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The production of prompt �+
c baryons at midrapidity (|y| < 0.5) was measured in central (0–10%) and 

mid-central (30–50%) Pb–Pb collisions at the center-of-mass energy per nucleon–nucleon pair √sNN =
5.02 TeV with the ALICE detector. The results are more precise, more differential in centrality, and reach 
much lower transverse momentum (pT = 1 GeV/c) with respect to previous measurements performed 
by the ALICE, STAR, and CMS Collaborations in nucleus–nucleus collisions, allowing for an extrapolation 
down to pT = 0. The pT-differential �+

c /D0 ratio is enhanced with respect to the pp measurement for 
4 < pT < 8 GeV/c by 3.7 standard deviations (σ ), while the pT-integrated ratios are compatible within 1σ . 
The observed trend is similar to that observed in the strange sector for the �/K0

S ratio. Model calculations 
including coalescence or statistical hadronization for charm-hadron formation are compared with the 
data.

© 2023 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Heavy-ion collisions at LHC energies produce a phase of 
strongly-interacting matter, known as the quark–gluon plasma 
(QGP), in which quarks and gluons are deconfined [1]. The existing 
measurements indicate that the QGP behaves as a strongly-coupled 
low-viscosity liquid-like system [2]. Heavy quarks, produced at the 
start of the collision, experience the full evolution of the sys-
tem and constitute a unique probe of the QGP properties [3]. 
The hadronization of heavy quarks into open heavy-flavor hadrons 
is expected to be influenced by the presence of a deconfined 
medium. Theoretical calculations that include modified hadroniza-
tion via quark coalescence or via a resonance recombination ap-
proach [4–9] predict a significant enhancement of the �+

c /D0 yield 
ratio in heavy-ion collisions compared to the expected ratio in 
pp collisions. In addition, the collective radial expansion of the 
system determines a flow-velocity profile common to all thermal-
ized particles, that could increase the �+

c /D0 ratio at intermediate 
transverse momentum, i.e. 2 � pT � 8 GeV/c [7,8,10]. The study 
of such a potential enhancement requires a good understanding of 
�+

c production in smaller collision systems, which showed surpris-
ing features at LHC energies. The production of �+

c baryons was 
measured at the LHC in pp collisions by the ALICE Collaboration 
at 

√
s = 5.02, 7, and 13 TeV [11–14], by the CMS Collaboration 

at 5.02 TeV [15], and by the LHCb Collaboration at 7 TeV [16]. 

� E-mail address: alice -publications @cern .ch.

At midrapidity, the ALICE and CMS results show a significant 
enhancement in the �+

c /D0 yield ratio (up to a factor 2–5 for 
pT < 8 GeV/c) compared to e+e− and e−p measurements [17–22]
and QCD-inspired theoretical predictions [23–26] where charm 
fragmentation is tuned on e+e− and e−p measurements [27,28]. 
Models that introduce new color-reconnection topologies in string 
fragmentation [29] or hadron production via coalescence [30] as 
well as models that are based on statistical hadronization including 
feed-down from unobserved charm-baryon states [31] are able to 
describe the �+

c /D0 ratio at midrapidity. The values of the �+
c /D0

ratio measured at forward rapidity by the LHCb Collaboration are 
smaller than those at midrapidity, indicating a non-negligible ra-
pidity dependence.

A recent measurement performed by ALICE in intervals of 
charged-particle multiplicity dNch/dη in pp collisions at 

√
s =

13 TeV [32] showed that in a hadronic collision, even at rel-
atively small multiplicities, charm-quark hadronization proceeds 
differently than in e+e− collisions. The pT-dependence of the 
�+

c /D0 ratio evolves with multiplicity and the maximum of the 
ratio increases for the higher multiplicity intervals, while the pT-
integrated �+

c /D0 ratios do not show a significant dependence 
on multiplicity up to 〈dNch/dη〉 ≈ 40. Whether the pT-differential 
�+

c /D0 ratio keeps evolving with multiplicity up to the typi-
cal multiplicities of Pb–Pb collisions, and whether an overall pT-
integrated enhancement of �+

c production relative to the D0 one is 
present at higher multiplicities, as proposed by coalescence mod-
els including light diquark states [4,5,9], are open questions and 
fundamental to the understanding of charm-quark hadronization.

https://doi.org/10.1016/j.physletb.2023.137796
0370-2693/© 2023 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
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The �+
c production in nucleus–nucleus collisions was mea-

sured for the first time at the LHC by ALICE in Pb–Pb collisions 
at 

√
sNN = 5.02 TeV in the 0–80% centrality interval for 6 < pT <

12 GeV/c [33]. The �+
c /D0 ratio was found to be close to unity, 

larger than the corresponding ratio measured in pp collisions, and 
well described by calculations including hadronization via coales-
cence mechanisms [7,8]. The �+

c /D0 ratio measured in the interval 
3 < pT < 6 GeV/c by the STAR Collaboration in Au–Au collisions 
at 

