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Abstract

Statistical analysis proved to be signi�cant in determining the errors of theoretical models, as-

sessing the risk of extrapolation and the sensitivity of the model to changes, as well as in the

description of instabilities in the models. However, the importance of applying the analysis of

the unreliability of individual parameters in the form of nuclear energy density functionals has

only recently been recognized, where one of the main problems of error analysis of the param-

eters of those models is the possible sloppiness of some parameters or their combinations. This

was precisely the motivation for using methods of reducing the number of model parameters

based on information geometry - an interdisciplinary �eld that applies the ideas of di�erential

geometry to statistical problems that have recently found application in the physical description

of various systems in physics, chemistry and biology. Since in nuclear physics the manifold

boundary approximation method (MBAM) has recently proved useful for the classi�cation and

reduction of complex models such as EDF models of the atomic nucleus, the statistical nature

of determining the unreliability by the MBAM method was investigated in more detail using

the example of the DD-PC1 functional. Also, using automatic di�erentiation in the code of

the DD-PC1 functional and the MBAM method, a more thorough and precise analysis of the

unreliability of the parameters itself is obtained, which enabled the optimization of time and

numerical precision. Considering the novelty of the MBAM method itself, stability tests of

the conclusions obtained by MBAM geodesics based on di�erential geometry techniques in the

�eld of classical statistics and Bayesian statistics in the form of the Markov Chain Monte Carlo

method were conducted.



Saºetak

Statisti£ka analiza pokazala se zna£ajna pri odreživanju pogre²aka teorijskih modela, procjeni

rizika ekstrapolacije i osjetljivosti modela na promjene kao i pri opisu nestabilnosti u mode-

lima. Mežutim, tek je nedavno prepoznat zna£aj primjene analize nepouzdanosti parametera

nuklearnih energijskih funkcionala gusto¢e. Jedan od glavnih problema analize pogre²aka

parametara tih modela mogu¢a je aljkavost nekih parametara ili njihovih kombinacija. Upravo

je to bila motivacija za kori²tenje metoda redukcije broja parametara modela temeljenih na

informacijskoj geometriji - interdisciplinarnom podru£ju koje primjenjuje ideje diferencijalne

geometrije na statisti£ke probleme koje je odnedavno na²lo primjenu u �zikalnom opisu razli£itih

sustava u �zici, kemiji i biologiji. Budu¢i da se u nuklearnoj �zici metoda aproksimacije mod-

ela mnogostrukosti s rubom (MBAM) nedavno pokazala korisnom za klasi�kaciju i redukciju

kompleksnih modela kao ²to su EDF modeli atomske jezgre, podrobnije je istraºena statis-

ti£ka priroda odreživanja nepouzdanosti MBAM metodom na primjeru DD-PC1 funkcionala.

Takožer, koriste¢i automatsku diferencijaciju u kodu DD-PC1 funkcionala te MBAM metode,

dobiva se temeljitija i preciznija analiza nepouzdanosti samih parametara £ime se omogu¢ila

optimizacija vremena i numeri£ke preciznosti. S obzirom na novost same MBAM metode, prove-

deni su testovi stabilnosti zaklju£aka dobivenih MBAM geodezicima temeljeni na tehnikama

diferencijalne geometrije u podru£ju klasi£ne statistike te Bayesove statistike u vidu Markov

Chain Monte Carlo metode.



Pro²ireni saºetak

Uvod

Atomske jezgre je te²ko modelirati zbog toga ²to je nepoznat egzaktan oblik interakcije izmežu

nukleona te stoga postoje razli£iti pristupi ovom problemu, ovisno o poloºaju jezgre u karti

nuklida. Jednostavni modeli koriste se za lake jezgre, dok se za teºe koristi model ljusaka. Za

pokrivanje cijele karte nuklida koriste se nuklearni energijski funkcionali gusto¢e (EDF) [1].

Funkcionali gusto¢e nuklearne energije

Teorija funkcionala gusto¢e koristi se u �zici £vrstog stanja za rje²avanje fenomena vi²e elek-

trona minimiziranjem funkcionala gusto¢e elektrona. Nuklearni EDF-ovi aproksimiraju se

funkcionalima gusto¢a i struja osnovnog stanja nukleona i njihovim gradijentima. Poluempiri-

jski EDF-ovi su funkcionali koji slijede mikroskopski motivirani ansatz za nukleonsku gusto¢u,

a njihovi parametri empirijski su prilagoženi za reprodukciju dane jednadºbe stanja.

Kori²tenje relativisti£kog Lagrangiana srednjeg polja u modelu mezonske izmjene kona£nog

dometa pobolj²ava opis asimetri£ne nuklearne materije. Utvrženo je da modeli to£kastog vezanja

(PC) daju rezultate usporedive s modelima kona£nog dometa, a poluempirijski funkcional

gusto¢e energije DD-PC1 je £esto kori²teni funkcional ovog tipa koji uklju£uje stupnjeve slobode

nukleona i primjenjuje se na ²irok raspon atomskih jezgri.

Relativisti£ki model srednjeg polja

Funkcional relativisti£kog modela srednjeg polja atomske jezgre izveden je na temelju pret-

postavke klase modela to£kastog vezanja kori²tenih u sljede¢im poglavljima. Lagrangian mod-

ela to£kastog vezanja temelji se na skupu bilinearnih struja Diracovog spinora,k , koji se koristi

za opisivanje nukleona. Rezultiraju¢i Lagrangian podijeljen je na Lagrangian slobodne £estice,

bilinearnu struju, bilinearnu strujnu derivaciju i elektromagnetsku komponentu. Interakcijski

dijelovi Lagrangiana sastoje se od £etiri tipa fermionskih interakcija: izoskalar-skalar, izovektor-

vektor, izovektor-skalar i izovektor-vektor.



Razmatrana klasa modela to£kastog vezanja koristi samo £lanove drugog reda, zanemaruju¢i,

npr., ²est-fermionske i osam-fermionske vrhove, ali umjesto toga promovira konstante sprezanja

u funkcije gusto¢e nukleona.

Pretpostavke funkcionala DD-PC1

Funkcionali DD-PC de�nirani su posebnim skupom parametrizacijskih jednadºbi. Ove jed-

nadºbe koriste normaliziranu gusto¢u simetri£ne nuklearne materije, predstavljenu varijablom

x, za de�niranje interakcija izoskalar-skalar, izovektor-vektor i izovektor-skalar.

Funkcional gusto¢e energije DD-PC1 razvijen je i testiran u prora£unima srednje te²kih i

te²kih jezgri. Veza izovektor-vektor odrežena je iz empirijskih svojstava asimetri£ne nuklearne

materije, pri £emu su odreženi parametri postavljeni na nulu.

Statisti£ka analiza u nuklearnoj �zici

Tijekom pro²log desetlje¢a, statisti£ka analiza pogre²aka postala je sve vi²e prepoznata u is-

traºivanju EDF-ova zbog svoje sposobnosti kvanti�ciranja teoretskih pogre²aka, razlikovanja

sigurnih i rizi£nih ekstrapolacija, pruºanja analize osjetljivosti i pruºanja uvida u nestabilnosti

modela. To uklju£uje kori²tenje klasi£nog ili Bayesovog zaklju£ivanja za procjenu nesigurnosti

parametara i primjenu metoda redukcije modela temeljenih na konceptima informacijske ge-

ometrije.

Na primjer, aproksimacijska metoda mnogostrukosti s rubom razvijena je za prou£avanje

sloºenih i aljkavih problema koji se javljaju u �zici, kemiji i biologiji. Temelji se na geodezicima

u prostoru parametara modela i moºe se primjenjivati iterativno za pojednostavljenje modela

uz zadrºavanje preciznosti. Ove su tehnike dosad primijenjene na niz EDF modela, uklju£u-

ju¢i modele to£kastog vezanja ovisne o gusto¢i koje je te²ko analizirati kori²tenjem klasi£nih

statisti£kih tehnika.
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Informacijska geometrija

Kako bi se prona²ao najbolji model, statisti£ke analize £esto koriste metodu maksimalne vjero-

dostojnosti. Pritom se pretpostavlja da svako mjerenje slijedi normalnu distribuciju te se mini-

mizira funkcija log-vjerodostojnosti kako bi odredio najbolji model.

To£nost procjena moºe se provjeriti pomo¢u Cramer-Rao granice, koja uklju£uje Fisherovu

informacijsku matricu. MBAM metoda moºe se koristiti za pobolj²anje to£nosti, £ak i u modela

sa ²irokim rasponom vrijednosti matrice kovarijancije. U nuklearnoj �zici, postupak MBAM

metode kori²ten je za stvaranje u£inkovitih modela.

Algoritamska diferencijacija i modeli nuklearne strukture

Algoritamsko diferenciranje (AD) mo¢na je tehnika koja se koristi za u£inkovitu i to£nu procjenu

derivacija numeri£kih funkcija. Ova tehnika na²la je ²iroku primjenu u poljima kao ²to su

ra£unalna dinamika �uida, atmosferske znanosti, optimizacija inºenjerskog dizajna i strojno

u£enje.

AD iskori²tava £injenicu da se numeri£ka izra£unavanja formiraju iz kona£nog skupa el-

ementarnih operacija s poznatim jakobijanima, ²to omogu¢uje izra£unavanje jakobijana kom-

pliciranih izraza kori²tenjem lan£anog pravila za kompoziciju funkcija. Postoje dvije glavne

varijante AD-unaprijed i AD-unazad.

Python pruºa izvrsnu platformu za implementaciju AD tehnika pomo¢u paketa poput au-

tograda. Autograd je Python paket koji korisnicima omogu¢uje pisanje sloºenih funkcija, £ak

i kori²tenjem rekurzija. Moºe rukovati Python kodom koji sadrºi jednostavna izra£unavanja,

while petlje, rekurziju i if naredbe, kao i mnoge funkcije dostupne u bibliotekama numpy i scipy.

Autograd takožer omogu¢uje korisnicima da de�niraju potrebne derivacije u smislu auto-

gradovih funkcija, a derivacijama vi²eg reda upravlja se automatski. Uz Python i pakete poput

autograda, korisnici mogu jednostavno implementirati AD tehnike i izvesti to£ne i u£inkovite

derivacije svojih funkcija.
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Stabilnost aproksimacijske metode mnogostrukosti s rubom kod redukcije

modela nuklearne strukture

Modeli to£kastog vezanja [2; 3] mogu proizvesti rezultate usporedive s onima kona£nog dosega,

£ak i ako su PC interakcije prilagožene nuklearnoj materiji i svojstvima osnovnog stanja kona£nih

jezgri [4]. Projekt `Univerzalni funkcional gusto¢e nuklearne energije' (UNEDF) bio je usmjeren

na ²irok raspon pionirskih razvoja u EDF-u, uklju£uju¢i nesigurnost kvanti�kacija nuklearne

teorije [5; 6].

U posljednjem desetlje¢u, analiza statisti£kih pogre²aka, koriste¢i klasi£nu ili Bayesovu

paradigmu, po£ela je biti prepoznata u EDF istraºivanju radi kvanti�ciranja teoretskih pogre²aka,

razlikovanja sigurne i riskantne ekstrapolacije te zbog uvida u nestabilnosti modela [7�17].

Iako je u po£etku bila usmjerena na strojno u£enje i neuronske mreºe [18; 19], informa-

cijska geometrija je interdisciplinarno podru£je koji uvodi koncepte diferencijalne geometrije

na statisti£ke probleme [20; 21]. Nedavno je metoda aproksimacije metode mnogostrukosti s

rubom (MBAM) [22�24] razvijena za prou£avanje sloºenih i aljkavih problema koji se javljaju

u �zici, kemiji i biologiji [25�27] kako bi se klasi�cirali ili smanjili sloºeni modeli, kao ²to su

nuklearni EDF [28�30].

Prepreke uspostavljanju jedinstvenog teorijskog okvira za tretiranje nuklearnog problema s

vi²e tijela su sloºenost nukleon-nukleon interakcije u nuklearnom mediju i sprezanje izmežu

stupnjeva slobode jednog nukleona i kolektivnih stupnjeva slobode. Nuklearni EDF-ovi i modeli

strukture temeljeni na njima, postali su obe¢avaju¢i alat za opis svojstava osnovnog stanja i

niskoenergijska kolektivna pobuženja srednje te²kih i te²kih jezgri.

Nepoznati to£an nuklearni EDF aproksimira se funkcionalima sa£injenima od potencija i

gradijenata gusto¢e i struje nukleona u osnovnom stanju, a koji predstavljaju raspodjelu materije,

spina, izospina, impulsa i kineti£ke energije. Ve¢ina parametara semiempirijskog funkcionala

se pode²ava, u aproksimaciji lokalne gusto¢e, kako bi se reproducirala mikroskopska jednadºba

stanja (EoS), beskona£na simetri£na i asimetri£na nuklearna materija, a na kraju i neutronska

materija. Semiempirijski funkcionali koji su razvijeni tijekom posljednjeg desetlje¢a [5; 31�40]

vrlo su uspje²no primijenjeni na prou£avanje svojstava strukture, od grupiranja u relativno lake

jezgre do stabilnosti superte²kih sustava.
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U prethodnim studijama [28; 29], autori su koristili pojmove iz informacijske geometrije

kako bi pokazali da su nuklearni EDF-ovi, op¢enito, aljkavi [22�25; 41]. Izraz �aljkav" odnosi se

na £injenicu da su predvižanja nuklearnih EDF-ova i srodnih modela osjetljiva na samo nekoliko

kombinacija parametara (sti� kombinacije parametara) i pokazuju eksponencijalno smanjenje

osjetljivosti na varijacije preostalih kombinacija parametara (softkombinacije parametara). To

zna£i da susoft kombinacije parametara samo labavo ograni£ene dostupnim podacima te da

ve¢ina nuklearnih EDF-ova zapravo sadrºi modele niºe efektivne dimenzionalnosti.

