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A. Ravlić † and N. Paar ‡

Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
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Nuclear matrix elements (NMEs) for two-neutrino double-β decay (2νββ) are studied in the framework of a
relativistic nuclear energy density functional. The properties of nuclei involved in the decay are obtained using
the relativistic Hartree-Bardeen-Cooper-Schrieffer theory and relevant nuclear transitions are described using
the relativistic proton-neutron quasiparticle random phase approximation based on the relativistic energy density
functional. Three effective interactions are employed, including density-dependent meson-exchange (DD-ME2)
and point-coupling interactions (DD-PC1 and DD-PCX), and pairing correlations are described consistently both
in T = 1 and T = 0 channels using a separable pairing interaction. The optimal values of T = 0 pairing strength
parameter V0pp are constrained by the experimental data on β-decay half-lives. The 2νββ matrix elements
and half-lives are calculated for several nuclides experimentally known to undergo this kind of decay:48Ca,
76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Xe, 128Te, 130Te, 136Xe, and 150Nd. The model dependence of the NMEs and
their sensitivity on V0pp is investigated, and the NMEs obtained using optimal values of V0pp are discussed in
comparison to previous studies. The results of the present work represent an important benchmark for the future
applications of the relativistic framework in studies of neutrinoless double-β decay.
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I. INTRODUCTION

The study of double-β decays has attracted considerable
interest over the past years [1,2]. Most of this interest has
been focused on the neutrinoless mode (0νββ), because it
offers the possibility of distinguishing between the Dirac and
Majorana nature of neutrinos [3]. The two-neutrino double-β
decay mode (2νββ), nonetheless, remains of interest as an
important benchmark of theoretical models for further stud-
ies of (0νββ) decays. The 2νββ decay is a second-order
weak interaction process, and as such it is allowed by the
standard model [4], unlike the neutrinoless mode, which vi-
olates lepton conservation and consequently requires physics
beyond the standard model [5]. Furthermore, it is possible
to experimentally observe this mode, as pairing in even-even
nuclei makes them more stable than adjacent odd-odd nuclei,
and the transition from an even-even mother to an odd-odd
daughter is forbidden energetically, leaving double-β decay as
the only allowed decay channel [6]. This allows us to compare
the results of our calculations to experiment directly, and,
since the calculations for the neutrinoless mode use the same
ingredients as those for the two-neutrino mode, their results
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can be used to constrain some of the model parameters and
benchmark the model for studies of 0νββ decay [7].

The contribution of nuclear physics to the calculation
of decay rates for both modes of double-β decay is con-
tained chiefly in the nuclear matrix element (NME) [8]. A
variety of theoretical approaches has been developed in the
past years for the description of double-β decay NMEs.
More detailed information is available in the following ex-
tensive reviews [2,6,9–18]. The calculations of NMEs have
been carried out using various approximations: the quasi-
particle random phase approximation (QRPA) [19–21], its
extension to the renormalized QRPA (RQRPA) [22–25],
the second QRPA (SQRPA) [26,27], various energy den-
sity functional (EDF) approaches [28,29], the quasiparticle
Tamm-Dancoff approximation [30], the interacting shell
model (ISM) and similar approaches [31–33], the inter-
acting boson model (IBM) [34–37], and others [38–40].
Among these approximations, the proton-neutron quasiparti-
cle random-phase approximation (pn-QRPA) has emerged as
one of the approaches that has been successfully employed
in various studies of double-β decays [1,41–43]. Within this
approach, the usual isovector pairing in the ground state of
open-shell nuclei is supplemented with an isoscalar proton-
neutron pairing in the residual interaction. This has been
shown to be important in nuclei relevant for double-β de-
cays (as first established by Refs. [44,45] and confirmed
by subsequent studies [46,47], including work beyond the
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QRPA [48,49]). In the relativistic framework, various methods
have been employed in studies of 0νββ decays. In Ref. [50]
a multireference covariant EDF was used to determine the
wave functions of the initial and final nuclei, and correlations
beyond the mean field were described by configuration mixing
of both angular momentum and particle number projected
quadrupole deformed mean-field wave functions. Systematic
study of 0νββ matrix elements in the relativistic EDF ap-
proach was reported in Ref. [51], and effects of the relativity
and short-range correlations have recently been analyzed [52].

The aim of this work is to establish a theory frame-
work for the description of 2νββ decay NMEs based on
a modern relativistic nuclear energy density functional with
density-dependent point-coupling and meson-exchange in-
teractions that include density dependence explicitly in the
interaction vertex functions. These interactions were recently
introduced and successfully implemented in the description of
nuclear excitation properties [53–58], astrophysically relevant
weak interaction processes [59–62], and nuclear equation of
state [63–65]. In previous relativistic EDF studies 2νββ de-
cays have not been addressed [50–52]. We note that the
present theory framework includes the density dependence
explicitly in the vertex functions of the meson-exchange and
point-coupling interactions.

When modeling various quantities in nuclear physics, it
is important to assess systematic errors. As pointed out in
Ref. [66] the systematic error of a theoretical model may
be a consequence of missing physics and/or poor model-
ing. Considering that in most cases the perfect model is not
available, systematic errors are rather difficult to estimate.
However, some insight about systematic uncertainties can
be obtained from a comparative study of different theory
frameworks and effective nuclear interactions. Therefore, it
is important to address the problem of double-β decays both
from nonrelativistic and relativistic frameworks, using vari-
ous formulations of energy density functionals and different
parametrizations.

Since for the 2νββ decay mode experimental data ex-
ist for a set of nuclei, the present study also allows us
to benchmark the relativistic model for the future stud-
ies of 0νββ decay. The properties of nuclei involved
are described using the relativistic Hartree-Bardeen-Cooper-
Schrieffer (RH-BCS) model, while relevant transitions are
obtained using the proton-neutron relativistic quasiparti-
cle random phase approximation [67], which was recently
extended by including relativistic density-dependent point-
coupling interactions [68,69]. In the following we denote this
method as REDF-QRPA. Model calculations of the NMEs
include various double-β emitters: 48Ca, 76Ge, 82Se, 96Zr,
100Mo, 116Cd, 124Xe, 128Te, 130Te, 136Xe, and 150Nd. In con-
trast to recent studies based on the pn-QRPA, which tend to
start from a “realistic” nucleon-nucleon interaction [70,71],
in the present work in the particle-hole channel we use an
interaction derived from a relativistic nuclear energy density
functional. An important aspect of this study is that we are
able to explore the model dependence of the calculated NMEs,
by implementing two different types of relativistic density-
dependent interactions, (i) finite range meson-exchange and
(ii) point-coupling interactions. Our model calculations also

involve a treatment of the pairing correlations in open-shell
nuclei, both at the level of the nuclear ground state and in the
residual REDF-QRPA interaction. In particular, strength of
the proton-neutron pairing, that is, isoscalar T = 0 pairing in
the residual REDF-QRPA interaction, has to be constrained by
using experimental data, in a similar way as already discussed
in previous studies in nonrelativistic frameworks [7]. In the
present study the experimental data on single-β decays will be
employed to constrain the T = 0 pairing strength parameter
for applications in 2νββ and in intended future 0νββ matrix
element calculations.

We note that in this work, which represents the first im-
plementation of the relativistic density-dependent interactions
in 2νββ decay study, some effects have not yet been taken
into account, from deformation [72,73] to renormalization
and gauge symmetry [74] and isospin restoration [75,76]. In
forthcoming studies more advanced effects will be taken into
account. Nonetheless, we expect that the present work will
describe well at least some subset of the double-β emitters,
and will provide a useful guidance for the future studies.

