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Realistic nuclear level densities (NLDs) obtained within the spectral distribution method (SDM) are em-
ployed to study nuclear processes of astrophysical interest. The merit of SDM lies in the fact that the NLDs
corresponding to many-body shell-model Hamiltonians consisting of residual interaction can be obtained for
the full configurational space without recourse to the exact diagnolization of huge matrices. We calculate NLDs
and s-wave neutron resonance spacings which agree reasonably well with the available experimental data. By
employing these NLDs, we compute reaction cross sections and astrophysical reaction rates for radiative neutron
capture in few Fe-group nuclei and compare them with experimental data as well as with those obtained with
NLDs from phenomenological and microscopic mean-field models. The results obtained for the NLDs from
SDM are able to explain the experimental data quite well. These results are of particular importance since
the configuration mixing through the residual interaction naturally accounts for the collective excitations. In the
mean-field models, the collective effects are included through the vibrational and rotational enhancement factors,
and their NLDs are further normalized at low energies with neutron resonance data.

DOI: 10.1103/PhysRevC.105.044320

I. INTRODUCTION

Neutron capture reactions are critical for a wide variety
of applications ranging from medicine [1], energy generation
[2], to nucleosynthesis [3]. Such reactions are fundamentally
important by which nearly all of the elements heavier than
iron are synthesized through the astrophysical s process or
r process. The astrophysical site where the r process oc-
curs has been one of the major open questions for the past
several decades. Supernovas and neutron star mergers are
the most favored astrophysical sites for the r process. Only
recently, observations connected to the neutron star merger
event GW170817 [4] have confirmed the emission of a kilo-
nova afterglow which is powered by the radioactive decay of
heavy nuclides produced in the r process [5,6]. Efforts are also
being made to simulate the neutron capture nucleosynthesis in
the laboratory [7]. This led to a rapid increase in attention on
various processes contributing to nuclear reaction network.

The extensive radiative neutron capture cross-section data
are crucial for complete understanding of r-process nuclear
astrophysical network calculations. All such data are not
accessible in the accelerator-based experiments, and one
needs to rely on theoretical estimates. The reaction cross
sections and relevant reaction rates are calculated within a
statistical framework [8] which primarily requires: (i) the
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neutron-nucleus optical model potential (OMP), (ii) the γ -ray
strength function (γ SF), and (iii) the nuclear level density
(NLD). The uncertainties of γ SF and NLD have significant
impact on calculated neutron capture rates whereas the un-
certainties due to OMP are relatively smaller [9,10]. The
NLD describes the total number of states accessible in a
given nucleus at a specific excitation energy. Various methods
have been employed to calculate the NLDs which range from
simple phenomenological models based on noninteracting
degenerate Fermi gas [11,12] to more complex mean-field de-
scriptions [13]. In the mean-field approaches, all the collective
effects are incorporated in NLDs through the rotational and
vibrational enhancement factors. These NLDs are further nor-
malized with the experimental data at the neutron resonances
[13]. In the shell model, the configuration mixing through
the residual interaction naturally accounts for the collective
excitations.

There are a few approaches to calculate the NLDs within
the framework of a shell model. One of them is the
shell-model Monte Carlo (SMMC) [14–19], which utilizes
auxiliary fields to compute the thermal trace for the energy,
and then NLDs are obtained using inverse Laplace transform.
Another approach to calculate the spin- and parity-dependent
shell-model level densities is developed using the spectral
distribution method (SDM) [20–25]. This method allows one
to incorporate the many-body effects on the wave functions
appropriately and is a basis for the applications of statistical
spectroscopy generated by many-body chaos as modeled by
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embedded random matrix ensembles along with the studies
on β-decay rates for stellar evolution and supernovas [26–29].
Recently, the SDM has been extended for the exact calculation
of the first and second Hamiltonian moments for different con-
figurations at fixed spin and parity [30–33]. This is a practical
tool to construct the NLDs for the many-body shell-model
Hamiltonian using full configurational space since it avoids
the diagonalization of Hamiltonian matrices of huge dimen-
sions. This method, however, requires an accurate estimation
of the shell-model ground-state energy, which is, generally,
as time consuming as the full shell-model calculation. The
difficulty has been overcome by using the exponential con-
vergence method [34] or the recently developed projected
configuration interaction method [35,36]. The NLDs obtained
from SDM also agree reasonably with the full shell-model
calculations [32]. Recently, the extrapolated Lanczos method
[37] has also been developed for an accurate computation of
the level densities described within the configuration space.