U Ref. [28], koriste¢i MBAM [24] autori su izveli naju£inkovitiji funkcionalni oblik param-

etara vezanja ovisnih o gusto¢i reprezentativnog modela nuklearnog EDF-a. Podaci kori²teni

u ovom izra£unu uklju£ivali su skup to£aka na mikroskopskoj jednadºbi stanja simetri£ne nuk-

learne materije i neutronske materije.

U Ref. [29] smo pro²irili ovaj izra£un kori²tenjem jednostavnih numeri£kih aproksimacija za

izra£unavanje derivacija observabli s obzirom na parametre modela. Tako smo bili u mogu¢nosti

primijeniti MBAM na realne modele ograni£en ne samo nuklearnom jednadºbom stanja nego

takožer opaºanjima izmjerenim u kona£nim jezgrama. Tijekom na²e analize parametarizacija

u Ref. [29] primijetili smo da je numeri£ka integracija geodezijske jednadºbe mogla doseg-

nuti granicu mnogostrukosti u kona£nom broju koraka integracije, ²to ukazuje na divergenciju

determinante metrike u odreženoj regiji prostora parametara. Ovo iznenažuju¢e pona²anje mo-

tiviralo je istraºivanje stabilnosti dobivenih redukcija modela MBAM metodom, budu¢i da se

divergentno podru£je moºe nenamjerno propustiti kori²tenjem prevelikih koraka integracije.

U ovom poglavlju primijenili smo informacijsko-teorijske metode kako bismo istraºili sta-

bilnost redukcija modela MBAM metodom. U ilustrativnom primjeru modela to£kastog vezanja

ovisnog o gusto¢i relativisti£kog nuklearnog EDF-a, koriste¢i Monte Carlo simulacije, utvrženo

je da su glavni zaklju£ci dobiveni iz MBAM postupka stabilni na varijacije parametara modela.

Nadalje, nalazimo da kraj geodezika MBAM metode nastaje kada determinanta Fisherove infor-

macijske metrike i²£ezava, £ime se u£inkovito odvaja prostor parametara na dvije nepovezane

regije.
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Klasi£na i Bayesova analiza pogre²ke relativisti£kog modela srednjeg polja

za dvostruko magi£ne jezgre

Nuklearni EDF-ovi na²iroko su kori²teni okvir za opisivanje fenomena nuklearne strukture.

Budu¢i da se izmjena te²kih mezona ne moºe razrije²iti pri niskim energijama, samosuglasni

relativisti£ki okvir srednjeg polja moºe se formulirati u smislu PC nukleonske interakcije. Ovaj

pristup daje rezultate usporedive s pristupom vezanja mezonske izmjene za kona£ne jezgre

[2; 3]. Rezultiraju¢i `najprikladniji model' [kao ²to je DD-PC1 funkcional, vidi, npr. 42]

zahtijeva �no pode²avanje ovisnosti o gusto¢i interakcije izoskalar-skalar i izovektor-vektor

termina za nuklearnu materiju i svojstva osnovnog stanja kona£nih jezgri.

Pitanje kvanti�kacije nesigurnosti u nuklearnim EDF-ovima nedavno je privuklo pozornost,

fokusiraju¢i se na prou£avanje procjena pogre²ke statisti£kom analizom [10; 11], procjena

sustavnih pogre²aka [8; 9] i analiza korelacije [9; 43]. Mežutim, statisti£ka analiza je izazovnija

za PC modele jer je utvrženo da oni pokazuju eksponencijalni raspon osjetljivosti na varijacije

parametara [42]. Utvrženo je da je ovo pona²anje zna£ajka aljkavih modela [44].

Nedavni napredak u razumijevanju pona²anja aljkavih modela [23; 25; 26; 45] doveo je

do novih pristupa analizi kao ²to je MBAM metoda [24]. MBAM je ve¢ kori²ten za sustavnu

konstrukciju u£inkovitih funkcionala nuklearne gusto¢e sve niºih dimenzija i manjeg utjecaja

aljkavosti. To je ilustrirano na funkcionalu DD-PC1 procijenjenom na pseudo-podacima za

beskona£nu simetri£nu nuklearnu materiju [28].

U prethodnom poglavlju istraºena je ukupna stabilnost MBAM procedure primijenjene u

redukciji modela nuklearne strukture koriste¢i metode informacijske geometrije i Monte Carlo

simulacija. Za razliku od jednostavnog slu£aja beskona£ne nuklearne materije, gdje bismo

morali rije²iti samo jednostavnu iterativnu proceduru za dobivanje Diracove mase i energije

vezanja, kona£ne jezgre zahtijevaju paºljiv opis nuklearnog problema vi²e tijela.

vi



Op¢enito govore¢i, statisti£ka analiza moºe se izvesti ili u Bayesovom okviru - kori²ten-

jem razraženih Monte Carlo simulacija ili u �klasi£nom" okviru, dobivenom izra£unavanjem

Fisherove informacijske matrice (FIM) i njezinog inverza (matrice kovarijance) iz odabrane

statistike modela [vidi, npr., 9]. Potonji bi pristup trebao, u na£elu, oduzimati manje vremena

od izvoženja velike Monte Carlo simulacije. Mežutim, kada se ra£una FIM, potrebno je izvri-

jedniti prve derivacije odabranog statisti£kog modela, bilo numeri£ki ili analiti£ki. Poku²aj

jednostavnog pro²irenja postoje¢ih implementacija RMF kodova napisanih u Fortranu [46�49]

uveo bi nesigurnosti zbog upotrebe numeri£ke diferencijacije. Stoga smo odlu£ili implementirati

jednostavnu verziju RMF koda u Pythonu, u kojemu ve¢ postoje dobro testirane biblioteke za

algoritamsku diferencijaciju (AD).

Pro²iruju¢i na² prethodni rad [50], koji se bavio primjenom informacijske geometrije na EDF

u slu£aju nuklearne materije, ovdje smo predstavili statisti£ku analizu jednostavnog postupka za

odreživanje RMF energije vezanja za skup dvostruko magi£nih jezgri s Woods-Saxon potenci-

jalom. Usporedili smo procjene pogre²ke izmežu brºeg postupka koji koristi FIM i numeri£ki

zahtjevnije Bayesove MCMC metode.

ƒak i u sloºenom slu£aju kona£nih jezgri, nesigurnosti EDF parametara mogu se pouz-

dano procijeniti kori²tenjem FIM-a u kombinaciji s algoritamskom diferencijacijom. Predloºeni

pristup analizi gre²aka ima prednost u izbjegavanju dugotrajnog uzorkovanja prostora param-

etara, kakav zahtijevaju Bayesove statisti£ke tehnike.
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Chapter 1

Introduction

The quantitative description of nuclear structure is one of the most complex quantum-mechanical

many-body problems for which the exact solutions are unavailable, and the exact nucleon-nucleon

interaction is unknown. Therefore, many possible approaches to describing nuclei exist in the

literature, and this choice is strongly impacted by the position of the modeled nucleus in the

chart of nuclides. For example, very light nuclei are often described by exactly solvable ab

initio models based on the assumed nucleon-nucleon interaction. In contrast, heavier nuclei

are usually characterized by the shell model based on the e�ective interaction whose matrix

elements need to be adjusted for di�erent regions of the chart of nuclides. If a single model that

can encompass the entire chart of nuclides is needed, the only available choice is the class of

models based on the nuclear energy density functionals [EDFs, 1].

1.1 Nuclear energy density functionals

The density functional theory is a theory �rst developed to treat many-electron phenomena

in solid-state physics, wherein the solutions to the many-body problem are transformed to

a minimization of the functional of the electron density. Being an approximation method,

the exact nuclear energy density functional (EDF) is unknown. It is therefore approximated

by functionals of powers of ground-state nucleon densities and currents and their gradients,

representing distributions of matter, spin, isospin, momentum, and kinetic energy. A particular

1



1.2. The relativistic mean-�eld model

EDF need not be related to the microscopic interactions between nucleons, and many are

therefore motivated empirically.

The semi-empirical EDFs represent an intermediate class of functionals that follow a mi-

croscopically motivated ansatz for nucleonic density. Their parameters are empirically adjusted

to reproduce a given equation of state. Among the various possible nuclear EDFs, using the

relativistic mean-�eld Lagrangian in the �nite-range meson-exchange model has been found

to improve the description of asymmetric nuclear matter [52]. This result has been possible

using density-dependent meson-nucleon couplings [53]. In the last decade, many successful

semi-empirical EDFs have been developed [5; 31; 33�40; 54], and successfully applied to study

a diversity of structure properties, from clustering in relatively light nuclei to the stability of

superheavy systems, and from bulk and spectroscopic properties of stable nuclei to the physics

of exotic nuclei at the particle drip lines.

Although approximating the �nite-range e�ects of the interactions by contact interaction,

a simpler class of point-coupling (PC) models has been found to produce comparable results

to the �nite-range models [2; 3], even if the point-coupling interactions are being adjusted

to nuclear matter and ground-state properties of �nite nuclei [4]. The semi-empirical energy

density functional DD-PC1 [54] is an often-used point-coupling functional that includes nucleon

degrees of freedom and considers only second-order interaction terms, and that applies to a wide

range of atomic nuclei [55].

1.2 The relativistic mean-�eld model

In this section, the functional of the relativistic mean-�eld model of the atomic nucleus is

described. This section covers the derivation based on assuming the class of the point-coupling

models used in the following chapters.

The relativistic Lagrangian governing point-coupling models is based on a set of bilinear

currents of the Dirac spinor,k , used to describe nucleons

�k Og� k–Og 2 f1– g8g–� 2 f1– Ẁ– W5– W5Ẁ– f`a g• (1.1)

whereg8are the Pauli matrices for isospin, and� are the Dirac matrices. The resulting Lagrangian

2



1.2. The relativistic mean-�eld model

may be divided into the free-particle,L 5 A44, bilinear current,L 45, bilinear current derivative,

L 34A, and the electromagnetic,L 4< , components [54]

L = L 5 A44̧ L 45 ¸ L 34A¸ L 4< • (1.2)

The interacting parts of the Lagrangian are composed of the four types of fermion interactions:

the isoscalar-scalar,¹ �kk º2, isovector-vector,¹ �kẀ k º¹ �kẀ k º, isovector-scalar,¹ �k ®gkº � ¹ �k ®gkº,

and the isovector-vector type,¹ �k ®gẀk º � ¹ �k ®gẀk º.

In the point-coupling class of models, the interacting terms are added to the Lagrangian by

multiplying the bilinear currents by their respective couplings (X( , U( , U+ , U) ( andU)+ ) that are

dependent on the baryon density,d̂, de�ned as

d̂D̀ = �kẀ k– (1.3)

whereD̀ is the four-velocityD̀ = ¹1 � E2º� 1•2¹1–®Eº. The considered class of point-coupling

models uses only second-order terms, disregarding, e.g., six-fermion and eight-fermion vertices,

but instead promotes the coupling constants to functions of nucleon density [54]. These models

consider the same building blocks as the meson-exchange models, wherein the single-particle

properties are tied to the three meson �elds: the isoscalar-scalarf meson, the isoscalar-vector

l meson, and the isovector-vectord meson, without the isovector-scalar term [4].

Using the notation outlined above, the components of the Lagrangian are expanded as

L 5 A44= �k ¹8Ẁm̀ � " ºk– (1.4)

L 45 = �
1
2

U( ¹ d̂º¹ �kk º¹ �kk º �
1
2

U+ ¹ d̂º¹ �kẀ k º¹ �kẀ k º

�
1
2

U) ( ¹ d̂º¹ �k ®gkº � ¹ �k ®gkº �
1
2

U)+ ¹ d̂º¹ �k ®gẀk º � ¹ �k ®gẀk º– (1.5)

L 34A= �
1
2

X( ¹ d̂º¹ma �kk º¹ma �kk º ¸ $ ¹m2º– (1.6)

L 4< = 4� ` �k
1 ¸ g3

2
Ẁk �

1
4

� `a � `a – (1.7)

where the derivative LagrangianL 34Awas expanded out to the �rst derivative terms.

