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The saddle-to-scission dynamics of the induced fission process is explored using a microscopic finite-
temperature model based on time-dependent nuclear density functional theory (TDDFT), that allows one to
follow the evolution of local temperature along fission trajectories. Starting from a temperature that corresponds
to the experimental excitation energy of the compound system, the model propagates nucleons along isentropic
paths toward scission. For the four illustrative cases of induced fission of 240Pu, 234U, 244Cm, and 250Cf,
characteristic fission trajectories are considered, and the partition of the total energy into various kinetic and
potential energy contributions at scission is analyzed, with special emphasis on the energy dissipated along the
fission path and the prescission kinetic energy. The model is also applied to the dynamics of neck formation and
rupture, characterized by the formation of few-nucleon clusters in the low-density region between the nascent
fragments.

DOI: 10.1103/PhysRevC.107.014303

I. INTRODUCTION

Theoretical studies of induced nuclear fission dynamics
have seen a strong revival in the last decade, prompted by a
wealth of new experimental results and advances in micro-
scopic methods that can be used to develop accurate models
for large-scale calculation of fission observables [1–5]. Exten-
sive studies of various aspects of the fission process have been
reported, based on two principal microscopic approaches:
the time-dependent generator coordinate method (TDGCM)
[1,6–9], and time-dependent density functional theory
(TDDFT) [4,10–18]. The former is a fully quantum me-
chanical approach, in which the nuclear wave function is
represented by a superposition of generator states that are
functions of collective coordinates. TDGCM can be applied
to an adiabatic description of the entire fission process. It is
especially suited to model the slow evolution from the quasis-
tationary initial state to the outer fission barrier (saddle point)
but, since only collective degrees of freedom are explicitly
considered, this framework generally does not provide any
dissipation mechanism. Various extension of the basic imple-
mentation of the TDGCM have been considered but, so far, no
large-scale realistic calculation of dissipative fission dynamics
has been reported [19–21]. Beyond the outer fission barrier
collective dynamics is coupled to intrinsic nucleon motion,
and the resulting dissipative dynamics is usually modeled by
TDDFT-based methods. Since TDDFT describes the classical
evolution of independent nucleons in mean-field potentials,
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it cannot be applied in the classically forbidden region of
the collective space nor does it take into account quantum
fluctuations.

Most microscopic studies have so far been focused on low-
energy induced fission dynamics. To model the dependence of
fission observables on excitation energy, one has to explicitly
take into account the temperature of the compound nuclear
system in a microscopic framework. Over the years several
models have been developed that consider fission dynamics at
finite temperature, both in the TDGCM framework [22–28] as
well as based on the TDDFT [29–31]. However, so far these
models have not explicitly considered local changes in nuclear
temperature and, therefore, cannot describe the evolution of
temperature as the fissioning nucleus evolves toward scission.

In this work we develop a TDDFT-based microscopic
finite-temperature method, that allows one to model the evo-
lution of temperature along fission trajectories. Starting from
a temperature that corresponds to the experimental excitation
energy of the compound system, the model propagates nucle-
ons toward scission and beyond. At each step during the time
evolution, the local temperature is adjusted so that the total
energy is conserved. The present implementation of the model
does not include the dynamical treatment of pairing corre-
lations at finite temperature and, thus, can only be applied
to cases in which pairing correlations essentially vanish. The
theoretical framework, both at zero and finite temperature, is
outlined in Sec. II. The dissipative saddle-to-scission dynam-
ics, for the illustrative cases of induced fission of 240Pu, 234U,
244Cm, and 250Cf, is explored in Sec. III. Section IV includes
an application to the dynamics of neck formation and rupture,
determined by the formation of few-nucleon clusters in the
low-density region between the emerging fission fragments.
Finally, the principal results are summarized in Sec. V.
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II. THEORETICAL FRAMEWORK: TDDFT WITH
EXPLICIT TEMPERATURE DEPENDENCE

The dissipative dynamics of the saddle-to-scission phase
of the fission process will be modeled with the time-
dependent covariant DFT [32,33]. At zero temperature,
pairing correlations are treated dynamically with the time-
dependent BCS approximation [34,35]. The wave function
of the system takes the general form of a quasiparticle
vacuum,

|�(t )〉 =
∏
k>0

[uk (t ) + vk (t )c+
k (t )c+

k̄
(t )]|0〉, (1)

where uk (t ) and vk (t ) are the parameters in the transformation
between the canonical and the quasiparticle states, and c+

k (t )
stands for the creation operator associated with the canonical
state ψk (r, t ). The evolution of ψk (r, t ) is determined by the
time-dependent Dirac equation

i
∂

∂t
ψk (r, t ) = [ĥ(r, t ) − εk (t )]ψk (r, t ), (2)

where the single-particle energy εk (t ) = 〈ψk|ĥ|ψk〉, and the
single-particle Hamiltonian ĥ(r, t ) reads

ĥ(r, t ) = α · ( p̂ − V ) + V 0 + β(mN + S). (3)

The scalar S(r, t ) and four-vector V μ(r, t ) potentials are
consistently determined at each step in time by the time-
dependent densities and currents in the isoscalar-scalar,
isoscalar-vector, and isovector-vector channels,

ρS (r, t ) =
∑

k

nkψ̄kψk, (4a)

jμ(r, t ) =
∑

k

nkψ̄kγ
μψk, (4b)

jμTV (r, t ) =
∑

k

nkψ̄kγ
μτ3ψk, (4c)

respectively. τ3 is the isospin Pauli matrix. The time evo-
lutions of the occupation probability nk (t ) = |vk (t )|2, and
pairing tensor κk (t ) = u∗

k (t )vk (t ), are governed by the follow-
ing equations:

i
d

dt
nk (t ) = nk (t )�∗

k (t ) − n∗
k (t )�k (t ), (5a)

i
d

dt
κk (t ) = [εk (t ) + εk̄ (t )]κk (t ) + �k (t )[2nk (t ) − 1] (5b)

(for details, see Refs. [34,35]). In time-dependent calcula-
tions, a monopole pairing interaction is employed, and the gap
parameter �k (t ) is determined by the single-particle energy
and pairing tensor,

�k (t ) =
[

G
∑
k′>0

f (εk′ )κk′

]
f (εk ), (6)

where f (εk ) is the cutoff function for the pairing window
[35].