This article is organized as follows: in Sec. II we provide a
theoretical overview concerning the matrix elements involved
in double-β decay and in Sec. III we outline the relativis-
tic theory framework. Results are provided and discussed in
Sec. IV, and the conclusion follows in Sec. V.

II. TWO-NEUTRINO DOUBLE-β DECAY

Two-neutrino double-β decay (2νββ) is the process
whereby two neutrons in the mother nucleus are converted
into protons, accompanied by the emission of two electrons
and two antineutrinos:

(A, Z ) → (A, Z + 2) + 2e− + 2ν̄. (1)

The half-life of two-neutrino double-β decay formally de-
pends on two matrix elements [77],

1

T 2ν
1/2

= G2ν (Q, Z )g4
A

[M2ν
GT + M2ν

F

]2
, (2)

where M2ν
GT and M2ν

F are, respectively, the Gamow-Teller
(GT) and Fermi matrix element, and G2ν (Q, Z ) is a phase
space factor that can be found tabulated, e.g., in Ref. [78].
The factor gA is the axial-vector coupling constant.

We restrict our consideration to decays from a 0+ state to a
0+ state. Decays to the states of higher angular momenta, e.g.,
2+, are possible, albeit highly suppressed. Their treatment
would require a computational apparatus more involved than
the REDF-QRPA used in this work [79]. The Gamow-Teller
matrix element in this case can be written as [18]

M2ν
GT = me

∑
m

〈 f | ∑a σaτ
−
a |m〉 〈m| ∑a σaτ

−
a |i〉

Em + Q
2 + me

, (3)

where the sum goes over 1+ states in the intermediate nucleus,
labeled with m and having the energy Em as measured from the
ground state of the initial nucleus. The Q value of the double-
β decay reads

Q = (mi − m f )c2 − 2me. (4)
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Note that we could have also chosen to group the factor g2
A into

the definition of the matrix element in Eq. (3), in order to make
the discussion about the effects of gA and its renormalization
easier. If the two are grouped together, one obtains an effective
NME M2ν

GT,eff that depends on the choice of the axial-vector
coupling as well [80]. In this work, instead of the free nucleon
value gA = 1.26, we employ a quenched value gA = 1.0 that is
consistent with the previous REDF-QRPA studies of β-decay
half-lives as well as electron capture rates [81–83]. Thus our
results for the matrix elements in Eq. (3) can be directly
compared with those of the effective NMEs from Ref. [80].
Likewise, we introduce the factor me (in MeV) in the defi-
nition of the nuclear matrix element to obtain dimensionless
NMEs that can be compared easily to results of recent theoret-
ical and experimental works. Otherwise, the matrix elements
would be in units of MeV−1. In all figures and tables in this
work, the REDF-QRPA results for M2ν

GT and M2ν
GT,eff are given

as dimensionless.
The closure approximation is widely used in calculating

2νββ decay. It entails the replacement of the sum over dif-
ferent states in the intermediary nucleus, as in Eq. (3), with
a form that consists of one denominator containing a suitably
chosen “average” energy 〈E〉:

M2ν
GT,closure = me

〈 f | ∑a σaτ
−
a

∑
a σaτ

−
a |i〉

〈E〉 + Q
2 + me

. (5)

In this work we calculate the NMEs using the more complete
approach given in Eq. (3), but where relevant for the compar-
ison with other studies we include the closure approximation
as well. It can be shown that the Fermi matrix element van-
ishes if the same pairing interaction is consistently used at
both the ground state and excitation levels in the isovector
channel [84]. This is the case for our calculation and as such
we will not show the Fermi matrix element. The REDF-QRPA
is not applicable to transitions from the 1+ intermediate nu-
cleus. Therefore, although we conceive of double-β decay as
a sequence of two β+, β−, or electron capture decays [85], in
the present study we calculate β− decay from the initial 0+
nucleus and a β+ decay from the final 0+ nucleus, resulting
in two sets of intermediate 1+ states. Explicitly, for the GT
transitions the matrix element is given by

M2ν
GT = me

∑
m′m

〈m| ∑a σaτ
−
a |i〉 〈m|m′〉 〈 f | ∑a σaτ

−
a |m′〉

Em + Q
2 + me

.

(6)
For the overlap between states belonging to different sets

we take the usual prescription [41]:

〈m|m′〉 ≈
∑

pn

[
X m

pnX m′
pn − Y m

pnY
m′
pn

]
, (7)

where the quantities X and Y are the REDF-QRPA amplitudes
that will be defined in the next section. This is an approx-
imation in cases where the initial and final states are not
identical, but a reasonable one. For 48Ca, for example, we
calculate the overlap between the lowest states belonging to
each of the different sets of states in the intermediate nucleus
to be 0.9855. Higher states in one set are more likely to
have significant overlap with several states in the other, but

the values of the overlaps still go from around 0.14 toward
higher ones around 0.89. An alternative prescription from
Šimkovic et al. [41] involves additional factors proportional
to occupation numbers:

〈m|m′〉 ≈
∑

pn

[
X m

pnX m′
pn − Y m

pnY
m′
pn

]
ũpũn, (8)

where the quantities ũp/n are defined as follows:

ũp/n = um
p/num′

p/n + vm
p/nv

m′
p/n, (9)

and up/n, vp/n are occupation numbers derived, in the present
work, from the relativistic Hartree-BCS model (more details
are given in Sec. III). Several effects are usually neglected in
the study of 2νββ decays, such as higher-order currents and
realistic short-range correlations [86], that are important in the
neutrinoless case. This is due to the insensitivity of the two-
neutrino NMEs to the details of the nucleon wave functions
for low nucleon separation r12 [86].

III. RELATIVISTIC FRAMEWORK FOR 2νββ DECAY
MATRIX ELEMENTS

A. Relativistic Hartree-BCS for the ground-state description

Calculations of nuclear matrix elements for double-β de-
cay often proceed starting from a realistic nucleon-nucleon
potential [16,87]. As mentioned in Sec. I, other theory frame-
works based on phenomenological effective interactions have
also been employed, in particular the shell model and nu-
clear energy density functionals. In this work we introduce
a framework for 2νββ decays based on a relativistic nu-
clear energy density functional [88]. In the relativistic nuclear
energy density functional (REDF) framework, the nuclear
ground-state density and energy are determined by the self-
consistent solution of relativistic single-nucleon Kohn-Sham
equations [89,90]. In the present study these equations are
implemented through an interaction Lagrangian density for-
mulated in terms of the relevant degrees of freedom. Since
the REDF has already been extensively used in many pre-
vious studies, here we give only a brief overview of the
relevant foundations of this framework. Two different fam-
ilies of relativistic density-dependent interactions are used
in this work, (i) finite range meson-exchange and (ii) point-
coupling interactions. In the former case, pointlike nucleons
interact through the exchange of light mesons, namely, ω, ρ,
and σ mesons, in addition to an electromagnetic interaction
mediated by photons. The model is explained in detail in
Refs. [88,91–94]. Meson-nucleon couplings are established
as functions of the vector density, motivated by the rela-
tivistic Brueckner-Hartree-Fock calculations, but introduced
through a phenomenological ansatz with parameters adjusted
to the experimental data in finite nuclei [88]. In this work, the
DD-ME2 parametrization of the density-dependent meson-
exchange interaction is used [91], being one of the most
successful parametrizations currently used in the description
of a variety of nuclear properties and astrophysically relevant
processes [63,95,96].

