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1 Introduction

Interpretation of the horizon area as the black hole entropy was proposed by Bekenstein [1]
and Hawking [2] within the framework of semi-classical gravity. Initial attempts to under-
stand the origin of the black hole entropy involved statistical mechanics of the in-falling
particles [3] or that of scalar fields, using a brick-wall cutoff to regulate the ultraviolet diver-
gence [4, 5]. Subsequently, there have been attempts to obtain the Bekenstein-Hawking area
law from various microscopic descriptions of gravity, including string theory [6], quantum
geometry [7] and conformal field theory [8, 9]. This process went beyond the validation
of the Bekenstein-Hawking formula and a nonperturbative quantum geometry approach
predicted a logarithmic correction to the black hole entropy [10]. Such logarithmic cor-
rections have since been found in various quantum descriptions of black holes including
conformal field theory [11–13], string theory [14, 15] and within the context of AdS/CFT
duality [16]. The higher loop corrections [17, 18] as well as nonlocal effective field theories
of gravity [19, 20] also lead to such logarithmic corrections. The area law of the black hole
entropy can be also related to the entanglement between degrees of freedom inside and
outside the horizon [21, 22] and various corrections to the area law in that context have
also been found in [23].

There is another approach to microscopic description of the spacetime which offers an
opportunity to derive the Bekenstein-Hawking area law. The theory of general relativity
together with the quantum uncertainty principle suggests that the spacetime coordinates
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obey the noncommutative (NC) algebra [24, 25]. The NC algebra comes with a fundamental
length parameter, whose effect is expected to be manifest at the quantum gravity scale, or
equivalently the Planck scale. Another feature of the NC algebra is that it is inherently non-
local. This is made explicit by writing the NC algebra in terms of the star product [26],
which often can be defined using the Drinfeld twist operator [27]. Any physical theory
described within the NC framework is expected to capture certain quantum and non-local
effects. In this paper we propose to investigate to what extent such an expectation is
actually realized in the context of black hole entropy.

One way to analyze how the NC framework captures the quantum effects is to explore
the NC corrections to the black hole entropy. To that end, we investigate the entropy of
the NC Reissner-Nordström (RN) black hole in the brick-wall approach using the WKB
technique [4, 5]. In a commutative theory, the WKB method in the leading order does not
generate any logarithmic correction to the black hole entropy. Only after including the
higher order WKB corrections the logarithmic terms appear [28]. This happens as WKB
is a semi-classical method and the higher order terms are necessary in the commutative
framework to capture the quantum effects. We will show here that in the NC setup, even
at the lowest order in WKB, the logarithmic terms appear naturally in the expression
of the black hole entropy. This is consistent with and provides further evidence towards
the idea that the quantum and nonlocal effects are already built into the NC spacetime
algebra [24, 25].

In our analysis, we shall use a NC scalar field in a classical RN background, coupled
to a NC U(1) gauge field [29–31]. The NC algebra used in our model is the κ-deformed
spacetime1 [32–36], which is well known to be relevant for black hole physics [37–39] and
cosmology [40]. This NC algebra associated with a particular type of Drinfeld twist op-
erator, known as the angular twist [29, 30, 41], which respects the symmetries of the RN
black hole and can be expressed in terms of Poincaré generators, in contrast to certain
previous attempts [42, 43]. The model used in our analysis has been derived in [29] by
first developing a NC differential calculus along the lines of [44, 45] and then by using the
Seiberg-Witten map [46, 47] to derive the NC gauge theory (see appendix B for details.) To
our knowledge, the analysis presented in this paper provides the first derivation of the log-
arithmic correction to the entropy of a 3+1 dimensional black hole arising from a Drinfeld
twist, which is completely different from similar attempts in the context of dilatonic black
holes in 1+1 dimensions [48], the GUP framework [49] or noncommutative Schwarzschild
black hole [50].

This paper is organized as follows. In section 2 we first briefly review the main steps of
the brick-wall method [4, 5] and in IIA we highlight the the role of the near-horizon limit
for obtaining the entropy of the the Schwarzschlid black hole within the same model. In
section IIB we present the calculation for the entropy of the RN black hole with the charged
probe. Section 3 deals with the NC corrections to the entropy of the RN black hole. Here

1The κ-deformation in question is defined by the Lie algebra relations given in (3.1). This Lie algebra
is the Lie algebra of symmetries of a 2D plane (x, y) = semidirect product of 2D translations and rotations
generated by a 3rd axis, t. The NC algebra used in [32, 33] are the simple Lie algebras so(3) or so(2, 1),
which by a proper rescaling of generators can be reduced to the Lie algebra considered in the present paper.
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we introduce the κ-deformed spacetime noncommutativity and the angular Drinfeld twist
to obtain the NC corrections to the RN black hole entropy. Our analysis in this section
demonstrates that for the NC RN case, a logarithmic correction to the black hole entropy
arises in the lowest order in WKB, which is one of the main results of this paper. In
section 4 we discuss how to get obtain the entropy in the near Schwarzschild limit as the
charge of the RN black hole tends to zero. Section 5 concludes the paper with some final
remarks and an outlook. The paper also contain two appendices to augment the main text.