In calculations with time-dependent covariant DFT, the
mesh spacing of the lattice is 1.0 fm for all direc-
tions, and the box size is Lx×Ly×Lz = 20×20×60 fm3.

The time-dependent Dirac equation (2) is solved with the
predictor-corrector method, and the time-dependent equa-
tions (5) using the Euler algorithm. The step for the time
evolution is 6.67×10−4 zs. For the particle-hole channel
we employ the point-coupling relativistic energy density
functional PC-PK1 [36]. The pairing strength parameters,
−0.135 MeV for neutrons, and −0.230 MeV for protons,
are determined by the empirical pairing gaps of 240Pu, us-
ing the three-point odd-even mass formula [37]. The initial
states for the time evolution are obtained by self-consistent
deformation-constrained relativistic DFT calculations in a
three-dimensional lattice space, using the inverse Hamilto-
nian and Fourier spectral methods [38–40], with the box size
Lx×Ly×Lz = 20×20×50 fm3.

If one assumes that at the initial time the compound nu-
cleus is in a state of thermal equilibrium at temperature T ,
the system can be described by the finite temperature (FT)
Hartree-Fock-Bogoliubov (HFB) theory [41]. In the grand-
canonical ensemble, the expectation value of any operator Ô
is given by an ensemble average

〈Ô〉 = Tr [D̂Ô], (7)

where D̂ is the density operator:

D̂ = 1

Z e−β(Ĥ−λN̂ ). (8)

Z is the grand partition function, β = 1/kBT with the Boltz-
mann constant kB, Ĥ is the Hamiltonian of the system, λ

denotes the chemical potential, and N̂ is the particle number
operator.

In the examples that will be considered in the next section,
the internal excitation energy E∗

FS of the fissioning system,
defined as the the difference between the total binding energy
of the equilibrium self-consistent mean-field minimum at tem-
perature T and at T = 0, corresponds to temperatures that are
above the pairing phase transition. The temperature at which
pairing correlations vanish depends on a specific nucleus but,
for induced fission of actinides considered in the present work,
the pairing energy is negligible at temperatures T � 0.6 MeV.
In that case the FT HFB theory reduces to the self-consistent
FT Hartree-Fock equations,

ĥψk (r) = εkψk (r), (9)

where the Dirac Hamiltonian ĥ, Eq. (3), is associated with a
variation of the relativistic density functional PC-PK1 [36],

Etot = Ekin + Eint + Eem

=
∫

d3r

{
A∑

k=1

ψ
†
k (α · p̂ + βmN )ψk + 1

2
αSρ

2
S + 1

3
βSρ

3
S

+ 1

4
γSρ

4
S + 1

2
δSρS�ρS + 1

2
αV jμ jμ + 1

4
γV ( jμ jμ)2

+ 1

2
δV jμ� jμ+1

2
αTV jμTV ( jTV )μ + 1

2
δTV jμTV �( jTV )μ

+ e jμc Aμ + 1

2
Aμ�Aμ

}
, (10)
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FIG. 1. Left panel: Self-consistent deformation energy surface of 240Pu in the plane of quadrupole-octupole axially symmetric deformation
parameters, calculated with the relativistic density functional PC-PK1 and a monopole pairing interaction at temperature T = 0. Contours join
points on the surface with the same energy (in MeV). The curves denote the TDDFT fission trajectories for three arbitrary initial points on the
energy surface, located ≈1 MeV below the energy of the equilibrium minimum. Middle panel: The corresponding self-consistent surface of
Helmholtz free energy F = E (T ) − T S, evaluated at the constant temperature T = 0.8 MeV. The three finite-temperature fission paths start at
the same deformations like the T = 0 paths in the left panel. Right panel: Comparison between T = 0 and finite-temperature TDDFT fission
paths.

and the scalar S(r) and vector fields V μ(r) read

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (11a)

V μ(r) = αV jμ + γV ( jμ jμ) jμ + δV � jμ

+ τ3αTV jμTV + τ3δTV � jμTV + e
1 − τ3

2
Aμ. (11b)

In the absence of pairing correlations at finite temperature T ,
the local densities and currents ρS , jμ, and jμTV can be written
in the form

ρS =
A∑

k=1

fkψ̄kψk, (12a)

jμ =
A∑

k=1

fkψ̄kγ
μψk, (12b)

jμTV =
A∑

k=1

fkψ̄kγμτ3ψk, (12c)

where fk is the thermal occupation probability, defined as a
function of single-particle energy εk in Eq. (9), the tempera-
ture T , and chemical potential λ:

fk = 1

1 + e(εk−λ)/kBT
. (13)

The chemical potential λ is determined numerically in such a
way that the particle number condition

∑
k fk = N is fulfilled.