In the present paper, we use realistic NLDs obtained from
the spectral distribution method followed by an appropriate
parity equilibration scheme for p f -model space to calculate
the neutron capture reaction cross sections and astrophysi-
cal reaction rates. We consider some of the (n, γ ) processes
consisting a few seed nuclei for the nucleosynthesis in and
around the Fe group for which experimental data are available.
We compare our results with those obtained with NLDs from
other phenomenological and microscopic models as com-
monly employed.

II. NUCLEAR LEVEL DENSITIES

The NLDs are obtained using the spectral distribution
method [32] applied to the shell-model Hamiltonian with
a realistic residual interaction. Within the spectral distribu-
tion method, one calculates first and second moments of the
Hamiltonian for the full configurational space. These mo-
ments are then used to construct the Gaussian distribution
of the levels which eventually give rise to the level density.
For a given isotope (Z, N ), the valence nucleons can be dis-
tributed in many ways over available orbitals. Each of these
configurations is known as partition p which contains Dαp

many-body states with exact quantum numbers α. The states
present in a given partition are distributed over some energy
region as a result of interactions inside the partition. For each
partition, the statistical average of an operator Ô over the
states is defined through the corresponding trace,

〈Ô〉 = 1

Dαp
TrαpÔ. (1)

In particular, the centroid energy of the partition is the first
moment of the Hamiltonian,

Eαp = 1

Dαp
TrαpĤ . (2)

This comes directly from the diagonal elements of the Hamil-
tonian matrix. The second moment of the Hamiltonian,

σ 2
αp = 〈H2〉αp − E2

αp = 1

Dαp
TrαpH2 − E2

αp (3)

is determined by the off-diagonal elements of the Hamiltonian
matrix including the interaction between partitions. No matrix
diagonalization is required as this quantity can be read directly
from the Hamiltonian matrix. The actual distributions are
close to the Gaussians which is a manifestation of quantum
complexity and chaotization [38–41]. Finally, the level density
ρ(E ; α) is found by summing the Gaussians weighted over
their dimensions for all partitions at given energy E and with
quantum numbers α,

ρ(E ; α) =
∑

p

DαpGαp(E ). (4)

The best results are obtained by using finite range or truncated
Gaussians,

Gαp(E ) = G(E − Eαp + Eg.s.; σαp) (5)

for each partition. Removing unphysical tails, the Gaussians
are cut off at a distance ≈2.6σαp from the corresponding cen-
troid and then renormalized [32]. The ground-state energies
Eg.s. appearing in Eq. (5) must be calculated using the full
Hamiltonian matrix in order to be consistent with the first and
second moments. Practically, it is convenient to calculate the
invariant traces in the M scheme. When ρ(E ; M ) for a given
parity is computed, the level-density ρ(E ; J ) for certain spin
J is found as the difference of ρ(M = J ) and ρ(M = J + 1).

To illustrate, we have considered the reaction cross sec-
tions for 50V(n, γ ) 51V, 54Fe(n, γ ) 55Fe, and 58Ni(n, γ ) 59Ni
processes. In addition to emission of γ , contributions from
the ejection of neutron (n) and proton (p) are also included.
This leads to the possible reaction channels, namely, (n, γ ),
(n, n), (n, p), (n, 2n), (n, np), and (n, 2p) which require the
computation of NLDs for 18 nuclei, six for each process. For
these nuclei, we compute NLDs with p f -model space assum-
ing 40Ca as a core. We use the GXPF1A residual interaction
[42] which is well known to reproduce the binding energies,
electromagnetic moments, and transitions as well as excitation
spectra for p f -shell nuclei.

It may be pointed out that even a smaller inaccuracy in Eg.s.

