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A model is developed to calculate the total kinetic energy (TKE) distribution of fission fragments in the
framework of the time-dependent generator coordinate method, extended to include dissipation effects in the
description of induced fission dynamics. Starting from an expression for the dissipative term in the generator co-
ordinate method Hamiltonian that determines the time evolution of a statistical collective wave function, derived
in the first part of this work, the integrated flux of the probability current through the scission hypersurface can
be computed at different temperatures. The kinetic energy at scission for a specific pair of fragments at a given
temperature is determined by the energy balance formula. By folding the kinetic energies of the fragments with
the flux of the probability current, the TKE distribution is calculated. The method is illustrated with a calculation
of the TKE distribution for induced fission of 228Th, in the three-dimensional space of collective coordinates:
axially symmetric quadrupole and octupole deformations, and nuclear temperature.

DOI: 10.1103/PhysRevC.106.054609

I. INTRODUCTION

The time-dependent generator coordinate method
(TDGCM) [1–5] has been successfully applied in theoretical
studies of various aspects of the nuclear fission process
[6–17]. The GCM presents a fully microscopic, quantum
mechanical approach to nuclear dynamics, in which the
nuclear wave function is determined by a superposition of
generator states that are functions of collective coordinates,
such as shape variables and pairing degrees of freedom. In
the Gaussian overlap approximation (GOA) of the TDGCM,
in particular, a time-dependent Schrödinger equation governs
the evolution of the nuclear wave function in the space
of collective coordinates. The TDGCM + GOA can be
applied to an adiabatic description of the entire fission
process, from the quasistationary initial state to the outer
fission barrier (saddle point), and to the scission of the
nucleus into fission fragments. In many cases the calculated
fission yields (charge and mass distribution of fragments)
are in quantitative agreement with data, especially when
the framework is extended to finite temperature. However,
since only collective degrees of freedom are explicitly
taken into account, the standard TDGCM does not include
any dissipation mechanism and, therefore, fails to describe
the strongly dissipative dynamics in the saddle-to-scission
phase of the fission process. In particular, in the absence of
dissipation, all the potential energy difference between saddle
and scission is converted into collective kinetic energy during
the saddle-to-scission evolution. Even though the calculated
kinetic energies of the fragments qualitatively reproduce the
empirical charge or mass dependence, in general they are
systematically too large when compared to data [18].

In the first part of this work [19], we have extended
TDGCM to allow for dissipation effects in the description
of induced fission dynamics. The extension is based on a
quantum theory of dissipation for nuclear collective motion,
introduced by Kerman and Koonin in Ref. [20]. The GCM
generating functions are generalized to include not only self-
consistent deformation-constrained mean-field product states
of lowest energy, but also excited states. The resulting equa-
tion of motion in the collective coordinates, that is, the
Hamiltonian and overlap kernels, explicitly depend on the
excitation energy. With the assumption of a narrow Hamil-
tonian kernel, an expansion in a power series in collective
momenta leads to a Schrödinger-like equation that explicitly
includes a dissipation term, proportional to the momentum
of the statistical wave function. By expressing the excitation
energy in terms of nuclear temperature, the model can be
formulated as an extended temperature-dependent TDGCM,
in which the Helmholtz free energy plays the role of the col-
lective potential, and the collective inertia is calculated in the
finite-temperature perturbative cranking approximation. The
dissipation-extended TDGCM was applied in an illustrative
calculation of fission yields of 228Th, and the results compared
to available data for photoinduced fission of 228Th [21].

In the present study we further develop a consistent pro-
cedure, based on the model introduced in the first part of this
work, to calculate the total kinetic energy (TKE) distribution
of fission fragments. The method is developed in Sec. II.
Section III contains an illustrative calculation of the TKE
distribution for induced fission of 228Th, in comparison with
data for photoinduced fission. In Sec. IV we summarize the
results and present a brief outlook for future studies.
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II. THEORETICAL FRAMEWORK

In Ref. [19] we have extended the TDGCM description
of induced fission dynamics, by including an energy dissi-
pation term introduced in Ref. [20]. This extension follows
from a generalization of the GCM generating functions that
includes excited intrinsic states. With the assumption of a nar-
row hamiltonian kernel, a time-dependent Schrödinger-like
equation for the statistical collective wave function is obtained

ih̄∂tψ (q, T ; t ) =
[
V (q, T ) + P

1

2M(q, T )
P
]
ψ (q, T ; t )