3



1.2. The relativistic mean-�eld model

The equation of motion for the nucleons can be found by varying the Lagrangian by�k ,

yielding an equation

»Ẁ¹8m̀ � + ` º � ¹ < ¸ ( º¼k = 0– (1.8)

where the following abbreviations were introduced

( = � ( ¸ ®g � ®� ) ( ¸ � A(– (1.9)

+ ` = � ` ¸ ®g � ®� ( ¸ � A(– (1.10)

where the components were further separated into isoscalar-vector,� ` , isoscalar-scalar� ( ,

isovector-vector,� `
) , isovector-scalar,� ) ( , isoscalar-scalar derivative components� A( and� `

A:

� ` = U+ ¹ �kẀ k º � 4 � ` 1 ¸ g3

2
– (1.11)

®� `
) = U)+ ¹ �k ®gẀk º– (1.12)

� ( = U( ¹ �kk º � X( � ¹ �kk º– (1.13)

®� ) ( = U) ( ¹ �k ®gkº– (1.14)

� A( = �
mX(
md̂

¹ma 9̀ ºD̀ ¹ma¹ �kk ºº– (1.15)

� `
A = D̀

2

�
mU(
md̂ ¹ �kk º¹ �kk º ¸ mU)(

md̂ ¹ �k ®gkº � ¹ �k ®gkº

¸ mU+
md̂ ¹ �kWak º¹ �kWak º ¸ mU)+

md̂ ¹ �k ®gWak º � ¹ �k ®gWak º

¸ mX(
md̂ ¹ma¹ �kk ºº¹ma¹ �kk º

�
• (1.16)

In the rest frame, the only contribution to the currents is from the densities. Therefore, in

the ground state of the nucleus,� , the following densities can be introduced

d( = h� j �kk j� i = d?
B ¸ d=

B– (1.17)

d = h� j �kW0k j� i = d? ¸ d=– (1.18)

dB3 = h� j �kg3k j� i = d?
B � d=

B– (1.19)

dCE= h� j �kg3W0k j� i = d? � d=• (1.20)
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1.3. Pairing

In the rest-frame, the single-particle energies,n8, can therefore be found by solving the Dirac

equation,

¹U � p ¸ V<� ¹Aº ¸ + ¹Aºº k 8 = n8k– (1.21)

where the potential+ and the e�ective mass,< � are given by

+ ¹Aº = U+ d ¸ U)+ g3d)+ ¸ 4 � 0 ¸
1
2

�
mU(
md

d2
( ¸

mU+
md

d2
+ ¸

mU)+
md

d2
)+

�
(1.22)

< � ¹Aº = < ¸ U( d( ¸ X( r 2d( • (1.23)

The associated energy density functional in the rest frame is

� '" � =
¹

33G
Õ

8

k y
8¹U�p¸ V<ºk 8̧

1
2

�
U( d2

( ¸ U+ d2
+ ¸ U)+ d2

)+ ¸ X( d( r 2d( � ¹r � 0º2 ¸ 4 � 0d?
�

•

(1.24)

1.3 Pairing

Pairing is a necessary ingredient for studying nuclei with open shells and is therefore necessary

to describe nuclei that are not doubly magic [56].

In the constant gap approximation [57], each single-particle state is occupied according to

the occupation probabilityE2
8, calculated using the BCS formula

E2
8 =

1
2

 

1 �
n8 � _

p
¹n8 � _º2 ¸ � 2

!

– (1.25)

where_ is the chemical potential and� the gap parameter. The chemical potential is determined

separately for protons and neutrons by �nding a solution of the equations for the chemical

potentials for protons and neutrons
Õ

8

E2
8–?¹_?º = / (1.26)

Õ

8

E2
8–=¹_=ºº = #– (1.27)

so that the total number of neutrons and protons is conserved. The pairing energy can then be

computed from a simple expression

� ?08A= � �
Õ

8

¹E8D8º2– (1.28)
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1.4. The assumptions of the DD-PC1 functional

whereD8 is the complement of the occupation probabilities,D2
8 = 1 � E2

8, and� is a constant

determined from the self-consistency condition

� = �
Õ

8

D8E8• (1.29)

Since the sum necessary for computing the pairing energy diverges, one often introduces cuto�

energy [46; 56].

1.4 The assumptions of the DD-PC1 functional

The density-dependent point coupling (DD-PC) functionals are de�ned by the following parametriza-

tion [4]

UB¹dº = 0B¸ ¹ 1B¸ 2Bº4� 3BG– (1.30)

UE¹dº = 0E ¸ 1E4� 3EG– (1.31)

UCE¹dº = 1CE4� 3CEG– (1.32)

where the density has been normalized by the saturation density in symmetric nuclear matter,

dB0C, as

G=
d

dB0C
• (1.33)

An optimal energy density functional of the DD-PC class, DD-PC1, has been determined from

a �t to the masses of 64 axially deformed nuclei and tested in calculations of properties of

spherical and deformed medium-heavy and heavy nuclei [4]. The density dependence of the

isovector-vector coupling has been inferred from empirical properties of asymmetric nuclear

matter with the0)+ and2)+ parameters being set to zero to calculations of asymmetric nuclear

matter [58] - an already established procedure for density-dependent couplings [59].
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1.5. Statistical analysis in nuclear physics

1.5 Statistical analysis in nuclear physics

In the last decade, statistical error analysis, either employing classical or Bayesian inference,

has started to be recognized [11] in EDF research for its ability to quantify theoretical errors,

distinguish safe and risky extrapolations, provide sensitivity analysis, and o�er insight into

model instabilities [7�9; 11�13; 15]. For example, a recent paper [13] estimated the con�dence

intervals of the mean-�eld single-nucleon energies in the chain of superheavy nuclei using the

Monte Carlo techniques. They have, however, been restricted to the Woods-Saxon nuclear

mean-�eld model to reduce computational complexity. The Bayesian approach for estimating

parameter uncertainties is to assume a prior distribution of parameters and then sample the

posterior distribution. Such a procedure has been applied, e.g., to study the liquid drop model

and the Skyrme functional [15].

The density-dependent point-coupling models are di�cult to analyze using classical statis-

tical techniques. This behavior has been tied to an exponential range of sensitivity to parameter

variations, prompting the application of model reduction methods based on concepts of infor-

mation geometry [28; 29]. Information geometry is an interdisciplinary �eld that introduces

di�erential geometry concepts to statistical problems [20; 21]. While its initial applications

centered around machine learning and neural networks [18], it has recently started being applied

to various questions in physics. For example, the Manifold Boundary approximation method

(MBAM) [22�24] has been developed to study complex and sloppy problems occurring in

physics, chemistry, and biology [25; 26] to either classify or reduce complex models, including

EDFs [28; 29]. The method is based on geodesics in the space of model parameters (model

manifold), equipped with the Fisher information metric (FIM). Its eigenvalues are computed at

the best-�tting model point, and the geodesic equation is solved in the direction of the FIM eigen-

vector corresponding to the largest uncertainty eigenvalue. After a long-enough integration, the

geodesic either reaches the end of the model manifold, breaking the integration procedure, or

the components of the eigenvector stabilize. In either case, the method establishes the single

parameter (or combination of parameters) that is the biggest contributor to the uncertainty of

the model. This constraint is then used to simplify the model, and the procedure can be applied

iteratively as long as the resulting model describes the initial dataset to the wanted precision.
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Chapter 2

Information geometry

To �nd the best model, statistical analyses often use the maximum likelihood method. This

assumes that each measurement follows a normal distribution. They maximize the log-likelihood

function over a range of possible values to determine the best model. The accuracy of the

estimates can be checked with the Cramer-Rao bound, which involves the Fisher information

matrix. The manifold boundary approximation method can be used to improve accuracy, even

with a wide range of covariance matrix values. In nuclear physics, the MBAM procedure was

used to create e�ective models with tightly constrained parameters.

2.1 Maximum likelihood method

Model selection is usually performed using the maximum likelihood method, with the assump-

tion that at the0-th measurement the data¹G0– H0º can be described using a normal distribution,

denoted byN , by a model function5¹G0–pº � 50¹pº asH0 � N
�
50¹pº–¹f 0º2

�
. Here,f 0 is the

uncertainty of each measurement, andp is chosen from an appropriate parameter space, denoted

by M . Finding the best-�tting model is equivalent to maximizing the following log-likelihood

function; ¹pº overp 2 M ,

; ¹pº =
Õ

0

ln q
�
H0 � 50¹pº

f 0

�
– (2.1)

with q a Gaussian probability density. To simplify the notations, we shall use indices from

the beginning of the Latin alphabet for measurements, and the Greek letters for derivatives
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2.1. Maximum likelihood method

m
mp` , shortened tom̀ . In order to assess the accuracy of parameter estimates, one can utilize

the Cramer-Rao bound. This involves expanding the log-likelihood to the second order by

means of the Hessian. A comprehensive explanation of this approach can be found in Amari's

publication [21] regarding information applications. Using the Hessian of the log-likelihood,

we can compute the quantity

6`a ¹pº =
Õ

0

m̀ 50ma 50

¹f 0º2
• (2.2)

which is referred to as the Fisher information matrix (FIM).

2.1.1 Information geometry

Information geometry can aid in the interpretation of this basic picture. The function; ¹pº serves

as a link between the manifolds,M andN . Furthermore, the di�erential form, i.e.,3; = m̀ ;3p` ,

forms a basis for the cotangent bundle onN , labeled as) � N , while the FIM serves as a metric on

N . When dealing with mathematical equations in the context of Special and General relativity,

it is common to use the same index repeatedly to indicate summation with respect to that index

(Einstein's convention). This convention will be followed throughout this discussion. To create

a metric on the parameter space, denoted byM , we use the functional form of the log-likelihood.

This involves computing the expectation value with respect toN [21]:

6 � � »3; 
 3;¼•

The pullback operation,; � , then induces a metric6¹pº 2 ¹) � Mº 2 onM , as

6¹pº = 6`a 3p` 
 3pa = � »m̀ ;ma;¼3p` 
 3pa = ; � 6•

In this procedure, we provide the model manifoldM with a tangent bundle containing the basis

m̀ 2 ) M and a cotangent bundle consisting of the dual basis3p` 2 ) � M . As the normal

family is included in the exponential family,M is a submanifold embedded withinN and forms

part of the curved exponential family [20].

Di�erential geometry involves the study of the tangent spaces of nearby points in a given

spaceM . These tangent spaces are interconnected through the covariant derivative, which is

10



2.1. Maximum likelihood method

denoted asr - and involves an arbitrary direction- . To put it simply, the covariant derivative

operates on a tangent vector. 2 ) M using the following formula:

r - ¹. º = r - ¹. ` m̀ º = - ama¹. ` ºm̀ ¸ � ^
`a - ` . am̂•

This formula essentially describes how the covariant derivative works on the tangent vector.

by taking into account the direction- . It involves a combination of partial derivatives of. and

the Christo�el symbols� ^
`a , which represent the curvature of the spaceM . The quantity� ^

`a

stands for the Christo�el symbol when the metric-compatible connection with the condition

r - ¹6º = 0

is chosen (for details, see, e.g., Ref. [60]). For the FIM, the Christo�el symbols are given by

� ^
`a ¹pº = 6^d

Õ

0

md 50m̀a 50

¹f 0º2
– (2.3)

where6^d = ¹6� 1º^d denotes the inverse of the metric.

We also perform calculations of the Riemann curvature tensor and scalar curvature along

the geodesic path. The Riemann curvature tensor is utilized for vectors X, Y, and Z in T(M)

using the following formula:

' ¹-– . º/ = »r - –r . ¼/ � r »-–. ¼/ •

The components of the Riemann tensor are expressed as

' `ad^ =
Õ

01

%01
�
m̀d

50

f 0 ma^
51

f 1
� m̀^

50

f 0 mad
51

f 1

�
– (2.4)

where%01 denotes the projection operator

%01 = X01 � 6`a m̀
50

f 0 ma
51

f 1
• (2.5)

The Ricci scalar (or scalar curvature) is computed simply as

' `ad^6`d 6a^ • (2.6)
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2.1. Maximum likelihood method

Figure 2.1: The initial (best-�t point) and �nal (at the boundary of the model manifold) eigen-

spectrum of the FIM for the DD-PC1 functional, with seven parameters in the isoscalar channel

(left panel), and the initial and �nal eigenvectors that correspond to the smallest eigenvalues

(panels on the right). Figure adapted from [28].
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2.1. Maximum likelihood method

Figure 2.2: The initial (best-�t point) and �nal (at the boundary of the model manifold) eigenspec-

trum of the FIM for the ten-parameter functional (panel (a)). The eigenvectors that correspond

to the initial and �nal smallest eigenvalues are shown in panels (b) and (c). Figure adapted from

[29].
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2.2. The manifold boundary approximation method

2.2 The manifold boundary approximation method

When dealing with large parameter uncertainties, it is often helpful to utilize model reduction

procedures to enhance accuracy in parameter estimation. By implementing the MBAM method,

parameters can be e�ectively constrained across a range of physical disciplines. Speci�cally, this

method calculates the geodesic through solving the geodesic equation from the best-�tting point

in the model manifold. This approach can lead to improved accuracy in parameter estimation,

even when dealing with a wide spectrum of covariance matrix values. In the cases where the

covariance matrix, and therefore the corresponding FIM, have a spectrum spanning many orders

of magnitude [45], model reduction procedures can improve parameter estimates. The method

computes the geodesic by solving the geodesic equation,

r ¤p ¤p = 0–

by starting from the best-�tting (bf) point in the model manifold,

pbf � p`
bfm̀ •

Note that the dot onp represents the di�erentiation with respect the a�ne parametrization of

the geodesic. The geodesic equation, written in parameter components as

¥p^ ¸ � ^
`a ¤p` ¤pa = 0– (2.7)

is solved with the¤p initial conditions pointing in the direction of the FIM eigenvector,E0,

corresponding to its smallest eigenvalue. The largest eigenvalue of the covariance matrix is the

main cause of uncertainty in the model parameters. To determine the parameter or combination

of parameters that contribute the most to the uncertainty, we track the behavior ofE0 along the

geodesic. Once identi�ed, we eliminate this parameter from the model, resulting in a simpler

model with lower parameter uncertainties. This process can be repeated until the simpli�ed

model accurately describes the data set.
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2.2. The manifold boundary approximation method

2.2.1 MBAM method and density functionals

The MBAM procedure was previously used in nuclear physics [28] to create e�ective models

with fewer dimensions. It involved identifying best-�t parameters, reaching the model manifold

boundary, creating a new model with one less parameter, and �tting it to the data. The procedure

was successful in eliminating model sloppiness. The analysis was extended to include ground-

state properties of �nite nuclei, leading to similar results for a ten-parameter model [29].

