with the
largest contribution coming from the term associated with
the ν0g7/2 − π0g9/2 coupling. Generally, the predicted log f t
values for the 1+

1 → 2+
1 β− decay, both within the mapped and

phenomenological schemes, increase with A (or N). This is
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FIG. 14. The same as in Fig. 13, but for the β− decays (a) 1+
1 →

0+
1 , (b) 1+

1 → 2+
1 , (c) 1+

1 → 0+
2 , and (d) 1+

1 → 2+
2 from the even-A

Rh into Pd nuclei.

due to the fact that the pair configuration [ν0g7/2 ⊗ π0g9/2](J )

gradually becomes less important in the 1+
1 wave function of

the even-A Rh for larger A [see Fig. 12(a)].
For the ARh(1+

1 ) → APd(0+
2 ) decay, the log f t values pre-

dicted within the mapped and phenomenological approaches
are similar. The most notable difference occurs at A = 116,
with the mapped log f t value being nearly half the phe-
nomenological one. This is a consequence of the fact that
in the mapped GT matrix element M(GT; 1+

1 → 0+
2 ) associ-

ated with the 116Rh decay, the component of Eq. (27) is an
order of magnitude larger than the one in the phenomenolog-
ical calculations [see Fig. 15(c)]. In addition, the computed
log f t values for the 1+

1 → 0+
2 decay are larger than those

FIG. 15. Reduced matrix elements of the ν0g7/2 − π0g9/2 terms
in the GT transition operators, and total GT matrix elements for the
β− decays (a) 1+

1 → 0+
1 , (b) 1+

1 → 2+
1 , (c) 1+

1 → 0+
2 , and (d) 1+

1 →
2+

2 of the even-A Rh, resulting from the mapped and phenomenolog-
ical calculations.

for the 1+
1 → 0+

1 decay because the matrix elements of the
components involving the coupling ν0g7/2 − π0g9/2 in the
M(GT; 1+

1 → 0+
2 ) strength are smaller in magnitude than

those in the M(GT; 1+
1 → 0+

1 ) one.
The log f t values corresponding to the ARh(1+

1 ) →
APd(2+

2 ) decay are depicted in Fig. 14(d). Both the mapped
and phenomenological calculations largely underestimate the
measured value at A = 104. However, the results obtained
with both schemes reproduce the experimental trend reason-
ably well for 108 � A � 116. As can be seen from Fig. 15(d),
the difference between the mapped and phenomenological
results for 104 � A � 108 is due to the difference between the
matrix elements for the components ν0g7/2 − π0g9/2 in both
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schemes, with the mapped matrix elements being an order of
magnitude smaller than the phenomenological ones.

For the sake of completeness, Table VI compares the pre-
dicted and experimental [70] log f t values for the β− decays
of the even-A Rh isotopes. Cases other than those already
discussed above are considered in the table. As compared
with the ground-state-to-ground-state decay 1+

1 → 0+
1 , the

f t values for the decays of the 1+
1 state into non-yrast 1+

and 2+ states, and the log f t values for the 5+
1 → I f and

6+
1 → I f decays are calculated to be large. Note that the pre-

dicted log f t values for the decays 104Rh(5+
1 ) → 104Pd(4+

1 )
and 108Rh(5+

1 ) → 108Pd(6+
1 ) are rather close to the experi-

mental ones.

VII. CONCLUSIONS

In this paper, the low-energy collective states and β decays
for even and odd-mass neutron-rich Rh and Pd isotopes have
been studied using a mapping framework based on the Gogny-
EDF and the particle-boson coupling scheme. The constrained
HFB has been employed to provide microscopic input to
the mapping procedure. Such an input consists of potential-
energy surfaces as functions of the (β, γ ) shape degrees
of freedom for the even-even 104–124Pd isotopes. The IBM-
2 Hamiltonian, used to describe even-even core nuclei, has
been determined by mapping the Gogny-D1M HFB fermionic
potential-energy surfaces onto the corresponding bosonic sur-
faces. The microscopic mean-field calculations also provided
single-particle energies for the odd systems. Those represent
essential building blocks of the boson-fermion interactions for
the neighboring odd-A and odd-odd nuclei as well as for the
GT and Fermi transition operators. The strength parameters
of the boson-fermion and residual neutron-proton interactions
were fit to low-energy data for the odd-A and odd-odd sys-
tems.