+ i

2

∫
{P,O(q; T, T ′)}ψ (q, T ′; t )dT ′,

(1)

where q denotes the set of collective coordinates such as,
for instance, the quadrupole and octupole deformation pa-
rameters, T is the nuclear temperature, P = −ih̄(∂/∂q) is the
collective momentum, V (q, T ) and M(q, T ) are the collec-
tive potential and mass tensor, respectively. O(q; T, T ′) =
η(q; T, T ′)dε(T )/dT , where ε(T ) is the excitation energy
as function of temperature, and η(q; T, T ′) is the dissipation
function. Therefore, in addition to the collective potential and
kinetic energy terms, Eq. (1) explicitly includes a dissipation
term proportional to the momentum of the statistical wave
function. For details of the derivation, we refer the reader to
Ref. [19].

In the present study we employ the self-consistent
multidimensionally constrained (MDC) relativistic Hartree-
Bogoliubov (RHB) model [22,23] at finite temperature
[12,24,25], to calculate the microscopic single-nucleon wave
functions and occupation probabilities that determine the
collective potential, mass tensor and entropy. The particle-
hole channel is specified by the choice of the relativistic
energy density functional DD-PC1 [26], while pairing correla-
tions are taken into account in the Bardeen-Cooper-Schrieffer
(BCS) approximation with a finite-range separable pairing
force [27]. The parameters of the pairing interaction have
been adjusted to reproduce the empirical pairing gaps in the
mass region considered in this study [13]. The nuclear shape
is parametrized by the deformation parameters

βλμ = 4π

3ARλ
〈Qλμ〉. (2)

The shape is assumed to be invariant under the exchange of
the x and y axes, and all deformation parameters βλμ with
even μ can be included simultaneously. The self-consistent
relativistic mean-field (RMF+BCS) equations are solved by
an expansion in the axially deformed harmonic oscillator
(ADHO) basis [28]. In the present study calculations have
been performed in an ADHO basis truncated to Nf = 20
oscillator shells. The thermodynamical potential relevant for
deformation effects is the Helmholtz free energy F (T ) =
E (T ) − T S, evaluated at constant temperature T , where E (T )
is the binding energy of the deformed nucleus, and the
deformation-dependent energy landscape is obtained in a
self-consistent finite-temperature mean-field calculation with
constraints on the mass multipole moments Qλμ = rλYλμ.

In the present analysis the collective coordinates q cor-
respond to the quadrupole 〈Q20〉 and octupole 〈Q30〉 mass
multipole moments. The collective potential is, therefore,
V (q, T ) = ε(T ) + F (q, T ), where F (q, T ) is the Helmholtz
free energy normalized to the corresponding value at the equi-
librium RMF+BCS minimum at temperature T . The internal
excitation energy ε(T ) of a nucleus at temperature T is de-
fined as the difference between the total binding energy of
the equilibrium RMF+BCS minimum at temperature T and
at T = 0. The mass tensor M(q, T ) is calculated in the finite-
temperature perturbative cranking approximation [29,30].

Equation (1) describes nuclear collective motion with dis-
sipation. In addition to the nondissipative potential and kinetic
energy terms, the dissipative channel coupling is proportional
to the momentum of the collective wave function. As ex-
plained in Refs. [19,20], we choose the dissipation function
η(q; T, T ′) to be of the form

η(q; T, T ′) =
{

0 β2 < β0
2

∼ N (0, σ 2(T, T ′)) β2 � β0
2 ,

(3)

where N (0, σ 2(T, T ′)) denote the Gaussian distribution with
zero mean. β0

2 is set to 1.5, which is slightly beyond the
second fission barrier for the example of fission of 228Th,
that will be considered in the next section. The root-mean-
square value of the Gaussian distribution σ (T, T ′) reads
γ
√

log[ρ(T )] log[ρ(T ′)]. In this expression ρ(T ) is the in-
trinsic nuclear level density calculated at the RMF+BCS
equilibrium minimum at temperature T , while γ is an ad-
justable parameter. For further details we refer the reader to
Refs. [19,20].