√
sNN = 200 GeV [34] shows an increasing trend towards more 

central collisions and is also described by model calculations in-
cluding hadronization via coalescence [5,7,8,35–37]. Considering 
together the values calculated by STAR in 10–80% Au–Au colli-
sions and by ALICE in pp and p–Pb collisions [11,32] a possi-
ble increase of the pT-integrated �+

c /D0 ratio at high multiplic-
ity is neither excluded nor confirmed. The CMS measurement in 
Pb–Pb collisions at 

√
sNN = 5.02 TeV [15], performed in the inter-

val 10 < pT < 20 GeV/c, is consistent with the pp result within 
uncertainties as well as with predictions considering only string 
fragmentation [29], suggesting that coalescence has no signifi-
cant effect in this pT range. The production of �+

c baryons was 
also measured in p–Pb collisions at 

√
sNN = 5.02 TeV by the AL-

ICE and LHCb Collaborations [11,12,38]. The current measurements 
do, however, not allow to draw conclusions on the role of differ-
ent cold-nuclear matter effects and the possible presence of hot-
medium effects. Recently, LHCb also measured the �+

c /D0 ratio in 
peripheral (65–90%) Pb–Pb collisions at 

√
sNN = 5.02 TeV, which 

was observed to be consistent with the LHCb ratio in p–Pb colli-
sions [39].

In this letter, the measurement of the pT-differential production 
yields of prompt �+

c baryons in central (0–10%) and mid-central 
(30–50%) collisions using the 2018 Pb–Pb at 

√
sNN = 5.02 TeV are 

reported down to pT = 1 GeV/c. The results are more precise 
and more differential in pT and centrality with respect to pre-
vious measurements [15,33,34]. The �+

c /D0 yield ratios and the 
nuclear modification factor RAA, which is defined as the ratio of 
the production yield in Pb–Pb collisions and the cross section in 
pp collisions scaled by the average nuclear overlap function 〈TAA〉
(proportional to the number of nucleon–nucleon collisions), are 
reported as function of pT and compared with theoretical predic-
tions. The pT-integrated �+

c production yield and �+
c /D0 ratio, 

extrapolated to pT = 0, are also presented for the first time in 
Pb–Pb collisions.

2. Experimental apparatus and data sample

The ALICE apparatus is described in detail in [40,41]. The data 
were collected using triggers based on the signal in the V0 de-
tectors [42]. A minimum bias trigger, which required coincident 
signals in both detecting components of the V0 detector along the 
beam axis on opposite sides of the interaction point, was exploited. 
In addition, and differently with respect to the previous Pb–Pb
data taking period at the same 

√
sNN, two new trigger selections 

were introduced to enrich the sample of central and mid-central 
collisions via an online event selection based on the V0-signal 
amplitude. Events were further selected offline using timing in-
formation from the V0 detectors and the neutron Zero Degree 
Calorimeters [43] to reject events due to the interaction of one of 
the beams with residual gas in the vacuum tube. Furthermore, only 
events with a primary vertex reconstructed within ±10 cm from 
the center of the detector along the beam axis were considered in 
the analysis. Collisions were classified into centrality intervals, de-
fined in terms of percentiles of the hadronic Pb–Pb cross section, 
using the V0-signal amplitudes [44]. The number of events in the 
centrality classes 0–10% and 30–50% considered for this analysis 
is about 100 × 106 and 85 × 106, respectively, corresponding to a 
luminosity of (130.5 ± 0.5) μb−1 and (55.5 ± 0.2) μb−1 [45].

The Monte Carlo (MC) simulations utilized in this analysis were 
obtained using the HIJING 1.36 event generator [46] to simulate 
Pb–Pb collisions at 

√
sNN = 5.02 TeV. In each simulated event, �+

c

signals were added by injecting cc or bb pairs generated with the 
PYTHIA 8.243 event generator [23] with the Monash tune [47]. The 
�+

c baryons were forced to decay into the hadronic decay channel 
of interest, �+

c → pK0
S followed by K0

S → π+π− , using PYTHIA. All 
generated particles were transported through the ALICE detector 
using the GEANT3 package [48]. The conditions of all the ALICE 
detectors in terms of active channels, gain, noise level, and align-
ment, and their evolution with time during the data taking, were 
taken into account in the simulations.