The Gogny-HFB (β, γ ) potential-energy surfaces obtained
for even-even Pd isotopes point towards a transition from
prolate deformed (104–108Pd) to γ -soft (110–116Pd), and to
nearly spherical shapes (118–124Pd). The low-energy excitation
spectra and B(E2) transition strengths resulting from the di-
agonalization of the mapped IBM-2 Hamiltonian reproduced
the experimental trends reasonably well and reflect, to a large
extent, the structural evolution of the ground-state shapes pre-
dicted at the mean-field level. The excitation energies obtained
for the low-lying positive-parity levels in the odd-A Pd and Rh,
and even-A Rh nuclei also exhibit signatures of this structural
evolution. Within this context, a notable example is the change
in the ground-state spin from 113Pd to 115Pd. The computed
log f t values for the β− decays of the odd- and even-A Rh
into Pd nuclei have been shown to be sensitive to the nature
of the wave functions of the parent and daughter nuclei. They
also reflect the rapid structural evolution along the considered
isotopic chains. The log f t values for the odd-A Rh decay
have been predicted to be larger than the experimental ones
for A � 109. This could be traced back to the structure of the
IBFM-2 wave functions for the odd-A daughter (Pd) nuclei.
Furthermore, it has been shown that, for the even-A Rh de-
cay, the neutron-proton pair components [ν0g7/2 ⊗ π0g9/2](J )

play a key role in the GT transition matrix elements and are

TABLE VI. The same as in Table V, but for the β− decays from
even-A Rh to Pd nuclei.

Calc.

Decay Ii → If Mapped Phen. Expt.

104Rh → 104Pd 1+
1 → 0+

1 3.27 3.21 4.55(1)
1+

1 → 2+
1 3.54 5.41 5.80(1)

1+
1 → 0+

2 5.91 5.85 7.36(2)
1+

1 → 2+
2 6.03 4.45 8.7(1)

1+
1 → 0+

3 6.42 6.05 5.5(1)
1+

1 → 2+
3 5.24 4.72 6.3(1)

5+
1 → 4+

1 7.26 8.30 7.3(1)
5+

1 → 4+
2 8.45 7.59 6.1(1)

5+
1 → 4+

3 8.06 8.04 6.2(1)
5+

1 → 4+
4 8.59 8.57 5.8(1)

106Rh → 106Pd 1+
1 → 0+

1 3.31 3.43 5.168(7)
1+

1 → 2+
1 3.72 4.29 5.865(17)

1+
1 → 2+

2 6.78 4.72 6.55(7)
1+

1 → 0+
2 5.39 6.82 5.354(19)

1+
1 → 2+

3 5.15 4.58 5.757(17)
108Rh → 108Pd 1+

1 → 0+
1 3.31 3.45 5.5(3)

1+
1 → 2+

1 3.97 4.14 5.7(4)
1+

1 → 2+
2 7.06 5.00 6.0(4)

1+
1 → 0+

2 5.07 6.01 5.6(4)
5+

1 → 6+
1 7.72 7.44 6.8(3)

5+
1 → 4+

2 8.28 7.00 4.84(9)a

5+
1 → 5+

1 9.59 8.35 4.84(9)a

5+
1 → 6+

2 9.30 9.42 4.84(9)a

110Rh → 110Pd 6+
1 → 6+

1 8.29 8.26 6.38(13)
6+

1 → 6+
2 9.57 8.95 7.1(4)

6+
1 → 5+

1 9.16 8.69 6.34(25)
112Rh → 112Pd 1+

1 → 0+
1 3.55 3.61 ≈5.5

1+
1 → 2+

1 4.88 4.35 6.2(3)
1+

1 → 2+
2 5.53 5.86 6.4(3)

1+
1 → 0+

2 6.20 5.01 6.52(6)
1+

1 → 0+
3 7.48 6.36 6.88(9)b

1+
1 → 1+

1 7.74 5.66 6.88(9)b

1+
1 → 2+

3 5.83 5.39 6.88(9)b

1+
1 → 2+

3 5.83 5.39 6.97(22)
1+

1 → 2+
3 5.83 5.39 6.50(7)

6+
1 → 6+

1 8.75 8.80 6.52c

6+
1 → 5+

1 8.96 10.34 6.54
6+

1 → 6+
2 9.15 8.82 6.88

114Rh → 114Pd 1+
1 → 0+

1 3.59 4.37 5.9(2)
1+

1 → 2+
1 5.19 3.89 6.0(4)

1+
1 → 2+

2 6.60 6.08 5.7(2)
1+

1 → 0+
2 4.59 5.10 6.1(2)

1+
1 → 2+

3 5.57 5.28 6.1(2)
116Rh → 116Pd 1+

1 → 0+
1 3.75 4.38 5.62(22)

1+
1 → 2+

1 6.36 4.04 5.84(18)
1+

1 → 2+
2 6.99 6.63 5.76(19)

1+
1 → 0+

2 4.45 8.03 6.47(20)
1+

1 → 0+
3 5.29 8.60 6.36(19)

1+
1 → 2+

3 5.05 5.00 6.81(21)

a4+, 5+, 6+ level at 2864 keV.
b(0, 1, 2)+ level at 1140 keV.
clog f t values should be considered approximate [70].
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responsible for the too small log f t values for the ARh(1+
1 ) →

APd(0+
1 ) decay with respect to the experimental data.