In the case of point-coupling interactions, the effective
Lagrangian contains four fermion contact interaction terms
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including the isoscalar-scalar, isoscalar-vector, isovector-
vector, and isospace-space channels, coupling of protons to
the electromagnetic field, and the derivative term accounting
for the leading effects of finite-range interactions necessary
for a quantitative description of nuclear density distribution
and radii (for more details see Refs. [88,97]). In our study of
2νββ decays, two parametrizations of the density-dependent
point-coupling interactions are used, DD-PC1 [97] and the
more recently established DD-PCX [98]. While the DD-PC1
interaction is adjusted to nuclear binding energies, the DD-
PCX interaction is specifically adjusted both to the nuclear
ground state and excitation properties, in order to constrain
not only the nuclear properties but also the symmetry energy
close to the saturation density, and the incompressibility of
nuclear matter by using genuine observables on finite nuclei
in the χ2 minimization [98].

For the description of ground-state properties of open-shell
nuclei a unified and self-consistent treatment of mean-field
and pairing correlations is needed. In this work we em-
ploy the relativistic Hartree-BCS (RH-BCS) theory [58,82]
which represents a relativistic extension of the nonrelativistic
Hartree-Fock-BCS framework [99,100]. Spherical symmetry
is assumed. The pairing correlations in the ground state are
described using a separable pairing force, which also includes
two parameters for the pairing strength (Gp and Gn) [101].
While in the RH-BCS model with DD-ME2 and DD-PC1
interactions the pairing parametrization from Ref. [101] is
used, the DD-PCX interaction is supplemented with its own
parametrization for the separable pairing force as given in
Ref. [98]. Within the RH-BCS model, the isoscalar pairing
is not included; i.e., no proton-neutron mixing is considered.

B. Proton-neutron relativistic QRPA

Charge-exchange transitions between the states in nu-
clides involved in 2νββ decay are described in the frame-
work of the proton-neutron relativistic quasiparticle random
phase approximation (REDF-QRPA). An introduction to the
charge-exchange QRPA (or proton-neutron QRPA, pn-QRPA)
calculations can be found in Refs. [102,103], while in the rel-
ativistic framework it has been introduced in Refs. [67,104].
The residual REDF-QRPA interaction is derived from the
relativistic formulation of the effective Lagrangian density,
and throughout the calculation of the QRPA matrix elements,
the Dirac wave functions from the RH-BCS model, including
both large and small components, are systematically included.
In addition, the transition operators are also extended for their
implementation in the relativistic framework. More details
on the relativistic QRPA are given in Refs. [67,95,104–106].
Here we give only a brief overview of the REDF-QRPA
adopted for the purpose of the study of 2νββ decay. The states
in the intermediate (Z + 1, N − 1) nucleus are REDF-QRPA
phonons:

|m〉 =
∑

pn

[
Xpna†

pa†
n − Ypnanap

] |QRPA〉 , (10)

where the creation operators a†
p(n) create a proton (neutron)

state in an orbital labeled p (n), and quantities X and Y are, as
noted earlier, the REDF-QRPA amplitudes. |QRPA〉 denotes

the QRPA vacuum, which we take to be the ground state (see
Sec. III A). By linearizing the time-dependent RH-BCS equa-
tions in charge-exchange external field, the charge-exchange
QRPA equations are obtained [79]:(

A B
−B∗ −A∗

)(
X (J )
Y (J )

)
= ωk

(
X (J )
Y (J )

)
, (11)

where the REDF-QRPA matrices A and B are defined as

Apnp′n′ (J ) = (Ep + En)δpp′δnn′ + (upup′unun′

+ vpvp′vnvn′ ) 〈pnJ|V |p′n′J〉 + (upvp′unvn′

+ vpup′vnun′ ) 〈pn−1J|Vres |p′n′−1J〉 , (12)

and

Bpnp′n′ (J ) = (upup′vnvn′ + vpvp′unun′ ) 〈pnJ|V |p′n′J〉
+ (upvp′vnun′ + vpup′unvn′ ) 〈pn−1J|
× Vres |p′n′−1J〉 , (13)

where Vres is the residual interaction derived from the rela-
tivistic nuclear energy density functional, while V includes
the pairing interaction in the QRPA [67,68], up(n), vp(n) being
proton (neutron) RH-BCS amplitudes. The residual interac-
tion Vres is derived from the same effective meson-exchange or
point-coupling interaction as used in the ground-state calcula-
tions (see Sec. III A). In addition, the pseudovector interaction
channel is also included, and its strength parameter was previ-
ously constrained to the experimental data on Gamow-Teller
resonance in 208Pb [67,68,95].

The REDF-QRPA equations include both the isovector
(T = 1) and isoscalar (T = 0) pairing channels, described by
the separable interaction [68,69,101]

V pn(r1, r2) = − f Gδ(R − R′)P(r)P(r′)(1 − PrPσ Pτ ), (14)

where the projectors Pr,σ,τ are defined as usual, G is the
overall interaction strength, R and r are center of mass and
relative coordinates, respectively, and P(r) is defined as

P(r) = 1

(4πa2)3/2e− r2

2a2

. (15)

The overall strength in the pairing channel is multiplied by a
dimensionless factor f defined as

f =

⎧⎪⎨
⎪⎩

1, T = 1, S = 0

V0pp, T = 0, S = 1

0, otherwise,

(16)

where V0pp represents the isoscalar pairing strength. For the
T = 1 channel, the same separable pairing interaction is used
as in the RH-BCS model (see Sec. III A). The strength param-
eters Gp(n) for protons (neutrons) and the width a are defined
in Ref. [107], but other parametrizations also exist, e.g., the
one constrained with the DD-PCX interaction [98]. For the
T = 0 channel, the pairing strength parameter V0pp has to
be constrained at the level of REDF-QRPA, e.g., by using
experimental data on Gamow-Teller transitions or β decays.
In our treatment of 2νββ decay, this allows us to explore the
dependence of the NME on the pairing strength parameter

064315-4



TWO-NEUTRINO DOUBLE-β DECAY MATRIX … PHYSICAL REVIEW C 105, 064315 (2022)

TABLE I. The fit parameters for the T = 0 pairing strength func-
tional form in Eq. (19) obtained from the optimization on β-decay
half-lives for the models with DD-PCX, DD-PC1, and DD-ME2
interactions.

DD-ME2 DD-PC1 DD-PCX

V1 0.574 ± 0.338 0.522 ± 0.407 0.592 ± 0.366
V2 2.301 ± 1.422 3.092 ± 1.768 2.321 ± 1.559

V0pp, showing the variation in the possible values for the ma-
trix elements. However, to provide predictions on 2νββ decay
matrix elements, in this work V0pp is also constrained by the
experimental data on single-β-decay half-lives (Sec. III C).

The transition matrix elements necessary for 2νββ NMEs
in Eq. (3) are given by the following expressions [44]:

〈i|
∑

a

σaτ
−
a |m〉 =

∑
pn

〈p||σ||n〉[upvnX m
pn + vpunY

m
pn

]
(17)

〈m|
∑

a

σaτ
+
a | f 〉 =

∑
pn

〈p||σ||n〉[vpunX m
pn + upvnY

m
pn

]
. (18)

Here, the terms next to the X and Y amplitudes represent
particle-type and hole-type one-quasiparticle transitions, re-
spectively [79].