3. Data analysis

The �+
c baryon and its charge conjugate were reconstructed by 

exploiting the topology of the hadronic decay channel �+
c → pK0

S
(branching ratio BR = 1.59 ± 0.08%), followed by the subsequent 
decay K0

S → π+π− (BR = 69.20 ± 0.05%) [28]. Charged-particle 
tracks used to define the �+

c candidates are reconstructed us-
ing the Inner Tracking System (ITS) [49] and the Time Projection 
Chamber (TPC) [50], located in a solenoid magnet that provides 
a 0.5 T field parallel to the beam direction. The �+

c → pK0
S can-

didates combine a proton-candidate track with a K0
S -meson candi-

date, reconstructed in the K0
S → π+π− decay channel. Only proton 

(pion) tracks with |η| < 0.8, pT > 0.4 (0.1) GeV/c, at least 70 out 
of 159 associated crossed TPC pad rows, a ratio of crossed rows 
to findable clusters in the TPC larger than 0.8, at least 50 clus-
ters in the TPC available for particle identification (PID), and a 
χ2/ndf < 1.25 in the TPC (where ndf is the number of degrees 
of freedom involved in the track fit procedure) were considered 
for the analysis. Moreover, a minimum number of two hits (out of 
six) in the ITS, with at least one in the inner two layers, were re-
quired for the proton track. The selection of tracks with |η| < 0.8
limits the �+

c acceptance in rapidity. For this reason a fiducial 
acceptance selection was applied on the rapidity of the �+

c can-
didates, |ylab| < yfid(pT), where yfid increases from 0.6 to 0.8 in 
1 < pT < 5 GeV/c, and yfid = 0.8 for pT > 5 GeV/c.

Unlike the previous analysis based on linear selections [33], the 
�+

c -candidate selection was performed using multivariate tech-
niques based on the Boosted Decision Tree (BDT) algorithm pro-
vided by the XGBoost package [51]. Before the training, loose kine-
matic and topological selections were applied to the K0

S -meson 
candidate together with the particle identification of the proton-
candidate track. The PID was performed using the specific ioniza-
tion energy loss dE/dx in the TPC gas and the time of flight from 
the interaction point to the Time-Of-Flight (TOF) detector [52,53]. 
The BDT training was performed considering as signal candidates 
prompt (not coming from beauty-hadron decays) �+

c decays from 
MC simulations. Background candidates were taken from the side-
bands of the invariant mass distribution in data (defined to be 
outside a 80 MeV/c2 window around the �+

c mass value reported 
by the PDG [28]).

The variables that were most important in the training were the 
PID-related variables of the proton-candidate track, the displace-
ment of the proton-candidate track from the primary vertex, the 
distance between the K0

S -meson decay vertex and the primary ver-
tex, and the cosine of the pointing angle between the K0

S -meson 
candidate line of flight and its reconstructed momentum vector. 
Independent BDTs were trained for the different pT and centrality 
intervals.

The selection on the BDT output was tuned in each pT in-
terval to maximize the expected statistical significance, which is 
estimated using i) the expected signal obtained from FONLL cal-
culations [54,55] scaled by the corresponding 〈TAA〉 [45] and mul-
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tiplied by the BDT selection efficiency and ii) the expected back-
ground estimated from an invariant mass sideband fit using a frac-
tion of the data.

After applying selections on the BDT output, the yields of �+
c

baryons were extracted in each pT interval via binned maximum-
likelihood fits to the candidate invariant mass distributions. The 
fitting function consisted of a Gaussian term to estimate the signal 
and a second-, third-, or fourth-order polynomial function (de-
pending on the pT interval) to estimate the background. The de-
fault background fitting function was chosen after dedicated stud-
ies to obtain a good description of the invariant mass distribution 
in the sidebands. The other functions were considered for evaluat-
ing the systematic uncertainty.

The raw-yield extraction is challenging, especially at low pT
with signal-to-background ratios below one per mille and relative 
statistical uncertainties on the extracted raw yield varying between 
15–35%, as presented in Appendix A. Given the critical signal ex-
traction due to the low signal-to-background ratios, the width of 
the Gaussian term for the signal was fixed to the value obtained 
from simulations. It was verified that the widths from the simula-
tion were consistent within uncertainties to those extracted from 
fits to data without constraints on the width of the Gaussian (with 
a relative uncertainty of 1–2% in simulation and 20–30% in data). 
In addition, the stability of the signal extraction was further ver-
ified by i) fitting purely background candidates from simulations 
and ii) by repeating the fit after subtracting a background compo-
nent estimated with an event-mixing technique. For the latter, the 
events were grouped in pools based on the primary-vertex posi-
tion along z and the estimated centrality. For the first study, none 
of the invariant mass fits allowed to extract a signal in the �+

c
invariant mass region. For the second study, fits to the background-
subtracted invariant mass distributions resulted in compatible �+

c
raw yields to the ones extracted from the default fits.