(on the order of 0.5 MeV) would cause large uncertainties
in NLDs (≈30–20% for excitation energies ≈5–10 MeV)
that can significantly affect the reaction cross sections and
astrophysical reaction rates. The accurate values of Eg.s.

for the case of the p f -model space are calculated using
NushellX@MSU [43]. The calculation of Eg.s. turns out to be
cumbersome in a few cases due to a large dimension corre-
sponding to full model space (Nfull ) of the Hamiltonian matrix.
In such cases, we recourse to the exponential convergence
method [34]. The ground-state energies obtained for several
restricted model spaces are fitted to the exponential function
of the form a + be−cN . Once the parameters a, b, and c are
known, the exponentially converged value of Eg.s. for the p f -
model space can be obtained with N = Nfull. For instance, in
Fig. 1, the values of Eg.s. with different truncations are plotted
for 51V, 55Fe, and 59Ni. We have also performed full model
space calculations for Eg.s. with a full JT -space dimension
(Nfull ) � 5 × 106. The exponentially converged values for
Eg.s. are found to be accurate within 0.1 MeV. In Table I,
we list the values of Eg.s. along with Nfull for the p f -model

044320-2



ASTROPHYSICAL REACTION RATES WITH REALISTIC … PHYSICAL REVIEW C 105, 044320 (2022)

FIG. 1. Shell-model ground-state energies for 51V, 55Fe, and
59Ni corresponding to different truncations with dimensions N (red
crosses). These energies are fitted to a + be−cN as indicated by the
solid line. The exponential converged ground-state energies for full
p f -model space are obtained using this fitted expression with N =
Nfull.

space for all the 18 nuclei relevant to the present paper. Once
the ground-state energies are known, the NLDs are calculated
within the SDM using the MM code [32].

The NLDs for both parities would require the model space
consisting of single-particle states with different parities. The
p f -model space can yield the NLDs only for a single par-
ity for a given nucleus. In even-A nuclei, it will correspond
to only positive-parity states, and those for odd-A nuclei to
the negative-parity states. Recently, Ormand and Brown [37]
have estimated the values of s-wave resonance spacing D0

for 57Fe using the NLDs for 1/2− states, instead of 1/2+

states, obtained within the p f -model space. The values of D0

so determined agreed reasonably with the experimental data.
It was, thus, inferred that the parity equilibration for 57Fe
occurs near neutron separation energy (Sn). The NLDs for
Jπ = 2+ and 2− states extracted from the measurements of
quadrupole giant resonances in 58Ni [48] showed that parity
equilibration takes place at lower energy than the predictions
of SMMC calculations for the p f g9/2 model space [16,17].
Similar conclusions were also drawn on the basis of calcula-
tions performed for sufficiently large model space [49,50]. A
simple formula [51] further suggested the parity equilibration
to occur exponentially with an increase in temperature. We
construct the level density for positive (negative) parity for an
odd (even) nucleus through the parity equilibration. We use a
simple scheme for the parity equilibration such as

ρ+(Ex)

ρ−(Ex)
= 1

1 + e−β(Ex−E0 )
, (6)

where ρ+(Ex) and ρ−(Ex) are the level densities of positive
and negative parities at excitation energy Ex for odd-A nuclei.
The ρ+ and ρ− will be reversed for the case of even-A nuclei.
The parameters β and E0 can be adjusted to obtain required
excitation energy dependence of the parity equilibration. For
simplicity, we consider β = 1. We obtain the NLDs using
SDM with the p f -model space by considering above parity
equilibration scheme for E0 = Sn and 0.8Sn, labeled by SDM
and SDM*, respectively. These NLDs are employed to calcu-
late the D0, cross sections, and reaction rates.