Throughout the paper we are using the natural units where kB = ~ = c = 1.

2 Black hole entropy via the brick-wall model

It is known that any type of field theoretical calculation of the entropy of a black hole leads
to a UV divergence, which requires regularization to extract the relevant physical part [18].
The brick-wall method, developed by ’t Hooft [4, 5] provides an appropriate regularization
using the WKB approximation and is compatible with the one-loop calculations [52]. In
this method the analysis starts by examining the Klein-Gordon equation in a fixed black
hole background described by the metric gµν

�gΦ = 0. (2.1)

We separate the Klein-Gordon equation in the time, radial and angular parts using the
ansatz Φ(x) = e−iEtRlm(r)Ylm(θ, φ), where l and m denote the angular and azimuthal
quantum numbers. Next we use the brick-wall boundary condition given by

Rlm(r) = 0 for r = r+ + h and r = L (2.2)

is imposed, where r+ is the radius of the outer horizon, h is the brick-wall cutoff and L is
the infrared cutoff. Using the WKB approximation, the radial part of the scalar field can
be written as

Rlm(r) = ei
∫
k(r)dr, (2.3)

which is plugged into (2.1) to obtain an equation for the radial wave number

k2 = H(r, E, l,m), (2.4)

where H is a function of r and other parameters of the theory. As long as k is non-negative
the number of radial modes n can be obtained by the Bohr-Sommerfeld rule

πn =
∫ L

r++h
k(r, E, l,m)dr, (2.5)

which gives the quantization of the energy. The total number of wave solutions with the
energy less or equal to E is given by

N(E) =
lmax∑
l=0

l∑
m=−l

n −→ 1
π

∫ L

r++h
dr

∫ lmax

0
dl

∫ l

−l
dm k(r, E, l,m), (2.6)
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where the summation has been replaced with the integral. Notice that N(E) counts the
number of classical eigenmodes of a scalar field in the vicinity of a black hole. We are inter-
ested in the thermodynamic properties of such a system and assume that each eigenmode
may be occupied by any integer number of quanta. The free energy F at some inverse
temperature β of such a system is given by

F = −
∫ ∞

0

N(E)
eβE − 1dE = − 1

π

∫ ∞
0

dE

∫ L

r++h
dr

∫ lmax

0
dl

∫ l

−l
dm

k(r, E, l,m)
eβE − 1 . (2.7)

When calculating (2.7) one has to be careful and integrate only over the values for which
the radial wave number k is non-negative. We will see later that this means that lmax
depends on r. Also, we are interested in the main contributions to the free energy F

coming from the horizon. Therefore the integral over r can be split into two parts∫ L

r++h
dr(...) =

∫ R

r++h
dr(...) +

∫ L

R
dr(...), (2.8)

where in the first term one keeps the most divergent part as h→ 0, while in the second term
L� r+. The second term constitutes the usual contribution from the vacuum surrounding
the system at large distances and can be omitted [4]. Once the free energy F is calculated
and the most divergent part in h identified, one can find the entropy of the black hole by
simply using

S = β2dF

dβ
. (2.9)

Finally one gets rid of the brick-wall cutoff h by equating (2.9) to the Bekenstein-Hawking
entropy [1, 2] and demanding that β is the inverse Hawking temperature.

In the following subsection we will outline the brick-wall method for the case of
Schwarzschlid and RN black holes in order to fix the notation before introducing the NC
effects.