The corrected yields of prompt �+
c baryons were obtained in 

each centrality interval as

dN�+
c

dpT

∣
∣
∣
∣
∣|y|<0.5

=
fprompt × 1

2 N�±
c

raw

∣
∣
∣|y|<yfid

�pT × c�y × (A × ε)prompt × BR × Nev
. (1)

The raw yield values N�±
c

raw, extracted in a given pT interval of width 
�pT, were divided by a factor two and multiplied by the prompt 
fraction fprompt to obtain the charge-averaged yields of prompt 
�+

c . Furthermore, they were divided by c�y × (A × ε), enclosing 
the rapidity coverage and the acceptance-times-efficiency, by the 
BR of the decay channel, and by the number of analyzed events 
Nev.

The (A × ε) correction was determined from MC simulations, 
using samples not employed in the BDT training. The generated 
pT spectrum used to calculate the efficiencies was reweighted to 
reproduce the shape obtained from the D0 measurement [56] mul-
tiplied by �+

c /D0 calculations from the TAMU model [8] in 0–10% 
and 30–50% Pb–Pb collisions at 

√
sNN = 5.02 TeV. The (A × ε) in-

creases from 1% (3%) at low pT to about 12% (16%) at high pT
for central (mid-central) collisions. The correction factor for the 
rapidity acceptance, c�y , was computed as the ratio between the 
generated �+

c -baryon yield in �y = 2yfid(pT) and that in |y| < 0.5
using the reweighted pT shape and the rapidity distribution from 
PYTHIA 8 simulations [23]. It was verified in [56] that for D
mesons the calculation of c�y is only weakly sensitive to the ra-
pidity distribution used for its calculation.

The fprompt fraction of the reconstructed signal was estimated 
using a similar strategy as described in [33]. In particular, the 
beauty-hadron production cross section was estimated with FONLL 

Table 1
Relative systematic uncertainties of the prompt �+

c -baryon corrected yield in Pb–Pb
collisions for central and mid-central events in representative pT intervals.

Centrality interval 0–10% 30–50%
pT (GeV/c) 4–6 12–24 1–2 6–8

Yield extraction 11% 17% 14% 12%
Tracking efficiency 10% 9% 12% 8%
Selection efficiency 8% 8% 7% 7%
Prompt fraction +8

−6% +13
−13% +4

−3% +12
−8 %

MC pT shape 2% negl. 2% 1%
Centrality limits < 0.1% 2%

Branching ratio 5.5%

Total syst. unc. +20
−19% +25

−25% +21
−21% +21

−19%

calculations [54,55], the fraction of beauty quarks that fragment 
into �0

b was estimated from the �0
b/(B0 + B+) ratio measured by 

LHCb in pp collisions at 
√

s = 13 TeV [57] following the same strat-
egy as used in [11], and the kinematics of the decay of beauty 
hadrons Hb → �+

c + X simulated with PYTHIA 8 [23]. The branch-
ing ratios were taken as implemented in PYTHIA 8.243, corre-
sponding to approximately 82% for �0

b baryons and 2% for either 
B0, B+ , and B+

s mesons. In addition, the fprompt fraction is modi-
fied to account for the nuclear modification factor of �+

c baryons 
from beauty-hadron decays. The central correction is chosen such 
that Rnon-prompt

AA = 2 × Rprompt
AA as predicted by the “Catania” theo-

retical calculation [6]. The resulting fprompt fraction was found to 
be about 0.97 at low pT and about 0.81 at high pT.

The systematic uncertainties of the �+
c corrected yields include 

contributions from i) the extraction of the raw yield, ii) the track-
ing efficiency, iii) the �+

c selection efficiency, iv) the MC generated 
pT spectra, v) the statistical uncertainty of the efficiency, and vi) 
the subtraction of feed-down �+

c baryons from b-hadron decays. 
The estimated values of these systematic uncertainties are summa-
rized for representative pT intervals in Table 1. In addition, a global 
systematic uncertainty due to the centrality interval definition (2% 
for mid-central, negligible for central) [56] and the branching ratio 
(5.5%) [28] was assigned. For the RAA observable, the uncertainty 
of the pp cross section normalization uncertainty (2.1%) [11] and 
of the average nuclear overlap function (0.7% for central, 1.6% for 
mid-central) [45] are included in the global normalization uncer-
tainty.