C. Determination of the isoscalar pairing strength

In order to constrain the isoscalar (T = 0) pairing
strength V0pp we use a similar approach as suggested in
Refs. [81,82,108], namely, V0pp is determined from the global
fit of β-decay half-lives to experimental data. We have used
even-even nuclei in the range 8 � Z � 82 for which experi-
mental data on β-decay half-lives is available, where V0pp has
the effect in the relative change of half-lives T1/2 by more
than 20%, and whose half-lives are <103 s. In this way we
have additionally optimized the fitting procedure, because too-
long half-lives may be challenging for quantitative description
within the QRPA method [81]. Since the isoscalar pairing
strength V0pp shows isotopic dependence [81], in the fitting
procedure we use a functional form,

V0pp = V1 + V2

(
N − Z

A

)
, (19)

that appears to provide a comparable quality of the fit
to β-decay half-lives to other previously used functional
forms [81]. The β-decay half-lives are calculated using the
REDF-QRPA as described in Ref. [82], including both al-
lowed and first-forbidden transitions. We used the same
quenched value of axial coupling, gA = 1.0, as in this work.
The fitting procedure determines V0pp which reproduces the
experimental β-decay half-lives. Here we note that only those
V0pp which yield real solutions of the QRPA equation should
be included in the fit to the proposed ansatz. Using models
with DD-ME2, DD-PC1, and DD-PCX interactions, the ob-
tained average values of the fitted parameters V1 and V2 as well
as 1σ uncertainties are given in Table I. This results in a rather
narrow range of values for the isoscalar pairing strength V0pp

for the set of nuclei considered in 2νββ decay study in this
work. The respective values for V0pp with the uncertainties are

TABLE II. Optimal values of the T = 0 pairing strength param-
eter V0pp constrained from the β-decay half-lives.

V0pp

DD-ME2 DD-PC1 DD-PCX

48Ca 0.98 ± 0.12 1.04 ± 0.12 0.96 ± 0.11
76Ge 0.96 ± 0.13 1.01 ± 0.14 0.94 ± 0.12
82Se 0.99 ± 0.11 1.05 ± 0.12 0.97 ± 0.10
96Zr 0.98 ± 0.12 1.04 ± 0.12 0.96 ± 0.11
100Mo 0.96 ± 0.13 1.02 ± 0.13 0.94 ± 0.12
116Cd 0.99 ± 0.11 1.06 ± 0.11 0.97 ± 0.10
124Xe 0.89 ± 0.17 0.92 ± 0.18 0.87 ± 0.16
128Te 1.07 ± 0.07 1.16 ± 0.07 1.05 ± 0.07
130Te 1.03 ± 0.09 1.10 ± 0.09 1.01 ± 0.08
136Xe 1.06 ± 0.08 1.14 ± 0.08 1.03 ± 0.07
150Nd 1.06 ± 0.08 1.14 ± 0.08 1.03 ± 0.07

given in Table II. In the following section we refer to optimal
V0pp when using the values from Table II. We note that most of
the V0pp values are close to 1.0, meaning the strengths of the
isoscalar and isovector pairing are very similar, which in turn
points to a “soft” breaking of spin-isospin SU(4) symmetry in
present calculations.

IV. RESULTS AND DISCUSSION

By employing the framework of a relativistic theory for
nuclear properties and transitions as outlined in the previ-
ous sections, we performed calculations of the 2νββ decay
matrix elements. In the first step, the RH-BCS model [88]
is used to describe the ground-state properties of the initial
and final nuclei involved in the decay. The RH-BCS model is
formulated in the harmonic oscillator basis and we restrict cal-
culations to 20 oscillator shells both for protons and neutrons.
The single-particle wave functions and the corresponding
occupation probabilities in the RH-BCS quasiparticle basis
are used in the REDF-QRPA to describe GT transitions in-
volved in the 2νββ decay. The REDF-QRPA calculations
are performed in two steps, for β− (β+) matrix elements
for decays from the initial (final) nucleus to the intermediate
nucleus, which are then used to calculate the 2νββ decay
NME. All the other quantities that appear in the calculations,
including the energies of the intermediate states and the Q
values, are also taken self-consistently from the RH-BCS and
REDF-QRPA calculations. To assess the information on the
model dependence of the 2νββ decay NME, three relativistic
energy density functionals are used in the study, including
the density-dependent meson-exchange interaction with the
DD-ME2 parametrization [91], and density-dependent point-
coupling interactions DD-PC1 [97], and the more recently
established DD-PCX [98]. One of the open questions in the
description of double-β decays is the problem of quenching
of the axial-vector coupling constant gA, which has attracted
attention in many recent studies (e.g., see Refs. [2,7]). As
already mentioned above, gA = 1.0 is systematically used in
the present study.

Throughout this section we provide the absolute values of
the 2νββ decay matrix elements, since only the squares of
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FIG. 1. The NMEs for 2νββ decay based on Gamow-Teller tran-
sitions, shown as a function of the maximal two-quasiparticle energy.
The DD-ME2 interaction is used in calculations. Matrix elements are
dimensionless.

their absolute values have physical significance. The REDF-
QRPA calculations are first performed to set the cutoff energy
for the quasiparticle pairs that compose the configuration
space. To all relevant configurations, a convergence test is
performed in order to restrict the maximal two-quasiparticle
energy with the condition that the value of the NME converges
with increasing energy. We illustrate the convergence of the
NME values in Fig. 1 for the case of 48Ca, where the matrix el-
ements are shown as a function of the maximal proton-neutron
two-quasiparticle energy Emax

2qp . The DD-ME2 effective inter-
action is used for this demonstration. The GT transitions are
considered. One can observe that the NMEs converge with
high accuracy at two-quasiparticle energy Emax

2qp ≈ 100 MeV.
Insight into the contributions of various states to the fi-

nal NMEs can be obtained from the running sum, which
includes the sum of all contributions to the matrix element
up to a specific maximal excitation energy in the intermedi-
ate nucleus [109] which we denote as Eexc in the following
discussion.

Figures 2 and 3 show the respective running sums for
the Gamow-Teller double-β decay transitions for 48Ca and
76Ge, displayed as functions of Eexc. The sums are taken at
two values of the T = 0 pairing strength parameter, V0pp = 0,
representing a situation where isoscalar pairing vanishes, and
the optimal values V0pp = 0.98 and 0.96 for 48Ca and 76Ge,
respectively. One can observe that for 48Ca the hypothesis
of single-state dominance [110] holds in the REDF-QRPA
calculations; i.e., most of the contribution to the NMEs mainly
comes from a single low-lying state in the intermediate nu-
cleus. For 76Ge, many states contribute to MGT up to 20 MeV,
and in some cases destructive interference in their contribu-
tions to the NMEs is obtained. The same dependence is
shown in Fig. 4 for other nuclei considered in this work,
from 82Se to 150Nd, using optimal values of V0pp. We see
that generally the single-state dominance (SSD) hypothesis
is approximatively fulfilled, although in some cases more
complicated structure is obtained due to contributions from

-0.01
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0  5  10  15  20  25

M
GT

Eexc. (MeV)

V0pp = 0
V0pp = 0.98

48Ca

FIG. 2. The running sum of the GT NMEs for the 2νββ decay of
48Ca for the DD-ME2 interaction, shown as a function of maximal
excitation energy Eexc in the intermediate nucleus. The cases with
and without T = 0 pairing are shown separately.

