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Abstract

Statistical analysis proved to be significant in determining the errors of theoretical models, as-

sessing the risk of extrapolation and the sensitivity of the model to changes, as well as in the

description of instabilities in the models. However, the importance of applying the analysis of

the unreliability of individual parameters in the form of nuclear energy density functionals has

only recently been recognized, where one of the main problems of error analysis of the param-

eters of those models is the possible sloppiness of some parameters or their combinations. This

was precisely the motivation for using methods of reducing the number of model parameters

based on information geometry - an interdisciplinary field that applies the ideas of differential

geometry to statistical problems that have recently found application in the physical description

of various systems in physics, chemistry and biology. Since in nuclear physics the manifold

boundary approximation method (MBAM) has recently proved useful for the classification and

reduction of complex models such as EDF models of the atomic nucleus, the statistical nature

of determining the unreliability by the MBAM method was investigated in more detail using

the example of the DD-PC1 functional. Also, using automatic differentiation in the code of

the DD-PC1 functional and the MBAM method, a more thorough and precise analysis of the

unreliability of the parameters itself is obtained, which enabled the optimization of time and

numerical precision. Considering the novelty of the MBAM method itself, stability tests of

the conclusions obtained by MBAM geodesics based on differential geometry techniques in the

field of classical statistics and Bayesian statistics in the form of the Markov Chain Monte Carlo

method were conducted.



Sažetak

Statistička analiza pokazala se značajna pri određivanju pogrešaka teorijskih modela, procjeni

rizika ekstrapolacije i osjetljivosti modela na promjene kao i pri opisu nestabilnosti u mode-

lima. Međutim, tek je nedavno prepoznat značaj primjene analize nepouzdanosti parametera

nuklearnih energijskih funkcionala gustoće. Jedan od glavnih problema analize pogrešaka

parametara tih modela moguća je aljkavost nekih parametara ili njihovih kombinacija. Upravo

je to bila motivacija za korištenje metoda redukcije broja parametara modela temeljenih na

informacijskoj geometriji - interdisciplinarnom području koje primjenjuje ideje diferencijalne

geometrije na statističke probleme koje je odnedavno našlo primjenu u fizikalnom opisu različitih

sustava u fizici, kemiji i biologiji. Budući da se u nuklearnoj fizici metoda aproksimacije mod-

ela mnogostrukosti s rubom (MBAM) nedavno pokazala korisnom za klasifikaciju i redukciju

kompleksnih modela kao što su EDF modeli atomske jezgre, podrobnije je istražena statis-

tička priroda određivanja nepouzdanosti MBAM metodom na primjeru DD-PC1 funkcionala.

Također, koristeći automatsku diferencijaciju u kodu DD-PC1 funkcionala te MBAM metode,

dobiva se temeljitija i preciznija analiza nepouzdanosti samih parametara čime se omogućila

optimizacija vremena i numeričke preciznosti. S obzirom na novost same MBAM metode, prove-

deni su testovi stabilnosti zaključaka dobivenih MBAM geodezicima temeljeni na tehnikama

diferencijalne geometrije u području klasične statistike te Bayesove statistike u vidu Markov

Chain Monte Carlo metode.



Prošireni sažetak

Uvod

Atomske jezgre je teško modelirati zbog toga što je nepoznat egzaktan oblik interakcije između

nukleona te stoga postoje različiti pristupi ovom problemu, ovisno o položaju jezgre u karti

nuklida. Jednostavni modeli koriste se za lake jezgre, dok se za teže koristi model ljusaka. Za

pokrivanje cijele karte nuklida koriste se nuklearni energijski funkcionali gustoće (EDF) [1].

Funkcionali gustoće nuklearne energije

Teorija funkcionala gustoće koristi se u fizici čvrstog stanja za rješavanje fenomena više elek-

trona minimiziranjem funkcionala gustoće elektrona. Nuklearni EDF-ovi aproksimiraju se

funkcionalima gustoća i struja osnovnog stanja nukleona i njihovim gradijentima. Poluempiri-

jski EDF-ovi su funkcionali koji slijede mikroskopski motivirani ansatz za nukleonsku gustoću,

a njihovi parametri empirijski su prilagođeni za reprodukciju dane jednadžbe stanja.

Korištenje relativističkog Lagrangiana srednjeg polja u modelu mezonske izmjene konačnog

dometa poboljšava opis asimetrične nuklearne materije. Utvrđeno je da modeli točkastog vezanja

(PC) daju rezultate usporedive s modelima konačnog dometa, a poluempirijski funkcional

gustoće energije DD-PC1 je često korišteni funkcional ovog tipa koji uključuje stupnjeve slobode

nukleona i primjenjuje se na širok raspon atomskih jezgri.

Relativistički model srednjeg polja

Funkcional relativističkog modela srednjeg polja atomske jezgre izveden je na temelju pret-

postavke klase modela točkastog vezanja korištenih u sljedećim poglavljima. Lagrangian mod-

ela točkastog vezanja temelji se na skupu bilinearnih struja Diracovog spinora, 𝜓, koji se koristi

za opisivanje nukleona. Rezultirajući Lagrangian podijeljen je na Lagrangian slobodne čestice,

bilinearnu struju, bilinearnu strujnu derivaciju i elektromagnetsku komponentu. Interakcijski

dijelovi Lagrangiana sastoje se od četiri tipa fermionskih interakcija: izoskalar-skalar, izovektor-

vektor, izovektor-skalar i izovektor-vektor.



Razmatrana klasa modela točkastog vezanja koristi samo članove drugog reda, zanemarujući,

npr., šest-fermionske i osam-fermionske vrhove, ali umjesto toga promovira konstante sprezanja

u funkcije gustoće nukleona.

Pretpostavke funkcionala DD-PC1

Funkcionali DD-PC definirani su posebnim skupom parametrizacijskih jednadžbi. Ove jed-

nadžbe koriste normaliziranu gustoću simetrične nuklearne materije, predstavljenu varijablom

x, za definiranje interakcija izoskalar-skalar, izovektor-vektor i izovektor-skalar.

Funkcional gustoće energije DD-PC1 razvijen je i testiran u proračunima srednje teških i

teških jezgri. Veza izovektor-vektor određena je iz empirijskih svojstava asimetrične nuklearne

materije, pri čemu su određeni parametri postavljeni na nulu.

Statistička analiza u nuklearnoj fizici

Tijekom prošlog desetljeća, statistička analiza pogrešaka postala je sve više prepoznata u is-

traživanju EDF-ova zbog svoje sposobnosti kvantificiranja teoretskih pogrešaka, razlikovanja

sigurnih i rizičnih ekstrapolacija, pružanja analize osjetljivosti i pružanja uvida u nestabilnosti

modela. To uključuje korištenje klasičnog ili Bayesovog zaključivanja za procjenu nesigurnosti

parametara i primjenu metoda redukcije modela temeljenih na konceptima informacijske ge-

ometrije.

Na primjer, aproksimacijska metoda mnogostrukosti s rubom razvijena je za proučavanje

složenih i aljkavih problema koji se javljaju u fizici, kemiji i biologiji. Temelji se na geodezicima

u prostoru parametara modela i može se primjenjivati iterativno za pojednostavljenje modela

uz zadržavanje preciznosti. Ove su tehnike dosad primijenjene na niz EDF modela, uključu-

jući modele točkastog vezanja ovisne o gustoći koje je teško analizirati korištenjem klasičnih

statističkih tehnika.
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Informacijska geometrija

Kako bi se pronašao najbolji model, statističke analize često koriste metodu maksimalne vjero-

dostojnosti. Pritom se pretpostavlja da svako mjerenje slijedi normalnu distribuciju te se mini-

mizira funkcija log-vjerodostojnosti kako bi odredio najbolji model.