The systematic uncertainty of the raw-yield extraction was es-
timated by repeating the invariant mass fits varying the lower and 
upper limits of the fit range, the functional form of the background 
fit function, and considering the Gaussian width (mean) as a free 
(fixed) parameter in the fit. In order to test the sensitivity to the 
line shape of the signal, a bin-counting method was used, in which 
the signal yield was obtained by integrating the invariant-mass 
distribution after subtracting the background estimated from the 
sideband fit, as well as by studying the signal shape in the MC sim-
ulations using multiple stacked Gaussian functions rather than a 
single one. The procedure to estimate the systematic uncertainty of 
the track-reconstruction efficiency includes variations of the track-
quality selection criteria for all decay tracks and studies on the 
probability to match TPC tracks to the ITS clusters in data and sim-
ulation for the proton-candidate track. The latter comparison was 
performed after weighting the relative abundances of primary and 
secondary particles in simulation to those in data [33]. The sys-
tematic uncertainty of the �+

c selection efficiency was estimated 
by repeating the analysis with different selections on the BDT out-
put, resulting in up to 50% lower and 20–50% higher efficiency 
values. Possible systematic effects due to the loose PID selection, 
applied prior to the BDT one, were investigated by comparing the 
PID-selection efficiencies in data and in simulations and found to 
be negligible. Both the tracking- and PID-efficiency studies were 
performed using pure samples of pions (from K0

S decays) and pro-
tons (from � decays). An additional contribution derives from the 

3
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Fig. 1. Left: pT-differential production yields of prompt �+
c in central (0–10%) and mid-central (30–50%) Pb–Pb collisions at √sNN = 5.02 TeV compared to the pp refer-

ence [11] scaled by the 〈TAA〉 of the corresponding centrality interval [45]. Right: �+
c /D0 ratio in central and mid-central Pb–Pb collisions at √sNN = 5.02 TeV compared with 

the results obtained from pp collisions [11].

pT spectra of �+
c generated in the simulation, which was esti-

mated by using the �+
c /D0 predictions of the Catania model [7]

and the SHMc [10] instead of the TAMU prediction [8] in the pT-
shape reweighting procedure, as well as by an iterative method 
using a parametrization of the measured pT-differential production 
yields. Finally, the systematic uncertainty of the feed-down sub-
traction was estimated by varying the FONLL parameters as pre-
scribed in [55] and the function describing the �0

b fragmentation 
fraction within the quoted experimental uncertainty as reported 
in [11], as well as by varying the hypothesis on Rnon-prompt

AA . For the 
latter, an interval 1/3 < Rnon-prompt

AA /Rprompt
AA < 3 was considered, 

wider with respect to that used for non-strange D mesons [56]
to cover possible yet unmeasured differences between the modifi-
cation of charm- and beauty-baryon production in Pb–Pb collisions 
with respect to the one in pp collisions.

The sources of systematic uncertainty considered in this anal-
ysis are assumed to be uncorrelated among each other and the 
total systematic uncertainty in each pT and centrality interval is 
calculated as the quadratic sum of the individual uncertainties. For 
the �+

c /D0 ratio, the �+
c and D0 uncertainties were considered as 

uncorrelated except for the tracking efficiency and the feed-down 
contribution, which are assumed correlated and thus partially can-
cel in the ratio, and the systematic uncertainty of the centrality 
interval definition, which fully cancels. For the RAA, the pp and 
Pb–Pb uncertainties were considered as uncorrelated except for 
the branching ratio uncertainty and the feed-down contribution, 
which both partially cancel out (the former because the pp mea-
surement considers additional decay modes). Finally, in case of 
the pT-integrated �+

c /D0 ratio, there is a correlation between the 
extrapolation uncertainty of the �+

c baryon and the measured un-
certainties of the �+

c and D0 hadrons. To treat this correlation, 
the extrapolation uncertainty is divided into a correlated part (es-
timated as the extrapolation uncertainty when considering only 
the shape predicted by TAMU) and an uncorrelated part (the to-
tal extrapolation uncertainty subtracting the correlated part) with 
respect to the measured uncertainties. The uncorrelated part is 
summed in quadrature with the measured uncertainties, while the 
correlated part is added linearly.

4. Results

The pT-differential production yields of prompt �+
c baryons are 

shown in Fig. 1 (left panel). The statistical and total systematic 
uncertainties are shown as uncertainty bars and boxes, respec-
tively, for all figures. The results are compared with the pp refer-
ence cross section [11] multiplied by the corresponding 〈TAA〉 [45], 
i.e. the denominator of the RAA observable that is discussed later. 