several states. Particularly noticeable are significant cancella-
tions when the nuclear matrix element is significantly lowered
from the value at zero isoscalar pairing due to a high value
of V0pp. It is interesting to note that presented results for
some nuclei are in reasonable agreement with recent exper-
imental results, which show that the SSD hypothesis holds
for 100Mo [111], while for 82Se we obtain a more complex
structure than the SSD measured in Ref. [112]. Our results
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FIG. 3. The same as in Fig. 2, but for 76Ge.
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FIG. 4. Running sums for the GT NMEs for DD-ME2 interaction
and optimal values of V0pp from Table II, for the 2νββ decays of
82Se–150Nd, shown as a function of maximal excitation energy Eexc

in the intermediate nucleus.

for the running sum in 136Xe are at variance with the experi-
mental results in Ref. [113]. In the same study, it was shown
that the running sum is strongly model dependent, resulting
in considerable differences between the reported QRPA and
shell model calculations [113]. Our results also differ from
other calculations of running sums, including also contribu-
tions with a negative sign. They appear and become more
prominent with increasing V0pp, and cancel out to a large
extent an initially large NME, and the fact that we show the
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FIG. 5. The dependence of the GT NMEs for 2νββ decay on the
isoscalar pairing strength V0pp for 48Ca, using DD-ME2 interaction,
in comparison to the result obtained from the experimental data on
2νββ decay [80].

running sums at higher optimal V0pp value explains in part
their appearance.

Before systematic implementation of the optimal values of
V0pp from Table II in model calculations, it is interesting to
explore the general dependence and sensitivity of the 2νββ

decay NMEs on V0pp. In Fig. 5 the dependence of the absolute
values of nuclear matrix elements is shown for 48Ca as a func-
tion of V0pp. The black line in the figure represents the value
of the nuclear matrix element deduced from the experimental
data on 2νββ half-lives [80,114]. The grey band around this
line denotes an uncertainty at the level of 3σ . As one can see
in Fig. 5, the NME systematically decreases with V0pp, and
an overlap between the calculated curve and the experimental
limit for the NMEs is obtained. Here, the overlap prescription
given in Eq. (7) is used. We have verified that the result using
the overlap prescription in Eq. (7) appears almost identical
to the one given in Eq. (8). Figure 6 shows the difference
between the NMEs for 48Ca obtained using these two methods
for calculating the overlap, given as a function of V0pp. One
can observe that not only the difference is small, but it also
reduces as one approaches the V0pp value deduced from the
experiment as the optimal one, as shown in Fig. 5. Therefore,
in the following investigation we consider only the results
based on the overlap prescription given in Eq. (7).

A quantity related to the NMEs that has received recent
theoretical and experimental interest [115,116] is the function
C(r), representing the contribution to the NME at a given in-
ternucleon distance r12 ≡ r. It is related to the NME, denoted
here as M, as

∫ ∞

0
drC(r) = M. (20)

Figure 7 shows the C(r) function for 2νββ decay of 48Ca,
obtained using the DD-ME2 interaction for the range of values
of T = 0 pairing strength parameters V0pp. The quantity is
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function of the isoscalar pairing strength V0pp (see text for details).
“MGT,simpl.” refers to the usual prescription for the overlap factor in
Eq. (7), while “MGT,Simkovic” refers to the prescription in Eq. (8).

evaluated in the closure approximation and is directly con-
nected to the dimensionless NME. It needs to be noted that,
due to the computational resources necessary for the evalu-
ation of the C(r) function, the results we report have been
calculated at a lower energy cutoff than the results for the
NMEs in the present work, specifically at 50 MeV. Com-
paring the C(r) function to those calculated in Ref. [116]
we conclude that qualitatively the same shape is obtained,
with a sharp peak around 1 fm, converging to zero with an
increase of r. This result is consistent with the findings that
this shape is universal for 2νββ decay [117], although our
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FIG. 7. The function C(r12), showing the contributions to the
NME at nucleon separations r12, for the Gamow-Teller 2νββ decay
of 48Ca, for V0pp from 0.0 to 1.5.
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FIG. 8. The function C(r12), showing the contributions to the
NME at nucleon separations r12, for the Gamow-Teller 2νββ decay
of 76Ge–150Nd, evaluated at optimal values of V0pp.

model does not contain S = 0 pairing in the T = 0 channel,
as well as T = 0 channel in the ground state. The behavior
obtained with increasing T = 0 pairing strength V0pp in the
residual QRPA interaction is also consistent with previous
studies [116]; i.e., the C(r) function reaches its highest values
when pairing is not taken into account and with the increase
of the pairing strength the central peak becomes reduced. We
would note that the contribution of high internucleon distances
in many nuclei is negative and serves to lower the NME; these
negative contributions, once again, become more noticeable
with increasing V0pp. The same function, for other nuclides
considered in this work up to 150Nd, evaluated using the
DD-ME2 interaction and optimal values of V0pp, is shown
in Fig. 8. Similar general behavior of the C(r12) function is
obtained for all nuclei, that peaks strongly at low r12 values.
Where the NMEs are close to zero, we can note significant
cancellations as one integrates the C(r) function over the
internucleon distance r. 150Nd is an exception to the general
rule that the first and most prominent peak of the function is
near 1 fm, with a dominant peak at significantly higher radii.
This suggests that the results for 150Nd should be taken with
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less certainty than those for other nuclides. However, we need
to point out that in certain cases our C(r) functions also show
contributions at higher internucleon distances than is found
in previous QRPA calculations. We note that the contribution
of high internucleon distances in many nuclei is negative and
serves to lower the NME; these negative contributions, once
again, become more noticeable with increasing V0pp.

The GT transitions relevant for the 2νββ decay of 48Ca
were studied experimentally in Ref. [118]. The GT− and GT+

strength distributions in 48Sc were measured by the 48Ca(p, n)
and 48Ti(n, p) reactions, respectively. The integrated GT
strengths up to an excitation energy of 30 MeV in 48Sc ob-
tained from (p, n) and (n, p) spectra amount to B(GT−) =
15.3 ± 2.2 and B(GT+) = 2.8 ± 0.3. The REDF-QRPA cal-
culations with DD-ME2 interaction for the corresponding
transitions result in B(GT−) = 23.47 and B(GT+) = 3.48;
thus the experiment provides 65% of GT− strength and 80%
of the GT+ strength obtained in model calculations. Clearly,
further experimental studies of GT transitions are needed to
provide more transition strength that is relevant for double-β
decays. The missing strength in measured GT spectra has
been confirmed in recent REDF-QRPA calculations for other
nuclei in Ref. [68], and studies going beyond the RPA level
including couplings between single-nucleon and collective
nuclear vibrations could not resolve the discrepancy between
the theoretical and experimental GT strengths [119].

In the following, the NMEs are investigated for the set of
nuclides usually considered in 2νββ decay studies because
there are experimental data available: 48Ca, 76Ge, 82Se, 96Zr,
100Mo, 116Cd, 128Te, 130Te, 136Xe, 150Nd, and most recently
124Xe. Figure 9 shows the NMEs for the set of 11 nuclides
listed above, given as a function of the isoscalar pairing
strength V0pp. The results extracted from the experimental data
on 2νββ decay half-lives are shown for comparison [114]. We
conclude that the dependence of the nuclear matrix elements
on V0pp is qualitatively similar for all nuclei considered, with
the values of the GT-based NMEs decreasing and their slopes
increasing, with increasing absolute values of V0pp. However,
there is a significant variation in the values of V0pp needed to
reproduce the NMEs based on experimental data. A similar
issue has been observed in β-decay studies [81], indicating
that some mass dependence is necessary for the optimization
of the isoscalar pairing channel in the residual interaction of
the REDF-QRPA, as we have also discussed in Sec. III C.