Točnost procjena može se provjeriti pomoću Cramer-Rao granice, koja uključuje Fisherovu

informacijsku matricu. MBAM metoda može se koristiti za poboljšanje točnosti, čak i u modela

sa širokim rasponom vrijednosti matrice kovarijancije. U nuklearnoj fizici, postupak MBAM

metode korišten je za stvaranje učinkovitih modela.

Algoritamska diferencijacija i modeli nuklearne strukture

Algoritamsko diferenciranje (AD) moćna je tehnika koja se koristi za učinkovitu i točnu procjenu

derivacija numeričkih funkcija. Ova tehnika našla je široku primjenu u poljima kao što su

računalna dinamika fluida, atmosferske znanosti, optimizacija inženjerskog dizajna i strojno

učenje.

AD iskorištava činjenicu da se numerička izračunavanja formiraju iz konačnog skupa el-

ementarnih operacija s poznatim jakobijanima, što omogućuje izračunavanje jakobijana kom-

pliciranih izraza korištenjem lančanog pravila za kompoziciju funkcija. Postoje dvije glavne

varijante AD-unaprijed i AD-unazad.

Python pruža izvrsnu platformu za implementaciju AD tehnika pomoću paketa poput au-

tograda. Autograd je Python paket koji korisnicima omogućuje pisanje složenih funkcija, čak

i korištenjem rekurzija. Može rukovati Python kodom koji sadrži jednostavna izračunavanja,

while petlje, rekurziju i if naredbe, kao i mnoge funkcije dostupne u bibliotekama numpy i scipy.

Autograd također omogućuje korisnicima da definiraju potrebne derivacije u smislu auto-

gradovih funkcija, a derivacijama višeg reda upravlja se automatski. Uz Python i pakete poput

autograda, korisnici mogu jednostavno implementirati AD tehnike i izvesti točne i učinkovite

derivacije svojih funkcija.

iii



Stabilnost aproksimacijske metode mnogostrukosti s rubom kod redukcije

modela nuklearne strukture

Modeli točkastog vezanja [2; 3] mogu proizvesti rezultate usporedive s onima konačnog dosega,

čak i ako su PC interakcije prilagođene nuklearnoj materiji i svojstvima osnovnog stanja konačnih

jezgri [4]. Projekt ‘Univerzalni funkcional gustoće nuklearne energije’ (UNEDF) bio je usmjeren

na širok raspon pionirskih razvoja u EDF-u, uključujući nesigurnost kvantifikacija nuklearne

teorije [5; 6].

U posljednjem desetljeću, analiza statističkih pogrešaka, koristeći klasičnu ili Bayesovu

paradigmu, počela je biti prepoznata u EDF istraživanju radi kvantificiranja teoretskih pogrešaka,

razlikovanja sigurne i riskantne ekstrapolacije te zbog uvida u nestabilnosti modela [7–17].

Iako je u početku bila usmjerena na strojno učenje i neuronske mreže [18; 19], informa-

cijska geometrija je interdisciplinarno područje koji uvodi koncepte diferencijalne geometrije

na statističke probleme [20; 21]. Nedavno je metoda aproksimacije metode mnogostrukosti s

rubom (MBAM) [22–24] razvijena za proučavanje složenih i aljkavih problema koji se javljaju

u fizici, kemiji i biologiji [25–27] kako bi se klasificirali ili smanjili složeni modeli, kao što su

nuklearni EDF [28–30].

Prepreke uspostavljanju jedinstvenog teorijskog okvira za tretiranje nuklearnog problema s

više tijela su složenost nukleon-nukleon interakcije u nuklearnom mediju i sprezanje između

stupnjeva slobode jednog nukleona i kolektivnih stupnjeva slobode. Nuklearni EDF-ovi i modeli

strukture temeljeni na njima, postali su obećavajući alat za opis svojstava osnovnog stanja i

niskoenergijska kolektivna pobuđenja srednje teških i teških jezgri.

Nepoznati točan nuklearni EDF aproksimira se funkcionalima sačinjenima od potencija i

gradijenata gustoće i struje nukleona u osnovnom stanju, a koji predstavljaju raspodjelu materije,

spina, izospina, impulsa i kinetičke energije. Većina parametara semiempirijskog funkcionala

se podešava, u aproksimaciji lokalne gustoće, kako bi se reproducirala mikroskopska jednadžba

stanja (EoS), beskonačna simetrična i asimetrična nuklearna materija, a na kraju i neutronska

materija. Semiempirijski funkcionali koji su razvijeni tijekom posljednjeg desetljeća [5; 31–40]

vrlo su uspješno primijenjeni na proučavanje svojstava strukture, od grupiranja u relativno lake

jezgre do stabilnosti superteških sustava.
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U prethodnim studijama [28; 29], autori su koristili pojmove iz informacijske geometrije

kako bi pokazali da su nuklearni EDF-ovi, općenito, aljkavi [22–25; 41]. Izraz “aljkav" odnosi se

na činjenicu da su predviđanja nuklearnih EDF-ova i srodnih modela osjetljiva na samo nekoliko

kombinacija parametara (stiff kombinacije parametara) i pokazuju eksponencijalno smanjenje

osjetljivosti na varijacije preostalih kombinacija parametara (soft kombinacije parametara). To

znači da su soft kombinacije parametara samo labavo ograničene dostupnim podacima te da

većina nuklearnih EDF-ova zapravo sadrži modele niže efektivne dimenzionalnosti.

U Ref. [28], koristeći MBAM [24] autori su izveli najučinkovitiji funkcionalni oblik param-

etara vezanja ovisnih o gustoći reprezentativnog modela nuklearnog EDF-a. Podaci korišteni

u ovom izračunu uključivali su skup točaka na mikroskopskoj jednadžbi stanja simetrične nuk-

learne materije i neutronske materije.

U Ref. [29] smo proširili ovaj izračun korištenjem jednostavnih numeričkih aproksimacija za

izračunavanje derivacija observabli s obzirom na parametre modela. Tako smo bili u mogućnosti

primijeniti MBAM na realne modele ograničen ne samo nuklearnom jednadžbom stanja nego

također opažanjima izmjerenim u konačnim jezgrama. Tijekom naše analize parametarizacija

u Ref. [29] primijetili smo da je numerička integracija geodezijske jednadžbe mogla doseg-

nuti granicu mnogostrukosti u konačnom broju koraka integracije, što ukazuje na divergenciju

determinante metrike u određenoj regiji prostora parametara. Ovo iznenađujuće ponašanje mo-

tiviralo je istraživanje stabilnosti dobivenih redukcija modela MBAM metodom, budući da se

divergentno područje može nenamjerno propustiti korištenjem prevelikih koraka integracije.

U ovom poglavlju primijenili smo informacijsko-teorijske metode kako bismo istražili sta-

bilnost redukcija modela MBAM metodom. U ilustrativnom primjeru modela točkastog vezanja

ovisnog o gustoći relativističkog nuklearnog EDF-a, koristeći Monte Carlo simulacije, utvrđeno

je da su glavni zaključci dobiveni iz MBAM postupka stabilni na varijacije parametara modela.