To model the dynamics of the fission process we follow the
time-evolution of an initial wave packet ψ (q, T, t = 0), built
as a Gaussian superposition of quasibound states gk

ψ (q, T, t = 0) =
∑

k

e(Ek−Ē )2/(2σ 2 )gk (q, T ), (4)

where the value of the parameter σ is set to 0.5 MeV. The
collective states {gk (q, T )} and the corresponding energies Ek

are solutions of the stationary eigenvalue equation, in which
the original collective potential is replaced by a new potential
V ′(q, T ) that is obtained by extrapolating the inner potential
barrier with a quadratic form. A more detailed description of
this procedure can be found in Ref. [7]. The average energy of
the collective initial state is calculated as

E∗
coll = 〈ψ (q, T, t = 0)|Hcoll|ψ (q, T, t = 0)〉, (5)

where Hcoll = V (q, T ) + P[2M(q, T )]−1P, and the mean en-
ergy Ē in Eq. (4) is adjusted iteratively to obtain the chosen
value of E∗

coll.
The time-evolution is described by Eq. (1), in which the

temperature T is effectively treated as the third collective
coordinate. The solution is evolved in small time steps by
applying an explicit and unitary propagator built as a Krylov
approximation of the exponential of the Hamiltonian. The
time step is δt = 5 × 10−4 zs (1 zs = 10−21 s), and the charge
and mass distributions are calculated after 4 × 104 time steps,
which correspond to 20 zs. As in our recent calculations of
Refs. [12–16], the parameters of the additional imaginary
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absorption potential that takes into account the escape of the
collective wave packet in the domain outside the region of
calculation [7] are: the absorption rate r = 20 × 1022 s−1 and
the width of the absorption band w = 1.0.

The deformation collective space is divided into an inner
region with a single nuclear density distribution, and an ex-
ternal region that contains the two separate fission fragments.
The scission hypersurface that divides the inner and external
regions is determined by calculating the expectation value of
the Gaussian neck operator Q̂N = exp[−(z − zN )2/a2

N ], where
aN = 1 fm and zN is the position of the neck [31]. We de-
fine the pre-scission domain by 〈Q̂N 〉 > 3, and consider the
frontier of this domain as the scission surface. The flux of the
probability current

Ji(q, T ; t ) = h̄
∑

j

M−1
i j (q, T )Im

(
ψ∗ ∂ψ

∂qj

)
, (6)

through the scission hypersurface provides a measure of the
probability of observing a given pair of fragments at time
t . Each infinitesimal surface element ξ is associated with a
given pair of fragments (AL, AH ) at temperature T , where
AL and AH denote the lighter and heavier fragment, respec-
tively. From the density profile obtained in the corresponding
MDC-RHB calculation, we obtain the deformation param-
eters of each fragment βL

2 , βL
3 and βH

2 , βH
3 . By performing

finite-temperature deformation-constrained RHB calculations
for each fragment, the total binding energy at given deforma-
tions and temperature is obtained for this pair of fragments:
EL(βL

2 , βL
3 , T ) and EH (βH

2 , βH
3 , T ). From the energy balance

at scission [32], the TKE for this specific pair of fragments
can be calculated as

TKE(ξ ) = (
EFS

B + E∗
coll

)
− [

EL
(
βL

2 , βL
3 , T

) + EH
(
βH

2 , βH
3 , T

)]
, (7)

where EFS
B refers to the total binding energy of the fis-

sioning nucleus at equilibrium minimum, and E∗
coll is the

corresponding excitation energy of the collective initial state.
The integrated flux F (ξ ; t ) for a given surface element ξ is
defined as [7]

F (ξ ; t ) =
∫ t

t0

dt ′
∫

(q,T )∈ξ

J(q, T ; t ′)dS, (8)

where J(q, T ; t ′) denotes the current Eq. (6). The TKE for the
fission fragment with mass A is defined by

TKE(A) = lim
t→∞

∑
ξ∈A F(ξ ; t)TKE(ξ )∑

ξ∈A F(ξ ; t)
. (9)

The set A(ξ ) contains all elements belonging to the scission
hypersurface such that one of the fragments has mass number
A.