2.1 Entropy of the Schwarzschlid black hole

The entropy of the Schwarzschlid black hole in the brick-wall method is well known [4], but
here we will repeat the crucial steps in the calculation to emphasize the role of the near
horizon region. We start with the metric for Schwarzschild black hole

ds2 =
(

1− 2GM
r

)
dt2 −

(
1− 2GM

r

)−1
dr2 − r2dΩ2 (2.10)

and derive the radial part of the Klein-Gordon equation for a massless scalar as(
1− 2GM

r

)
R′′lm + 2

r

(
1− GM

r

)
R′lm −

[
l(l + 1)
r2 − E2

1− 2GM
r

]
Rlm = 0. (2.11)

Next we use the WKB approximation and get the radial wave number kS(r, l, E)

k2
S = 1

1− 2GM
r

(
E2

1− 2GM
r

− l(l + 1)
r2

)
(2.12)
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and the number of radial modes n is given by the Bohr-Sommerfeld rule (2.5). We keep
kS non-negative which fixes the maximal value of the orbital quantum number as

lmax(lmax + 1) = E2r2

1− 2GM
r

. (2.13)

We define a new coordinate as x = r− 2GM . The total number N of wave solutions (2.6)
is given by

NS(E) = 1
π

∫ L−2GM

h
dx
x+ 2GM

x

∫ lmax

0
dl (2l+1)

√
E2 − x

x+ 2GM
l(l + 1)

(x+ 2GM)2 . (2.14)

We now look for the main contributions and split the integral as in (2.8) to obtain

NS(E) = 32G4M4E3

3πh + E3L3

π
. (2.15)

Notice that when evaluating the first term in (2.8) the maximal value of l is calculated in
the near horizon limit with x ≈ h and gives lmax(lmax + 1) = (2GM)3E2

x . While evaluating
the second term we are in the x � 2GM limit which gives lmax(lmax + 1) = E2L2. The
free energy is given by

FS = −2π3

45h

(2GM
β

)4
− 2L3π3

30β4 . (2.16)

The second term in (2.16) is the contribution from the vacuum surrounding the system at
large distances and can be omitted, while the first term is the intrinsic contribution from
the horizon that diverges as h→ 0. The contribution of the horizon to the entropy is

SS = 8π3

45h2GM
(2GM

β

)3
(2.17)

which is in complete agreement with [4]. Now one can obtain the value for the cut-off h by
imposing that the temperature is the Hawking temperature TH = 1

β = 1
8πMG and entropy

is the Bekenstein-Hawking entropy S = A
4G = 4πGM2,

h = 1
720πM (2.18)

which is in agreement with [4]. Notice that even though eq. (2.18) might suggest that the
brick-wall cutoff depends on M , it is actually a coordinate artifact since calculating the
invariant distance shows that the brick-wall can be seen as a property of the horizon that
is independent of the particular size of the black hole in question.

2.2 Entropy of the Reissner-Nordström black hole

The RN black hole is a solution of the coupled Einstein-Maxwell system of equations for
both the metric gµν and vector potential Aµ. The RN metric is given by

ds2 = fdt2 − f−1dr2 − r2dΩ2, f = 1− 2GM
r

+ Q2G

r2 . (2.19)

– 5 –
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The Klein-Gordon operator in the RN background is obtained by the minimal substitution

�g = gµν∇µ∇ν −→ gµνDµDν ,

whereDµ = ∇µ−iqAµ and Aµ = −δtµ
Q
r is the fixed background electromagnetic potential of

the RN black hole. The radial part of the Klein-Gordon equation for a massless minimally
coupled scalar field of charge q in the RN background can be written as

fR′′lm + 2
r

(
1− GM

r

)
R′lm −

[
l(l + 1)
r2 − 1

f

(
E − qQ

r

)2
]
Rlm = 0. (2.20)

We use the WKB approximation and get the radial wave number kRN (r, l, E)

k2
RN = 1

f

[
1
f

(
E − qQ

r

)2
− l(l + 1)

r2

]
. (2.21)

The number of radial modes n is given by the Bohr-Sommerfeld rule (2.5) where we have
to keep kRN non-negative, so the maximal value of the orbital quantum number is

lmax(lmax + 1) = r2

f

(
E − qQ

r

)2
. (2.22)

The total number NRN of wave solutions (2.6) after switching to near horizon coordinates
x = r − r+ is given by

NRN (E) = 1
π

∫ L−r+

h
dx

x+ r+√
x(x+ r+ − r−)

×
∫ lmax

0
(2l + 1)dl


(
E − qQ

x+r+

)2
(x+ r+)2

x(x+ r+ − r−) − l(l + 1)
(x+ r+)2


1
2

(2.23)

where we used
r± = GM ±

√
G2M2 −GQ2. (2.24)

We can split the integral as in (2.8) and look for the intrinsic contribution from the near
horizon region when h → 0 and omit the contribution for the surrounding vacuum. Since
the integrals over l and x are of the same type as in the Schwarzschild case it is easy to see
that the near horizon contribution is given by

NRN (E) = 2
3π

r6
+

(
E − qQ

r+

)3

(r+ − r−)2
1
h

(2.25)

where we also used
lmax(lmax + 1) =

r4
+

x(r+ − r−)