In Fig. 2, we show the shell-model NLDs, labeled as SDM
and SDM* for 51V, 55Fe, and 59Ni nuclei as representative
examples and compare them with the existing experimental
data [44–46]. The NLDs obtained from the low-lying exper-
imental discrete levels [47] are also shown for comparison.
Our calculated NLDs are in an overall agreement with the
experimental data for all the three nuclei. For the comparison,
we also display the NLDs obtained from the HFB approach
for the Skyrme-type effective force BSk14 [13]. These NLDs
are obtained using combinatorial method at lower excitation
energies and using the statistical method at higher excitation
energies. The HFB results are further normalized to the ex-
perimental data at low energies and the neutron separation
energy [13]. We also display un-normalized HFB results as
labeled by HFB-u. The NLDs for HFB-u deviate noticeably

TABLE I. The ground-state energies Eg.s. (MeV) for different nuclei required to compute the cross sections for the (n, γ ) processes
considered. The Eg.s. are obtained using the shell-model Hamiltonian with the GXPF1A residual interaction. The exponential convergence [34]
is used for the cases where the full JT-space dimension (Nfull ) exceeds ≈5 × 106. The exponential converged value for 51V is −125.46 MeV
which is nearly equal to −125.54 MeV obtained for full model space calculation (E full

g.s. ).

50V(n, γ ) 51V 54Fe(n, γ ) 55Fe 58Ni(n, γ ) 59Ni

Channels Nucleus Nfull Eg.s. Nucleus Nfull Eg.s. Nucleus Nfull Eg.s.

(n, γ ) 51V 1242538 −125.54 55Fe 25743302 −184.76 59Ni 76528736 −236.37
(n, n) 50V 795219 −114.79 54Fe 5220621 −175.73 58Ni 21977271 −227.59
(n, p) 50Ti 39899 −109.86 54Mn 17069465 −167.40 58Co 37534140 −218.90
(n, 2n) 49V 422870 −105.63 53Fe 21131892 −162.56 57Ni 76528736 −215.55
(n, np) 49Ti 150632 −99.24 53Mn 14123745 −158.51 57Co 90369789 −210.34
(n, 2p) 49Sc 28603 −90.41 53Cr 3776746 −151.70 57Fe 13436903 −203.30
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FIG. 2. Nuclear level densities as a function of excitation en-
ergies (Ex) for 51V, 55Fe, and 59Ni nuclei obtained from SDM in
the p f -model space by considering the parity equilibration scheme
[given by Eq. (6)] at E0 = Sn and 0.8Sn labeled as SDM and SDM*,
respectively. These results are compared with the experimental data
[44–46] along with other microscopic mean-field models, HFB-u
(un-normalized) and HFB as well as the phenomenological models,
BSFG and GSM. Histograms represent the NLDs obtained from
low-lying discrete levels [47].

for 55Fe and 59Ni nuclei. The curves marked by BSFG and
GSM correspond to the phenomenological back-shifted Fermi
gas model [11] and the generalized superfluid model [52,53],
respectively.

The cross sections and reaction rates, relevant to the as-
trophysical process are predominantly governed by the NLDs
corresponding to spin and parity which determines the level
spacings D0 for s-wave neutron resonance. The D0 can be

evaluated as [13]

D0 =
⎧⎨
⎩

1
ρ(Sn,Jt +1/2,πt )+ρ(Sn,Jt −1/2,πt ) for Jt �= 0,

1
ρ(Sn,1/2,πt ) for Jt = 0,

(7)

where Jt and πt are the spin and parity of the target nucleus
and Sn is the neutron separation energy for the product nu-
cleus. It is evident from Eq. (7) that the calculation of D0

for the even-even target nucleus requires the level density
for 1/2+ in the product nucleus. Similarly, if the target is
not even-even then the level densities for the product nucleus
are required for the spins Jt ± 1/2 and parity πt . The values
of D0 are calculated using shell-model level densities with
the p f -model space assuming the parity equilibration scheme
[Eq. (6)] for E0 = Sn and 0.8Sn as listed in Table II along with
the available experimental data [47]. The calculations involve
NLDs from 1/2+ states for all the nuclei presented in Table II
except for 50Ti and 51V. The values of D0 for 50Ti (51V)
include the contribution from 3− and 4− (11/2+ and 13/2+)
spins since Jπ

t �= 0 for these cases. The calculated values of
D0 with E0 = 0.8Sn (SDM*) are in overall agreement with
the corresponding experimental data. The exceptionally larger
calculated value of D0 for 49Ti requires further detailed in-
vestigation. However, NLDs for this nucleus contribute to the
(n, np) channel in the neutron capture by 50V which is not
a dominant one. For comparison, we display the results for
D0 obtained using some selected microscopic mean-field and
phenomenological models.