To assess the information about the model dependence of
the 2νββ decay matrix elements, we conducted a detailed
comparison of our results with a selection of previous studies.
A direct comparison of the results of the present study with
those from previous calculations can be difficult both due to
different theoretical frameworks and parametrizations used.

In Ref. [1], the pn-QRPA matrix elements are given for
several A > 100 nuclides, using a value of the T = 0 pairing
strength gpp = 0.7. A comparison with the REDF-QRPA re-
sults with V0pp = 0 is given in Table III. We see that the upper
limit of NMEs in the present study remains lower than those
reported by other pn-QRPA calculations.

Further comparison can be made with the recent pn-QRPA
results of Šimkovic et al. [84], which is done in Table IV. We
note that the values from Ref. [84], except for 48Ca and 82Se,
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FIG. 9. The dependence of the NMEs for 2νββ decay on the
isoscalar pairing strength V0pp for 48 < A < 150 nuclei that decay
through the 2νββ channel, in comparison to the result obtained from
the experimental data [80].

are in excellent agreement with our results, even though the
latter were obtained with vanishing isoscalar pairing. We also
note that the NMEs given in Ref. [84] are effective matrix
elements obtained with a quenched value of gA = 0.904. The
renormalization factor was split according to isospin channel
into gT =1

pp and gT =0
pp ; the values of both parameters for each

respective nucleus are given in Table IV.

TABLE III. The NMEs for 2νββ decay based on the REDF-
QRPA (DD-ME2 interaction, V0pp = 0) and the NMEs based on the
pn-QRPA from Ref. [1].

REDF-QRPA
(DD-ME2) pn-QRPA [1]

100Mo 0.259 0.6560
116Cd 0.056 0.2169
128Te 0.078 0.1041
130Te 0.079 0.1066
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TABLE IV. The NMEs for 2νββ decay based on the REDF-
QRPA (DD-ME2 interaction, V0pp = 0) and the NMEs based on the
pn-QRPA from Ref. [84] with the pairing strength parameters gT =1

pp

and gT =0
pp given in the last two columns.

REDF-QRPA
(DD-ME2) pn-QRPA [84] gT =1

pp [84] gT =0
pp [84]

48Ca 0.078 0.019 1.028 0.745
76Ge 0.070 0.077 1.021 0.733
82Se 0.041 0.071 1.016 0.737
96Zr 0.140 0.162 0.961 0.739
100Mo 0.259 0.306 0.985 0.799
116Cd 0.056 0.059 0.892 0.877
128Te 0.078 0.076 0.965 0.741
130Te 0.079 0.065 0.963 0.737

Next, in Table V we compare the NMEs using the REDF-
QRPA (DD-ME2 interaction, V0pp = 0 MeV) with those of
recent interacting boson model (IBM) calculations [36,120].
The IBM results have been calculated within a closure ap-
proximation, and to allow for a direct comparison, the values
we report for the NMEs were obtained in the closure approxi-
mation as well. To obtain NMEs comparable to our own from
the NMEs quoted by Barea and Iachello, which do not include
the energy denominator, we divide the NMEs with an average
energy denominator as tabulated in Ref. [121]. The resulting
NMEs based on the IBM are generally larger, but compa-
rable to the REDF-QRPA results. The inclusion of isoscalar
pairing in the REDF-QRPA residual interaction would further
increase this difference. This result suggests an advantage of
our calculations over the IBM, as the experimental values are
even lower for most nuclei considered and, for most nuclei,
are within the reach of the REDF-QRPA with a suitable choice
of V0pp.

Further comparison is made with the interacting shell
model (ISM) [112], as shown in Table VI. Since the ISM
contains isoscalar pairing as a significant effect, we compare
the shell model results to those of the REDF-QRPA calculated
at the optimal pairing strength V0pp as given in Table II. The
REDF-QRPA results are considerably smaller than those of
the ISM.

TABLE V. The NMEs for 2νββ decay based on the REDF-
QRPA (DD-ME2 interaction, V0pp = 0), calculated in the closure
approximation, and the results of the interacting boson model
(IBM) [120].

REDF-QRPA
(DD-ME2) IBM [120]

48Ca 0.121 0.213
76Ge 0.110 0.471
82Se 0.071 0.356
96Zr 0.125 0.208
100Mo 0.210 0.272
116Cd 0.056 0.197
128Te 0.079 0.308

TABLE VI. The NMEs for 2νββ decay based on the REDF-
QRPA (DD-ME2 interaction, optimal V0pp), and the results of the
interacting shell model (ISM) (Ref. [112] unless otherwise noted).

REDF-QRPA
(DD-ME2) ISM [112]

48Ca 0.019 0.026
76Ge 0.001 0.104
82Se 0.001 0.109
124Xe [122] 0.023 0.028–0.072
128Te [123] 0.006 0.030
130Te 0.002 0.061
136Xe [123] 0.001 0.013

More recent pn-QRPA results can be found in Ref. [124],
but only for some of the nuclei considered in this work. The
parameters for the calculation are determined using two pro-
cedures, fitting of the ft values (product of the Fermi integral
and β-decay half-life) [125] to an isobaric triplet and multi-
plet. The comparison to the NMEs based on the REDF-QRPA
with optimal V0pp is given in Table VII, showing reasonable
agreement for 100Mo, while for 116Cd and 128Te the REDF-
QRPA provides smaller NMEs.

Finally, we compare our calculations with the results of
a recent effective theory (ET) treatment of double-β de-
cay [126]. Effective theories concern the behavior of nuclei
at suitably low energies, which is described in terms of low-
energy collective degrees of freedom, with any influence from
high-energy physics being encoded into the low-energy con-
stants which are fitted to available experimental data. The
effective theory described in Ref. [126] takes as its degrees
of freedom nucleons and quadrupole phonon excitations of
an even-even spherical core the nucleons are coupled to.
The comparison of REDF-QRPA results using DD-ME2 in-
teraction and optimal V0pp, with those of the ET, is given
in Table VIII. With the exception of 100Mo, our results are
systemically smaller, although they are comparable to the
effective theory result in the case of 116Cd.

One of the open questions in the description of double-
β decays is optimization of the strength parameter of the
isoscalar pairing in the residual QRPA interaction. Since this
interaction channel is difficult to constrain, and in most of
the models cannot be determined based on the ground-state
properties, it is necessary to explore its role in the NMEs
for double-β decays. In the present study, the experimental
data on β-decay half-lives are used to constrain the value

TABLE VII. The NMEs for 2νββ decay based on the REDF-
QRPA (DD-ME2 interaction, optimal V0pp), and recent results of the
proton-neutron QRPA (pn-QRPA) (Ref. [124]).

REDF-QRPA pn-QRPA [124] pn-QRPA [124]
(DD-ME2) triplet multiplet

100Mo 0.189 0.153 0.131
116Cd 0.038 0.153 0.160
128Te 0.006 0.069 0.095
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TABLE VIII. The NMEs for 2νββ decay based on the REDF-
QRPA (DD-ME2 interaction, optimal V0pp), and the results of the
effective theory outlined in Ref. [126].