(
E − qQ

r+

)2
. (2.26)

The free energy is given by

FRN = − 2
3π

r6
+

(r+ − r−)2
1
h
K(β), K(β) =

∫ ∞
0

dE

(
E − qQ

r+

)3

eβE − 1 . (2.27)

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
0

Notice that K(β) has an infinite contribution coming from the electrostatic self-energy
of charge q of the scalar particle. This contribution vanishes when q → 0. Using the
ζ-function regularization K(β) can be written as

K(β) = Γ(4)ζ(4)
β4 − 3qQΓ(3)ζ(3)

r+β3 + 3q2Q2Γ(2)ζ(2)
r2

+β
2 − q3Q3Γ(1)ζ(1)

r3
+β

, (2.28)

where the infinite contribution appears in ζ(1). In subsequent analysis we shall ignore this
infinite contribution from the electrostatic self-energy, whereby the entropy is given by

SRN = − 2
3π

r6
+

(r+ − r−)2
1
h

(
−4Γ(4)ζ(4)

β3 + 9qQΓ(3)ζ(3)
r+β2 − 6q2Q2Γ(2)ζ(2)

r2
+β

)
, (2.29)

The value for the cutoff h is obtained by imposing that the temperature is the Hawking
temperature TH = 1

β = r+−r−
4πr2

+
and entropy is the Bekenstein-Hawking entropy S = ARN

4G =
πr2

+
G , which gives

h = G

360π
r+ − r−
r2

+

(
1− 270qQζ(3)

π3
r+

r+ − r−
+ 60q2Q2 r2

+
(r+ − r−)2

)
. (2.30)

For Q→ 0 this is in agreement with (2.18) and this recovers the entropy for the Schwarz-
schild black hole. We can check that

lim
q−→0

SRN = 8π3

45
r6

+
(r+ − r−)2

1
hβ3 (2.31)

which is in agreement with [52, 54].

3 Noncommutative correction to the entropy of the Reissner-Nordström
black hole

In this paper we shall consider a κ-deformed spacetime noncommutativity, whose commu-
tation relations in the Cartesian coordinates are given by

[t, x]? = −iay, [t, y]? = iax, [x, y]? = 0, (3.1)

where a is the NC deformation parameter. The corresponding relations in the spherical
coordinates can be written as

[r, t]? = 0, [r, eiφ]? = 0, [t, eiφ]? = −aeiφ. (3.2)

The star product of two functions f and g appearing in (3.1) and (3.2) is defined as

f ? g = µ{F−1f ⊗ g}, (3.3)

where µ is the usual point-wise multiplication of functions, µ(f ⊗ g) = f · g and F is the
twist operator given by [29, 30, 41]

F ≡ e−
i
2 θ
αβ∂α⊗∂β = e−

ia
2 (∂t⊗∂φ−∂φ⊗∂t), (3.4)
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where α, β = t, r, θ, φ and θtφ = −θφt = a are the only non-zero components of the
deformation tensor θαβ . This twist operator is formed from the Killing vector fields of the
RN metric. In addition, X1 = ∂t, X2 = ∂φ are commuting vector fields, [X1, X2] = 0,
rendering (3.4) to be an Abelian twist. We call (3.4) an angular twist because the vector
fieldX2 = ∂ϕ = x∂y−y∂x is a generator of rotations around the z-axis. Since the twist (3.4)
is defined in terms of the Killing vector fields of the RN metric, it leaves the RN metric
unchanged. An important aspect of the twist (3.4) is that it is expressed entirely in terms of
Poincaré generators, unlike some previous attempts to construct NC gauge theory [42, 43],
where the twist involves the generators of igl(1, 3), The twisted deformation considered
here is a special case of deformations introduced in [53].

Following [29], we consider a NC charged scalar field in the background of a RN
black hole, where the noncommutativity is defined by star product (3.3) and the angular
twist (3.4). We refer to this system as NCRN. Up to the first order in the NC deformation
parameter a, the radial part of the corresponding Klein-Gordon equation is given by (see
appendix B for details)

fR′′lm + 2
r

(
1− GM

r

)
R′lm −

[
l(l + 1)
r2 − 1

f

(
E − qQ

r

)2
]
Rlm

−imaqQ
r3

[(
GM

r
− GQ2

r2

)
Rlm + rfR′lm

]
= 0. (3.5)

Next we use the WKB approximation and get the radial wave number kNCRN (r, l,m,E)
as

k2
NCRN = 1

f

[
1
f

(
E − qQ

r

)2
− l(l + 1)

r2 − imaqQ
r3

(
GM

r
− GQ2

r2

)]
. (3.6)