In the right panel of Fig. 1, the ratio of the production yields of 
�+

c baryons to that of D0 mesons, measured in the same central-
ity intervals [56], are presented together with the pp measurement 
at the same collision energy [11]. The ratios increase from pp to 
mid-central and central Pb–Pb collisions for 4 < pT < 8 GeV/c with 
a significance of 2.0 and 3.7 standard deviations, respectively. This 
trend is qualitatively similar to what is observed for the p/π [58]
and �/K0

S [59] ratios, which both show a distinct peak at interme-
diate pT that increases in magnitude (by about a factor 2 for mid-
central and a factor 3 for central Pb–Pb collisions with respect to 
minimum-bias pp collisions) and shifts to higher pT values (from 
about 2 GeV/c in pp to 4 GeV/c in central Pb–Pb collisions) with 
increasing multiplicity. The central and mid-central �+

c /D0 ratios 
in 12 < pT < 24 GeV/c are compatible with the measurement by 
CMS in 0–100% Pb–Pb collisions in pT > 10 GeV/c region [15]. The 
central �+

c /D0 ratio in 6 < pT < 8 GeV/c is in agreement with 
the previous measurement of ALICE in the 0–80% centrality inter-
val [33]. For pT > 4 GeV/c, the ratio measured in central collisions 
resembles in magnitude and pT trend the one reported by STAR in 
2.5 < pT < 8 GeV/c in 10–80% Au–Au collisions at 

√
sNN = 200 GeV 

[34]. Note that the large centrality classes of the previous measure-
ments are dominated by the production in the most central events 
(given the scaling of the �+

c yields with Ncoll × RAA), hence they 
are compared to the measurement in 0–10%.

The nuclear modification factor RAA of prompt �+
c is compared 

with the RAA of prompt D+
s mesons [60] and the average RAA

of prompt D0, D+ , and D∗+ mesons [56] in Fig. 2 for the 0–10% 
and 30–50% centrality intervals. The pT-differential �+

c cross sec-
tion in pp collisions at 

√
s = 5.02 TeV in the 1 < pT < 12 GeV/c

interval from [11] was used as the pp reference. In the interval 
12 < pT < 24 GeV/c, the �+

c and D0 measurements at 
√

s = 5.02
and 13 TeV [14,61] were exploited, assuming no 

√
s dependence 

for the �+
c /D0 ratio as observed within uncertainties in 1 < pT <

12 GeV/c [14]. The total uncertainty of the pp reference in the 
12 < pT < 24 GeV/c interval is 23%, combining in quadrature the 
measured statistical and systematic uncertainties on the �+

c /D0

ratio at 
√

s = 13 TeV and D0 cross section at 
√

s = 5.02 TeV.
The suppression of all charm-meson (baryon) species from pT �

3 (6) GeV/c is understood as being primarily due to the interac-
tion of charm quarks with the quark–gluon plasma, which modifies 
their momentum spectra, as discussed extensively for the non-
strange D mesons in [56]. In central collisions in the region 4 <
pT < 8 GeV/c, there is a hint of a hierarchy RAA(D) < RAA(D+

s) <
RAA(�+

c ). In mid-central collisions, this hierarchy is less pro-
nounced. In the pT � 10 GeV/c region, where the hadronization is 
expected to occur mainly via fragmentation, the RAA of the various 
charm-hadron species are compatible within uncertainties.
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Fig. 2. Nuclear modification factor RAA of prompt �+
c baryons in central (0–10%; left) and mid-central (30–50%; right) Pb–Pb collisions at √sNN = 5.02 TeV, compared with 

the RAA of prompt D+
s [60] and the average of prompt non-strange D mesons [56]. The normalization uncertainties are shown as boxes around unity.

Fig. 3. The �+
c /D0 yield ratio as a function of pT in 0–10% (left) and 30–50% (middle) Pb–Pb and pp (right) collisions at √sNN = 5.02 TeV compared with predictions of 

different theoretical calculations [7,8,10,30,31,64].

Fig. 3 compares the pT-differential �+
c /D0 ratios with differ-

ent theoretical predictions: Catania [7], TAMU [8], and the GSI–
Heidelberg statistical hadronization model (SHMc) [10]. The pre-
dictions of Catania and TAMU for pp collisions [30,31] are also 
compared with the existing measurement in pp collisions [11]. 
The Catania model [7,30] assumes that a QGP is formed in both 
pp and Pb–Pb collisions. In Pb–Pb collisions heavy-quark trans-
port is implemented via the Boltzmann equation, and in both 
pp and Pb–Pb collisions hadronization occurs either via coales-
cence, implemented through the Wigner formalism, or via frag-
mentation in case the quarks do not undergo coalescence. The 
TAMU model [8] describes charm-quark transport in an expanding 
medium with the Langevin equation and hadronization proceeds 
primarily via coalescence, implemented with a Resonance Recom-
bination Model (RRM) [62]. Left-over charm quarks not undergoing 
coalescence are hadronized via fragmentation. In pp collisions, the 
charm-hadron abundances are instead determined with a statis-
tical hadronization approach [31]. In both collision systems the 
underlying charm-baryon spectrum includes unobserved excited 
states [28] predicted by the Relativistic Quark Model (RQM) [63]
and lattice QCD [31]. Finally, for the SHMc predictions [10], which 
include only charm mesons and baryons established experimen-
tally, the charm-hadron pT spectra are modeled within a core-
corona approach. The core contribution represents the central re-
gion of the colliding nuclei where charm quarks achieve local 
thermal equilibrium in a hydrodynamically expanding QGP. The 
charm-hadron spectra in the corona contribution are, instead, pa-
rameterized from measurements in pp collisions. The pT-spectra 
modification due to resonance decays is computed using the Fas-
tReso package [64]. The theoretical uncertainty bands shown in 