REDF-QRPA
(DD-ME2) ET [126]

76Ge 0.001 0.054
82Se 0.001 0.097
100Mo 0.189 0.111
116Cd 0.038 0.085
128Te 0.006 0.031
130Te 0.002 0.021

of the isoscalar pairing strength parameter V0pp (Sec. III C),
and in this way the REDF-QRPA can provide predictions for
2νββ decay properties. Figure 10 shows the NME for 2νββ

decay nuclides from 48Ca up to 150Nd, obtained using the
REDF-QRPA with the DD-ME2 interaction, for the range of
values for V0pp = 0–1. The experimental data adopted from
Ref. [80] are also shown for comparison. One can observe a
systematic decrease of the NMEs with increasing the value of
V0pp. For several nuclei, the experimentally determined NMEs
(with their error bars) are within the range of calculated NMEs
when considering the full range of V0pp values from 0 to 1.
The exceptions are 76Ge, 82Se, 96Se, 116Cd, and 150Nd where
the calculated NMEs are smaller (also the experimental errors
are rather small), and 96Zr where the calculated NMEs are
larger. In the case of 116Cd and 96Zr the differences between
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TABLE IX. The NMEs for 2νββ decay obtained with the DD-
ME2 interaction and optimal values of V0pp given in Table II, and
NMEs obtained from the experimental data.

REDF-QRPA
(DD-ME2) Expt. [127]

48Ca 0.019+0.014
−0.019 0.035 ± 0.003

76Ge 0.001+0.024
−0.001 0.106 ± 0.004

82Se 0.001+0.011
−0.001 0.085 ± 0.001

96Zr 0.121+0.006
−0.010 0.080 ± 0.004

100Mo 0.189+0.020
−0.033 0.185 ± 0.002

116Cd 0.038+0.004
−0.004 0.108 ± 0.003

124Xe 0.023+0.021
−0.023 0.059 ± 0.015

128Te 0.006+0.011
−0.006 0.043 ± 0.003

130Te 0.002+0.010
−0.002 0.0293 ± 0.0009

136Xe 0.001+0.004
−0.001 0.0177 ± 0.0002

150Nd 0.013+0.007
−0.005 0.055 ± 0.003

the experimental and calculated NMEs within the given range
of V0pp are very small.

In Table IX we give the NMEs for the DD-ME2 interaction,
using the optimal value for the isoscalar pairing strength V0pp,
in comparison to the values obtained from the experimental
data on 2νββ decay [80]. The inclusion of T = 0 pairing
further reduces the NMEs, thus allowing the agreement with
the experimental data where previously the calculated NMEs
have been too large. However, in many cases the isoscalar
pairing reduced the NMEs such that the final result is below
the experimental range.

To assess the information about the systematic model
dependence of the NMEs for 2νββ decay in the REDF
framework, we extend our calculations also to the relativis-
tic point-coupling interactions (see Sec. III). In Fig. 11 the
NMEs are shown for 48Ca, obtained using point-coupling in-
teractions DD-PC1 and DD-PCX, those with meson-exchange
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FIG. 11. Comparison of the NMEs for 48Ca using the DD-PC1
and DD-PCX interactions and the value obtained from experimental
data [127].
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FIG. 12. The dependence of the NMEs on the isoscalar pairing
strength V0pp for the 2νββ decay for the set of nuclides in the mass
range 76Ge–150Nd, for all relativistic interactions employed in this
work shown in comparison to the values obtained from the experi-
mental data [127].

interaction DD-ME2, and the NME obtained from the ex-
perimental data on 2νββ decay [80]. The figure shows the
dependence of the NMEs on the T = 0 pairing strength V0pp.
The results for the two point-coupling interactions display
some variations of the NMEs, though not considerable; the
NMEs for the DD-PC1 interaction are somewhat lower, e.g.,
at V0pp = 0 the difference in the NMEs for DD-PC1 and
DD-PCX interactions is less than ≈0.01. The NMEs for DD-
ME interaction show qualitatively the same dependence on
V0pp. Similar analysis of the sensitivity of the NMEs on the
effective interaction employed is performed for other nuclei
of interest, from 76Ge toward 128Te, as shown in Fig. 12.
The NMEs for DD-PC1 interaction appear systematically
smaller than those of DD-PCX interaction, and their differ-
ences provide the insight into the model uncertainties when
using different point-coupling interactions. In the case of
DD-ME2 interaction, the NMEs are smaller than those of
DD-PC1 and DD-PCX interactions, except for 76Ge. The dif-

TABLE X. The same as Table IX but for DD-PC1 and DD-PCX
interactions and the corresponding optimal values of the isoscalar
pairing strength V0pp given in Table II.

REDF-QRPA REDF-QRPA
(DD-PC1) (DD-PCX) Expt. [80]

48Ca 0.008+0.019
−0.008 0.024+0.016

−0.021 0.035 ± 0.003
76Ge 0.003+0.021

−0.003 0.009+0.014
−0.009 0.106 ± 0.004

82Se 0.009+0.019
−0.009 0.005+0.014

−0.005 0.085 ± 0.001
96Zr 0.148+0.016

−0.027 0.160+0.007
−0.011 0.080 ± 0.004

100Mo 0.188+0.028
−0.049 0.233+0.016

−0.026 0.185 ± 0.002
116Cd 0.042+0.006

−0.008 0.087+0.005
−0.006 0.108 ± 0.003

124Xe 0.034+0.036
−0.019 0.034+0.084

−0.034 0.059 ± 0.015
128Te 0.009+0.015

−0.005 0.012+0.015
−0.012 0.043 ± 0.003

130Te 0.014+0.015
−0.013 0.006+0.018

−0.006 0.0293 ± 0.0009
136Xe 0.007+0.006

−0.005 0.003+0.008
−0.003 0.0177 ± 0.0002

150Nd 0.023+0.010
−0.008 0.066+0.019

−0.022 0.055 ± 0.003

ferences depend on the specific nucleus under consideration.
For example, for 48Ca the results for the two interactions
almost coincide, while for 150Nd considerable differences in
the NMEs are obtained.

The optimal values for the T = 0 pairing strength, obtained
for the REDF-QRPA with DD-PC1 and DD-PCX interactions
(Table II), can now be employed in description of 2νββ decay
NMEs. The calculated NMEs are summarized in Table X
for DD-PC1 and DD-PCX interactions, respectively, in com-
parison to the experimental values. Although there are some
variations in the NMEs when compared to the experimental
data, an overall reasonable qualitative agreement is obtained.
This is illustrated in Fig. 13, where we summarize the results
of the present study, including the NMEs for 2νββ decay ob-
tained using the REDF-QRPA with DD-ME2, DD-PC1, and
DD-PCX interactions with the corresponding optimal values
of isoscalar pairing strength parameters. For comparison, the
NMEs from previous studies are shown, including pn-QRPA
implementations by Suhonen [128], Pirinen and Suhonen [1],
and Šimkovic et al. [84], the IBM [120] and the ISM [112],
as well as the experimental result [80]. Clearly, the results of
the REDF-QRPA are of comparable quality with those from
previous studies, though for most of the nuclei somewhat
lower than those determined from the experimental data. In
addition, rather than providing just a single NME value, our
study provides the insight into systematic uncertainties due to
variations in the formulation of the REDF and parametriza-
tions used. Additional uncertainty is accounted for due to the
isoscalar pairing strength interaction that is constrained by
β-decay half-lives.