In the dynamical case, the evolution of single-nucleon
spinors ψk is governed by the time-dependent Kohn-Sham
equation [42,43],

i
∂

∂t
ψk (r, t ) = ĥ(r, t )ψk (r, t ). (14)

The dependence on time of the Dirac Hamiltonian ĥ(r, t ) is
determined by the time-dependent densities and currents [42].
The functional dependence of local densities and currents on

temperature is the same as in the static case, with the time-
dependent thermal occupation fk ,

fk (t ) = 1

1 + e[εk (t )−λ(t )]/kBT (t )
. (15)

The single-particle energy εk (t ) is defined as εk (t ) =
〈ψk (r, t )|ĥ(r, t )|ψk (r, t )〉. Note that in this case both T (t ) and
λ(t ) are time dependent. Starting from the initial stationary
values, the Lagrange multipliers λ(t ) and T (t ), considered as
nonequilibrium generalization of the chemical potential and
temperature, are adjusted at each step in time in such a way
that the particle number and total energy, respectively, are
conserved along a TDDFT trajectory.

III. FISSION PATHS AND ENERGY DISSIPATION

The panel on the left of Fig. 1 displays the self-consistent
deformation energy surface of 240Pu, as function of two col-
lective coordinates: the axial quadrupole (β20) and octupole
(β30) deformation parameters. As explained in the previous
section, it is calculated using the relativistic energy density
functional PC-PK1 and the monopole pairing interaction. The
equilibrium minimum is located at β20 ≈ 0.3 and β30 = 0,
the isomeric minimum is at β20 ≈ 0.9 and β30 = 0, and one
notices the two fission barriers and the fission valley at large
deformations. The open dots denote three arbitrary initial
points on the energy surface for calculation of fission tra-
jectories. The TDDFT cannot be used to model the slow
evolution from the equilibrium deformation to the saddle point
[1,3,4,44] and, therefore, the starting point is usually taken
beyond the outer barrier [17,18]. The three points shown
in the left panel of Fig. 1 correspond to energies approxi-
mately 1 MeV below the equilibrium minimum. Given the
initial single-nucleon quasiparticle wave functions and occu-
pation probabilities, TDDFT models a single fission events by
propagating the nucleons independently toward scission and
beyond. At each step in time the single-nucleon potentials
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are determined from the time-dependent densities, currents,
and pairing tensor and, thus, the time-evolution includes the
one-body dissipation mechanism.

The three trajectories in the left panel are among those that
we considered in two recent studies of fission dynamics. In
Ref. [45] low-energy induced fission of 240Pu was analyzed
using a consistent microscopic framework that combines the
TDGCM and TDDFT. The former presents a fully quantum
mechanical approach that describes the entire fission process
as an adiabatic evolution of collective degrees of freedom,
while the latter models the dissipative dynamics of the fi-
nal stage of fission by the self-consistent time-evolution of
single-nucleon wave functions toward scission. The study has
shown that quantum fluctuations, included in TDGCM but not
in TDDFT, are essential for a quantitative estimate of fission
yields. Dissipative effects, taken into account in TDDFT but
not in TDGCM, are crucial for the total kinetic energy distri-
bution.

In Ref. [10] TDDFT was employed to study the dynam-
ics of neck formation and rupture in the process of induced
nuclear fission. By following mass-asymmetric fission tra-
jectories in 240Pu, it was shown that the timescale of neck
formation coincides with the assembly of two α-like clus-
ters (≈100–200 fm/c). The low-density region between the
nascent fragments provides the conditions for dynamical syn-
thesis of 4He and other light clusters. The neck ruptures at a
point exactly between the two α-like clusters, which separate
because of the Coulomb repulsion and are eventually absorbed
by the two emerging fragments.

In the present work we extend these studies to a more
realistic description of induced fission dynamics that includes
the effect of finite temperature of the compound nucleus. As
we have already shown in the TDGCM with Gaussian overlap
approximation (GOA) studies of mass-asymmetric fission of
actinides in Refs. [23,24], the extension to finite temperature
leads to a considerable improvement of the calculated charge
yields. The most serious limitation of the TDGCM + GOA
approach is, of course, the fact that it does not include dis-
sipation and the fissioning systems evolves toward scission
at a constant temperature. To describe energy dissipation and
heating of the nucleus as it evolves toward scission, in this
study we apply the finite temperature extension of the TDDFT.

The TDGCM + GOA calculation of induced fission of
240Pu in Ref. [24] was carried out at the constant temperature
T = 0.8 MeV, which corresponds to an average experimental
excitation energy of 10.7 MeV [46]. At this temperature pair-
ing correlations vanish, and the thermodynamical potential
relevant for the analysis of finite-temperature deformation
effects is the Helmholtz free energy F = E (T ) − T S. The
entropy of the compound nuclear system is computed using
the relation

S = −kB

∑
k

[ fk ln fk + (1 − fk ) ln(1 − fk )], (16)

where fk is the thermal occupation function of Eq. (15). In the
middle panel of Fig. 1 we plot the Helmholtz free energy F =
E (T ) − T S, evaluated at temperature T = 0.8 MeV. This is
the initial temperature for the TDDFT evolution, and we will
consider the three finite-temperature fission paths that start at

FIG. 2. Local temperature and entropy as functions of time, for
trajectory 2 shown in the middle panel of Fig. 1.

the same deformations like the T = 0 paths in the left panel.
The panel on the right emphasizes the differences between
the T = 0 and finite-temperature TDDFT fission paths. It is
interesting that, even though for the starting temperature T =
0.8 MeV the dynamics is no longer determined by pairing
correlations, the paths are not much different from the T = 0
fission trajectories. The general effect of increasing the inter-
nal excitation energy, that is, the initial nuclear temperature,
is to shift fission to more symmetric configurations of the
resulting fragments.