Fig. 3 derive from: an assumed range of branching ratios (50–100%) 
for the decays of the RQM-augmented excited states into �+

c for 
the TAMU model; the variation of about 10% of the Wigner func-
tion widths in the Catania calculations; and mainly the uncer-
tainties on the pp spectra fits in the SHMc predictions at high 
pT.

The SHMc describes the �+
c /D0 ratio in mid-central collisions, 

but underpredicts the ratio in 4 < pT < 8 GeV/c in central colli-
sions by about 2.5σ of the combined statistical, systematic, and 
theoretical uncertainties. The prediction of the Catania model in 
central collisions underestimates the �+

c /D0 ratio at intermediate 
pT, although the deviation is at maximum 2.5σ . The TAMU pre-
dictions reproduce the magnitude and shape of the �+

c /D0 ratios. 
While both these fragmentation plus coalescence model calcula-
tions are able to describe the �+

c /D0 ratio in Au–Au collisions 
at 

√
sNN = 200 GeV in the 10–80% centrality interval [34], the 

TAMU model better reproduces the data in central Pb–Pb colli-
sions. A pure coalescence scenario from an older version of the 
Catania model was reproducing better the previous ALICE mea-
surement in 0–80% Pb–Pb collisions [33]. The Catania and TAMU 
predictions also describe both the magnitude and pT shape of the 
measured �+

c /D0 ratio in pp collisions. Instead, at forward rapidity, 
the TAMU model predicts a systematically higher �+

c /D0 ratio than 
measured by LHCb in 65–90% Pb–Pb collisions at 

√
sNN = 5.02 TeV 

[39].
The �+

c production yield for pT > 0 was estimated by sum-
ming up the measured pT-differential yields and the extrapo-
lated �+

c yield for pT < 1 GeV/c. The �+
c yield in 0 < pT <

1 GeV/c was obtained as the product of the �+
c /D0 ratio value 

estimated by interpolating the ratio in the measured pT interval 

5
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Fig. 4. The pT-integrated and to pT > 0 extrapolated �+
c /D0 ratios in central and 

mid-central Pb–Pb collisions at √sNN = 5.02 TeV compared to the same ratio at pp 
and p–Pb [11,32] and Au–Au [34] multiplicities. Predictions from theoretical calcu-
lations are shown as well [7,8,10,23,30,31].

with model expectations and the measured D0 yield [56]. The in-
terpolation procedure was performed using the shape predicted 
by TAMU [8], Catania [7] (not available for 30–50%), SHMc [10], 
and blast-wave [65] calculations, leaving the normalization as a 
free parameter. The shape from TAMU was chosen as the central 
value based on the χ2/ndf values, while the difference between 
the obtained yields was considered in the systematic uncertainty 
due to the extrapolation. The results for the prompt �+

c produc-
tion yields per unit of rapidity in |y| < 0.5 are dN/dy = 3.27 ±
0.42 (stat) ± 0.45 (syst) ± 0.16 (BR) +0.46

−0.29 (extr) for central collisions 
and dN/dy = 0.70 ± 0.09 (stat) ± 0.09 (syst) ± 0.04 (BR) +0.07

−0.05 (extr)
for mid-central collisions, where the visible yield is about 81% of 
the total for both centrality classes. The SHMc [10] predicts lower 
values, dN/dy = 1.55 ± 0.23 and dN/dy = 0.316 ± 0.036, respec-
tively.