The nuclear matrix elements calculated in this work ap-
pear rather small compared to previous studies. As already
discussed, the isoscalar and isovector pairing strengths are
very similar, indicating that the spin-isospin SU(4) symmetry
is softly broken. Weak breaking of the SU(4) symmetry could
partly explain small NMEs obtained within the REDF-QRPA
approach, but even for V0pp = 0 the NMEs appear smaller than
in other approaches. Another issue is that our treatment did not
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FIG. 13. Summary of the 2νββ decay NMEs from the REDF-
QRPA with DD-ME2, DD-PC1 and DD-PCX interactions with
optimal T = 0 pairing together with respective 1σ uncertainties,
compared to the calculations based on the pn-QRPA by Deppisch and
Suhonen [124], Pirinen and Suhonen [1], and Šimkovic et al. [84],
IBM [120], ISM [112], and the ET outlined in Ref. [126]. The NMEs
from the experimental data [80] are also shown.

include relevant effects going beyond the QRPA, as mentioned
in Sec. I.

In order to perform an additional sensitivity check of our
calculations we also performed calculations in which Q val-
ues derived from the experimental masses have been used.
Figure 14 shows the NMEs calculated using the DD-ME2
interaction, both with experimental and calculated Q values.
One can observe that the NME results are nearly the same for
48Ca, 76Ge, and 82Se, while for other nuclei the same trend
with V0pp is obtained, but some differences can be observed.
In several cases the NMEs become smaller when using exper-
imental Q values instead of calculated ones. Thus, the choice
of Q value does not provide a solution to the problem of
small NME values, except for 96Zr. Whether the 2νββ NMEs
could be increased by an appropriate treatment of the effects
we could not include in the current work is an interesting
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FIG. 14. The NMEs for the DD-ME2 interaction, calculated with
the Q values derived self-consistently in the RH-BCS framework,
shown next to the NMEs for the same interaction, but with the Q
values based on experimental data [130].

perspective for the further research. For example, in Ref. [129]
the structure of 76Ge and 76Se was studied with Gogny func-
tionals, indicating that the comparison with the experimental
data could only be obtained when triaxial shapes have been in-
cluded, and these are precisely the nuclei for which we obtain
the NMEs that diverge the most from experimental results.
Also in the present study the systematic uncertainty due to
implementation of three different relativistic interactions is
considerably larger than the experimental uncertainty. There-
fore, further investigations and improvements of the theory
frameworks are necessary in order to reduce the theoretical
uncertainty obtained from our, but also from other, studies.

V. CONCLUSION

In this work a theory framework is established for the
study of 2νββ decay nuclear matrix elements based on the
relativistic nuclear energy functional. Model calculations in-
clude two different formulations of the effective interactions,
density-dependent meson-exchange and point-coupling inter-

064315-13
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actions, and three parametrizations (DD-ME2, DD-PC1, and
DD-PCX) are employed in order to assess the information
on the systematic uncertainties on the NMEs in the rela-
tivistic framework. The ground states of nuclei involved in
the decay are calculated within the relativistic Hartree-BCS
model, while nuclear transitions in the 2νββ decay are de-
scribed using the REDF-QRPA. In addition to the isovector
pairing correlations taken into account in the ground-state
calculations within the RH-BCS model, the isoscalar pairing
channel has also been included in the residual REDF-QRPA
interaction, and its optimal values of the strength parameter
V0pp are constrained by the experimental data on β-decay
half-lives, in order to allow predictions in double-β decay
studies.

We calculated the NMEs for a set of nuclei that undergo
2νββ decay: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te,
130Te, 124Xe, 136Xe, and 150Nd. The dependence of the NMEs
on the isoscalar pairing strength V0pp was investigated at the
limit V0pp = 0 and using optimal V0pp values. The NMEs from
the REDF-QRPA provide an improvement over the interacting
boson model, being closer to the values of the NMEs obtained
from the experimental data. However, when compared to the
nonrelativistic pn-QRPA, interacting shell model, or effective
theory, the NMEs from the present study for most of studied
nuclei, with a few exceptions, are rather small. While for
some studied nuclei the NMEs are already below experimental
ones in the V0pp = 0 limit, for several nuclei at this limit the
NMEs are above experimental values, but when introducing
the optimal value of V0pp, the NMEs become rather low. It was
shown that different treatment of the Q-value calculation for

most of the studied nuclei could not increase the NMEs, and
further studies of additional effects are required to resolve this
question. Rather than providing just a single NME value like
most of the previous studies, our work provides insight into
the systematic uncertainties due to different formulations of
the REDF and parametrizations used. Additional uncertainty
is accounted for due to the isoscalar pairing strength interac-
tion that is constrained by β-decay half-lives.

This work provides an important benchmark for the fu-
ture applications of the relativistic framework in studies
of neutrinoless double-β decay. However, we note that the
present study represents our first study of double-β decays
in the relativistic framework, and some effects have not
been considered, e.g., nuclear deformation, symmetry restora-
tion, configuration mixing, etc. Future improvements of the
REDF-based theory framework, in particular the ongoing de-
velopment of the deformed REDF-QRPA for the functionals
used in this work, will allow additional improvements in mod-
eling nuclear double-β decays.
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[22] F. Ŝimkovic, J. Schwieger, G. Pantis, and A. Faessler, Found.

Phys. 27, 1275 (1997).
[23] F. Šimkovic, A. Faessler, H. Müther, V. Rodin, and M. Stauf,

Phys. Rev. C 79, 055501 (2009).
[24] V. Rodin, A. Faessler, F. Šimkovic, and P. Vogel, Czech. J.

Phys. 56, 495 (2006).
[25] S. Stoica and H. Klapdor-Kleingrothaus, Nucl. Phys. A 694,

269 (2001).
[26] P. Beneš, F. Šimkovic, A. Faessler, and W. Kamiński, Prog.
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[69] A. Ravlić, Y. F. Niu, T. Nikšić, N. Paar, and P. Ring, Phys. Rev.
C 104, 064302 (2021).

[70] D.-L. Fang, A. Faessler, V. Rodin, and F. Simkovic, Phys. Rev.
C 83, 034320 (2011).

[71] J. Hyvärinen and J. Suhonen, Adv. High Energy Phys. 2016,
4714829 (2016).

[72] D. S. Delion, A. Dumitrescu, and J. Suhonen, Phys. Rev. C
100, 024331 (2019).

[73] D.-L. Fang, A. Faessler, and F. Šimkovic, Phys. Rev. C 97,
045503 (2018).

[74] A. A. Raduta and C. M. Raduta, J. Phys.: Conf. Ser. 413,
012014 (2013).

[75] F. Šimkovic, R. Dvornický, D. Štefánik, and A. Faessler, Phys.
Rev. C 97, 034315 (2018).

[76] L. M. Robledo, T. R. Rodríguez, and R. R. Rodríguez-
Guzmán, J. Phys. G: Nucl. Part. Phys. 46, 013001 (2019).

[77] F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C
87, 045501 (2013).

[78] S. Stoica and M. Mirea, Front. Phys. 7, 12 (2019).
[79] J. Suhonen, From Nucleons to Nucleus, Theoretical and Math-

ematical Physics (Springer, Berlin, 2007)
[80] A. Barabash, Nucl. Phys. A 935, 52 (2015).
[81] T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev. C

93, 025805 (2016).
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