Note that the assignment of the initial temperature to an
arbitrary point on the energy surface is not entirely correct, as
this temperature strictly corresponds to the compound nucleus
at equilibrium deformation. However, it is generally accepted
that dissipation between equilibrium and the outer barrier is
weak, and only beyond the saddle point does fission dynamics
become strongly dissipative as the nucleus quickly elongates
toward scission. Since, in any case, TDDFT cannot be used
to model the equilibrium to outer barrier dynamics, it seems
reasonable to assign the temperature of the compound nucleus
to an initial point beyond the outer barrier. The actual value of
the initial temperature is not that important, as it corresponds
to an average excitation energy of the fissioning system. More
interesting is the rate of change of local temperature along a
fission path.

For the illustrative case of trajectory 2 in the middle panel
of Fig. 1, in Fig. 2 we plot the evolution in time of the local
temperature and entropy, from the initial point to scission.
TDDFT, of course, propagates the nucleon wave functions
also beyond scission; however, the resulting fission fragments
will generally have different temperatures. This particular
feature cannot be described in the present implementation of
TDDFT, and this is why we only consider fission paths up to
scission. The self-consistent time-evolution of the fissioning
system is modeled on a three-dimensional (3D) mesh in coor-
dinate space and, therefore, for any fission trajectory scission
is defined as the moment in time when the two fragments
separate. We notice that, as one would expect for dissipative
dynamics, the local temperature generally increases along the
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TABLE I. Initial temperature, total energy of the fissioning system at the initial point, various components of the total energy at scission,
and the final temperature at scission, for trajectories 2 and 3 of 240Pu, 234U, 244Cm, and 250Cf, shown in Figs. 1 and 4, respectively. All values
are given in MeV.

Nucleus 240Pu 234U 244Cm 250Cf

Trajectory 2 3 2 3 2 3 2 3

Tinit 0.80 0.80 0.80 0.80 1.10 1.10 0.60 0.60
Etot −1801.15 −1795.23 −1757.51 −1750.90 −1812.95 −1810.63 −1859.50 −1858.27
E k,pre 4.33 5.45 5.12 5.13 5.36 7.50 6.52 9.13
Ek,C 180.32 169.01 167.83 164.88 180.88 173.94 174.36 182.71
E 1

g.s. −1126.58 −1101.47 −1129.67 −1073.62 −1132.98 −1134.96 −1159.60 −1143.63

E∗,def
1 3.40 11.08 3.34 10.10 6.78 6.77 3.39 3.34

E 2
g.s. −889.51 −913.27 −840.78 −890.46 −914.23 −911.12 −922.92 −941.14

E∗,def
2 7.96 6.70 9.85 1.89 8.03 9.47 8.15 6.51

E∗,int 18.93 27.27 26.80 31.18 33.21 37.77 30.60 24.81
E∗

FS 11.40 11.40 11.23 11.23 22.63 22.63 7.24 7.24
Fh 5.11 5.11 5.46 5.46 3.02 3.02 4.06 4.06
E∗,B f 6.29 6.29 5.77 5.77 19.61 19.61 3.18 3.18
E∗,dis 12.64 20.98 21.03 25.41 13.60 18.16 27.42 21.63
Tsci 0.89 1.00 0.85 0.97 1.20 1.27 0.72 0.73

fission path. In this particular case, the temperature at scission
is T = 0.89 MeV, that is, the increase from the initial point, is
approximately ten percent. Other examples will be discussed
further below. The local entropy calculated with Eq. (16), on
the other hand, remains constant along the fission path. This
means that, even without any constraint on the entropy, our
temperature-dependent TDDFT model describes an isentropic
process of self-consistent evolution of the fissioning system.

To discuss energy dissipation and heating along a typical
fission path (cf. Table I), in Fig. 3, which is adapted from
Fig. 1 of Ref. [47], we summarize the various components of
the total energy as functions of the nuclear elongation. MFS is
the mass of the fissioning system, E∗

FS is the average excitation
energy, and the masses of the two fragments are M1 and
M2. Then, assuming that there is no evaporation from saddle
to scission (i.e. the fissioning nucleus remains a closed sys-
tem), the energy balance can be expressed with the following

FIG. 3. Definition of the various components of the total energy
of a nucleus along a typical fission path. See text for explanation.
Adapted from Fig. 1 of Ref. [47].

relation [47]:

E∗
FS + MFS = M1 + M2 + TKE + TXE. (17)

The total kinetic energy TKE consists of the Coulomb energy
Ek,C between the fragments at scission, and the prescission
kinetic energy Ek,pre which results from a partial conversion
of the saddle-to-scission collective potential energy difference
(the other part is converted into the deformation energy of
the fragments and dissipation energy). Ek,pre is defined as the
collective flow energy at scission [18],

Ek,pre = m

2

∫
ρ(�r, tsci )�v 2(�r, tsci )d�r, (18)

where the density and velocity field are evaluated at the time
of scission. The total excitation energy TXE is divided into the
deformation energy of the fragments at scission and the total
intrinsic excitation energy:

TXE =
2∑

i=1

E∗,def
i + E∗,int . (19)

The former can be easily computed by taking, for each
fragment, the difference between the T = 0 deformation-
constrained energy of the fragment at scission and its mass
(energy at equilibrium deformation). The expression for the
total intrinsic excitation energy E∗,int reads

E∗,int = E∗,B f + E∗,dis , (20)

where E∗,B f is the difference between the total energy of
the nucleus and the energy at the saddle point (see Fig. 3),
and E∗,dis is the energy dissipated along the fission path. The
partition of the total intrinsic excitation energy between the
fragments can be calculated under additional model assump-
tions [47], but here this is not crucial as we only follow the
dynamics up to scission.
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FIG. 4. Same as in the caption to Fig. 1 but for the process of induced fission of 234U (top), 244Cm (middle), and 250Cf (bottom).