III. (n, γ ) CROSS SECTIONS AND ASTROPHYSICAL
REACTION RATES

The (n, γ ) reaction cross sections are calculated using
the TALYS 1.95 computer code [67] which takes into ac-
count the contributions from three major nuclear reaction
mechanisms that include direct reaction, preequilibrium emis-
sion, and compound nucleus. The parameters required for
cross-section calculations, such as the nuclear masses, dis-
crete levels, decay schemes, OMP, and γ SF are set to their
default values available in TALYS. The extensive database
for the NLDs obtained for various phenomenological and

TABLE II. The values of s-wave neutron resonances (D0) are calculated for p f -model space considering parity equilibration scheme
[given by Eq. (6)] at E0 = Sn and 0.8Sn, labeled by SDM and SDM*. These results are compared with the experimental data along with
other microscopic mean-field models, Hartree-Fock-Bogoliubov (HFB)-u (un-normalized) and HFB as well as the phenomenological models,
back-shifted Fermi gas model (BSFG) and generalized superfluid model (GSM). The neutron separation energy Sn for the product nuclei and
the angular momentum Jπt

t for the target nuclei are listed.

Sn D0 (keV)

Nucleus Jπt
t (MeV) Expt. HFB-u HFB BSFG GSM SDM SDM*

49Ti 0+ 8.142 18.3 ± 2.9 24.6 18.6 19.1 15.2 174.4 104.9
50Ti 7

2

−
10.939 4 ± 0.8 1.1 4 4.1 5.2 19.6 10.8

51V 6+ 11.051 2.3 ± 0.6 0.9 1.5 2.8 4.8 6.2 3.5
53Cr 0+ 7.939 43.4 ± 4.4 30.1 47.7 43 79 66.2 38.4
55Fe 0+ 9.298 18 ± 2.4 5.5 15.9 16.3 104 31.7 18.4
57Fe 0+ 7.646 25.4 ± 2.2 22 26.4 24.5 54.2 34.8 21.2
59Ni 0+ 8.999 13.4 ± 0.9 6.1 12.8 14.1 95.7 23.8 13.9
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FIG. 3. Cross sections for (n, γ ) processes as a function of incident neutron energies in center-of-mass frame (Ec.m.) calculated using
NLDs from SDM and SDM* compared with those obtained from other models (as shown in Fig. 2), see the text for details. Evaluated data
are adopted from evaluated nuclear data files (ENDF) [54]. The cross sections at low Ec.m. are shown in the right panels together with the
respective experimental data as Kapchigashev [55] for 50V(n, γ ) 51V, Beer and Spencer [56], Allen et al. [57], Giubrone et al. [58], Wallner
et al. [59] for 54Fe(n, γ ) 55Fe, and Halban and Kowarski [60], Beer and Spencer [56], Wisshak et al. [61], Perey et al. [62], Popov et al. [63],
Rugel et al. [64], Guber et al. [65], and Žugec et al. [66] for 58Ni(n, γ ) 59Ni.

microscopic mean-field models are also available in TALYS.
These models are the BSFG [11], the Gilbert and Cameron
model [12], the GSM [52,53], the Hartree-Fock for Skyrme-
type interaction with pairing treated within the Bardeen-
Cooper-Schrieffer approximation [68], and the HFB for
Skyrme forces [13]. We compare the reaction cross sec-
tions and astrophysical reaction rates obtained for some of
these NLDs with the ones calculated using NLDs from SDM.
The cross sections for 50V(n, γ ) 51V, 54Fe(n, γ ) 55Fe, and
58Ni(n, γ ) 59Ni reactions are calculated by including various
channels as listed in Table I. Contributions from other chan-
nels which include (α), deutron (d ), tritium (t ), and helium-3
(3He) are found to be insignificant (not shown).