Nadalje, nalazimo da kraj geodezika MBAM metode nastaje kada determinanta Fisherove infor-

macijske metrike iščezava, čime se učinkovito odvaja prostor parametara na dvije nepovezane

regije.
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Klasična i Bayesova analiza pogreške relativističkog modela srednjeg polja

za dvostruko magične jezgre

Nuklearni EDF-ovi naširoko su korišteni okvir za opisivanje fenomena nuklearne strukture.

Budući da se izmjena teških mezona ne može razriješiti pri niskim energijama, samosuglasni

relativistički okvir srednjeg polja može se formulirati u smislu PC nukleonske interakcije. Ovaj

pristup daje rezultate usporedive s pristupom vezanja mezonske izmjene za konačne jezgre

[2; 3]. Rezultirajući ‘najprikladniji model’ [kao što je DD-PC1 funkcional, vidi, npr. 42]

zahtijeva fino podešavanje ovisnosti o gustoći interakcije izoskalar-skalar i izovektor-vektor

termina za nuklearnu materiju i svojstva osnovnog stanja konačnih jezgri.

Pitanje kvantifikacije nesigurnosti u nuklearnim EDF-ovima nedavno je privuklo pozornost,

fokusirajući se na proučavanje procjena pogreške statističkom analizom [10; 11], procjena

sustavnih pogrešaka [8; 9] i analiza korelacije [9; 43]. Međutim, statistička analiza je izazovnija

za PC modele jer je utvrđeno da oni pokazuju eksponencijalni raspon osjetljivosti na varijacije

parametara [42]. Utvrđeno je da je ovo ponašanje značajka aljkavih modela [44].

Nedavni napredak u razumijevanju ponašanja aljkavih modela [23; 25; 26; 45] doveo je

do novih pristupa analizi kao što je MBAM metoda [24]. MBAM je već korišten za sustavnu

konstrukciju učinkovitih funkcionala nuklearne gustoće sve nižih dimenzija i manjeg utjecaja

aljkavosti. To je ilustrirano na funkcionalu DD-PC1 procijenjenom na pseudo-podacima za

beskonačnu simetričnu nuklearnu materiju [28].

U prethodnom poglavlju istražena je ukupna stabilnost MBAM procedure primijenjene u

redukciji modela nuklearne strukture koristeći metode informacijske geometrije i Monte Carlo

simulacija. Za razliku od jednostavnog slučaja beskonačne nuklearne materije, gdje bismo

morali riješiti samo jednostavnu iterativnu proceduru za dobivanje Diracove mase i energije

vezanja, konačne jezgre zahtijevaju pažljiv opis nuklearnog problema više tijela.
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Općenito govoreći, statistička analiza može se izvesti ili u Bayesovom okviru - korišten-

jem razrađenih Monte Carlo simulacija ili u “klasičnom" okviru, dobivenom izračunavanjem

Fisherove informacijske matrice (FIM) i njezinog inverza (matrice kovarijance) iz odabrane

statistike modela [vidi, npr., 9]. Potonji bi pristup trebao, u načelu, oduzimati manje vremena

od izvođenja velike Monte Carlo simulacije. Međutim, kada se računa FIM, potrebno je izvri-

jedniti prve derivacije odabranog statističkog modela, bilo numerički ili analitički. Pokušaj

jednostavnog proširenja postojećih implementacija RMF kodova napisanih u Fortranu [46–49]

uveo bi nesigurnosti zbog upotrebe numeričke diferencijacije. Stoga smo odlučili implementirati

jednostavnu verziju RMF koda u Pythonu, u kojemu već postoje dobro testirane biblioteke za

algoritamsku diferencijaciju (AD).

Proširujući naš prethodni rad [50], koji se bavio primjenom informacijske geometrije na EDF

u slučaju nuklearne materije, ovdje smo predstavili statističku analizu jednostavnog postupka za

određivanje RMF energije vezanja za skup dvostruko magičnih jezgri s Woods-Saxon potenci-

jalom. Usporedili smo procjene pogreške između bržeg postupka koji koristi FIM i numerički

zahtjevnije Bayesove MCMC metode.

Čak i u složenom slučaju konačnih jezgri, nesigurnosti EDF parametara mogu se pouz-

dano procijeniti korištenjem FIM-a u kombinaciji s algoritamskom diferencijacijom. Predloženi

pristup analizi grešaka ima prednost u izbjegavanju dugotrajnog uzorkovanja prostora param-

etara, kakav zahtijevaju Bayesove statističke tehnike.
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Chapter 1

Introduction

The quantitative description of nuclear structure is one of the most complex quantum-mechanical

many-body problems for which the exact solutions are unavailable, and the exact nucleon-nucleon

interaction is unknown. Therefore, many possible approaches to describing nuclei exist in the

literature, and this choice is strongly impacted by the position of the modeled nucleus in the

chart of nuclides. For example, very light nuclei are often described by exactly solvable ab

initio models based on the assumed nucleon-nucleon interaction. In contrast, heavier nuclei

are usually characterized by the shell model based on the effective interaction whose matrix

elements need to be adjusted for different regions of the chart of nuclides. If a single model that

can encompass the entire chart of nuclides is needed, the only available choice is the class of

models based on the nuclear energy density functionals [EDFs, 1].

1.1 Nuclear energy density functionals

The density functional theory is a theory first developed to treat many-electron phenomena

in solid-state physics, wherein the solutions to the many-body problem are transformed to

a minimization of the functional of the electron density. Being an approximation method,

the exact nuclear energy density functional (EDF) is unknown. It is therefore approximated

by functionals of powers of ground-state nucleon densities and currents and their gradients,

representing distributions of matter, spin, isospin, momentum, and kinetic energy. A particular

1



1.2. The relativistic mean-field model

EDF need not be related to the microscopic interactions between nucleons, and many are

therefore motivated empirically.

The semi-empirical EDFs represent an intermediate class of functionals that follow a mi-

croscopically motivated ansatz for nucleonic density. Their parameters are empirically adjusted

to reproduce a given equation of state. Among the various possible nuclear EDFs, using the

relativistic mean-field Lagrangian in the finite-range meson-exchange model has been found

to improve the description of asymmetric nuclear matter [52]. This result has been possible

using density-dependent meson-nucleon couplings [53]. In the last decade, many successful

semi-empirical EDFs have been developed [5; 31; 33–40; 54], and successfully applied to study

a diversity of structure properties, from clustering in relatively light nuclei to the stability of

superheavy systems, and from bulk and spectroscopic properties of stable nuclei to the physics

of exotic nuclei at the particle drip lines.

Although approximating the finite-range effects of the interactions by contact interaction,

a simpler class of point-coupling (PC) models has been found to produce comparable results

to the finite-range models [2; 3], even if the point-coupling interactions are being adjusted

to nuclear matter and ground-state properties of finite nuclei [4]. The semi-empirical energy

density functional DD-PC1 [54] is an often-used point-coupling functional that includes nucleon

degrees of freedom and considers only second-order interaction terms, and that applies to a wide

range of atomic nuclei [55].

1.2 The relativistic mean-field model

In this section, the functional of the relativistic mean-field model of the atomic nucleus is

described. This section covers the derivation based on assuming the class of the point-coupling

models used in the following chapters.