III. ILLUSTRATIVE CALCULATION: INDUCED FISSION
DYNAMICS OF 228Th

In a first step, a large scale MDC-RMF calculation
of 228Th is performed to generate the deformation energy

surfaces, single-nucleon wave functions, and occupation fac-
tors in the (β2, β3, T ) space, that determine the collective
nondissipative potential and mass tensor. The intervals for
the collective variables are: −1 � β2 � 7 with a step β2 =
0.04; 0 � β3 � 3.5 with a step β3 = 0.05; and the temper-
ature is varied in the range 0 � T � 2.0 MeV, with a step
T = 0.1 MeV.

Panel (a) in Fig. 1 displays the scission contours in the
(β2, β3) plane for several values of the temperature T . These
curves generally do not differ much, especially for asym-
metric fission. At higher temperatures, the scission surface is
shifted towards smaller values of the quadrupole deformation
β2 for nearly symmetric fission events. The temperature-
dependent values of the free energy normalized with respect
to the corresponding value at the equilibrium minimum, the
charge of the heavy fragment, and the Coulomb energy ECoul

between fragments, are plotted along the scission contour as
functions of β3 in Fig. 1(b), 1(c), and 1(d), respectively. The
Coulomb repulsion for a particular pair of fission fragments
can be evaluated from the relation

ECoul = e2ZH ZL

dch
, (10)

where e is the proton charge, ZH (ZL ) the charge of the heavy
(light) fragment, and dch the distance between fragment cen-
ters of charge at scission. This expression has typically been
used to approximate the TKE of fragments in TDGCM cal-
culations of fission dynamics [14,17,18,33]. In Fig. 1(e), we
plot the distributions of Coulomb energy ECoul at various
temperatures, in comparison with the experimental TKEs ob-
tained in photoinduced fission [21]. One notices that although
the calculated ECoul qualitatively reproduce the trend of the
data for Z � 50, they generally overestimate the TKEs. For
Z � 48, that is, close to symmetric fission, the calculated
Coulomb energies lie considerably below the experimental
points. The values of ECoul obtained at different temperatures
are rather similar, except those at Z ≈ 48 and near symmetric
fission. The differences are obviously related to changes in the
scission contours at different temperatures, shown in panel (a)
of Fig. 1.

Assuming there is no evaporation of any kind before scis-
sion, the total energy of the fissioning system is stored in the
nascent fragments at scission, as the excitation energy and
kinetic energy for fully accelerated fragments EFS

B + E∗
coll =

BL
eq + BH

eq + TKE + TXE, where BL
eq (BH

eq) refers to the total
binding energy of the light (heavy) fragment at equilibrium
minimum and zero temperature, and TXE comprises the de-
formation and intrinsic excitation energies deposited in the
fragments at scission [32]. In Fig. 2 we illustrate an example
of a scission point at β2 = 3.4 and β3 = 2.2. The density
profile obtained from MDC-RHB calculations at zero temper-
ature is shown in panel (a), with the vertical line denoting the
coordinate of the neck zN which separates the fissioning nu-
cleus into two fragments: ZH ≈ 54, AH ≈ 137, and ZL ≈ 36,
AL ≈ 91. The deformations of these two fragments at scission
are: (βH

2 , βH
3 ) ∼ (0.08, 0.10), and (βL

2 , βL
3 ) ∼ (0.56, 0.38). If

one assumes, just for the sake of illustration, that the de-
formations of these fragments do not change at scission
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FIG. 1. Scission contours for 228Th in the (β2, β3) deformation
plane for several values of the nuclear temperature T , plotted on
the deformation energy surface calculated at zero temperature (a).
The values of the free energy (b), the heavy-fragment charge num-
ber (c), and the Coulomb energy (d), along the frontier of the
domain defined by QN > 3.0 at different temperatures. Coulomb
repulsive energies between the nascent fission fragments of 228Th,
as functions of the fragment’s charge, calculated at different tem-
perature T , compared to the experimental values of the total kinetic
energy [21] (e).