Note that unlike the commutative case, there is an explicit dependence of kNCRN on
the magnetic quantum number m and appearance of the imaginary factor in it. At a
perturbative level, expanding (3.6) in the NC deformation parameter a we have

kNCRN = 1√
f

(A+ aB)
1
2 =

√
A

f
+ a

2
1√
fA

B − a2

8
1√
fA3B

2 +O(a3). (3.7)

The first term is exactly the radial wave number in the commutative case (2.21), while the
second and third are NC corrections. Notice that B is linear in the magnetic quantum
number m. Hence there is no contribution to N(E) from the term linear in a since

l∑
m=−l

m = 0 =
∫ l

−l
mdm. (3.8)

Thus the leading NC correction is quadratic in a. Furthermore, all correction that are
odd powers in a vanish which means that imaginary part of k does not contribute to the
number of solutions N . This result can be proven nonperturbatively to all orders in the
deformation parameter a. In the appendix A we show that the imaginary part of the wave
number k is zero after we integrate over m so it does not contribute to the free energy and
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entropy in the end. Therefore we can immediately go to the near horizon limit and omit
the surrounding vacuum contributions and we get

kNCRN = kRN + k̃, (3.9)

where

kRN = r+√
x(r+ − r−)


(
E − qQ

r+

)2
r2

+

x(r+ − r−) − l(l + 1)
r2

+


1
2

,

k̃ = a2

8
x(r+ − r−)

r2
+

(
E − qQ

r+

)3
q2Q2

r6
+

(
GM

r+
− GQ2

r2
+

)2

m2. (3.10)

This gives

NNCRN (E) = NRN (E) + Ñ(E), Ñ(E) = a2q2Q2

48π

(
GM

r+
− GQ2

r2
+

)2 E − qQ
r+

r+ − r−
ln
(
lp
h

)
,

(3.11)
where NRN is given in (2.25), lp =

√
G is the Planck length and

lmax(lmax + 1) =
r4

+
r+ − r−

(
E − qQ

r+

)2

x
,

which ensures that kRN is nonnegative. The free energy is given by

FNCRN = FRN+F̃ , F̃ = −a
2q2Q2

48π

(
GM

r+
− GQ2

r2
+

)2 1
r+ − r−

ln
(
lp
h

)(
π2

6β2 −
qQ

r+β
ζ(1)

)
,

(3.12)
where FRN is given in (2.27). The entropy can be expressed as

SNCRN = SRN + a2q2Q2

48π

(
1− GM

r+

)2 1
r+ − r−

ln
(
lp
h

)
π2

3β (3.13)

where SRN is given in (2.29) and we have removed the infinite contribution arising from
the electrostatic self-energy like before. The cutoff h is fixed by matching SRN with the
Bekenstein-Hawking entropy, which is exactly (2.30) and using this we obtain the final
expression of the entropy as

SNCRN = ARN
4G + a2Wln

(
ARN
lp

)
+ a2V (3.14)

where ARN = 4πr2
+ is the area of the RN black hole,W and V are functions of r± and q and

can be determined from (2.30) and (3.13). It is important to note that the NC corrections
to the entropy are similar to the usual subleading quantum corrections (see [28]) indicating
the nonlocal and quantum nature of the NC algebra already in the lowest order in the WKB.
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4 The almost Schwarzschild limit

The Abelian Drinfeld twist used in this paper does not deform either the Schwarzschild
metric or its coupling to the scalar probe. Hence taking limits of Q, q −→ 0 in (3.14)
simply reproduces the commutative results. The noncommutative corrections only appear
if we have a charged black hole (in our case RN) and a charged scalar probe. However
we can look at the RN black holes with very small charge Q in order to compare the NC
corrections with respect to the (almost) Schwarzschild black hole. Therefore, we will look
at (3.14) in the limit Q −→ 0, that is we expand everything to the lowest order in the black
hole charge Q. Since the noncommutative correction is propositional to Q2 it is enough to
expand the SRN up to quadratic terms in Q and all the rest keep in the zeroth order. In
doing this we used

SRN = SS − 2πQ
2

M
+O(Q4), h = 1

720πM +O(Q2), 1
β

= r+ − r−
4πr2

+
= 1

8πGM +O(Q2)

(4.1)
and therefore the entropy in the almost Schwarzschild limit has the following form

SNCRN = SS −
2πQ2

M
+ a2q2Q2

9216G2M2 ln (720πMlp) (4.2)

or if we exploit the formula for SS

M =

√
SS

4πG (4.3)

for the Q ≈ 0 we can obtain

SNCRN = A

4G + G(A) +H(A)ln
(
A

l2p

)
(4.4)

where
G(A) = −(4π)3/2Q

2l2p√
A
, H(A) = a2 π

1152
q2Q2

A
(4.5)

and A = 16πG2M2 is the area of the Schwarzschild black hole. Note that this result is in a
form compatible with the generic form of WKB expansion of the entropy of black holes [28],
but the main difference is that in the commutative case the logarithmic corrections appear
as subleading corrections, while in the NC framework they come in the lowest WKB order.