The results of the mapped calculations have been compared
with conventional IBM-2 calculations in which the parameters
for the boson Hamiltonian have been fit to the experiment. The
mapped and phenomenological IBM-2 excitation spectra for
even-even, odd-A, and odd-odd systems are similar. However,
the two sets of calculations differ in their predictions for
electromagnetic and β-decay properties of the odd-nucleon
systems.

The results obtained in this study could be considered a
plausible step towards a consistent simultaneous description
of the low-lying states and β-decay properties of atomic
nuclei. However, the difference between the predicted and
experimental β-decay log f t values might require additional
refinements of the employed theoretical framework. In partic-
ular, the small log f t values obtained suggest that the role of
the effective axial-vector coupling constant gA should be fur-

ther studied in future calculations. The gA,eff values extracted
in this work from the comparison with the experimental data
turned out to be by a factor 7–8 smaller than the free nu-
cleon value. This large quenching indicates deficiencies in the
model space of the calculations or of the theoretical procedure
itself. Investigation along these lines is in progress and will be
reported elsewhere.

ACKNOWLEDGMENTS

This work is financed within the Tenure Track Pilot
Programme of the Croatian Science Foundation and the
École Polytechnique Fédérale de Lausanne, and Project No.
TTP-2018-07-3554 Exotic Nuclear Structure and Dynam-
ics, with funds of the Croatian-Swiss Research Programme.
The work of L.M.R. is supported by the Spanish Ministry
of Economy and Competitiveness (MINECO) Grant No.
PGC2018-094583-B-I00.

[1] S. Nishimura, Z. Li, H. Watanabe, K. Yoshinaga, T. Sumikama,
T. Tachibana, K. Yamaguchi, M. Kurata-Nishimura, G. Lorusso,
Y. Miyashita, A. Odahara, H. Baba, J. S. Berryman, N. Blasi,
A. Bracco, F. Camera, J. Chiba, P. Doornenbal, S. Go, T.
Hashimoto et al., Phys. Rev. Lett. 106, 052502 (2011).

[2] G. Lorusso, S. Nishimura, Z. Y. Xu, A. Jungclaus, Y. Shimizu,
G. S. Simpson, P.-A. Söderström, H. Watanabe, F. Browne, P.
Doornenbal, G. Gey, H. S. Jung, B. Meyer, T. Sumikama, J.
Taprogge, Z. Vajta, J. Wu, H. Baba, G. Benzoni, K. Y. Chae
et al., Phys. Rev. Lett. 114, 192501 (2015).

[3] M. Quinn, A. Aprahamian, J. Pereira, R. Surman, O. Arndt,
T. Baumann, A. Becerril, T. Elliot, A. Estrade, D. Galaviz, T.
Ginter, M. Hausmann, S. Hennrich, R. Kessler, K.-L. Kratz, G.
Lorusso, P. F. Mantica, M. Matos, F. Montes, B. Pfeiffer et al.,
Phys. Rev. C 85, 035807 (2012).

[4] F. T. Avignone, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80,
481 (2008).

[5] P. Navrátil and J. Dobes, Phys. Rev. C 37, 2126 (1988).
[6] F. Dellagiacoma and F. Iachello, Phys. Lett. B 218, 399

(1989).
[7] N. Yoshida, L. Zuffi, and S. Brant, Phys. Rev. C 66, 014306

(2002).
[8] S. Brant, N. Yoshida, and L. Zuffi, Phys. Rev. C 70, 054301

(2004).
[9] N. Yoshida and F. Iachello, Prog. Theor. Exp. Phys. 2013,

043D01 (2013).
[10] E. Mardones, J. Barea, C. E. Alonso, and J. M. Arias, Phys. Rev.

C 93, 034332 (2016).
[11] K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys.

Rev. C 101, 024311 (2020).
[12] K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys.

Rev. C 101, 044318 (2020).
[13] J. Ferretti, J. Kotila, R. I. Magana Vsevolodovna, and E.

Santopinto, Phys. Rev. C 102, 054329 (2020).
[14] K. Nomura, Phys. Rev. C 105, 044306 (2022).
[15] R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra, L.

Pacearescu, A. Faessler, and F. Šimkovic, Phys. Rev. C 70,
064309 (2004).

[16] P. Sarriguren, Phys. Rev. C 91, 044304 (2015).
[17] J. M. Boillos and P. Sarriguren, Phys. Rev. C 91, 034311 (2015).
[18] P. Pirinen and J. Suhonen, Phys. Rev. C 91, 054309 (2015).
[19] F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C

87, 045501 (2013).
[20] M. T. Mustonen and J. Engel, Phys. Rev. C 93, 014304 (2016).
[21] J. T. Suhonen, Front. Phys. 5, 55 (2017).
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