In the context of the DD-PC1 functional, the MBAM procedure was applied [28] by con-

structing e�ective models of successively lower dimension until sloppiness can eventually be

eliminated, and all linearly independent parameter combinations are tightly constrained. They

applied the MBAM procedure in four distinct steps. In the �rst step, they identi�ed the best-�t

parameters as well as the accompanying Hessian matrix of thej 2 function. In the second step,

they integrated the geodesic equation using the parameter values at the best-�t point and the

eigendirection with the smallest eigenvalue as initial conditions until the boundary of the model

manifold was reached. In the third step, the model limit associated with the model boundary

was evaluated to produce a new model with one less parameter, while, in the fourth step, the

new model was �t to the data and used as a starting point for the next iteration. The manifold

boundary corresponds to a limit in which one or more parameters tend to limit values, and

they found that the parameter2B tended to zero. In Fig. 2.1, they plot the initial and �nal (at

the boundary) eigenspectrum of the FIM in the left panel and the initial and �nal eigenvectors

corresponding to the smallest eigenvalues (panels on the right). At the boundary of the model

manifold, only the component2B determines the decoupled eigendirection with the eigenvalue

of the FIM approaching zero. The analysis was later extended [29] by including the data on

ground-state properties of �nite nuclei, which enabled the application of the MBAM procedure

to the ten-parameter DD-PC1 model, with the initial and �nal eigenspectrum of the FIM shown

in Fig. 2.2.
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Chapter 3

Algorithmic di�erentiation and nuclear

structure models

Algorithmic di�erentiation (AD) is a powerful technique used for the e�cient and accurate

evaluation of derivatives of numeric functions. It has found widespread applications in �elds

like computational �uid dynamics, atmospheric sciences, engineering design optimization, and

machine learning. AD exploits the fact that numerical computations are formed from a �nite

set of elementary operations with known derivatives, making it possible to compute derivatives

of complicated expressions using the chain rule for the composition of functions. There are two

main variants of AD - the forward and reverse mode ADs.

Python provides an excellent platform for implementing AD techniques using packages like

autograd. Autograd is a Python package that enables users to write complex functions, even using

recursions. It can handle Python code containing simple computations, while loops, recursion,

and if statements, as well as list indexing operations and many functions available in the numpy

and scipy libraries. Autograd also allows users to de�ne the required derivatives in terms of

autograd functions, and higher-order derivatives are handled automatically. With Python and

packages like autograd, users can easily implement AD techniques and derive accurate and

e�cient derivatives of their functions.
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3.1 The concept of algorithmic di�erentiation

Algorithmic di�erentiation (AD, also called automatic di�erentiation) is a family of techniques

developed for the e�cient and accurate evaluation of derivatives of numeric functions [61].

AD has already found applications in �elds like computational �uid dynamics, atmospheric

sciences, engineering design optimization, and machine learning [62].

The AD technique exploits the fact that the numerical computations are formed from a �nite

set of elementary operations with known derivatives [63; 64], reducing the computation of

derivatives of complicated expressions to the chain rule for the composition of functions. The

computational realization of AD comes in two di�erent variants, the forward and reverse mode

ADs.

For a given function5 : R= ! R< , with the appropriate domain,f e8g, and codomain,f E9g

bases, the forward mode vector jacobian product (VJP) is a function of two variables inR= that

produces codomain vectors,J� = � 5 –8
� E8 : R= � R= ! R<

J 5
� ¹x–rº = E8�

5
� ¹x–rº8 = E8

m 58

mG9

�
�
�
G
A9– (3.1)

while the reverse mode VJP� ' : R= � R< ! R< evaluates as a domain vector� 5
' ¹x–rº 2 R=

and is de�ned as

J 5
' ¹x–rº = � 5

' ¹x–rº9e9 = A8m 58

mG9

�
�
�
G
e9– (3.2)

wherex 2 R= andr 2 R< . For example, a simple composition of functionsH= 51¹ 52¹Gºº is

simply di�erentiated by the chain rule as

mH8

mG9
=

m 581
mA:

¹ 52¹Gººº
m 5:2
mG9

¹Gº• (3.3)

In the forward mode, the di�erentiation is realized as a composition of jacobians of the form

J 51� 52
� ¹x–rº = J 51

�

�
52¹xº–J 52

� ¹x–rº
�

– (3.4)

while in the reverse mode, the di�erentiation yields the following composition of jacobians:

J 51� 52
' ¹x–rº = J 52

'

�
x–J 51

' ¹ 52¹xº–rº
�

• (3.5)
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Figure 3.1: Error estimates of the derivative of the eigenvalues,_, of the matrix" ¹Cº = � ¸ C�

as a function of the numeric di�erentiation step,� . The �gure shows the mean of absolute

di�erences between the solution obtained using automatic di�erentiation and the numerical

solution dependent on� .
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Figure 3.2: Error estimates of the derivative of the eigenvectors,E, of the matrix" ¹Cº = � ¸ C�

as a function of the numeric di�erentiation step,� . The �gure shows the mean of the absolute

di�erence between the solution obtained using automatic di�erentiation and the numerical

solution dependent on� . 19



3.2. Python implementation of AD

The use of VJPs enables clear and e�ective implementations of derivatives of simple func-

tions that can be extended by the user if needed by simply writing a jacobian of an arbitrarily

complicated function as either a forward-mode or reverse-mode VJP.

3.2 Python implementation of AD

The autograd package1 is a Python package that implements the algorithmic di�erentiation

techniques. Autograd has been developed in order to bring automatic di�erentiation techniques

to Python that can handle Python code containing both simple computations, such as for loops,

while loops, recursion, and if statements, as well as list indexing operations and many functions

available in the numpy and scipy libraries [65].

The autograd package gives the user the opportunity to write complicated functions, even

using recursions. For example, in the application to nuclear structure codes, it was necessary

to de�ne the associated Laguerre polynomials,! U
= ¹Gº, and their derivatives using recurrence

relations using the expression

! U
= ¹Gº =

8>>>>>>><

>>>>>>>
:

1– == 0

1 ¸ U� G– == 1

¹2=� 1¸ U� Gº
= ! U

=� 1¹Gº � ¹=¸ U� 1º
= ! U

=� 2¹Gº– = ¡ 1

• (3.6)

Only the �rst derivative needed to be de�ned in terms of autograd functions, and the higher-

order derivatives are handled automatically by autograd.

1https://github.com/HIPS/autograd
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3.2. Python implementation of AD

The Python implementation of the associated Laguerre polynomials is given below.

import autograd.numpy as np

def Laguerre(x,n,alpha):

if n==0:

return 1

if n==1:

return 1+alpha-x

return ((2*n-1+alpha-x)*Laguerre(x,n-1,alpha)\

-(n+alpha-1)*Laguerre(x,n-2,alpha))/(n)

An example of a situation where extending autograd was necessary is the case of the

derivatives of the eigenvalue problem. The function that needed to be extended is the numpy

function eigh, giving the list of eigenvalues and the associated eigenvectors as two parameters.

First, the function was wrapped to produce a single matrix as an output, with eigenvalues on the

diagonal merged with the transition matrix+ . For a# � # matrix, labeled� , this reshaping of

outputs yields a function

eigh¹� º8 9=

8>>><

>>>
:

_8X8 9– 9 Ÿ #

+8– 9� # – 9� #
• (3.7)

Its derivative is then implemented as a VJP,D<=m8486�¹� º<= , based on the derivative formula

m8eigh¹� º<= =

8>>>><

>>>>
:

Í

: ;
+:= m8� : ; +;=X9<– = Ÿ #

Í

9<<

Í

: ;
+:< m8� : ; +; 9+¹=� # º 9

1
� < � � 9

– # � =
– (3.8)

where the sums have been written with no Einstein summation implied. The AD implementation

of theeighderivative was tested on random 5x5 matrices,� and� , merged into a function of the

form 5¹Cº = � ¸ C� compared to the numeric derivatives using a �nite symmetric step size� .

The test of the implementation of eigenvalue derivatives is shown in Fig. 3.1. In contrast, their

corresponding eigenvector derivatives are shown in Fig. 3.2. The errors are minimal around the

�oating-point precision of� 10� 5 in both �gures, as expected from numerical implementations.

The Python implementation of this procedure is realized by the@primitivedecorator and the
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3.2. Python implementation of AD

use of functiondefvjpthat connects the function of the jacobian VJP to the original function.

Since the matrices for which this function is applied are assumed to be hermitian, the imaginary

parts ofeighwere removed from the implementation:

import autograd as au

import autograd.numpy as np

from autograd.extend import primitive,defvjp

@primitive

def eighReal(theta,H):

h = H(theta)

e,V = np.linalg.eigh(h)

return np.array([np.diag(e),np.real(V)])

def eighdkReal(Eval,theta,H):

evals, vects = np.diag(Eval[0]),Eval[1]

dh = au.jacobian(H)(theta)

dEs = np.array([[([vects[:,j].T@dh[:,:,i]@vects[:,j] if j==m else 0.

for i in range(len(theta))])

for j in range(len(evals)) ]

for m in range(len(evals))])

Vs = np.array([np.sum([[vects[:,n]*(vects[:,m].T@dh[:,:,i]@vects[:,n])\

/(evals[m]-evals[n])

for i in range(len(theta))]

for n in range(len(evals)) if m!=n],axis=0).T

for m in range(len(evals))]).transpose(1,0,2)

def out(u):

o=np.tensordot(u,np.array([dEs,np.real(Vs)]),[[0,1,2],[0,1,2]])

return np.real(o)

return out

defvjp(eighReal,eighdkReal)
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Chapter 4

Stability of the manifold boundary

approximation method for reducing the

nuclear structure models

The framework of nuclear energy density functionals has been employed to describe nuclear

structure phenomena for a wide range of nuclei. Recently, statistical properties of a given nuclear

model, such as parameter con�dence intervals and correlations, have received much attention,

particularly in the situations where one needs to �t complex models. We apply information-

theoretic methods to investigate stability of model reductions by the manifold boundary approx-

imation method (MBAM). In an illustrative example of the density-dependent point-coupling

model of the relativistic energy density functional, utilizing Monte Carlo simulations, it is found

that main conclusions obtained from the MBAM procedure are stable under variation of the

model parameters. Furthermore, we �nd that the end of the geodesic occurs when the determi-

nant of the Fisher information metric vanishes, thus e�ectively separating the parameter space

into two disconnected regions.

This chapter has been published in our recent paper [50].
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4.1 Introduction

The nuclear energy density functional (EDF) framework is a promising, uni�ed theoretical

approach for a global description of nuclear structure phenomena. One of the successful EDFs

has been the one that is based on the relativistic mean-�eld Lagrangian in the �nite-range

meson-exchange model [53], with the density-dependent meson-nucleon couplings providing

an improved description of asymmetric nuclear matter [52]. Moreover, it has been found that

simpler, point-coupling models [2; 3] produce comparable results to the �nite-range ones, even if

the point-coupling interactions are being adjusted to nuclear matter and ground-state properties

of �nite nuclei [4]. These density-dependent point-coupling models, however, have been shown

to exhibit an exponential range of sensitivity to parameter variations, prompting the application

of model reduction methods based on concepts of information geometry [28; 29].

Information geometry is an interdisciplinary �eld that introduces di�erential geometry con-

cepts to statistical problems [20; 21] with its initial applications centered around machine

learning and neural networks [18; 19]. Recently, the manifold boundary approximation method

(MBAM) [22�24] has been developed to study complex and sloppy problems occurring in

physics, chemistry and biology [25�27] in order to either classify or reduce complex models,

such as the nuclear EDFs [28�30].

The complexity of nucleon-nucleon interaction in the nuclear medium, coupling between

single-nucleon and collective degrees of freedom, and �nite-size e�ects present obstacles to

numerous attempts to establish a single theoretical framework to treat the nuclear many-body

problem. The nuclear EDFs, and structure models based on them, have become a promising

tool for the description of ground-state properties and low-energy collective excitation spectra

of medium-heavy and heavy nuclei. A variety of structure phenomena have been successfully

described using the nuclear EDF framework with a high level of global precision and accuracy

over the entire chart of nuclides, and at a very moderate computational cost.

The unknown exact nuclear EDF is approximated by functionals of powers and gradients of

ground-state nucleon densities and currents, representing distributions of matter, spin, isospin,

momentum, and kinetic energy. A generic density functional is not necessarily microscopic,

i.e., it is related to the underlying inter-nucleon interactions, but some of the most successful
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functionals are entirely empirical. However, one can also follow the middle way between fully

microscopic and entirely empirical EDFs, and consider semi-empirical functionals that start

from a microscopically motivated ansatz for the nucleonic density dependence of the energy of

a system of protons and neutrons. Most of the parameters of such a functional are adjusted, in a

local density approximation, to reproduce a given microscopic equation of state (EoS) of in�nite

symmetric and asymmetric nuclear matter, and eventually neutron matter. The remaining,

usually few, terms that do not contribute to the energy density at the nuclear matter level,

are then adjusted to selected ground-state data of an arbitrarily large set of spherical and/or

deformed nuclei. A number of semi-empirical functionals have been developed over the last

decade [5; 31�40], and very successfully applied to studies of a diversity of structure properties,

from clustering in relatively light nuclei to the stability of superheavy systems, and from bulk

and spectroscopic properties of stable nuclei to the physics of exotic nuclei at the particle drip

lines.