5 Final remarks

In this paper we have shown that a NC framework can give rise to a logarithmic correction
to the black hole entropy, which is a purely quantum effect. Our model consists of a κ-
deformed NC scalar field on a classical RN black hole background, coupled to a NC U(1)
gauge field. The NC algebra considered here arises from an Abelian Drinfeld twist, known
as the angular twist. It is adapted to the isometries of the background RN geometry, with
the associated stationary Killing vector field ∂t and the axial Killing vector field ∂φ. The
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analysis was performed using the brick-wall method in the lowest order of the semiclassical
WKB approximation.

It is well known that in the commutative setup, the lowest order in WKB does not
lead to logarithmic correction to the black hole entropy. There one has to go beyond the
semi-classical limit in order to obtain such logarithmic corrections. However, the results
obtained here indicate that the NC framework is capable of revealing the quantum effects
in the black hole entropy even at the lowest order in the WKB. This is consistent with
and provides further evidence towards the hypothesis that the NC framework is capable of
encoding at least some quantum effects of curved spacetime [24, 25].

In addition, to the best of our knowledge, this work provides the first derivation of the
logarithmic correction to the Bekenstein-Hawking entropy using a Drinfeld twist arising
from a κ-deformed Hopf algebra. The choice of the twist operator is certainly not unique,
but the angular twist used here captures a lot of features present in other Abelian twists.
It is important to note that the angular twist (3.4) used in the paper is made of vector
fields ∂t and ∂φ. As a result, the deformations of any metric that has these vectors as
Killing vector fields are exactly zero. We have considered RN metric in this paper, which
has ∂t and ∂φ as Killing vector fields. Consequently, as has been shown in [29, 30], the
only NC correction that shows up is the correction between the coupling between the U(1)
potential and the charged scalar, leading to (3.5). In order to investigate the possibility of
NC corrections to the metric, one could try to consider some different metrics which can be
derived, as the solutions, of the underlying NC gravity theory. In such cases it is expected
in general that in general additional corrections to the BH entropy will appear, which is a
matter of further analysis. We would like to also mention that the NC corrections to BH
are generally smaller than other quantum gravity corrections due to the fact that the NC
scale determined by the deformation parameter a is the smallest scale in the problem.

Black hole entropy can be described in the brick-wall model [4, 5] as well as using
entanglement of the degrees of freedom between the two sides of the horizon [21, 22]. It is
a remarkable fact that both these approaches lead to an almost identical UV divergence in
the black hole entropy, and it has been argued that the black hole entropy obtained from
these seemingly different approaches are indeed related [18, 23]. The universal nature of
such an UV divergence in the black hole entanglement entropy is related to the Type-III
nature of the associated von Neumann algebra of observables appearing in these quantum
field theories [55, 56].

It is natural to inquire if such an universal divergence in the black hole entropy con-
tinues to persist within the NC framework. The analysis here indicates that at least in the
perturbative limit of a small NC deformation parameter the UV divergence of the black hole
entropy persists within the NC framework. This is further supported by similar results for
the case of NC BTZ coming from κ-Minkowski spacetime algebra and from the evaluation
of the renormalized entanglement entropy [58] using the heat kernel and effective action
method [59]. The universal appearance of the UV divergence in these systems suggests that
the typology of the associated von Neumann algebra of observables remains unchanged at
least when the NC effects are treated perturbatively. Whether there is any change in the ty-
pology of the von Neumann algebras when the NC effects are considered nonperturbatively
is a much deeper question, which is beyond the scope of the present analysis.

– 11 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
0

Acknowledgments

The authors would like to thank M. Dimitrijević-Ćirić and N. Konjik for various discussions.
This research has been supported by Croatian Science Foundation project IP-2020-02-9614.