The measured �+
c /D0 ratios, obtained dividing the pT-integrated 

�+
c and D0 yields [56], are presented in Fig. 4, taking into account 

the correlation between the measured and extrapolated uncertain-
ties. Similarly to what is observed for the �/K0

S ratio [59,66], 
the �+

c /D0 ratios in Pb–Pb collisions are compatible with the 
pT-integrated �+

c /D0 ratios at pp and p–Pb multiplicities [11,32]
within one standard deviation of the combined uncertainties. This 
observation, together with the significant enhancement of the 
�+

c /D0 ratio at intermediate pT with increasing multiplicity, seen 
here and in pp collisions [32], suggests a modified (and perhaps 
similar) mechanism of hadronization in all hadronic collision sys-
tems with respect to charm fragmentation tuned on e+e− and e−p
measurements (PYTHIA 8 point in Fig. 4). The coalescence mod-
els of [4,5,9], in which the �+

c /D0 ratio depends on the balance of 
quark and diquark densities at hadronization time, expect a depen-
dence of the pT-integrated �+

c /D0 ratio on multiplicity (leading to 
an increase by about a factor 3–10 in nuclear collisions compared 
with their pp baseline), which is not observed. The measured pT-
differential enhancement may, instead, predominantly be caused 
by altered production ratios for baryons and mesons following 
from the phase-space distribution of the quarks. This can arise 
from the collective radial expansion of the system, for which, in 
the coalescence picture (Catania and TAMU Pb–Pb points in Fig. 4), 
the accounting of space–momentum correlations in the procedure 
have been observed to be fundamental in [8,9]. Interactions in the 
hadronic phase are, on the contrary, expected to have a small effect 
on the �+

c /D0 ratio [6,67]. The statistical hadronization approach 
(SHMc and TAMU pp points in Fig. 4), can also describe both the 
pT-differential and pT-integrated observations with the, currently 

debated, caveat that for the proper normalization yet unobserved 
charm-baryon states need to be assumed [10,31]. Note that the au-
thors of the TAMU model include these additional states already 
in their predictions, while for the SHMc model it is not the base-
line. The uncertainty of the pT-integrated yield in Pb–Pb collisions 
is still relatively large, and more precise measurements at low pT
will help to further discriminate between charm-baryon formation 
scenarios.

Finally, Fig. 5 shows the RAA of prompt �+
c baryons compared 

with the previously introduced theoretical models [7,8,10]. The 
Catania RAA predictions are from an earlier version of the model 
than the �+

c /D0 predictions and they do not have an uncertainty 
band. The TAMU model provides a good description of the RAA, 
over the whole pT range, in both central and mid-central colli-
sions. The Catania model describes the data in both central and 
mid-central collisions for pT > 2 GeV/c, however for pT < 2 GeV/c
the model predicts a RAA higher than unity which is disfavored by 
data. Both these models do not include charm-quark interactions 
with medium constituents via radiative processes, hence are not 
expected to describe the RAA for pT > 8 GeV/c. The SHMc model 
instead significantly underestimates the �+

c RAA over the whole 
pT range.

5. Conclusions

In summary, the measurements of the production yield of 
prompt �+

c baryons in central (0–10%) and mid-central (30–50%) 
Pb–Pb collisions at a center-of-mass energy per nucleon pair √

sNN = 5.02 TeV were presented. The yield could be extrapolated 
to pT = 0 in the two centrality classes with significantly smaller 
uncertainties than the previous measurement by STAR in 10–80% 
Au–Au collisions at 

√
sNN = 200 GeV, exploring not only a new 

energy regime but also higher multiplicities. The pT-differential 
�+

c /D0 ratios increase from pp to central Pb–Pb collisions for 
4 < pT < 8 GeV/c with a significance of 3.7 standard deviations, 
while the pT-integrated ratios are compatible within one standard 
deviation. Both observations are in qualitative agreement with the 
baryon-to-meson ratio for strange hadrons. The measurements are 
described by theoretical calculations that include both coalescence 
and fragmentation processes when describing the hadronization of 
heavy flavors in the QGP. The upgraded ALICE detector for the LHC 
Runs 3 and 4 will increase its acquisition rate by up to a factor of 
about 50 in Pb–Pb collisions and the tracking precision by a fac-
tor 3–6, meaning future measurements of �+

c -baryon production 
will allow for stronger constraints on the heavy-quark hadroniza-
tion mechanisms in heavy-ion collisions [68].
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Appendix A. Raw-yield extraction

Examples of the invariant mass distributions from which the 
�+

c raw yields are extracted are reported in Fig. A.1. The spec-
tra together with the result of the fits in 1 < pT < 2 GeV/c and 
4 < pT < 6 GeV/c for central (0–10%) and 2 < pT < 4 GeV/c and 
8 < pT < 12 GeV/c for mid-central (30–50%) Pb–Pb collisions are 
shown.
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10



ALICE Collaboration Physics Letters B 839 (2023) 137796

M. Krivda 111,64, F. Krizek 96, K. Krizkova Gajdosova 37, M. Kroesen 105, M. Krüger 68, D.M. Krupova 37, 
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