In the previous studies [28; 29], the authors have used concepts from information geometry

to demonstrate that nuclear EDFs are, in general, �sloppy� [22�25; 41]. The term �sloppy�

refers to the fact that the predictions of nuclear EDFs and related models are really sensitive to

only a few combinations of parameters (sti� parameter combinations) and exhibit an exponential

decrease of sensitivity to variations of the remaining combinations of parameters (softparameter

combinations). This means that the soft combinations of parameters are only loosely constrained

by the available data, and that most nuclear EDFs in fact contain models of lower e�ective

dimensionality associated with the sti� combinations of model parameters. In Ref. [28], by

employing the MBAM [24] the authors have deduced the most e�ective functional form of

the density-dependent coupling parameters of a representative model EDF. The data used in

this calculation included a set of points on a microscopic EoS of symmetric nuclear matter

and neutron matter. This choice was motivated by the necessity to calculate the derivatives of

observables with respect to model parameters which is, of course, much easily accomplished

for nuclear matter in comparison to �nite nuclei. In Ref. [29] we have extended this calculation

by employing a simple numerical approximation to calculate the derivatives of observables

with respect to model parameters. Thus we were able to apply the MBAM to realistic models
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constrained not only by the nuclear matter EoS but also by observables measured in �nite

nuclei. During our analysis of parametrizations in Ref. [29] we have noticed that the numerical

integration of the geodesic equation could reach the manifold boundary in a �nite number of

integration steps, indicating the divergence of the metric tensor determinant in a particular region

of the parameter space. This surprising behavior motivated an investigation of the stability of

model reductions obtained by the manifold boundary approximation method (MBAM), since

the divergent region might be unintentionally missed by using too large integration steps.

In this chapter, we study the stability of the MBAM with respect to the variation of the

model parameters. In Sec. 4.2 we describe the numerical implementation for �nding the Dirac

mass and binding energies, aided by algorithmic di�erentiation. The results of our investigation

are given in Sec. 4.3, while further applications of information geometry to nuclear EDFs are

discussed in Sec. 4.4.

4.2 Illustrative calculation

The density-dependent point-coupling (DD-PC1) interaction [4] is a semi-empirical relativistic

EDF that involves the point coupling [54], and has been used in many contemporary studies of

nuclear structure and dynamics. The DD-PC1 functional explicitly includes nucleon degrees of

freedom and considers only second-order interaction terms. Its applicability to a wide range of

atomic nuclei has been demonstrated, e.g., in Refs. [55; 66].

We use the Dirac mass and energy density data shown in Table 4.1 to constrain the density-

dependent coupling constants of the DD-PC1 functional,UB¹dº, UE¹dº andUCE¹dº, modeled as

[28; 29]

U8 = 08¸
�
18¸ 28

d
dsat

�
4� 38

d
dsat – 82 f B– E– CEg – (4.1)

where the indices8 = B, E, and CEcorrespond to the isoscalar-scalar, isoscalar-vector, and

isovector-vector channels respectively, whiledsat is the saturation density. In this paper, we take

a closer look at the reduced version of the model withUCE= 0 and2E = 0, which results in a

seven-parameter model involving0B, 1B, 2B, 3B, 0E, 1E, and3E.
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4.2. Illustrative calculation

Table 4.1: Pseudo-data for in�nite symmetric nuclear matter used to compute the best-�tting

solution for the energy density functional. The adopted error for theHpoints is10%for energy

and2%for the Dirac mass.

index dE [fm � 3] H1 f H

1 0.152 0.58 0.055

2 0.04 � 6.48 0.648

3 0.08 � 12.13 1.213

4 0.12 � 15.04 1.504

5 0.16 � 16. 1.6

6 0.2 � 15.09 1.509

7 0.24 � 12.88 1.288

8 0.32 � 5.03 0.503

4.2.1 Numerical implementation

We solve the equation for the Dirac mass" � , that is given by [28]

" � = < ¸ UBdB – (4.2)

where< is the bare nucleon mass, anddB the scalar density

dB =
2
c2

" �

¹ ?�

0

G23G
q

G2 ¸ " 2
�

– (4.3)

with ?� being the Fermi momentum

?� ¹dEº =
�
3
2

dEc2
� 1

3

• (4.4)

The equation (4.2) is solved numerically by using the Newton-Raphson algorithm. We have also

tested the Halley's method, but found no improvement of the results in accuracy.

Upon �nding " � , we compute the binding energy of symmetric nuclear matter

� 0 =
2
c2

¹ ?�

0

G43G
q

G2 ¸ " 2
�

¸ < ¹dB � dEº ¸
1
2

UBd2
B ¸

1
2

UEd2
E • (4.5)

27



4.2. Illustrative calculation

1 2 3 4 5 6 7 8

Measurement index

20

15

10

5

0

5

10

15

20

y

(a)

10 1 100 101 102
20

15

10

5

0

5

10

15

20

(b)

as

bs

cs

ds

av

bv

dv

10 1 100 101 102

10 8

10 6

10 4

10 2

100

102

104 (c)

0

1

2

3

4

5

6

10 1 100 101 102
10 9

10 7

10 5

10 3

10 1 (d)

| < v 0 | as > |2

| < v 0 | bs > |2

| < v 0 | cs > |2

| < v 0 | ds > |2

| < v 0 | av > |2

| < v 0 | bv > |2

| < v 0 | dv > |2

10 1 100 101 102

104

103

102

101

100
0

100

101

102

103

104

105

R
ic

ci
 s

ca
la

r

(e)

10 1 100 101 102
10 3

10 2

10 1

100

101

d
e

tg

(f)

0

20

40

60

80

100

Figure 4.1: Results of extrapolating the geodesic after thedet6 = 0 point. Shown are (a) the

behavior of the evaluated model for di�erentg-s along the geodesic, (b) the model parameters,

(c) the FIM eigenvalues as functions ofg, (d) the squares of the FIM eigenvectorE0 components,

(e) the Ricci scalar, and (f) the FIM determinant along the geodesic. Solid, dashed, and dotted

lines stand for, respectively, the initial odeint solutions, the linear interpolation, and the values

derived using odeint starting from the endpoint of the interpolated solutions.

28



4.3. Investigating stability of the MBAM method

The best-�tting DD-PC1 parameter set is then found by computing the least-square solution

to the set of measurements of" � •< and� 0 presented in Table 4.1 (see Ref. [29]). Di�erential

equations are solved with the aid of the SciPy implementation of the ordinary di�erential

equation integration (odeint) library [67]. These values are then used to compute the FIM

and the Christo�el symbols using algorithmic di�erentiation implemented via theautograd

package. We thus eliminate numerical errors due to the approximations arising from numerical

di�erentiations.

4.3 Investigating stability of the MBAM method

In some cases, the numerical integration of the geodesic equation might slow down, or even

fail. This behavior is due to the divergence of the metric tensor determinant that implicitly

appears in the geodesic equation (2.7) through the metric inverse necessary for computing the

Christo�el symbols [see Eq. (2.3)]. However, this divergent behavior is con�ned to only a small

region in the parameter space, and therefore it might be easily missed by choosing too imprecise

an integrator. Therefore, in Sec. 4.3.1, we investigate the impact of the size of the integration

step on the MBAM procedure by arti�cially extrapolating the geodesic beyond the divergent

region in the parameter space. Moreover, as the parameter uncertainties become larger, small

perturbations to the starting point of the geodesic might in�uence the end result of the MBAM.

In Sec. 4.3.2, we describe the impact of parameter uncertainties on the MBAM conclusions for

the nuclear EDF DD-PC1 by numerical error propagation of the MBAM geodesics. Finally,

in Sec. 4.3.3 we investigate the impact of using a common, physically-motivated restrictive

reparametrization of the DD-PC coupling constants on the MBAM model manifold.
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Figure 4.2: Monte Carlo simulated sample parameters using the best-�tting covariance matrix

(black symbols and contours) and its propagation towardsg = 1•3 along the geodesic using the

Jacobi equation (4.8) (red symbols and contours).
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Figure 4.3: Monte Carlo simulations of uncertainty propagation using the Jacobi equation (4.8).

Shown are the median and its uncertainty derived using 1300 simulated samples starting from

the best �tting point. The �gure shows (a) the simulated FIME0 eigenvector components

squared, (b) FIM eigenvalues, (c) FIM determinant, and (d) scalar curvature. The shaded areas

correspond to the1f percentile interval, while the dotted lines in panels (c) and (d) additionally

show the 5-th and the 95-the percentiles, respectively. Solid orange lines in (c) and (d) stand for

the respective quantities computed along the path of the MBAM geodesic.
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Figure 4.4: Same as Fig. 4.2, but for Monte Carlo simulated sample (base 10) logarithm of the

eigenvalues of the FIM.
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Figure 4.5: Same as Fig. 4.2, but for Monte Carlo simulated sample components of the FIME0

eigenvector.
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4.3.1 Geodesic extrapolation

We extrapolate the geodesic by using the last point havingdet6 ¡ 0 (labeled asg2) and the point

before it (g1). We �rst extrapolateg¹Cº = g1¹1 � Cº ¸ g2Cfor C ¡ 0, i.e., a straight line joiningg1

andg2. We then compute thep` ¹Cº and¤p` ¹Cº using their corresponding values atg1 andg2 as

p` ¹Cº = p` ¹g1º¹1 � Cº ¸ p` ¹g2ºC (4.6)

¤p` ¹Cº = ¤p` ¹g1º¹1 � Cº ¸ ¤p` ¹g2ºC (4.7)

This procedure produces a linear extrapolation of the geodesics in the region where the geodesic

equation does not hold becausedet6 = 0. The variableCis just an interpolation parameter, not

connected tog, so¤p is not coupled as3p•3g in this region. We �nd that one can safely continue

integrating the geodesic equation afterC= 2, where there are no more singularities along the

path.

In Fig. 4.1, the resulting model parameters along the extended geodesic (a), the corresponding

model evaluation (b), the FIM eigenvalues (c), theE0 eigenvector (d), the Ricci scalar (e), and

the metric determinant (f) are shown. After theC= 2 point along the extrapolated geodesic,

the metric tensor determinant starts to rise again. In the same �gure, the linearly extrapolated

geodesic, corresponding to the small region regiong 2 »g¹C= 1º– g¹C= 2º¼, is shown with

dashed lines. The extrapolated geodesic computed using MBAM continuation starting from the

pointg¹C= 2º is shown with dotted lines. The initial odeint solutions (solid lines), which produce

results for a few points afterg = 1•3, di�er signi�cantly from the interpolated solution, indicating

numerical problems due to singularity. Upon restarting the odeint procedure after the singular

region, we �nd that the MBAM solution yields di�erent contributions to theE0 eigenvector,

indicating an equal contribution ofm1B, m2B, andm1E directions, while beforeg = 1•3, the MBAM

method �nds that the most signi�cant contribution is fromm1B. The Ricci scalar diverges at

g � 1•3, but starts to fall and change signs atg ¡ 1•3. Since the Ricci scalar is related to the

volume element, its divergence to positive values would produce a compressed region of the

parameter manifold, that begins to expand after the singularity.

The conclusion drawn from the results given in Fig. 4.1 is that one must be careful with the

models where the metric tensor determinant shows signi�cant variations, as choosing too big
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4.3. Investigating stability of the MBAM method

steps for the odeint integrator might result in �skipping� to another portion of the parameter space

and continuing along it. This yields completely di�erent contributions to the FIM eigenvector

corresponding to its smallest eigenvalue and hence might lead to a completely di�erent model

reduction than expected from the simple MBAM case.

4.3.2 Parameter uncertainties

Further extension of the basic model might be the propagation of its parameter uncertainties,

and this can be facilitated by looking into how the uncertainties of the best-�tting parameters

propagate along the geodesics. For this purpose, we perform Monte Carlo simulations. To

analyze the error propagation one would have to compute the geodesic equation many times,

which is not cost-e�cient. We, therefore, adopt a simpli�ed approach that makes use of

the Jacobi equation, which computes di�erencesXp between neighboring geodesics along the

already computed MBAM geodesic.

We use the covariance matrix� to produce Monte Carlo simulations ofXp from the normal

distribution,Xp � N ¹ 0–� º. For each simulatedXp, we compute its propagation by using the

Jacobi equation

X¥p` ¸ ' `
UaV¤p

U¤pVXpa = 0 • (4.8)

We �nd 1300 points to sample the DD-PC1 parameter space reasonably well. Figure 4.2 shows

the distributions of the parameters at the beginning (denoted by black symbols and contours)

and atg = 1•3 (red symbols and contours). These two distributions are almost identical since

the simulated parameters are more dispersed than the gradual changes in parameter values along

the geodesic.

Even though the parameter uncertainties in the full model are large, we can estimate the

error on the eigensolutions of the FIM along the geodesic. We do this by computing the FIM

for every simulated point propagated along the best-�tting geodesic to various values ofg using

the Jacobi equation. The results of this procedure are shown in Fig. 4.3. The top panels show

the median and the corresponding1f con�dence interval of the eigensolutions, computed using

the 16th and the 84th percentile. The simulated FIME0 eigenvector components squared are

shown in panel (a) and FIM eigenvalues in panel (b) for eachg. We see that, while the results
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4.3. Investigating stability of the MBAM method

using the simulated sample are consistently ordered when compared to the MBAM solution,

there is a small o�set between the median and the MBAM solution. The panels (c) and (d)

of Fig. 4.3 show the median and the1f con�dence interval for the FIM determinant and the

scalar curvature, respectively. The simulated scalar curvature and the metric determinant along

the geodesic show a larger variation in their values along the geodesic. In these panels we

additionally show the FIM determinant and scalar curvature along the best-�tting geodesic by

the solid orange lines. There is a large discrepancy between the behavior of the median of the

simulated quantities and the behavior of the quantities along the best-�tting geodesic. In panel

(c) [(d)] of Fig. 4.3, we see that these quantities along the best-�tting geodesic are comparable

to the 5th (95th) percentile ofdet6 (scalar curvature), shown as dotted lines. This behavior

indicates that only the geodesics starting at the vicinity of the best-�tting point encounter the

region corresponding todet6 = 0.