A Nonperturbative integration over m

Let us examine the wave number (3.6) and rewrite it as (up to a sign)

k = (α− iaβm)1/2 (A.1)

where
α = 1√

f

[
1
f

(
E − qQ

r

)2
− l(l + 1)

r2

]
, β = qQ√

fr3

(
GM

r
− GQ2

r2

)
. (A.2)

A potential problem with this is that k in principle has real and imaginary parts. We shall
show below that the imaginary part does not cause problems since it does not contribute
to the free energy and entropy. In order to see that one needs to calculate the number of
wave solutions (2.6). In doing so, one needs to perform the integration over the magnetic
quantum number m first. Let us therefore consider the quantity

I =
∫ l

−l
kdm =

∫ l

−l
dm (α− iaβm)1/2 (A.3)

where l ∈ N is the orbital angular momentum. After performing this integral and using
the abbreviation R =

√
α2 + a2β2l2 and tanχ = −aβl

α we get

I = −4R3/2

3aβ sin 3χ
2 (A.4)

which is manifestly real in all orders in a. Furthermore we can expand I in the deformation
parameter a

I = 4l
√
α

3 − a2 β
2l3

α3/2 +O(a4) (A.5)

showing the absence of the linear term in a which is in agreement with the perturbative
analysis in section 3.

B Some elements of the twist deformation and derivation of the equation
of motion (3.5)

In this paper we work with κ-deformed spacetime noncommutativity for which the defining
relations, the star product and the angular twist were given at the beginning of section 3.
The twist (3.4) may also be written in a Sweedler notation as

F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α, (B.1)

where for each value of α, fα, fα, f̄α and f̄α are generally all different elements of the
universal enveloping algebra of the symmetry algebra in question (in the current context
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the Poincaré algebra). In view of this, the star product between two functions may be
written as f ? g = µ ◦ F−1(f ⊗ g) = f̄α(f) · f̄α(g).

The twist (3.4) satisfies the cocycle and counital conditions:

(F ⊗ 1) · (4⊗ id)F = (1⊗F) · (id⊗4)F ,
µ ◦ (ε⊗ id)F = 1 = µ ◦ (id⊗ ε)F , (B.2)

together with the requirement F = 1⊗1+O(a), which ensures that in the limit of vanishing
deformation, a −→ 0, an undeformed symmetry algebra is restored. Therefore, it is a
Drinfeld twist, ensuring that a twist deformation of the initial symmetry algebra, which is
a Hopf algebra, gives rise to a deformed algebraic structure which is again a Hopf algebra.
The deformation itself is carried out by the following set of similarity transformations:

∆F (X) = F∆(X)F−1, (B.3)
SF (X) = χS(X)χ−1, εF (X) = 0, (B.4)

applied to the generators of the initial Hopf algebra and its structural maps, the coproduct
∆, the counit ε and the antipode S. In the above relations χ = fαS(fα), and χ−1 =
S(f̄α)f̄α. Note that the ?-product (3.3) is noncommutative and in the limit a → 0 of
vanishing deformation it reduces to the usual point-wise multiplication. However, it is also
associative and this property is guaranteed by the first relation in (B.2). In this way the
noncommutative algebra of functions, i.e. the noncommutative spacetime comes to light.

The twisted symmetry of the NCMinkowski spacetime (3.1) ensuing from the twist (3.4)
is the twisted Poincaré symmetry. The latter is described by the twisted Poincaré Hopf
algebra whose algebraic and coalgebraic sector were presented in [29]. The differential
calculus appropriate for the above context has been developed from an ordinary differential
calculus through a deformation by means of the angular twist operator. The details of this
can also be found in [29–31].

In order to obtain the equation of motion (3.5) that is a central point of our study, we
start with the (RN) metric representing a charged non-rotating black hole with massM and
charge Q. We take this solution to represent our nondynamical gravitational background
characteristic of the noncommutative semiclassical hybrid model studied in [29]. Being
static and spherically symmetric, the spacetime of RN black hole has four Killing vectors,
among which ∂t and ∂φ are included, and t and φ are the time and polar variables of the
spherical coordinate system xµ = (t, r, θ, φ). Note that these are exactly the vector fields
utilized to build the Abelian Drinfeld twist operator (3.4).

This setting was further used in [29] to construct a semiclassical model describing a
charged NC scalar field Φ̂ and NC U(1) gauge field Â, both being in a mutual interaction
and in an interaction with a classical gravitational background of RN type. The model
was built by using deformation quantization techniques as applied to the Drinfeld twist
operator (3.4) [29, 30]. As already pointed out, semiclassical here means that the gravita-
tional field is undeformed by noncommutativity, and the only degrees of freedom that are
actually deformed are the scalar and gauge field that propagate in that classical gravita-
tional background. In a sense, we are thus dealing with a situation where the scalar and
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gauge field get quantized, while the gravitational field does not. It is however important to
stress that the gauge and scalar field are not quantized in a sense of quantum field theory
quantization.