In Fig. 3, we display our theoretical estimates of (n, γ )
cross sections obtained from SDM NLDs corresponding to
E0 = Sn and 0.8Sn [Eq. (6)] and compare them with those ob-
tained for NLDs from other models along with the evaluated
data adopted from the ENDF database (ENDF/B-VII.1) [54]. In
the left panels, the results are presented for a wide range of
incident neutron energy. The corresponding zoomed versions
for the lower energies up to 1 MeV, relevant to astrophysical
reaction rates at temperatures up to the order of gigakelvins,
are presented in the right panels. The cross sections based
on the NLDs from SDM are in an overall agreement with
the evaluated data (left panels) as well as available experi-
mental data from various groups (right panels) [55–66]. For
the low incident neutron energies, our SDM results are in

agreement with the experimental data which emphasize the
role of residual interaction in the astrophysical regime. Also,
the results from HFB, BSFG, and GSM are found to be in
reasonable agreement with the experimental cross sections as
the NLDs for these models are appropriately normalized with
the measured ones. However, the results obtained by HFB-u,
which correspond to un-normalized NLDs, show noticeable
deviations from the measured cross sections for neutron cap-
ture reactions.

For the reaction network, one needs astrophysical reaction
rates as one of the inputs. Once the variation of the cross
section with energy is known, the astrophysical reaction rates
NA〈σv〉 can be computed with NA being the Avogadro number
and 〈σv〉 is the Maxwellian average, where v is the relative
velocity of neutron. These averages are computed at a fix
temperature which ranges from 0.1 to 10 GK. For these tem-
peratures, cross sections at energies within the range of few
keV to ≈1 MeV contribute maximally. We show in Fig. 4,
the astrophysical reaction rates obtained by using the NLDs
from SDM and compare them with the recommended values
from ENDF [54] and KADONIS V0.3’ [69]. These results are
basically the Maxwellian average of cross sections shown in
Fig. 3. The results from HFB, BSFG, and GSM are also shown
for comparison. SDM results with 0.8Sn � E0 � Sn explain
quite well the recommended values from ENDF [54] in all
cases.
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FIG. 4. The astrophysical reaction rates as a function of tem-
perature using NLDs from SDM and SDM* compared with those
obtained for other models (as shown in Fig. 2). For comparison, the
recommended values from ENDF [54] and “KADONIS V0.3” [69] are
shown. For the case of 50V(n, γ ) 51V, KADONIS estimates are purely
theoretical.

IV. SUMMARY AND OUTLOOK

We obtain realistic NLDs within the framework of
the spectral distribution method applied to the many-body
shell-model Hamiltonian for the p f -model space. Particular
attention has been paid to calculate the accurate ground-state
energy since it is a crucial input in the SDM calculations. To
incorporate the NLDs of opposite parities in the p f -model
space, an appropriate parity equilibration scheme has been
used. The NLDs so obtained and s-wave neutron resonance
spacings agree reasonably well with the available experi-

mental data. We further compute reaction cross sections and
astrophysical reaction rates for the neutron capture processes,
such as 50V(n, γ ) 51V, 54Fe(n, γ ) 55Fe, and 58Ni(n, γ ) 59Ni.
The calculated reaction cross sections are found to be in
harmony with experimental data, particularly, for the incident
neutron energies of astrophysical interest. Similar is the case
for the astrophysical reaction rates for the temperature ranging
from 0.1 to 10 GK.

Since the present method is quite general and naturally
accounts for the collective excitations, therefore, it can be
explored in various model spaces and other reactions of as-
trophysical interest. To obtain the realistic shell-model NLDs
of both parities naturally, it would be desirable to perform
calculations with larger model spaces which involve huge
computation. It would be worthwhile to study the astrophysi-
cal reaction rates using shell-model NLDs for the neutron-rich
nuclei away from the line of β stability where the level density
may deviate significantly compared to the nearby stable nu-
clei [9,70,71]. Experiments along this direction using inverse
kinematics at radioactive ion-beam facilities are expected to
be operational in the near future.
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