The relativistic Lagrangian governing point-coupling models is based on a set of bilinear

currents of the Dirac spinor, 𝜓, used to describe nucleons

�̄�O𝜏Γ𝜓,O𝜏 ∈ {1, 𝜏𝑖}, Γ ∈ {1, 𝛾𝜇, 𝛾5, 𝛾5𝛾𝜇, 𝜎𝜇𝜈}. (1.1)

where 𝜏𝑖 are the Pauli matrices for isospin, and Γ are the Dirac matrices. The resulting Lagrangian

2



1.2. The relativistic mean-field model

may be divided into the free-particle, L 𝑓 𝑟𝑒𝑒, bilinear current, L4 𝑓 , bilinear current derivative,

L𝑑𝑒𝑟 , and the electromagnetic, L𝑒𝑚, components [54]

L = L 𝑓 𝑟𝑒𝑒 + L4 𝑓 + L𝑑𝑒𝑟 + L𝑒𝑚 . (1.2)

The interacting parts of the Lagrangian are composed of the four types of fermion interactions:

the isoscalar-scalar, (�̄�𝜓)2, isovector-vector, (�̄�𝛾𝜇𝜓) (�̄�𝛾𝜇𝜓), isovector-scalar, (�̄� ®𝜏𝜓) · (�̄� ®𝜏𝜓),

and the isovector-vector type, (�̄� ®𝜏𝛾𝜇𝜓) · (�̄� ®𝜏𝛾𝜇𝜓).

In the point-coupling class of models, the interacting terms are added to the Lagrangian by

multiplying the bilinear currents by their respective couplings (𝛿𝑆, 𝛼𝑆, 𝛼𝑉 , 𝛼𝑇𝑆 and 𝛼𝑇𝑉 ) that are

dependent on the baryon density, �̂�, defined as

�̂�𝑢𝜇 = �̄�𝛾𝜇𝜓, (1.3)

where 𝑢𝜇 is the four-velocity 𝑢𝜇 = (1 − 𝑣2)−1/2(1, ®𝑣). The considered class of point-coupling

models uses only second-order terms, disregarding, e.g., six-fermion and eight-fermion vertices,

but instead promotes the coupling constants to functions of nucleon density [54]. These models

consider the same building blocks as the meson-exchange models, wherein the single-particle

properties are tied to the three meson fields: the isoscalar-scalar 𝜎 meson, the isoscalar-vector

𝜔 meson, and the isovector-vector 𝜌 meson, without the isovector-scalar term [4].

Using the notation outlined above, the components of the Lagrangian are expanded as

L 𝑓 𝑟𝑒𝑒 = �̄�(𝑖𝛾𝜇𝜕𝜇 − 𝑀)𝜓, (1.4)

L4 𝑓 = −1
2
𝛼𝑆 ( �̂�) (�̄�𝜓) (�̄�𝜓) −

1
2
𝛼𝑉 ( �̂�) (�̄�𝛾𝜇𝜓) (�̄�𝛾𝜇𝜓)

−1
2
𝛼𝑇𝑆 ( �̂�) (�̄� ®𝜏𝜓) · (�̄� ®𝜏𝜓) − 1

2
𝛼𝑇𝑉 ( �̂�) (�̄� ®𝜏𝛾𝜇𝜓) · (�̄� ®𝜏𝛾𝜇𝜓), (1.5)

L𝑑𝑒𝑟 = −1
2
𝛿𝑆 ( �̂�) (𝜕𝜈�̄�𝜓) (𝜕𝜈�̄�𝜓) +𝑂 (𝜕2), (1.6)

L𝑒𝑚 = 𝑒𝐴𝜇�̄�
1 + 𝜏3

2
𝛾𝜇𝜓 − 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈, (1.7)

where the derivative Lagrangian L𝑑𝑒𝑟 was expanded out to the first derivative terms.

3



1.2. The relativistic mean-field model

The equation of motion for the nucleons can be found by varying the Lagrangian by �̄�,

yielding an equation

[𝛾𝜇 (𝑖𝜕𝜇 −𝑉 𝜇) − (𝑚 + 𝑆)]𝜓 = 0, (1.8)

where the following abbreviations were introduced

𝑆 = Σ𝑆 + ®𝜏 · ®Σ𝑇𝑆 + Σ𝑟𝑆, (1.9)

𝑉 𝜇 = Σ𝜇 + ®𝜏 · ®Σ𝑆 + Σ𝑟𝑆, (1.10)

where the components were further separated into isoscalar-vector, Σ𝜇, isoscalar-scalar Σ𝑆,

isovector-vector, Σ𝜇

𝑇
, isovector-scalar, Σ𝑇𝑆, isoscalar-scalar derivative components Σ𝑟𝑆 and Σ

𝜇
𝑟 :

Σ𝜇 = 𝛼𝑉 (�̄�𝛾𝜇𝜓) − 𝑒𝐴𝜇 1 + 𝜏3
2

, (1.11)

®Σ𝜇

𝑇
= 𝛼𝑇𝑉 (�̄� ®𝜏𝛾𝜇𝜓), (1.12)

Σ𝑆 = 𝛼𝑆 (�̄�𝜓) − 𝛿𝑆□(�̄�𝜓), (1.13)

®Σ𝑇𝑆 = 𝛼𝑇𝑆 (�̄� ®𝜏𝜓), (1.14)

Σ𝑟𝑆 = −𝜕𝛿𝑆

𝜕�̂�
(𝜕𝜈 𝑗 𝜇)𝑢𝜇 (𝜕𝜈 (�̄�𝜓)), (1.15)

Σ
𝜇
𝑟 = 𝑢𝜇

2

(
𝜕𝛼𝑆

𝜕�̂�
(�̄�𝜓) (�̄�𝜓) + 𝜕𝛼𝑇𝑆

𝜕�̂�
(�̄� ®𝜏𝜓) · (�̄� ®𝜏𝜓)

+ 𝜕𝛼𝑉
𝜕�̂�

(�̄�𝛾𝜈𝜓) (�̄�𝛾𝜈𝜓) + 𝜕𝛼𝑇𝑉
𝜕�̂�

(�̄� ®𝜏𝛾𝜈𝜓) · (�̄� ®𝜏𝛾𝜈𝜓)

+ 𝜕𝛿𝑆
𝜕�̂�

(𝜕𝜈 (�̄�𝜓)) (𝜕𝜈 (�̄�𝜓)
)
. (1.16)

In the rest frame, the only contribution to the currents is from the densities. Therefore, in

the ground state of the nucleus, Φ, the following densities can be introduced

𝜌𝑆 = ⟨Φ|�̄�𝜓 |Φ⟩ = 𝜌
𝑝
𝑠 + 𝜌𝑛𝑠 , (1.17)

𝜌 = ⟨Φ|�̄�𝛾0𝜓 |Φ⟩ = 𝜌𝑝 + 𝜌𝑛, (1.18)

𝜌𝑠3 = ⟨Φ|�̄�𝜏3𝜓 |Φ⟩ = 𝜌
𝑝
𝑠 − 𝜌𝑛𝑠 , (1.19)

𝜌𝑡𝑣 = ⟨Φ|�̄�𝜏3𝛾
0𝜓 |Φ⟩ = 𝜌𝑝 − 𝜌𝑛. (1.20)
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1.3. Pairing