The action is given by

S[Φ̂, Â] = SΦ + SA,

SΦ =
∫

d4x
√
−g ?

(
gµν ? DµΦ̂+ ? DνΦ̂− µ2Φ̂+ ? Φ̂

)
, (B.5)

SA = − 1
4q2

∫
d4x
√
−g ? gαβ ? gµν ? F̂αµ ? F̂βν . (B.6)

where
F̂µν = ∂µÂν − ∂νÂµ − i

(
Âµ ? Âν − Âν ? Âµ

)
. (B.7)

The operator Dµ appearing in (B.5) is the covariant derivative of the scalar field Φ̂
and it is defined as

DµΦ̂ = ∂µΦ̂− iÂµ ? Φ̂.

A favorable feature is that due to the twist operator (3.4) not acting on the metric tensor
gµν , ?-products in

√
−g ? gαβ ? gµν can all be removed.

As pointed out in [29], the functionals (B.5) and (B.6) are invariant under the following
infinitesimal U(1)? gauge transformations:

δ?Φ̂ = iΛ̂ ? Φ̂,
δ?Âµ = ∂µΛ̂ + i

(
Λ̂ ? Âµ − Âµ ? Λ̂

)
, (B.8)

δ?F̂µν = i
(
Λ̂ ? F̂µν − F̂µν ? Λ̂

)
,

δ?gµν = 0.

where Λ̂ is the NC gauge parameter .
Indeed, the functionals (B.5) and (B.6) are also invariant under the finite NC U(1)?

transformations defined as:

Φ̂′ = U? ? Φ̂,
Â′µ = −U? ? ∂µU−1

? + U? ? Âµ ? U
−1
? ,

(B.9)

with U? = eiΛ̂? = 1 + iΛ̂ + 1
2 iΛ̂ ? iΛ̂+...

Then we use the Seiberg-Witten (SW)-map [46, 47] in order to express NC fields
Φ̂, Âµ and F̂µν as functions of corresponding commutative fields and the deformation
parameter a. SW-map assumes an expansion in orders of the deformation parameter and
this expansion is known to all orders for an arbitrary Abelian twist deformation [51], of
which the twist (3.4) is only one example. For the twist operator (3.4), SW-map gives rise
to the following expansions for the fields:

Φ̂ = Φ− 1
4θ

ρσAρ(∂σΦ + (∂σ − iAσ)Φ), (B.10)

Âµ = Aµ −
1
2θ

ρσAρ(∂σAµ + Fσµ), (B.11)

F̂µν = Fµν − θρσAρ∂σFµν + θρσFρµFσν . (B.12)
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Using the SW-map solutions and expanding the ?-products in (B.5) and (B.6) we find
the action up to first order in the deformation parameter a,

S =
∫

d4x
√
−g

(
− 1

4q2 g
µρgνσFµνFρσ + gµν

[
(∂µ + iAµ)Φ+

]
(∂ν − iAν)Φ− µ2Φ+Φ

+ 1
8q2 g

µρgνσθαβ(FαβFµνFρσ − 4FµαFνβFρσ) + µ2

2 θ
αβFαβΦ+Φ (B.13)

+θαβ

2 gµν
(
− 1

2
[
(∂µ + iAµ)Φ+

]
Fαβ(∂ν − iAν)Φ +

[
(∂µ + iAµ)Φ+

]
Fαν(∂β − iAβ)Φ

+
[
(∂β + iAβ)Φ+

]
Fαµ(∂ν − iAν)Φ

))
.

From now on, we include the coupling constant q between fields Φ and Aµ, i.e. the
charge of Φ, into Aµ, so that the redefinition Aµ −→ qAµ is implicitly understood. Since
the gauge field is the electromagnetic field generated by the RN black hole charge and RN
black hole is non-rotating, only the time component At of the gauge field is nonvanishing.
The corresponding field strength will consequently have Frt = −Ftr as the only components
different from zero,

At = −qQ
r
, Frt = qQ

r2 . (B.14)

We also note that the only components of θαβ that are different from zero are θtϕ = −θϕt =
a. Using these and varying the action (B.13) with respect to the field Φ+ and using the
above, we can write the equation of motion as( 1

f
∂2
t −∆ + (1− f)∂2

r + 2MG

r2 ∂r + 2iqQ 1
rf
∂t −

q2Q2

r2f
− µ2

)
Φ

+aqQ

r3

((
MG

r
− GQ2

r2

)
∂φ + rf∂r∂φ

)
Φ = 0 (B.15)

which after the separation of variables gives the radial equation (3.5).
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