FIG. 2. Density profile of 228Th at the scission point (β2 =
3.4, β3 = 2.2), the vertical line denotes the position of the neck
zN (a). The binding energy of the heavy fragment 137Xe (EL ) as
a function of temperature T , with the deformation constrained to
(β2, β3) ∼ (0.08, 0.10) (b). The binding energy of the light fragment
91Kr (ER) as a function of temperature T , with the deformation
constrained to (β2, β3) ∼ (0.56, 0.38) (c). The total kinetic energy as
a function of temperature, calculated with the energy balance relation
Eq. (7) (d).

as the temperature T increases [cf. panel (a) in Fig. 1],
the total energies of the fragments EH (βH

2 , βH
3 , T ) = BH

eq +
TXEH and EL(βL

2 , βL
3 , T ) = BL

eq + TXEL, increase quadrat-
ically with temperature T , as shown in Fig. 2(b) and 2(c).
Figure 2(d) shows that the TKE calculated with the en-
ergy balance relation Eq. (7), decreases quadratically as T
increases. We note, however, that in actual calculations de-
scribed below, the fragment deformation at scission varies
with T .

In practical three-dimensional (3D) calculations, the two-
dimensional (2D) scission contour is embedded in the 3D
space (β2, β3, T ). For each scission point on this 2D scis-
sion surface, we have determined the temperature-dependent
deformations (βH

2 , βH
3 ) and (βL

2 , βL
3 ), from the corresponding

density profiles obtained in MDC-RHB calculations, and the
temperature T of the fission fragments is the temperature at
the corresponding scission point. The TKE for each pair of
fission fragments at temperature T [cf. panel (a) in Fig. 1], is
calculated using the energy balance relation Eq. (7). In total,
the energies of close to 2 × 104 pairs of fission fragments have
been calculated.

In the next step, a full 3D calculation of induced fission
dynamics of 228Th is carried out in the space (β2, β3, T ), in-
cluding the dissipative coupling between deformation energy
surfaces at different temperatures, as described in Ref. [19].
The average excitation energy of the initial state is E∗

coll = 11
MeV. Making use of the resulting integrated flux (8), the final
TKEs are obtained from Eq. (9) and plotted in Fig. 3. The the-
oretical values are compared with the data for photoinduced
fission of 228Th with photon energies in the interval 8–14
MeV, and a peak value of Eγ = 11 MeV [21]. For comparison,
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FIG. 3. The total kinetic energy (TKE) for induced fission of
228Th, calculated in the 3D space of axial deformation parameters β2,
β3, and temperature T . The TKEs obtained from the energy balance
formula without (blue empty diamonds), and with dissipation (black
filled diamonds), are compared with available data. The TKEs calcu-
lated using the Coulomb energy formula without (red empty circles)
and with (green filled circles), are also shown for comparison. The
results obtained by including the dissipation term, correspond to
the mean value of four calculations with different random matrices
η(T, T ′). The resulting standard deviations are shown as error bars.
The data for photoinduced fission correspond to photon energies in
the interval 8–14 MeV, and a peak value of Eγ = 11 MeV [21].

in Fig. 3 we have also included the results obtained using
Eq. (9), but with TKE(ξ ) calculated with the Coulomb en-
ergy expression Eq. (10) [cf. panel (b) in Fig. 1]. Theoretical
values obtained without dissipation are denoted by empty
symbols, while those for which the integrated flux is ob-
tained by including the dissipation term with the function
η(q; T, T ′) in Eq. (1), are denoted by black filled diamonds
(energy balance formula), and green filled circles (Coulomb
energy).

Without dissipation, the TKEs obtained using either the en-
ergy balance formula Eq. (7), or the Coulomb energy Eq. (10),
generally overestimate the experimental values, except for the
region of symmetric fission with Z � 47. The TKE values cal-
culated using the energy balance are somewhat larger than the
ones from the Coulomb repulsion, because the former include
the prescission collective kinetic energy that is missing in the
Coulomb energy expression.