In the rest-frame, the single-particle energies, 𝜖𝑖, can therefore be found by solving the Dirac

equation,

(𝛼 · p + 𝛽𝑚∗(𝑟) +𝑉 (𝑟)) 𝜓𝑖 = 𝜖𝑖𝜓, (1.21)

where the potential 𝑉 and the effective mass, 𝑚∗ are given by

𝑉 (𝑟) = 𝛼𝑉 𝜌 + 𝛼𝑇𝑉𝜏3𝜌𝑇𝑉 + 𝑒𝐴0 + 1
2

(
𝜕𝛼𝑆

𝜕𝜌
𝜌2
𝑆 +

𝜕𝛼𝑉

𝜕𝜌
𝜌2
𝑉 + 𝜕𝛼𝑇𝑉

𝜕𝜌
𝜌2
𝑇𝑉

)
(1.22)

𝑚∗(𝑟) = 𝑚 + 𝛼𝑆𝜌𝑆 + 𝛿𝑆∇2𝜌𝑆 . (1.23)

The associated energy density functional in the rest frame is

𝐸𝑅𝑀𝐹 =

∫
𝑑3𝑥

∑︁
𝑖

𝜓
†
𝑖
(𝛼·p+𝛽𝑚)𝜓𝑖+

1
2

(
𝛼𝑆𝜌

2
𝑆 + 𝛼𝑉 𝜌

2
𝑉 + 𝛼𝑇𝑉 𝜌

2
𝑇𝑉 + 𝛿𝑆𝜌𝑆∇2𝜌𝑆 − (∇𝐴0)2 + 𝑒𝐴0𝜌𝑝

)
.

(1.24)

1.3 Pairing

Pairing is a necessary ingredient for studying nuclei with open shells and is therefore necessary

to describe nuclei that are not doubly magic [56].

In the constant gap approximation [57], each single-particle state is occupied according to

the occupation probability 𝑣2
𝑖
, calculated using the BCS formula

𝑣2
𝑖 =

1
2

(
1 − 𝜖𝑖 − 𝜆√︁

(𝜖𝑖 − 𝜆)2 + Δ2

)
, (1.25)

where 𝜆 is the chemical potential and Δ the gap parameter. The chemical potential is determined

separately for protons and neutrons by finding a solution of the equations for the chemical

potentials for protons and neutrons ∑︁
𝑖

𝑣2
𝑖,𝑝 (𝜆𝑝) = 𝑍 (1.26)∑︁

𝑖

𝑣2
𝑖,𝑛 (𝜆𝑛)) = 𝑁, (1.27)

so that the total number of neutrons and protons is conserved. The pairing energy can then be

computed from a simple expression

𝐸𝑝𝑎𝑖𝑟 = −𝐺
∑︁
𝑖

(𝑣𝑖𝑢𝑖)2, (1.28)
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1.4. The assumptions of the DD-PC1 functional

where 𝑢𝑖 is the complement of the occupation probabilities, 𝑢2
𝑖
= 1 − 𝑣2

𝑖
, and 𝐺 is a constant

determined from the self-consistency condition

Δ = 𝐺
∑︁
𝑖

𝑢𝑖𝑣𝑖 . (1.29)

Since the sum necessary for computing the pairing energy diverges, one often introduces cutoff

energy [46; 56].

1.4 The assumptions of the DD-PC1 functional

The density-dependent point coupling (DD-PC) functionals are defined by the following parametriza-

tion [4]

𝛼𝑠 (𝜌) = 𝑎𝑠 + (𝑏𝑠 + 𝑐𝑠)𝑒−𝑑𝑠𝑥 , (1.30)

𝛼𝑣 (𝜌) = 𝑎𝑣 + 𝑏𝑣𝑒
−𝑑𝑣𝑥 , (1.31)

𝛼𝑡𝑣 (𝜌) = 𝑏𝑡𝑣𝑒
−𝑑𝑡𝑣𝑥 , (1.32)

where the density has been normalized by the saturation density in symmetric nuclear matter,

𝜌𝑠𝑎𝑡 , as

𝑥 =
𝜌

𝜌𝑠𝑎𝑡
. (1.33)

An optimal energy density functional of the DD-PC class, DD-PC1, has been determined from

a fit to the masses of 64 axially deformed nuclei and tested in calculations of properties of

spherical and deformed medium-heavy and heavy nuclei [4]. The density dependence of the

isovector-vector coupling has been inferred from empirical properties of asymmetric nuclear

matter with the 𝑎𝑇𝑉 and 𝑐𝑇𝑉 parameters being set to zero to calculations of asymmetric nuclear

matter [58] - an already established procedure for density-dependent couplings [59].
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1.5. Statistical analysis in nuclear physics

1.5 Statistical analysis in nuclear physics

In the last decade, statistical error analysis, either employing classical or Bayesian inference,

has started to be recognized [11] in EDF research for its ability to quantify theoretical errors,

distinguish safe and risky extrapolations, provide sensitivity analysis, and offer insight into

model instabilities [7–9; 11–13; 15]. For example, a recent paper [13] estimated the confidence

intervals of the mean-field single-nucleon energies in the chain of superheavy nuclei using the

Monte Carlo techniques. They have, however, been restricted to the Woods-Saxon nuclear

mean-field model to reduce computational complexity. The Bayesian approach for estimating

parameter uncertainties is to assume a prior distribution of parameters and then sample the

posterior distribution. Such a procedure has been applied, e.g., to study the liquid drop model

and the Skyrme functional [15].

The density-dependent point-coupling models are difficult to analyze using classical statis-

tical techniques. This behavior has been tied to an exponential range of sensitivity to parameter

variations, prompting the application of model reduction methods based on concepts of infor-

mation geometry [28; 29]. Information geometry is an interdisciplinary field that introduces

differential geometry concepts to statistical problems [20; 21]. While its initial applications

centered around machine learning and neural networks [18], it has recently started being applied

to various questions in physics. For example, the Manifold Boundary approximation method

(MBAM) [22–24] has been developed to study complex and sloppy problems occurring in

physics, chemistry, and biology [25; 26] to either classify or reduce complex models, including

EDFs [28; 29]. The method is based on geodesics in the space of model parameters (model

manifold), equipped with the Fisher information metric (FIM). Its eigenvalues are computed at

the best-fitting model point, and the geodesic equation is solved in the direction of the FIM eigen-

vector corresponding to the largest uncertainty eigenvalue. After a long-enough integration, the

geodesic either reaches the end of the model manifold, breaking the integration procedure, or

the components of the eigenvector stabilize. In either case, the method establishes the single

parameter (or combination of parameters) that is the biggest contributor to the uncertainty of

the model. This constraint is then used to simplify the model, and the procedure can be applied

iteratively as long as the resulting model describes the initial dataset to the wanted precision.
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Chapter 2

Information geometry

To find the best model, statistical analyses often use the maximum likelihood method. This

assumes that each measurement follows a normal distribution. They maximize the log-likelihood

function over a range of possible values to determine the best model. The accuracy of the

estimates can be checked with the Cramer-Rao bound, which involves the Fisher information

matrix. The manifold boundary approximation method can be used to improve accuracy, even

with a wide range of covariance matrix values. In nuclear physics, the MBAM procedure was

used to create effective models with tightly constrained parameters.