Furthermore, in Figs. 4.4 and 4.5 we show, respectively, the distributions of eigenvalues and

components ofE0 at the beginning and at the end of the geodesic. These large di�erences in

eigenvalues and eigenvector components propagating along the geodesic are in stark contrast to

the parameter values in Fig. 4.2. The discrepancies presented in Figs. 4.3, 4.4 and 4.5 can be

explained by the sensitivity of the FIM eigenproblem to small changes in DD-PC1 parameters,

since diagonalization results are not expected to change linearly with inputs. We conclude that

the o�set is due to the non-Gaussianity of the distribution of eigenvalues andE0 components,

which arises even though the parameters were sampled using the normal distribution. Even

though there is a change in the shape of these distributions, the overall qualitative MBAM

conclusions remain the same along the geodesic.
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Figure 4.6: Same as Fig. 4.3, but for the reparametrized model described in Sec. 4.3.3.
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Figure 4.7: Monte Carlo simulations of posterior distributions of the error estimates for the

reparametrized model, based on the MCMC algorithm. The �gure shows the1f , 2f and3f

covariance ellipses in red, as estimated from the FIM inverse, and the estimates of the covariance

ellipses based on the MCMC sample points in blue.
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4.3.3 Model reparametrization

The authors of Ref. [28] have considered an exponential reparametrization of the seven-parameter

DD-PC1 coupling constants centered at their best-�tting values [4]. This reparametrization

transformation can be schematically represented as a vector

p¹epº =

©
















«

0B¹?0Bº

1B¹?1Bº

2B¹?2Bº

3B¹?3Bº

0E¹?0Eº

1E¹?1Eº

3E¹?3Eº

ª
®
®
®
®
®
®
®
®
®
®
®
®
®
®
®
®
¬

=

©
















«

0B–bf 4� ?0B

1B–bf 4� ?1B

2B–bf 4� ?2B

3B–bf 4� ?3B

0E–bf 4� ?0E

1E–bf 4� ?1E

3E–bf 4� ?3E

ª
®
®
®
®
®
®
®
®
®
®
®
®
®
®
®
®
¬

– (4.9)

whereep indicates multivariate distribution of parameters?0B–� � � – ?3E, and the quantities such as

0B–bf, 1B–bf, etc. stand for the best-�tting parameter values. The exponential form of the coupling

constants is chosen by the constraints (i) that the new parameters in the geodesic equation are

dimensionless, and (ii) that the exponential form prevents the coupling functions0B and 0E

from changing sign along the geodesic path, thus con�ning them in the region described by the

inequalitiesUB Ÿ 0 andUE ¡ 0. Using these constraints the scalar mean-�eld potential remains

attractive and the vector mean-�eld repulsive for all allowed parameter values [28].

We repeat the Monte Carlo analysis described in Sec. 4.3.2 for the reparametrized model.

The resulting error estimates are shown in Fig. 4.6 in the same manner as in Fig. 4.3. By

comparing the two �gures panel-by-panel, we conclude that both methods produce MBAM

geodesics that are stable under perturbations, even though the two FIMs do not behave in the

same way along their respective geodesics. The reparametrized FIM determinant and the Ricci

scalar change gradually, compared to the initial model.

One may ask whether this discrepancy is due to using a too simplistic description of the

reparametrized distributions. We then employ the Bayesian statistics to check whether the

multivariate distributionep has pronounced non-Gaussian features. To this end, we use the

Markov chain Monte Carlo (MCMC) technique to sample thej 2 posterior distribution, as

implemented in the packageemcee[68]. In Fig. 4.7 we show the behavior of the chosen 200
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4.3. Investigating stability of the MBAM method

Markov chains as two-dimensional sections of the parameter space. The chains have been run

for a long enough time to avoid the initial �burn-in� phase characteristic of the algorithm during

which they follow mostly the (uniform) prior distribution instead of sampling thej 2 posterior

distribution. From the fact that the classical covariance ellipses (represented by red contours

in Fig. 4.7) are well-aligned with the MCMC estimates, we conclude that one can proceed

with using the simple Monte Carlo Gaussian mock sample for error propagation instead of the

computationally more expensive Bayesian MCMC mock sample.

The theoretical argument for the discrepancy between the two geodesics is based on the prop-

erties of the applied transformation. Since the exponential transformations are not bijections,

the geodesics on the manifold spanned byep need not have the same behavior as the geodesics on

the manifold spanned byp. To better understand the connection between these two geodesics,

we derive the FIM determinant on theep-manifold by using the transformation of Eq. (4.9),

det6¹epº = 02
B¹?0Bº1

2
B¹?1Bº2

2
B¹?2Bº3

2
B¹?3Bº0

2
E¹?0Eº1

2
E¹?1Eº3

2
E¹?3Eº det6¹p¹epºº • (4.10)

The determinant of the metric is not an invariant quantity under reparametrizations, hence the

additional multiplicative scaling is required. Equation (4.10) shows that, if the value ofdet6

approaches zero for particular values ofp, both geodesics terminate. However, additional sin-

gularities appear if any of the coupling constants is allowed to change sign along a particular

geodesic. In contrast to the FIM determinant, the Ricci scalar is not a�ected by reparametriza-

tions. The scalar curvature distributions for di�erent points on the geodesic in Fig. 4.6 (d) do

not have the same values as those in Fig. 4.3(d). The e�ects of reparametrizations on the scalar

curvature can be clearly seen from the comparison between these �gures.

The general conclusion is, therefore, that the MBAM method is sensitive to the way the

reparametrization is made, as has been shown above in the case of the reparametrization tied to

domain restrictions. This is related to the fact that di�erent reparametrizations do not lead to

the same, but similar, models describing the common physical problem. Since the EDF has an

arbitrarily-chosen functional form, there is noa priori way of identifying which parametriza-

tion is optimal. This sensitivity only emphasizes the fact that di�erent reparametrizations

may describe similar, but inherently di�erent, physical models. Choosing a particular EDF

parametrization is equivalent to choosing a particular range model parameters can take.
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4.4 Chapter summary

Methods of information geometry have been applied to investigate the stability of reducing the

nuclear structure models. We have constrained the error estimates of the manifold boundary

approximation method (MBAM) solutions by means of the Monte Carlo simulations. In the

illustrative application to the DD-PC1 model of the nuclear EDF, it has been found that the

main conclusions obtained by using the MBAM method are stable under the variation of the

parameters within the1f con�dence interval of the best-�tting model. Moreover, we have

found that the end of the geodesic occurs when the determinant of the FIM approaches zero,

thus e�ectively separating the parameter space into two disconnected regions.

Further applications of information geometry to nuclear EDFs could be analyzing possible

phase transitions in models of �nite nuclei using scalar curvature and their impact on nuclear

properties. The analysis could even be expanded to include an extended temperature-dependent

model or to look for model instabilities. It would be worth investigating whether information-

theoretic optimizations, could accelerate computer codes to solve nuclear many-body problems.

Such 2nd-order optimization algorithms, like the natural-gradient descent, �nd optimal solutions

by taking optimization steps in the parameter space informed by the behavior of the FIM.

41



4.4. Chapter summary

42



Chapter 5

Classical and Bayesian error analysis of

the relativistic mean-�eld model for

doubly-magic nuclei

Even though nuclear energy density functionals (EDFs) have already enabled the description

of nuclear structure phenomena for many di�erent nuclei, statistical properties of nuclear EDF

models have only recently become a topic of research. Parameter estimation of such complex

models presents a di�cult task due to the fact that error estimates of the model parameters

cover an exponential range of values, often requiring model reduction techniques. In the

previous chapter, published as our recent paper [M. Imbri²ak and K. Nomura, Phys. Rev. C

107, 034304 (2023)], we have investigated the stability of model reductions, focusing on the

Manifold Boundary Approximation Method applied to the nuclear density-dependent point-

coupling model of in�nite nuclear matter. In this chapter, we extend our information-geometric

statistical analysis to the considerably more numerically challenging case of �nite nuclei.

This chapter is a new article in preparation.
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5.1 Introduction

The nuclear energy density functionals (EDFs) are a widely-used framework for describing

nuclear structure phenomena. Many such EDFs are based on the relativistic mean-�eld La-

grangian (RMF) in the �nite-range meson-exchange model [53]. The density-dependent meson-

nucleon couplings have been successfully applied in this framework to describe asymmetric

nuclear matter [52]. Alternatively, since the exchange of heavy mesons cannot be resolved at

low energies, the self-consistent relativistic mean-�eld framework can be formulated in terms

of point-coupling (PC) nucleon interactions. This approach yields comparable results to the

meson-exchange coupling approach for �nite nuclei [2; 3]. For example, the successful phe-

nomenological �nite-range interaction DD-ME2 was mapped to the PC framework by relating

the strength parameter of the isoscalar-scalar derivative term to di�erent values of the mass of

the phenomenologicalf meson in the DD-ME2 model [4]. The resulting `best-�t model' [such

as the DD-PC1 functional, see, e.g., 42] required the �ne-tuning of the density dependence of

the isoscalar-scalar and isovector-vector interaction terms to nuclear matter and ground-state

properties of �nite nuclei.

The issue of uncertainty quanti�cation and error propagation in nuclear EDFs has recently

attracted attention, focusing on the study of error estimates by statistical analysis [10; 11],

assessment of systematic errors [8; 9], and correlation analysis [9; 43]. However, the statistical

analysis is more challenging for the PC models since they were found to exhibit an exponential

range of sensitivity to parameter variations [42]. This behavior was found to be a feature

of sloppymodels - models that depend only on a few sti�y constrained combinations of the

parameters [44].

Recent advancements in the understanding of the behavior of sloppy models [23; 25; 26; 45]

yielded new approaches to analyzing sloppy models, such as the manifold boundary approxima-

tion method [MBAM, 24]. MBAM is a systematic procedure for reducing model sloppiness by

constructing progressively less sloppy lower-dimensional models from an initial sloppy higher-

dimensional model. This construction is based on the concepts from information geometry -

an interdisciplinary �eld that introduces di�erential geometry concepts to statistical problems

[20; 21].
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MBAM has already been used to systematically construct e�ective nuclear density function-

als of successively lower dimensions and smaller impact of sloppiness. This was illustrated on

the DD-PC1 functional evaluated for pseudo-data for in�nite symmetric nuclear matter [28]. In

Ref. [29] we extended this analysis to calculate the derivatives of observables with respect to

model parameters, and we were able to apply the MBAM to realistic models constrained not

only by the pseudo-data related to the nuclear matter equation of state but also by observables

measured in �nite nuclei. In our recent paper [50], we investigated the overall stability of the

MBAM procedure applied in the reduction of nuclear structure models using methods of infor-

mation geometry and Monte Carlo simulations. In the illustrative application to the DD-PC1

model of the nuclear EDF, we found that the main conclusions obtained by using the MBAM

method are stable under the variation of the parameters within the1f con�dence interval of the

best-�tting model.

In contrast to the simple case of in�nite nuclear matter, where one would have to solve

only a simple iterative procedure to obtain the Dirac mass and binding energy, �nite nuclei

require a careful description of the nuclear many-body problem. Broadly speaking, statistical

analysis can either be performed in the Bayesian framework - by employing elaborate Monte

Carlo simulations or in the `classical' framework, found by computing the Fisher information

matrix (FIM) and its inverse (the covariance matrix) from the chosen statistical model [see, e.g.,

9]. The latter approach should, in principle, be less time-consuming than running a large Monte

Carlo simulation. However, when computing the FIM, one has to constrain the �rst derivatives

of the chosen statistical model, either numerically or analytically. Attempting a simple extension

of existing implementations of RMF fortran codes [46�49] would introduce uncertainties due

to employing numerical di�erentiation. We have therefore decided to implement a simple

proof-of-concept version of a �nite nucleus code in Python, in which well-tested libraries for

algorithmic di�erentiation (AD) exist.

The analysis presented below is based on a procedure for determining the RMF binding

energies, starting from a simple and widespread [48; 49] assumption of a Woods-Saxon potential,

often used to compute the starting point for density-dependent potentials. This paper compares

numerically estimating parameter errors using a chosen Bayesian statistical technique - the
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5.2. Numerical implementation of the RMF procedure

Markov chain Monte Carlo (MCMC) to the faster method of directly determining the covariance

matrix without sampling using the AD-determined FIM.

The chapter is organized as follows. In Sec. 5.2, we give an overview of the RMF procedure

that was implemented, and in Sec. 5.3, we describe the inputs used for our Python routines. In

Sec. 5.4 we present the results of our statistical analysis.

5.2 Numerical implementation of the RMF procedure

In Sec. 5.2.1 we describe the description of the matrix elements for the Dirac equation for the

proton and neutron single-particle energies in the spherical system, and in Sec. 5.2.2, we give

the description of the functional form of the Woods-Saxon potential that was implemented in

our python codes.