The results for fission trajectories 2 and 3 of 240Pu, shown
in the middle panel of Fig. 1, are listed in the first two columns
of Table I, respectively. The first two lines include the temper-
ature (T = 0.8 MeV) and total energies at the initial point.
This energy is, as explained in the previous section, fully
conserved along the fission path. In the next two lines we list
the prescission kinetic energies Ek,pre (4.33 and 5.45 MeV for
paths 2 and 3, respectively) and Coulomb energies between
the fragments at scission Ek,C (180.32 and 169.01 MeV for
paths 2 and 3, respectively). The sum Ek,pre + Ek,C is the total
kinetic energy. The next four lines contain, for each fission
fragment, the ground state energy and deformation energy
at scission. E∗,int is the total intrinsic excitation energy at
scission (18.93 and 27.27 MeV for trajectories 2 and 3, respec-
tively), E∗

FS is the excitation energy that corresponds to the
initial temperature, and Fh is the height of the fission barrier at
the initial temperature. E∗,B f is the available energy above the
saddle point, E∗,dis is the dissipation energy and, finally, Tsci is
the temperature at the scission point. For trajectory 2 the dissi-
pated energy at scission is 12.64 MeV, and the corresponding
increase in temperature is 0.09 MeV. For trajectory 3 these
values are: E∗,dis = 20.98 MeV and �T = 0.2 MeV. The
results for the very asymmetric trajectory 1 are not included
because of numerical problems in obtaining convergence in
the constrained calculation of the deformation energy of the
lighter fragment.

In addition to 240Pu, we have computed similar fission
paths for three more actinides that were also included in

the finite-temperature TDGCM + GOA study of Ref. [24].
For 234U the initial temperature T = 0.8 MeV corresponds
to the experimental peak photon energy Eγ = 11 Mev in
photoinduced fission [48]. The temperature T = 1.1 MeV,
that we choose in the case of 244Cm, equates to an average
experimental excitation energy of 23 MeV for multinucleon
transfer-induced fission [46]. Finally, the initial temperature
T = 0.6 MeV of 250Cf corresponds to thermal neutron-
induced fission [49]. Just like in the case of 240Pu, in Fig. 4
for 234U, 244Cm, and 250Cf, we display the deformation energy
surface at zero temperature, the Helmholtz free energy at finite
initial temperature, and three characteristic fission paths that
start from the same deformations at zero and finite initial T .
In all four cases, the initial temperatures for the compound
nuclei are above the pairing phase transition and, therefore,
pairing correlations are not taken into account during the time
evolution toward scission.

Considering the deformation energy surfaces, one notices
that the fission barriers are significantly reduced at finite tem-
peratures but, of course, for initial points beyond the saddle,
the fission trajectories at T = 0 and finite temperature are not
very different. In general, the trajectories follow the path of
steepest descent. An exception is the trajectory 2 for 234U
which, in the case of zero temperature, remains confined in
a region of a local minimum or saddle, and does not proceed
to scission. This is a well known effect in TDDFT modeling of
fission. As we have shown in the recent microscopic analysis
of fission dynamics of 240Pu [45], at zero temperature not all
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TABLE II. Time interval, in units of fm/c, from the initial point of a trajectory to the scission point.

Nucleus 234U 240Pu 244Cm 250Cf

Trajectory 1 2 3 1 2 3 1 2 3 1 2 3

T = 0w/pairing 960 940 1600 1150 700 900 1080 820 1040 900 600
T �= 0 w/o pairing 840 1100 1000 1160 860 820 880 1140 720 1020 800 520

TDDFT trajectories that start below the outer barrier lead to
scission and formation of fission fragments. The results for the
final temperature, prescission kinetic energy, intrinsic excita-
tion energy, and dissipated energy at scission, are consistent
with those obtained for 240Pu (cf. Table I). The increase in
temperature from the initial points to scission is generally
in the interval 10%–20%. The prescission kinetic energy is
of the order of 4–9 MeV, and this means that a relatively
small portion of the potential energy difference at scission is
converted into collective flow energy. In fact, as shown in the
table, the dissipated energy E∗,dis is at least a factor 2–4 larger
than Ek,pre, and so is the corresponding intrinsic excitation
energy E∗,int . This result illustrates the importance of the
one-body dissipation mechanism included in time-dependent
nuclear density functional theory, in contrast to approaches
that consider only collective degrees of freedom, such as the
TDGCM + GOA. Finally, we note that, just as in the case
of 240Pu, the most asymmetric fission paths (trajectory 1) in
Fig. 4, lead to scission configurations for which it has not been
possible to obtain fully converged solutions in the constrained
calculation of deformation energy of the fragments, and this
is why the corresponding results are not included in the
table.

IV. CLUSTERS IN THE NECK AT SCISSION

A number of theoretical studies, starting with the pio-
neering work of Ref. [50], have established the importance
of including pairing correlations for computing spontaneous
fission lifetimes and modeling induced fission observables. In
particular, by employing various time-dependent approaches,
it has been shown that the fission process can be retarded or
even completely impeded by the exclusion of pairing, while
an increase in strength of a pairing interaction leads to a sig-
nificant acceleration of fission dynamics (cf. Refs. [4,18] and
references therein). In a recent study based on the TDGCM +
GOA [51], we have analyzed the role of dynamical pairing in
induced fission dynamics. A calculation of fragment charge
yields—performed in a 3D space of collective coordinates
that, in addition to the axial quadrupole and octupole intrinsic
deformations, also includes an isoscalar pairing degree of
freedom—has shown that the inclusion of dynamical pairing
has a pronounced effect on the collective inertia, the collec-
tive flux through the scission hypersurface, and the resulting
fission yields.