2.1 Maximum likelihood method

Model selection is usually performed using the maximum likelihood method, with the assump-

tion that at the 𝑎-th measurement the data (𝑥𝑎, 𝑦𝑎) can be described using a normal distribution,

denoted byN , by a model function 𝑓 (𝑥𝑎, p) ≡ 𝑓 𝑎 (p) as 𝑦𝑎 ∼ N
(
𝑓 𝑎 (p), (𝜎𝑎)2

)
. Here, 𝜎𝑎 is the

uncertainty of each measurement, and p is chosen from an appropriate parameter space, denoted

by M. Finding the best-fitting model is equivalent to maximizing the following log-likelihood

function 𝑙 (p) over p ∈ M,

𝑙 (p) =
∑︁
𝑎

ln 𝜙

(
𝑦𝑎 − 𝑓 𝑎 (p)

𝜎𝑎

)
, (2.1)

with 𝜙 a Gaussian probability density. To simplify the notations, we shall use indices from

the beginning of the Latin alphabet for measurements, and the Greek letters for derivatives
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2.1. Maximum likelihood method

𝜕
𝜕p𝜇 , shortened to 𝜕𝜇. In order to assess the accuracy of parameter estimates, one can utilize

the Cramer-Rao bound. This involves expanding the log-likelihood to the second order by

means of the Hessian. A comprehensive explanation of this approach can be found in Amari’s

publication [21] regarding information applications. Using the Hessian of the log-likelihood,

we can compute the quantity

𝑔𝜇𝜈 (p) =
∑︁
𝑎

𝜕𝜇 𝑓
𝑎𝜕𝜈 𝑓

𝑎

(𝜎𝑎)2 . (2.2)

which is referred to as the Fisher information matrix (FIM).

2.1.1 Information geometry

Information geometry can aid in the interpretation of this basic picture. The function 𝑙 (p) serves

as a link between the manifolds, M andN . Furthermore, the differential form, i.e., 𝑑𝑙 = 𝜕𝜇𝑙𝑑p𝜇,

forms a basis for the cotangent bundle onN , labeled as𝑇∗N , while the FIM serves as a metric on

N . When dealing with mathematical equations in the context of Special and General relativity,

it is common to use the same index repeatedly to indicate summation with respect to that index

(Einstein’s convention). This convention will be followed throughout this discussion. To create

a metric on the parameter space, denoted byM, we use the functional form of the log-likelihood.

This involves computing the expectation value with respect to N [21]:

𝑔 ≡ 𝐸 [𝑑𝑙 ⊗ 𝑑𝑙] .

The pullback operation, 𝑙∗, then induces a metric 𝑔(p) ∈ (𝑇∗M)2 on M, as

𝑔(p) = 𝑔𝜇𝜈𝑑p𝜇 ⊗ 𝑑p𝜈 = 𝐸 [𝜕𝜇𝑙𝜕𝜈𝑙]𝑑p𝜇 ⊗ 𝑑p𝜈 = 𝑙∗𝑔.

In this procedure, we provide the model manifold M with a tangent bundle containing the basis

𝜕𝜇 ∈ 𝑇M and a cotangent bundle consisting of the dual basis 𝑑p𝜇 ∈ 𝑇∗M. As the normal

family is included in the exponential family, M is a submanifold embedded within N and forms

part of the curved exponential family [20].

Differential geometry involves the study of the tangent spaces of nearby points in a given

space M. These tangent spaces are interconnected through the covariant derivative, which is
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2.1. Maximum likelihood method

denoted as ∇𝑋 and involves an arbitrary direction 𝑋 . To put it simply, the covariant derivative

operates on a tangent vector 𝑌 ∈ 𝑇M using the following formula:

∇𝑋 (𝑌 ) = ∇𝑋 (𝑌 𝜇𝜕𝜇) = 𝑋𝜈𝜕𝜈 (𝑌 𝜇)𝜕𝜇 + Γ𝜅
𝜇𝜈𝑋

𝜇𝑌 𝜈𝜕𝜅 .

This formula essentially describes how the covariant derivative works on the tangent vector 𝑌

by taking into account the direction 𝑋 . It involves a combination of partial derivatives of 𝑌 and

the Christoffel symbols Γ𝜅
𝜇𝜈, which represent the curvature of the space M. The quantity Γ𝜅

𝜇𝜈

stands for the Christoffel symbol when the metric-compatible connection with the condition

∇𝑋 (𝑔) = 0

is chosen (for details, see, e.g., Ref. [60]). For the FIM, the Christoffel symbols are given by

Γ𝜅
𝜇𝜈 (p) = 𝑔𝜅𝜌

∑︁
𝑎

𝜕𝜌 𝑓
𝑎𝜕𝜇𝜈 𝑓

𝑎

(𝜎𝑎)2 , (2.3)

where 𝑔𝜅𝜌 = (𝑔−1)𝜅𝜌 denotes the inverse of the metric.

We also perform calculations of the Riemann curvature tensor and scalar curvature along

the geodesic path. The Riemann curvature tensor is utilized for vectors X, Y, and Z in T(M)

using the following formula:

𝑅(𝑋,𝑌 )𝑍 = [∇𝑋 ,∇𝑌 ]𝑍 − ∇[𝑋,𝑌 ]𝑍.

The components of the Riemann tensor are expressed as

𝑅𝜇𝜈𝜌𝜅 =
∑︁
𝑎𝑏

𝑃𝑎𝑏

(
𝜕𝜇𝜌

𝑓 𝑎

𝜎𝑎
𝜕𝜈𝜅

𝑓 𝑏

𝜎𝑏
− 𝜕𝜇𝜅

𝑓 𝑎

𝜎𝑎
𝜕𝜈𝜌

𝑓 𝑏

𝜎𝑏

)
, (2.4)

where 𝑃𝑎𝑏 denotes the projection operator

𝑃𝑎𝑏 = 𝛿𝑎𝑏 − 𝑔𝜇𝜈𝜕𝜇
𝑓 𝑎

𝜎𝑎
𝜕𝜈

𝑓 𝑏

𝜎𝑏
. (2.5)

The Ricci scalar (or scalar curvature) is computed simply as

𝑅𝜇𝜈𝜌𝜅𝑔
𝜇𝜌𝑔𝜈𝜅 . (2.6)
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2.1. Maximum likelihood method

Figure 2.1: The initial (best-fit point) and final (at the boundary of the model manifold) eigen-

spectrum of the FIM for the DD-PC1 functional, with seven parameters in the isoscalar channel

(left panel), and the initial and final eigenvectors that correspond to the smallest eigenvalues

(panels on the right). Figure adapted from [28].
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2.1. Maximum likelihood method

Figure 2.2: The initial (best-fit point) and final (at the boundary of the model manifold) eigenspec-

trum of the FIM for the ten-parameter functional (panel (a)). The eigenvectors that correspond

to the initial and final smallest eigenvalues are shown in panels (b) and (c). Figure adapted from

[29].
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2.2 The manifold boundary approximation method

When dealing with large parameter uncertainties, it is often helpful to utilize model reduction

procedures to enhance accuracy in parameter estimation. By implementing the MBAM method,

parameters can be effectively constrained across a range of physical disciplines. Specifically, this

method calculates the geodesic through solving the geodesic equation from the best-fitting point

in the model manifold. This approach can lead to improved accuracy in parameter estimation,

even when dealing with a wide spectrum of covariance matrix values. In the cases where the

covariance matrix, and therefore the corresponding FIM, have a spectrum spanning many orders

of magnitude [45], model reduction procedures can improve parameter estimates. The method

computes the geodesic by solving the geodesic equation,

∇ ¤p ¤p = 0,

by starting from the best-fitting (bf) point in the model manifold,

pbf ≡ p𝜇

bf𝜕𝜇 .