5.2.1 The spherical system

The procedure is based on solving the Dirac equation for the single-particle energies for protons

and neutrons in the spherical system. First, the single-particle wavefunction is decomposed

into the isospin wavefunction,j C8¹Cº, the spin wavefunction,j 1•2¹Bº, the angular momentum

wavefunction,. ; ¹\– qº, and two spinor radial components,5¹Aº and6¹Aº. Due to symmetry

considerations, the solutions are separable in terms of the total angular momentum,9, and parity,

c, yielding the following relations:

; ¹ 9– cº = 9¸ c•2 (5.1)

e; ¹ 9– cº = 9� c•2 (5.2)

^¹ 9– cº = c¹ 9¸ 1•2º • (5.3)

In practical calculations, the maximal radial quantum number needs to be truncated to obtain

�nite matrices. The maximum radial quantum number for the expansion of radial functions5

and6 (=<0Gande=<0G, respectively) are determined as functions of the �nal major shell quantum

number# � . The value of the maximal radial quantum number of the function6 is greater than

the maximal value for5 to avoid spurious solutions. These states of a high radial quantum
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number close to the Fermi surface arise from the lack of coupling for the5=<0G state to the6

states through thef � r term when a truncation of the quantum number is applied [46�48]

=<0G =
# � � ; ¹ 9– cº

2
(5.4)

e=<0G = # � ¸ 1 • (5.5)

In this separation, a joint spin and angular momentum quantum numbers,j; 9<i , are represented

with the two-dimensional spinor

� ; 9<¹\– q– Bº = »j 1•2¹Bº 
 . ; ¹\– qº¼9< • (5.6)

The full wavefunction can then be written as

k ¹A– \– q– B– Cº = ©

«

5¹Aº� ; 9<¹\– q– Bº

86¹Aº� e; 9<¹\– q– Bº

ª
®
¬

• (5.7)

After separating the isospin, spin, and angular momentum components, one can use the

simpli�ed Hamiltonian for a single¹ 9– cº block for protons and neutrons, whose solution

depends only on the radial coordinate

k 9c¹Aº = ©

«

59c¹Aº

869c¹Aº

ª
®
¬

• (5.8)

Both 5 and6 functions are expanded using the relativistic quantum harmonic oscillator basis

' =–;= # =–;!
;¸ 1•2
= ¹b2ºb;4� b2•2 – (5.9)

where the radial coordinate has been rescaled to a dimensionless quantityb using the scaling

parameter10 =
p

1•011� 1•3. The expansion includes a �nite range of radial quantum numbers

that are di�erent for5 and6 functions

©

«

5

6

ª
®
¬

=
©



«

=<0GÍ

=
5=' =–;

e=<0GÍ

e=
6e=' e=–e;

ª
®
®
®
¬

• (5.10)

The limits=<0Gande=<0Gare dependent on the total quantum number# � and angular momentum.
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For each¹ 9– cº block, the Dirac equation is solved using the e�ective mass" and potential

+ . The aforementioned ansatz,k = ¹ 5¹Aº– 86¹Aºº, yields the following matrix equation

©

«

+ ¸ " � < \ 2
�
mA � ^� 1

A

�

� \ 2
�
mA ¸ ^¸ 1

A

�
+ � " � <

ª
®
¬

©

«

5

6

ª
®
¬9c

= n©

«

5

6

ª
®
¬9c

• (5.11)

Using the relativistic harmonic oscillator basis introduced in Eq. 5.9, this matrix equation can

be structured as

©

«

� � )
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ª
®
¬

©
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51
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ª
®
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®
¬

= n

©




«

51
•••

6e=<0G

ª
®
®
®
®
¬

– (5.12)

using three matrices� ==0, � e=–=0 and� e=–e=0:

� =–=0 =

1¹

0

A23A'=–;' =0–;¹+ ¸ " � < º (5.13)

� e=–=0 = \ 2

1¹

0

A23A'e=–e;

�
� mA �

^ ¸ 1
A

�
' =0–; (5.14)

� e=–e=0 =

1¹

0

A23A'e=–e; ' e=0–e; ¹" ¸ < � +º• (5.15)

Once the wavefunctions are known, the pairing is introduced as an additional weight to the

density of each eigenstate,E2
8, as outlined in Sec. 1.2 using Eq. 1.27.

5.2.2 The Woods-Saxon potential

We apply the �nite nucleus procedure to the simple case of the Woods-Saxon potential. The

Woods-Saxon potential is also the �rst step for more complex density-dependent potentials. The

shape of the Woods-Saxon potential is known, and this potential does not depend on the nucleon

densities. Therefore, in contrast to density-dependent potentials, the procedure need not be run

iteratively, reducing computational complexity for various numerical tests.

The shape of the potential has been adapted from [51], the authors of which developed a

relativistic equivalent of the simple Woods-Saxon potential. In their model, a set of twelve

parameters was used to constrain the shape of the Woods-Saxon potential by describing both the
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potential and the e�ective mass. Their model accomplishes this by introducing four di�erent

potentials - the normal (* ? and* =) and spin-orbit potentials (, ? and , =) for protons and

neutrons. These potentials were tied to the vector,+ , and scalar,( , potentials in the Dirac

equation by considering their non-relativistic limit as

* = + ¸ ( (5.16)

, = + � (• (5.17)

The strengths of all four potentials are regulated by the overall potential strength+0 and modulat-

ing factors for di�erent numbers of protons and neutrons,^, and for the strength of the spin-orbit

contribution,_? and_=. The shape of the potentials is regulated by four di�usivities,0?, 0=,

0;B
? and0;B

= , and four radii' =
0, ' ?

0 , ' =
0–;B, and' ?

0–;B1.

The resulting potentials are as follows:

* ?¹Aº =
+0

�
1 ¸ ^ # � /

�

�

1 ¸ 4
A� ' ?

0 � 1•3

0?

¸ * � ¹Aº (5.18)

* =¹Aº =
+0

�
1 � ^ # � /

�

�

1 ¸ 4
A� ' =

0 � 1•3

0=

(5.19)

, ?¹Aº =
+0_?

�
1 ¸ ^ # � /

�

�

1 ¸ 4

A� ' ?
0–;B�

1•3

0;B
?

¸ , � ¹Aº (5.20)

, =¹Aº =
+0_=

�
1 � ^ # � /

�

�

1 ¸ 4
A� ' =

0–;B�
1•3

0;B
=

• (5.21)

An additional component describing the repulsive Coulomb potential,* � , is added to the

potential of protons using the homogeneously charged sphere potential

* � ¹Aº =

8>>><

>>>
:

/4 2
�

3
' ?

0 � 1•3 � A2

¹ ' ?
0 º3 �

�
– A� ' ?

0 � 1•3

/4 2

A – A ¡ ' ?
0 � 1•3

(5.22)

, � ¹Aº =

8>>><

>>>
:

/4 2
�

3
' ?

0 � 1•3 � A2

¹ ' ?
0 º3 �

�
– A� ' ?

0 � 1•3

/4 2

A – A ¡ ' ?
0 � 1•3

• (5.23)

1The notation of [51] has been simpli�ed, and the signature of the spin-orbit potentials has been absorbed into

_= and_? for convenience.
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5.2.3 Fisher information matrix

Using indices from the beginning of the Latin alphabet for# < measurements, and the Greek

letters for# ? model parameters, here labeled as

p =

©




«

?1

•••

?# ?

ª
®
®
®
®
¬

– (5.24)

we want to compute error estimates for the problem of �tting a model50¹pº to measurements

H0 assuming measurement errorsf 0.

In the standard maximum likelihood method, the best-�tting value of?` is found by mini-

mizing thej 2 value

j 2¹pº =
# <Õ

0=1

�
H0 � 50¹pº

f 0

� 2

• (5.25)

A useful derived quantity is the reducedj 2 value

j 2
A43=

j 2

# < � # ?
– (5.26)

which should be close to1 for models that are neither over-�tted nor under-�tted.

We �nd parameter uncertainties using the Cramer-Rao bound on the covariance matrix� ,

which is based on the inverse of the FIM,6`a [21]

6`a ¹pº =
Õ

0

m̀ 50ma 50

¹f 0º2
• (5.27)

We compute model derivatives using algorithmic di�erentiation implemented in theautograd

package. Using AD procedures, we eliminate numerical errors related to using numerical dif-

ferentiation approximations.
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Figure 5.1: Reducedj 2
A43value of the �nite-nucleus model as a function of# � for the Woods-

Saxon potential. The dashed lines represent the execution time of thej 2
A43 function and the

computation time of the Woods-Saxon FIM.
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Table 5.1: Charge-radius and single-particle energy data set. The dataset consists of the charge

radii, A2� , and single particle neutron,n=, and proton,n?, energies for occupied states. The

single-particle energies were computed using the Woods-Saxon potential as determined in [51].

Nucleus A2� (fm)

4He 1.65

16O 2.41

40Ca 3.29

n= (MeV)

1B1•2 1?3•2 1?1•2 2B1•2 135•2 133•2

4He � 25.30

16O � 43.20 � 24.68 � 19.04

40Ca � 53.34 � 39.40 � 35.40 � 24.95 � 18.51 � 17.42

n? (MeV)

1B1•2 1?3•2 1?1•2 2B1•2 135•2 133•2

4He � 24.95

16O � 40.08 � 22.39 � 18.36

40Ca � 45.80 � 33.08 � 30.32 � 19.53 � 14.96 � 13.23
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5.3 Input selection

We analyze the statistical properties of the RMF procedure on charge-radius,A2� , and single-

particle energy data. To this end, we chose a set of doubly-magic nuclei:4He, 16O, and40Ca.

Since the parameter space consists of 12 parameters and only three nuclei, the chosen data

set consisted of their charge-radii and the single-particle energies of protons and neutrons for

occupied states computed using the Koepf values [51]. For statistical analyses, these parameter

values were taken as the best-�tting values for the Woods-Saxon potential.

Using charge-radii and the energies of the occupied single-particle states resulted in 23 data

points, ensuring enough degrees of freedom for a twelve-parameter model. A further advantage

of using the aforementioned doubly-magic even-even nuclei is that they have an equal number of

protons and neutrons, resulting in removing the need for the parameter^. Hence, the parameter

space is reduced to 11 dimensions. We compute the charge-radius,A2� , from the root-mean-

square radius,hA2i , [as in, e.g., 49] using the proton density distribution, asA2� =
p

hA2i ¸ 0•64.

A homoscedastic error of0•1 fm and 0•1 MeV has been chosen arbitrarily since the data set

consists of the model evaluation,not spectral measurements.

The corresponding reducedj 2
A43value of the �nite-nucleus model as a function of# � for

the Woods-Saxon potential is shown in Fig. 5.1. The choice of a di�erent error would only shift

the j 2
A43curve upwards or downwards. The �gure also shows the execution time as a function of

the maximal total quantum number# � , displayed as a dashed line. The simple relationj 2
A43� 1

should hold to minimize the impact of over-�tting and under-�tting. The model accomplishes

this near# � � 5. Since the execution time of thej 2
A43function rises progressively with a larger

# � , the value of the# � parameter was set to 5 for statistical analyses. The execution time for

the FIM matrix for this model shows similar behavior. The chosen (pseudo)dataset is shown in

Table 5.1 and is computed using a# � = 15, which is outside the examined# � range in Fig.

5.1 to avoid the model evaluations that would result in exactlyj 2 = 0. The value of# � was

chosen to be large enough so that the values of all computed parameters di�er less than10%of

the adopted value for the homoscedastic error between neighboring values of# � .
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5.4 Results

We applied the �nite nucleus procedure to compute parameter uncertainties for the Woods-Saxon

potential. We estimate the errors of the model parameters by computing the diagonal elements

of the FIM, f � � " , as presented in Table 5.2. In Sec. 5.4.2 we compare the values of the FIM

components computed using AD and the values computed using numerical di�erentiation and

in Sec. 5.4.2 we compare the FIM-derived error estimates to the MCMC of the derived FIM

to the error estimates. In Sec. 5.4.3 we present the extension of our analysis to the case of the

DD-PC1 functional, which is subject of ongoing research and will be published as a separate

paper.

5.4.1 Comparison with numerical di�erentiation

The numerical di�erentiation is compared to the one using a symmetric di�erentiation step� .

The �gure shows the relative error,' for the di�erent components of the FIM computed as

' ¹6`a º =

�
�
�
�
�
6¹ � º

`a � 6¹# º
`a

6¹ � º
`a

�
�
�
�
�
– (5.28)

where6¹ � º
`a is our AD-derived FIM estimate of thèa matrix component of the FIM and6¹# º

`a is

the numerical estimate computed using a di�erentiation step� . In Figs. 5.2-5.10, we show these

relative errors computed for di�erent values of� and# � . For very small values of� Ÿ 10� 7,

the numerical errors due to �oating point precision accumulate, while for� ¡ 10� 2, the �nite

di�erence approximation tends to break down. As demonstrated by Figs. 5.2-5.10, this behavior

occurs for all# � , and the values of the relative error do not depend strongly on# � .

Motivated by thej 2 testing procedure, we analyze the impact of the possible overall worst-

case error scenario by computing the sum of all relative errors of the FIM components in the

bottom right panel of Fig. 5.10. This worst-case error estimate suggests that the optimal� is

consistently� � 10� 4 for the entire range of# � . One can conclude that the AD implementation

provides accurate estimates of the FIM and that any discrepancy to the numerical derivative can

be attributed to the inherent issues of numeric derivatives.
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5.4. Results

Figure 5.2: Relative error of the di�erent FIM components' ¹6`a º– ` = ' =
0, color-coded as

a function of# � and numerical derivative step� for the FIM components. The relative error

compares the AD-derived FIM estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.3: Relative error of the di�erent FIM components' ¹6`a º– ` = ' ?
0 , color-coded as

a function of# � and numerical derivative step� for the FIM components. The relative error

compares the AD-derived FIM estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.4: Relative error of the di�erent FIM components' ¹6`a º– ` = ' =
0–;B, color-coded as

a function of# � and numerical derivative step� for the FIM components. The relative error

compares the AD-derived FIM estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.5: Relative error of the di�erent FIM components' ¹6`a º– ` = ' ?
0–;B, color-coded as

a function of# � and numerical derivative step� for the FIM components. The relative error

compares the AD-derived FIM estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.6: FIM components' ¹6`a º– ` = 0=, color-coded as a function of# � and numerical

derivative step� for the FIM components. The relative error compares the AD-derived FIM

estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.7: FIM components' ¹6`a º– ` = 0?, color-coded as a function of# � and numerical

derivative step� for the FIM components. The relative error compares the AD-derived FIM

estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.8: FIM components' ¹6`a º– ` = 0;B
= , color-coded as a function of# � and numerical

derivative step� for the FIM components. The relative error compares the AD-derived FIM

estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.9: FIM components' ¹6`a º– ` = 0;B
? , color-coded as a function of# � and numerical

derivative step� for the FIM components. The relative error compares the AD-derived FIM

estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a .
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5.4. Results

Figure 5.10: FIM components' ¹6`a º for ` = _=, ` = _? and` = +0, color-coded as a function

of # � and numerical derivative step� for the FIM components. The relative error compares the

AD-derived FIM estimate,6¹ � º
`a , to the numerical estimate6¹# º

`a . In the bottom-right panel, the

sum of all relative errors,
Í

`–a ' ¹6`a º, is plotted.
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5.4. Results

5.4.2 Comparison with the Bayesian framework

We used the MCMC technique to sample thej 2 posterior distribution, as implemented in the

packageemcee[68]. We used samples of 24 Markov chains of length 1000. The number of

initialized chains has been chosen to ful�ll the MCMC requirement that the number of Markov

chain walkers be greater than the number of dimensions of the parameter space.