In many experimental situations, however, as also shown
by the examples considered in the present study, the excitation
energy of the compound system corresponds to a temperature
well above the pairing phase transition. For the fission paths
shown in Figs. 1 and 4, in Table II we compare the time

intervals from the initial point of a trajectory to the scission
point. Except for trajectory number 2 of 234U which does
not end up in scission at T = 0, we do not find a significant
difference in the time it takes to reach the scission point
starting at zero temperature with pairing correlations included,
or at finite temperatures at which pairing does not contribute
to fission dynamics.

Below saturation density, nuclear matter becomes inho-
mogeneous and, at low densities, the nucleus can locally
minimize its energy by forming light clusters, in particular
strongly bound α particles [52–55]. Extensive experimental
and theoretical studies of the formation of light clusters of
nucleons have been performed in a variety of environments,
such as light and medium-heavy N = Z and neutron-rich nu-
clei [56–59], the surface (skin) region of heavy nuclei [60,61],
expanding hot matter in heavy-ion reactions [62], and core-
collapse supernovae [63]. In the context of the present anal-
ysis, of particular interest is the formation of clusters in the
low-density neck region of a fissioning nucleus [10,64–66],
as manifested by the kinematics of ternary fission events in
which not only 4He but also 3H and 6He cluster emission is
observed. In the recent TDDFT study of the final phase of the
fission process that precedes scission [10], we showed that the
mechanism of neck formation and its rupture are characterized
by the dynamics of light clusters. In a mean-field analysis,
however, one cannot directly identify few-nucleon clusters
and, as shown in Ref. [10], the one-body density at the time
of scission does not exhibit signatures of cluster formation.
One must rather consider the corresponding time-dependent
nucleon localization functions [67,68],

Cqσ (�r) =
⎡
⎣1 +

(
τqσ ρqσ − 1

4 | �∇ρqσ |2 − �j2
qσ

ρqσ τTF
qσ

)2
⎤
⎦

−1

, (21)

for the spin σ (↑ or ↓) and isospin q (n or p) quantum
numbers. ρqσ , τqσ , �jqσ , and �∇ρqσ denote the nucleon density,
kinetic energy density, current density, and density gradient,
respectively. τTF

qσ = 3
5 (6π2)2/3ρ5/3

qσ is the Thomas-Fermi ki-
netic energy density.

For homogeneous nuclear matter τ = τTF
qσ , the second and

third terms in the numerator vanish, and Cqσ = 1/2. In the
other limit Cqσ (�r) ≈ 1 indicates that the probability of finding
two nucleons with the same spin and isospin at the same point
�r is very small. This is the case for the α cluster of four
particles: p ↑, p ↓, n ↑, and n ↓, for which all four nucleon
localization functions Cqσ ≈ 1.

For the illustrative case of induced fission of 240Pu [10],
a detailed analysis of several characteristic trajectories has
shown that, while the localization functions generally exhibit
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shell structures in the fissioning system and the fragments,
their values 0.4–0.6 are consistent with homogeneous nuclear
matter. At times immediately preceding scission, however,
values close to 1 are obtained in the neck region, characteristic
for α clusters. The emergence of pronounced localization
coincides with the formation of the neck between the two
large fragments in a short time interval ≈100–200 fm/c. The
scission event then occurs between two α-like clusters, which
repel because of Coulomb interaction and are absorbed by
the fragments, where they induce strongly damped dipole
oscillations along the fission axis. Even though, by using the
TDDFT mean-field method, one cannot uniquely identify the
content of each cluster in the neck region, an integration of
the one-body density showed that the elongation of the neck
at scission corresponds to the region that contains, in total,
four protons and approximately eight neutrons. The principal
result is a new mechanism of neck rupture, determined by the
formation of α-like clusters. If, at the moment of scission,
one of the clusters is not absorbed by the corresponding large
fragment, it will be emitted perpendicular to the fission axis
by the Coulomb repulsion with the fragments, resulting in a
ternary fission event.

Only 240Pu was considered in the induced fission analysis
of Ref. [10] and, thus, to verify the validity of the proposed
mechanism of cluster formation in the low-density neck re-
gion and the subsequent scission event, here we examine two
more cases: 250Cf and 244Cm. The reason for this specific
choice is that we also want to analyze the effect of increasing
temperature along a fission trajectory on the formation of
clusters in the neck region. Temperature increase was not
considered in our previous study, and this has been one of
the reasons for developing a finite-temperature TDDFT for-
malism that can be used to describe the effect of heating
dilute nuclear matter in the region where scission occurs. In
general, one expects that localization and cluster formation
are suppressed when the temperature of nuclear matter in-
creases. In a very recent relativistic Hartree-Bogoliubov study
of clustering effects in 20Ne and 32Ne at finite temperature
[69], it was shown that clustering features gradually weaken
with increasing temperature, and disappear as the shape of the
nucleus changes from prolate to spherical. The pronounced
equilibrium prolate deformation in these nuclei is strongly
reduced with increasing temperature and, in fact, a shape
phase transition is observed at the mean-field level, leading to
a complete dissolution of α-like clusters. In the present case
the situation is somewhat different because, as the temperature
increases, the elongation of the fissioning system increases
and a low-density neck region between the fragments appears.