Note that the dot on p represents the differentiation with respect the affine parametrization of

the geodesic. The geodesic equation, written in parameter components as

¥p𝜅 + Γ𝜅
𝜇𝜈 ¤p𝜇 ¤p𝜈 = 0, (2.7)

is solved with the ¤p initial conditions pointing in the direction of the FIM eigenvector, 𝑣0,

corresponding to its smallest eigenvalue. The largest eigenvalue of the covariance matrix is the

main cause of uncertainty in the model parameters. To determine the parameter or combination

of parameters that contribute the most to the uncertainty, we track the behavior of 𝑣0 along the

geodesic. Once identified, we eliminate this parameter from the model, resulting in a simpler

model with lower parameter uncertainties. This process can be repeated until the simplified

model accurately describes the data set.
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2.2. The manifold boundary approximation method

2.2.1 MBAM method and density functionals

The MBAM procedure was previously used in nuclear physics [28] to create effective models

with fewer dimensions. It involved identifying best-fit parameters, reaching the model manifold

boundary, creating a new model with one less parameter, and fitting it to the data. The procedure

was successful in eliminating model sloppiness. The analysis was extended to include ground-

state properties of finite nuclei, leading to similar results for a ten-parameter model [29].

In the context of the DD-PC1 functional, the MBAM procedure was applied [28] by con-

structing effective models of successively lower dimension until sloppiness can eventually be

eliminated, and all linearly independent parameter combinations are tightly constrained. They

applied the MBAM procedure in four distinct steps. In the first step, they identified the best-fit

parameters as well as the accompanying Hessian matrix of the 𝜒2 function. In the second step,

they integrated the geodesic equation using the parameter values at the best-fit point and the

eigendirection with the smallest eigenvalue as initial conditions until the boundary of the model

manifold was reached. In the third step, the model limit associated with the model boundary

was evaluated to produce a new model with one less parameter, while, in the fourth step, the

new model was fit to the data and used as a starting point for the next iteration. The manifold

boundary corresponds to a limit in which one or more parameters tend to limit values, and

they found that the parameter 𝑐𝑠 tended to zero. In Fig. 2.1, they plot the initial and final (at

the boundary) eigenspectrum of the FIM in the left panel and the initial and final eigenvectors

corresponding to the smallest eigenvalues (panels on the right). At the boundary of the model

manifold, only the component 𝑐𝑠 determines the decoupled eigendirection with the eigenvalue

of the FIM approaching zero. The analysis was later extended [29] by including the data on

ground-state properties of finite nuclei, which enabled the application of the MBAM procedure

to the ten-parameter DD-PC1 model, with the initial and final eigenspectrum of the FIM shown

in Fig. 2.2.
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Chapter 3

Algorithmic differentiation and nuclear

structure models

Algorithmic differentiation (AD) is a powerful technique used for the efficient and accurate

evaluation of derivatives of numeric functions. It has found widespread applications in fields

like computational fluid dynamics, atmospheric sciences, engineering design optimization, and

machine learning. AD exploits the fact that numerical computations are formed from a finite

set of elementary operations with known derivatives, making it possible to compute derivatives

of complicated expressions using the chain rule for the composition of functions. There are two

main variants of AD - the forward and reverse mode ADs.

Python provides an excellent platform for implementing AD techniques using packages like

autograd. Autograd is a Python package that enables users to write complex functions, even using

recursions. It can handle Python code containing simple computations, while loops, recursion,

and if statements, as well as list indexing operations and many functions available in the numpy

and scipy libraries. Autograd also allows users to define the required derivatives in terms of

autograd functions, and higher-order derivatives are handled automatically. With Python and

packages like autograd, users can easily implement AD techniques and derive accurate and

efficient derivatives of their functions.
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3.1 The concept of algorithmic differentiation

Algorithmic differentiation (AD, also called automatic differentiation) is a family of techniques

developed for the efficient and accurate evaluation of derivatives of numeric functions [61].

AD has already found applications in fields like computational fluid dynamics, atmospheric

sciences, engineering design optimization, and machine learning [62].

The AD technique exploits the fact that the numerical computations are formed from a finite

set of elementary operations with known derivatives [63; 64], reducing the computation of

derivatives of complicated expressions to the chain rule for the composition of functions. The

computational realization of AD comes in two different variants, the forward and reverse mode

ADs.

For a given function 𝑓 : R𝑛 → R𝑚, with the appropriate domain, {e𝑖}, and codomain, {E 𝑗 }

bases, the forward mode vector jacobian product (VJP) is a function of two variables in R𝑛 that

produces codomain vectors, J𝐹 = 𝐽
𝑓 ,𝑖

𝐹
E𝑖 : R𝑛 × R𝑛 → R𝑚

J 𝑓

𝐹
(x, r) = E𝑖𝐽

𝑓

𝐹
(x, r)𝑖 = E𝑖

𝜕 𝑓 𝑖

𝜕𝑥 𝑗

���
𝑥
𝑟 𝑗 , (3.1)

while the reverse mode VJP 𝐽𝑅 : R𝑛 × R𝑚 → R𝑚 evaluates as a domain vector 𝐽 𝑓

𝑅
(x, r) ∈ R𝑛

and is defined as

J 𝑓

𝑅
(x, r) = 𝐽

𝑓

𝑅
(x, r) 𝑗e 𝑗 = 𝑟𝑖

𝜕 𝑓 𝑖

𝜕𝑥 𝑗

���
𝑥
e 𝑗 , (3.2)

where x ∈ R𝑛 and r ∈ R𝑚. For example, a simple composition of functions 𝑦 = 𝑓1( 𝑓2(𝑥)) is

simply differentiated by the chain rule as

𝜕𝑦𝑖

𝜕𝑥 𝑗
=
𝜕 𝑓 𝑖1
𝜕𝑟 𝑘

( 𝑓2(𝑥)))
𝜕 𝑓 𝑘2
𝜕𝑥 𝑗

(𝑥). (3.3)

In the forward mode, the differentiation is realized as a composition of jacobians of the form

J 𝑓1◦ 𝑓2
𝐹

(x, r) = J 𝑓1
𝐹

(
𝑓2(x), J 𝑓2

𝐹
(x, r)

)
, (3.4)

while in the reverse mode, the differentiation yields the following composition of jacobians:

J 𝑓1◦ 𝑓2
𝑅

(x, r) = J 𝑓2
𝑅

(
x, J 𝑓1

𝑅
( 𝑓2(x), r)

)
. (3.5)
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Figure 3.1: Error estimates of the derivative of the eigenvalues, 𝜆, of the matrix 𝑀 (𝑡) = 𝐴 + 𝑡𝐵

as a function of the numeric differentiation step, ℎ. The figure shows the mean of absolute

differences between the solution obtained using automatic differentiation and the numerical

solution dependent on ℎ.
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Figure 3.2: Error estimates of the derivative of the eigenvectors, 𝑣, of the matrix 𝑀 (𝑡) = 𝐴 + 𝑡𝐵

as a function of the numeric differentiation step, ℎ. The figure shows the mean of the absolute

difference between the solution obtained using automatic differentiation and the numerical

solution dependent on ℎ. 19



3.2. Python implementation of AD

The use of VJPs enables clear and effective implementations of derivatives of simple func-

tions that can be extended by the user if needed by simply writing a jacobian of an arbitrarily

complicated function as either a forward-mode or reverse-mode VJP.