When the dissipation term is included in the Hamiltonian
of Eq. (1) for the time evolution of the statistical wave func-
tion, the resulting TKEs are denoted by black filled diamonds
(energy balance), and green filled circles (Coulomb repulsion)
in Fig. 3. Since the matrix elements of the dissipation function
η(q; T, T ′) Eq. (3) are assumed to be Gaussian random vari-
ables, the calculation has been carried out with four different
random matrices η(T, T ′). We plot the mean values, and the
corresponding standard deviations are shown as error bars.
The strength of the dissipation term is determined by the pa-
rameter γ = 0.01, and this is the same value used in Ref. [19]
to calculate the charge yields of 228Th. The results obtained

using the Coulomb energy in Eq. (9), are almost identical
to those obtained without dissipation (the error bars are too
small to be visible). This is because the Coulomb repulsion
does not depend on the temperature of the fragments and,
therefore, by equating the TKE with Coulomb energy between
the fragments at scission, the dynamic effect of dissipation
cannot be taken into account. The small differences arise be-
cause the scission contour depends on temperature, as shown
in panel (b) of Fig. 1. The total kinetic energies obtained
when TKE(ξ ) in Eq. (9) is calculated using the energy balance
formula Eq. (7), are shown as black filled diamonds in Fig. 3.
The inclusion of dissipation generally reduces the calculated
TKEs, bringing them in quantitative agreement with the data.
This is because dissipation heats up the fissioning system
and, with the fragments at higher temperature, there is less
energy available as kinetic energy. This is also clearly seen
in Fig. 7 of Ref. [19], where the time-integrated collective
flux through the scission contour is shown as a function of
temperature, without and with the dissipation term included.
It was shown that dissipation broadens the distribution of the
flux and extends the high-T tail to higher temperatures. In this
particular example, however, we note that dissipation appears
to have very little effect on the calculated TKEs in the region
of symmetric fission with Z � 47.

IV. SUMMARY

Starting from an extension of the TDGCM that includes
dissipation in the description of induced fission dynamics
[19], we have developed a method to calculate the correspond-
ing distribution of total kinetic energies as a function of charge
or mass of the fission fragments. In ordinary applications of
the TDGCM, the total kinetic energy for a particular pair of
fragments is evaluated as the energy of their Coulomb re-
pulsion at scission. Standard TDGCM by definition describes
nondissipative dynamics and, in the adiabatic approximation,
all the potential energy is converted into collective kinetic
energy during the saddle-to-scission evolution. As a result,
the calculated TKEs generally overestimate the experimental
values [18].

In Ref. [19] we have derived an approximate expression
for a dissipative term in TDGCM, that propagates a statistical
collective wave function through deformation energy surfaces
at different temperatures and, therefore, can be used to model
the heating of the fissioning system. To determine the corre-
sponding TKE distributions, fully self-consistent mean-field
calculations have to be performed in the 3D space of collec-
tive coordinates—quadrupole and octupole deformations, and
nuclear temperature. At each temperature and at each point
on the scission contour, the TKE for the corresponding pair of
fragments is calculated using the energy balance at scission.
This requires evaluating the energies of deformed fragments
at scission, for each value of the temperature. To calculate
the TKE distribution, the kinetic energies of the fragments at
given temperature are folded with the time-integrated flux of
the probability current [cf. Eq. (9)].

The method has been illustrated with an example of the
TKE distribution for induced fission of 228Th. It has been
shown that, without the inclusion of the dissipation term,
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the TKEs calculated using energy balance at scission are
very similar to those obtained from the Coulomb repulsion
between the fragments at scission and, therefore, the theoret-
ical values overestimate the data from photo-induced fission
[21]. By including the dissipation term in the Schrödinger
equation for the time-evolution of statistical collective wave
functions, the heating of the fissioning system is taken into
account, and this reduces the collective kinetic energy at
scission. With the strength parameter of the dissipation term
adjusted to reproduce the fission charge yields [19], the result-
ing TKEs are in quantitative agreement with the experimental
values. We note that, although this extension of the TDGCM
to include a temperature-dependent dissipation mechanism
enables calculation of both the charge (mass) yields and
TKEs in quantitative agreement with data, the method is
computationally very intensive and computer-time consum-
ing. Nevertheless, it is worth performing additional tests, for
different fissioning systems, and different excitation energies.
In addition, as already noted in the first part of this work [19],
a fully microscopic form of the dissipation term, that would
also completely determine its strength thus eliminating the

need for an adjustable parameter, necessitates an extension of
the GCM to generating states that are functions not only of
collective coordinates, but also of collective momenta conju-
gate to q (dynamical GCM).
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