In the left top panel of Fig. 5, we plot the density profile
of 250Cf (in units of fm−3) in the x-z coordinate plane, at
time t = 600 fm/c, immediately prior to the scission event
for fission trajectory number 3, for the case in which the
initial point is at T = 0, and the time evolution includes dy-
namical pairing correlations. The density profile at scission
(β20 = 4.8) is characterized by the pronounced quadrupole
and octupole deformation of the two large fragments, and an
extended, low-density neck region. While the density does not
exhibit any particular feature in the neck, the proton Cp and
total

√
CpCn localization functions, shown in the left middle

FIG. 5. Left top: density profile of 250Cf (color code in fm−3) in
the x − z coordinate plane, at time t = 600 fm/c, immediately prior
to the scission event for fission trajectory number 3. The quadrupole
deformation parameter is β20 = 4.80. Left middle and bottom panels:
the corresponding proton Cp, and total

√
CpCn localization functions,

respectively. In the panels on the right the same plots are displayed,
but the initial temperature is Tinit = 0.6 MeV, and the temperature
at scission Tsci = 0.73 MeV. The scission event occurs at time
t = 520 fm/c, and the quadrupole deformation parameter
is β20 = 4.50.

and bottom panels, respectively, reach peak values in the neck
region that are much higher than typical nuclear matter values
≈0.5 found in the bulk of the fragments. Here, the proton
and neutron total localization functions are averaged over the
spin: Cq = (Cq↑ + Cq↓)/2. Proton localization, in particular,
reaches values close to 1, characteristic for α clusters.

The scission event for trajectory number 3 is illustrated in
Fig. 6, where we display the proton localization function Cp

(left) and total density (right), at times immediately preced-
ing scission (600 fm/c), at the moment when the fragments
separate (640 fm/c), and immediately after (680 fm/c), when
the separated fragments accelerate because of Coulomb repul-
sion. Starting from the point of lowest density along the z axis,
the shaded areas on the left and on the right denote regions that
contains exactly two protons each. The localization function
clearly shows that the elongation of the neck region along the
fission axis corresponds to two cluster containing two protons
each. The number of neutrons in this region is almost double
and the values of the corresponding localization function are
somewhat lower, and therefore we cannot uniquely identify α

clusters. However, based on the argument of the much larger
binding energy of 4He, the formation of α particles should be
favored with respect to other light clusters, such as 3H and
6He.

The results shown in the left panel of Fig. 5 and in Fig. 6
are very similar to those obtained for 240Pu in Ref. [10],
and confirm that the timescale of the formation of the neck
and the scission mechanism are governed by the dynamics of
light clusters. In the right panel of Fig. 5 and in Fig. 7, we
again display the density profiles and localization functions
for trajectory number 3, but now for the case in which the
initial state of the compound nucleus is at the temperature
T = 0.6 MeV, which corresponds to thermal neutron-induced
fission of 250Cf [49]. Except for a small difference in the
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FIG. 6. The proton localization function Cp (left) and total den-
sity (right), at times 600, 640, and 680 fm/c, for the fission trajectory
number 3 of 250Cf. Starting from the point of lowest density along the
z axis, the shaded areas on the left and on the right denote regions that
contains exactly two protons each.

elongation of the nucleus at scission, and a slightly shorter
time it takes for the nucleus to reach scission, the increase
in temperature (T = 0.73 MeV just before scission) seems to

FIG. 7. The proton localization function Cp (left) and total den-
sity (right), at times 520, 560, and 600 fm/c, for the fission trajectory
number 3 of 250Cf. The initial temperature is Tinit = 0.6 MeV, and the
temperature at scission Tsci = 0.73 MeV. Starting from the point of
lowest density along the z axis, the shaded areas on the left and on
the right denote regions that contains exactly two protons each.

FIG. 8. Left top: density profile of 244Cm (color code in fm−3) in
the x-z coordinate plane, at time t = 1080 fm/c, immediately prior
to the scission event for fission trajectory number 2. The quadrupole
deformation parameter is β20 = 4.23. Left middle and bottom panels:
the corresponding proton Cp and total

√
CpCn localization functions,

respectively. In the panels on the right the same plots are displayed,
but the initial temperature is Tinit = 1.1 MeV, and the temperature at
scission Tsci = 1.2 MeV. The scission event occurs at time t = 1140
fm/c, and the quadrupole deformation parameter is β20 = 4.60.

have no significant effect on the formation of the clusters in
the neck region.

In the second representative example, we have analyzed
fission trajectory number 2 in 244Cm. In addition to the case
with T = 0 at the initial point (left panel of Figs. 8 and 9),
the results obtained for Tinit = 1.1 MeV are shown in the
right panel of Fig. 8 and in Fig. 10. In the latter case the

FIG. 9. The proton localization function Cp (left) and total den-
sity (right), at times 1080, 1120, and 1160 fm/c, for the fission
trajectory number 2 of 244Cm. Starting from the point of lowest
density along the z axis, the shaded areas on the left and on the right
denote regions that contains exactly two protons each.
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FIG. 10. The proton localization function Cp (left) and total den-
sity (right), at times 1140, 1180, and 1220 fm/c, for the fission
trajectory number 2 of 244Cm. The initial temperature is Tinit =
1.1 MeV, and the temperature at scission Tsci = 1.2 MeV. Starting
from the point of lowest density along the z axis, the shaded areas
on the left and on the right denote regions that contains exactly two
protons each.

initial temperature corresponds to an average experimental
excitation energy of the compound nucleus of 23 MeV for
multinucleon transfer-induced fission [46]. Even though this is
the highest excitation energy among the examples considered
in the present study, and the temperature at scission reaches
Tsci = 1.2 MeV, it appears that this temperature is not high
enough to prevent the formation of light clusters in the low-
density neck region. Also in this case, the difference between
the results for the density profiles and localization functions
at scission, obtained with Tinit = 0 and Tinit = 1.1 MeV, is
not significant. In fact, we have verified that the pronounced
nucleon localization, and consequently the formation of light
clusters in the low-density neck region at times immediately
preceding scission, is a robust result for all fission trajectories
considered in the four nuclei 240Pu, 234U, 244Cm, and 250Cf.