In Fig. 5.11, we plot the values of the MCMC samples of the parameter space as a

function of the step in the Markov chain in which they were produced. We see that the values

stabilize after� 50 initial steps, indicating the expectedburn-in phase for the MCMC method

[68]. The sampled data points corresponding to the initial 50 steps have been excluded from

further analysis. In Fig. 5.12 we show both the two-dimensional and one-dimensional marginal

distributions of the MCMC samples in the parameter space. The blue lines show the value

expected from the literature, which is well aligned with the distribution of the MCMC samples

in all panels in Fig. 5.12.

The error estimates computed using MCMC sampling are listed alongside the FIM-based

technique in Table 5.2. The medians and the1f con�dence interval derived from the MCMC

sampling align well with the Koepf estimates. To assess how signi�cant are statistical di�erences

between the Koepf estimates and the MCMC-based best-�tting parameter values of our dataset,

in the last two columns, we compute the Z-scores,

/ ` ¹f º =
?`

Koepf � ?`

f
• (5.29)

We �nd that the di�erences are generally not statistically signi�cant (i.e., they are less than1f )

using eitherf � � " or f "� "� .

Reliably computing the FIM using AD enables producing error analysis without the time-

consuming sampling of the parameter space by simply considering the diagonal of the FIM

inverse. The resulting estimates of the sigma,f � � " , are in agreement with the MCMC estimates,

f "� "� , as shown in Table 5.2.
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5.4. Results

Figure 5.11: Values of the individual Markov chains of the MCMC sampling as a function of

the MCMC step.
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5.4. Results

Figure 5.12: MCMC-derived sampling of the Woods-Saxon potential shown as two-dimensional

sections of the parameter space.
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5.4. Results

Table 5.2: Results of Woods-Saxon potential �tting using the MCMC method for the charge

radius and single-particle energy data set from Table 5.1.

Parameter unit Koepf f "� "� f � � " MCMC Con�dence j/ ¹f "� "� º j j/ ¹f � � " º j

estimate [51] interval

' =
0 [fm] 1.2334 0.01 0.0112 1•241� 0•01 [ 1.23, 1.25] 0.79 0.66

' ?
0 [fm] 1.2496 0.0108 0.0168 1•25� 0•01 [ 1.24, 1.26] 0.28 0.18

' =
0–;B [fm] 1.1443 0.0273 0.0320 1•15� 0•03 [ 1.13, 1.18] 0.27 0.23

' ?
0–;B [fm] 1.1401 0.0389 0.0563 1•14� 0•04 [ 1.10, 1.18] 0.11 0.07

0= [fm] 0.6150 0.0097 0.0098 0•62� 0•01 [ 0.61, 0.63] 0.56 0.55

0? [fm] 0.6124 0.0107 0.0108 0•61� 0•01 [ 0.60, 0.63] 0.20 0.20

0;B
= [fm] 0.6476 0.0601 0.0746 0•66� 0•06 [ 0.60, 0.72] 0.23 0.18

0;B
? [fm] 0.6469 0.0848 0.1271 0•64� 0•08 [ 0.56, 0.72] 0.05 0.03

_= [1] -11.1175 0.3391 0.4167 � 11•3 � 0•3 [ -11.65, -10.98] 0.49 0.39

_? [1] -8.9698 0.4287 0.7025 � 9•0 � 0•4 [ -9.47, -8.61] 0.07 0.04

+0 [MeV] -71.2800 0.1941 0.2228 � 71•2 � 0•2 [ -71.37, -70.99] 0.45 0.39

^ [1] 0.4616 N/A N/A N/A N/A N/A N/A

5.4.3 The error estimates for the DD-PC1 functional

In this section, we utilize nuclear structure codes to precisely calculate error estimates for

point-coupling models in �nite nuclei. To initiate the DD-PC1 functional iteration, we compute

densities for the Woods-Saxon potential, which serve as the basis for our subsequent calculations

and analyses.

Figures 5.13, 5.14, and 5.15 showcase the charge-radius and single-particle energies behavior

of the DD-PC1 functional. These �gures provide an insight into the functional's behavior

when applied to a group of doubly magic nuclei.Through our analysis, we have found that

the iteration process shows quick stabilization within just a few steps, regardless of the# �

values observed. To ensure accuracy and consistency in our calculations, we have applied the

7-parameter constraint on the DD-PC1 model parameters, which has been previously utilized

for in�nite nuclear matter. Furthermore, we have incorporated homoscedastic errors of0•1 fm

and0•1 MeV to further enhance the precision of our calculations. The behavior of the Fisher
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5.4. Results

Information Matrix (FIM) eigenvalues, eigenvector components, and parameter errors can be

observed through Figures 5.16, 5.17, and 5.18. These �gures provide a visual representation of

the corresponding outcomes.

In like manner, the outcomes from the thorough 10-parameter model have been exhibited

and are easily discernible in Figures 5.19, 5.20, and 5.21. Based on the analysis, it is evident that

utilizing the 7-parameter model for estimating parameter errors is signi�cantly more accurate

than relying on the 10-parameter DD-PC1 model. This outcome was predictable as the 7-

parameter model is a simpli�ed version of the 10-parameter model, referred to as the MBAM-

reduced form. We've included error estimates for both the 7 and 10-parameter models based

on the FIM (Fisher Information Matrix) in Table 5.3. The information provided is crucial for

assessing and examining the e�ectiveness of the models and can be utilized for future research.

Table 5.3: Error estimates of the DD-PC1 model parameters.

Parameter unit 7-parameter model 10-parameter model

0B »fm2¼ �10•0 � 0•5 � 10� 1

1B »fm2¼ �9•2 � 0•6 � 9 � 1

2B »fm2¼ �6 � 3 � 6 � 6

3B »1¼ 1•4 � 0•3 1•4 � 0•8

0E »fm2¼ 6 � 1 6� 3

1E »fm2¼ 8•9 � 0•3 8•9 � 0•4

3E »1¼ 0•7 � 0•2 0•7 � 0•6

1CE »fm2¼ # • � 2 � 1

3CE »1¼ # • � 0•6 � 0•5

XB »fm4¼ # • � � 0•81� 0•02
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5.4. Results

Figure 5.13: Charge-radius and single-particle energy computed using the DD-PC1 functional

for the 4He nucleus. The �gure shows the values of the charge radii,A2� , and single particle

neutron,n=, and proton,n?, energies for occupied states for the di�erent number of iterations

#8C4A.
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5.4. Results

Figure 5.14: Charge-radius and single-particle energy computed using the DD-PC1 functional

for the 16O nucleus. The �gure shows the values of the charge radii,A2� , and single particle

neutron,n=, and proton,n?, energies for occupied states for the di�erent number of iterations

#8C4A.
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5.4. Results

Figure 5.15: Charge-radius and single-particle energy computed using the DD-PC1 functional

for the 40Ca nucleus. The �gure shows the values of the charge radii,A2� , and single particle

neutron,n=, and proton,n?, energies for occupied states for the di�erent number of iterations

#8C4A.
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5.4. Results

Figure 5.16: The FIM eigenvalues for the DD-PC1 functional in the 7-parameter model.
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5.4. Results

Figure 5.17: The FIM eigenvector components corresponding to the smallest FIM eigenvalue

for the DD-PC1 functional in the 7-parameter model.
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5.4. Results

Figure 5.18: The FIM parameter error estimates for the DD-PC1 functional in the 7-parameter

model.
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5.4. Results

Figure 5.19: The FIM eigenvalues for the DD-PC1 functional in the 10-parameter model.
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5.4. Results

Figure 5.20: The FIM eigenvector components corresponding to the smallest FIM eigenvalue

for the DD-PC1 functional in the 10-parameter model.
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5.4. Results

Figure 5.21: The FIM parameter error estimates for the DD-PC1 functional in the 10-parameter

model.
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5.5. Chapter summary

5.5 Chapter summary

Exploring parameter estimation uncertainties in nuclear E�ective Field Theories (EDFs) has

recently emerged as a compelling research area. Our team has continued to build upon our

past research [50], which delved into applying information geometry to EDFs in nuclear matter.

Our current study presents a comprehensive statistical analysis of a straightforward method

to establish the charge radius and single-particle energies in a series of doubly-magic nuclei

utilizing the Woods-Saxon potential. Our �ndings o�er valuable insights into the nature of

nuclear matter and pave the way for future research in this �eld. We have evaluated the accuracy

of error estimates using two di�erent methods. The �rst method is a faster procedure employing

the Fisher Information Matrix (FIM), while the second is a more intricate Bayesian Markov

Chain Monte Carlo (MCMC) approach. We compared the results obtained from both methods

to determine their e�ectiveness in estimating errors. When dealing with the complex situation of

�nite nuclei, it can be challenging to accurately determine the uncertainties of EDF parameters.

However, by utilizing FIM in combination with algorithmic di�erentiation, it becomes possible

to measure these uncertainties more precisely. This method of error analysis also eliminates

the need for time-consuming sampling of the parameter space, which is usually required when

using Bayesian statistical methods.
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Chapter 6

Conclusion

The EDF framework serves as an extensive and all-encompassing theoretical methodology that

o�ers a global perspective on nuclear occurrences across the nuclide chart. A scienti�cally

sound approach to modelling nuclear interactions is the implementation of a relativistic mean-

�eld Lagrangian that utilizes the point-coupling model. This model is speci�cally tailored to

address the ground-state properties of nuclear matter and �nite nuclei. Despite relying on point-

coupling interactions, the outcomes generated by this model are comparable to those obtained

from �nite-range models.

The use of statistical analysis is of utmost importance in identifying errors in theoretical

models, assessing risks, and detecting instabilities in the model. When it comes to nuclear

energy density functionals, it has only recently been recognized that examining the unreliability

of individual model parameters is crucial to gaining a better understanding of nuclear structure

phenomena. However, analyzing error parameters can be challenging due to the possibility

of dealing with imprecise parameters or their linear combinations. To overcome this obstacle,

information geometry methods have been recently employed to obtain a better understanding of

parameter uncertainties and model behavior. One notable instance of sophisticated procedures

utilized in information geometry is the manifold boundary approximation method (MBAM).

This technique has been e�ective in reducing the number of model parameters in EDF models.

To accomplish this, MBAM relies on the principles of di�erential geometry to tackle statistical

problems. This approach has been successfully implemented in various scienti�c �elds.
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In the fourth chapter, we made use of the MBAM technique to investigate the unreliability

of the parameter estimates of the point-coupling EDF functional in nuclear matter. This allowed

us to gain a deeper understanding of the behavior and properties of this functional in the

context of nuclear physics. To this end, the manifold boundary approximation method (MBAM)

solutions' error estimates were constrained in the framework of classical statistics, by means of

the Monte Carlo simulations, as well as in the framework of Bayesian statistics, by means of the

Markov Chain Monte Carlo method. To improve the reliability of parameters and streamline

the execution time of code, we took the initiative of implementing the EDF and MBAM codes

using Python, and incorporating automatic di�erentiation. This implementation proved to be

highly advantageous, as it allowed for a much more accurate evaluation of the parameters, and

completely eliminated any possibility of numerical imprecision. By utilizing this approach, we

were able to ensure that the results obtained were of the highest possible quality and that the

entire process was as e�cient and e�ective as possible. After conducting a thorough analysis of

the DD-PC1 model within the nuclear EDF, it has been con�rmed that the conclusions drawn

from utilizing the MBAM method remain steadfast and unwavering, even when the parameters

are altered within the1f con�dence interval of the optimal-�t model. This indicates a strong

level of reliability and consistency in the results obtained from this methodology, lending further

credibility to its use in future research and experimentation. In order to accurately identify the

geodesic boundary, it is essential to carefully analyze the point at which the determinant of

the Fisher Information Matrix (FIM) begins to approach zero. This particular condition plays a

critical role in the formation of distinct and separate areas within the parameter space. Therefore,

it is imperative to pay close attention to this critical point during the identi�cation process.

In the �fth section of this study, an extensive examination was conducted on �nite nuclei.

The charge radius and single-particle energies of a speci�c set of doubly-magic nuclei were

determined through a simple yet e�cient technique. The method employed the Woods-Saxon

potential and underwent a meticulous statistical analysis.
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The research focused on comparing error estimates of two methods. One involved utilizing

the FIM for a faster process, while the other required the more demanding Bayesian MCMC

method. After comparing the results of both methods, it was discovered that they varied by less

than1f . This implies that both techniques are dependable and precise.

Based on the �ndings, it can be deduced that the FIM-based approach combined with

algorithmic di�erentiation is a dependable method for accurately estimating EDF parameter

uncertainties even in the intricate scenario of �nite nuclei. The proposed approach for error

analysis o�ers a signi�cant advantage in that it eliminates the requirement for an exhaustive

sampling of the parameter space. This is particularly bene�cial when using Bayesian statistical

techniques, which can be a tedious and time-consuming process.
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