V. SUMMARY

A microscopic finite-temperature model based on time-
dependent nuclear density functional theory (TDDFT) has
been applied to analyze the saddle-to-scission dynamics of
induced fission of 240Pu, 234U, 244Cm, and 250Cf. In a recent
study [24], we investigated the induced fission dynamics of
these nuclei in the finite temperature TDGCM+GOA frame-
work. Here, in addition to the standard zero-temperature
TDDFT approach in which pairing correlations are treated
dynamically with the time-dependent BCS approximation
[32,33,45], we have developed a finite-temperature TDDFT
formalism that allows one to follow the changes in tem-
perature along fission trajectories. Even though the present

implementation of the self-consistent method does not in-
clude the dynamical treatment of pairing correlations at finite
temperature, it is nevertheless very useful for a realistic de-
scription of fission dynamics in cases in which the excitation
energy of the compound system corresponds to temperatures
that are well above the pairing phase transition, that is, for
which pairing correlations vanish.

For each of the four illustrative nuclei, we have con-
sidered three characteristic initial points beyond the outer
barrier, at energies approximately 1 MeV below the equi-
librium minimum. Given the initial single-nucleon wave
functions and occupation probabilities, the zero-temperature
and finite-temperature TDDFT models propagate the nucle-
ons independently toward scission and beyond. We have
compared self-consistent fission trajectories that are obtained
starting the time evolution at zero temperature and treating
pairing correlations dynamically, with those that are computed
when the initial temperature corresponds to the experimental
excitation energy of the fissioning system. Since the trajec-
tories represent the final phase of the fission process, very
similar results are obtained at T = 0 and finite temperature,
both for the paths that basically follow the route of steepest
descent in the collective space of quadrupole and octupole
deformations, and for the lengths of the time interval from
the initial point of a trajectory to the corresponding scission
point.

Very interesting results have been obtained with the finite-
temperature TDDFT analysis of saddle-to-scission dissipative
dynamics. Starting from the initial values, the nonequilibrium
generalizations of the chemical potential and temperature are
adjusted at each step so that the particle number and total
energy, respectively, are conserved along a TDDFT trajec-
tory. This results in an isentropic fission path, that is, the
local entropy remains constant along the TDDFT trajectory.
The corresponding increase in temperature between the initial
point and scission is of the order of 10% to 20%. By par-
titioning the total energy into various kinetic and excitation
energy contributions, it has been shown that (i) only a smaller
part of the potential energy difference between the initial and
scission points is converted into collective flow energy, and
(ii) the dissipated energy is at least a factor 2–4 larger than
the prescission kinetic energy. Quantitative results have been
obtained for the deformation energies of the fragments at
scission and, therefore, for the total intrinsic excitation energy
at scission. For the examples that have been considered in the
present study, the initial temperatures range from 0.6 Mev for
thermal neutron-induced fission of 250Cf to 1.1 MeV for mult-
inucleon transfer-induced fission of 244Cm, with an average
experimental excitation energy of 23 MeV. The prescission
kinetic energies are calculated in the interval between 4 and 9
MeV, depending on the specific nucleus and fission trajectory,
while the dissipated energy ranges between 12 and 27 MeV.

In the second part of this work, the finite-temperature
TDDFT has been applied to the dynamics of neck formation
and rupture. In a recent study of fission dynamics of 240Pu
[10], we have shown that the timescale of formation of a
low-density neck between the nascent fragments coincides
with the assembly of two α-like clusters. The length of the
neck corresponds to the spatial extension of the two clusters,
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and at scission the neck ruptures between the clusters, which
separate because of Coulomb repulsion and are absorbed by
the two heavy fragments. Since these results were obtained
for a single illustrative case of 240Pu, to verify the universality
of the proposed scission mechanism, here we have performed
additional calculation of fission trajectories in the four ac-
tinide nuclei, both at zero and finite temperatures, as described
above. The new results have confirmed those obtained in
Ref. [10], that is, in all cases at times immediately preced-
ing scission a region of high nucleon localization is formed
between the emerging fragments. The localization function
for protons reaches values close to 1, characteristic for α

particles and, by integrating over the one-body density, we
have shown that the neck region contains four protons, while
the number of neutrons is almost twice as large. Although at
the mean-field level one cannot distinguish between different
clusters, because of the much larger binding energy of 4He, α

clusters should dominate over 3H and 6He.
Another reason for applying the self-consistent finite-

temperature TDDFT formalism to neck dynamics is the
possibility to follow the increase in temperature along fission
trajectories, especially in the neck region at times preced-
ing scission. This is important because, in general, cluster
formation will be suppressed by the heating of low-density
matter between fragments. However, for realistic initial tem-
peratures that correspond to experimental excitation energies,
and an increase of 10% to 20% between the initial and
scission points, no significant difference in the localization
functions at scission has been observed with respect to paths
that started at zero temperature. For final temperatures be-
tween 0.7 MeV (250Cf) and 1.3 MeV (244Cm), the energy
dissipated along the fission paths is simply not large enough
to prevent the formation of clusters, favored by the ap-
pearance of a low-density region between the two heavy
fragments.

Finally, in the present analysis axial symmetry has been
assumed, that is, the starting points of TDDFT trajectories
have been determined in the space of quadrupole and octupole
collective parameters β20 and β30, that characterize axially
symmetric deformation energy surfaces. Consequently, the
light clusters appearing in the neck region are always absorbed
by the heavy fragments at the moment of scission, inducing
strongly damped dipole oscillations along the fission axis. To
observe ternary fission events in which one of the clusters
is not absorbed by the corresponding heavy fragment, axial
symmetry needs to be broken. We started considering such
initial points already in our previous study [10], but so far have
not been able to induce a fission process in which more than
two fragments are produced. Ternary fission thus remains an
intriguing topic for future theoretical studies in the TDDFT
framework.
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