3.2 Python implementation of AD

The autograd package1 is a Python package that implements the algorithmic differentiation

techniques. Autograd has been developed in order to bring automatic differentiation techniques

to Python that can handle Python code containing both simple computations, such as for loops,

while loops, recursion, and if statements, as well as list indexing operations and many functions

available in the numpy and scipy libraries [65].

The autograd package gives the user the opportunity to write complicated functions, even

using recursions. For example, in the application to nuclear structure codes, it was necessary

to define the associated Laguerre polynomials, 𝐿𝛼
𝑛 (𝑥), and their derivatives using recurrence

relations using the expression

𝐿𝛼
𝑛 (𝑥) =


1, 𝑛 = 0

1 + 𝛼 − 𝑥, 𝑛 = 1

(2𝑛−1+𝛼−𝑥)
𝑛

𝐿𝛼
𝑛−1(𝑥) −

(𝑛+𝛼−1)
𝑛

𝐿𝛼
𝑛−2(𝑥), 𝑛 > 1

. (3.6)

Only the first derivative needed to be defined in terms of autograd functions, and the higher-

order derivatives are handled automatically by autograd.

1https://github.com/HIPS/autograd
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The Python implementation of the associated Laguerre polynomials is given below.

import autograd.numpy as np

def Laguerre(x,n,alpha):

if n==0:

return 1

if n==1:

return 1+alpha-x

return ((2*n-1+alpha-x)*Laguerre(x,n-1,alpha)\

-(n+alpha-1)*Laguerre(x,n-2,alpha))/(n)

An example of a situation where extending autograd was necessary is the case of the

derivatives of the eigenvalue problem. The function that needed to be extended is the numpy

function eigh, giving the list of eigenvalues and the associated eigenvectors as two parameters.

First, the function was wrapped to produce a single matrix as an output, with eigenvalues on the

diagonal merged with the transition matrix 𝑉 . For a 𝑁 × 𝑁 matrix, labeled 𝐻, this reshaping of

outputs yields a function

eigh(𝐻)𝑖 𝑗 =


𝜆𝑖𝛿𝑖 𝑗 , 𝑗 < 𝑁

𝑉𝑖, 𝑗−𝑁 , 𝑗 ≥ 𝑁

. (3.7)

Its derivative is then implemented as a VJP, 𝑢𝑚𝑛𝜕𝑖𝑒𝑖𝑔ℎ(𝐻)𝑚𝑛, based on the derivative formula

𝜕𝑖eigh(𝐻)𝑚𝑛 =


∑
𝑘𝑙

𝑉𝑘𝑛𝜕𝑖𝐻𝑘𝑙𝑉𝑙𝑛𝛿 𝑗𝑚, 𝑛 < 𝑁∑
𝑗≠𝑚

∑
𝑘𝑙

𝑉𝑘𝑚𝜕𝑖𝐻𝑘𝑙𝑉𝑙 𝑗𝑉(𝑛−𝑁) 𝑗
1

𝐸𝑚−𝐸 𝑗
, 𝑁 ≤ 𝑛

, (3.8)

where the sums have been written with no Einstein summation implied. The AD implementation

of the eigh derivative was tested on random 5x5 matrices, 𝐴 and 𝐵, merged into a function of the

form 𝑓 (𝑡) = 𝐴 + 𝑡𝐵 compared to the numeric derivatives using a finite symmetric step size ℎ.

The test of the implementation of eigenvalue derivatives is shown in Fig. 3.1. In contrast, their

corresponding eigenvector derivatives are shown in Fig. 3.2. The errors are minimal around the

floating-point precision of ∼ 10−5 in both figures, as expected from numerical implementations.

The Python implementation of this procedure is realized by the @primitive decorator and the
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3.2. Python implementation of AD

use of function defvjp that connects the function of the jacobian VJP to the original function.

Since the matrices for which this function is applied are assumed to be hermitian, the imaginary

parts of eigh were removed from the implementation:

import autograd as au

import autograd.numpy as np

from autograd.extend import primitive,defvjp

@primitive

def eighReal(theta,H):

h = H(theta)

e,V = np.linalg.eigh(h)

return np.array([np.diag(e),np.real(V)])

def eighdkReal(Eval,theta,H):

evals, vects = np.diag(Eval[0]),Eval[1]

dh = au.jacobian(H)(theta)

dEs = np.array([[([vects[:,j].T@dh[:,:,i]@vects[:,j] if j==m else 0.

for i in range(len(theta))])

for j in range(len(evals)) ]

for m in range(len(evals))])

Vs = np.array([np.sum([[vects[:,n]*(vects[:,m].T@dh[:,:,i]@vects[:,n])\

/(evals[m]-evals[n])

for i in range(len(theta))]

for n in range(len(evals)) if m!=n],axis=0).T

for m in range(len(evals))]).transpose(1,0,2)

def out(u):

o=np.tensordot(u,np.array([dEs,np.real(Vs)]),[[0,1,2],[0,1,2]])

return np.real(o)

return out

defvjp(eighReal,eighdkReal)
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Chapter 4

Stability of the manifold boundary

approximation method for reducing the

nuclear structure models

The framework of nuclear energy density functionals has been employed to describe nuclear

structure phenomena for a wide range of nuclei. Recently, statistical properties of a given nuclear

model, such as parameter confidence intervals and correlations, have received much attention,

particularly in the situations where one needs to fit complex models. We apply information-

theoretic methods to investigate stability of model reductions by the manifold boundary approx-

imation method (MBAM). In an illustrative example of the density-dependent point-coupling

model of the relativistic energy density functional, utilizing Monte Carlo simulations, it is found

that main conclusions obtained from the MBAM procedure are stable under variation of the

model parameters. Furthermore, we find that the end of the geodesic occurs when the determi-

nant of the Fisher information metric vanishes, thus effectively separating the parameter space

into two disconnected regions.

This chapter has been published in our recent paper [50].

23



4.1. Introduction

4.1 Introduction

The nuclear energy density functional (EDF) framework is a promising, unified theoretical

approach for a global description of nuclear structure phenomena. One of the successful EDFs

has been the one that is based on the relativistic mean-field Lagrangian in the finite-range

meson-exchange model [53], with the density-dependent meson-nucleon couplings providing

an improved description of asymmetric nuclear matter [52]. Moreover, it has been found that

simpler, point-coupling models [2; 3] produce comparable results to the finite-range ones, even if

the point-coupling interactions are being adjusted to nuclear matter and ground-state properties

of finite nuclei [4]. These density-dependent point-coupling models, however, have been shown

to exhibit an exponential range of sensitivity to parameter variations, prompting the application

of model reduction methods based on concepts of information geometry [28; 29].

Information geometry is an interdisciplinary field that introduces differential geometry con-

cepts to statistical problems [20; 21] with its initial applications centered around machine

learning and neural networks [18; 19]. Recently, the manifold boundary approximation method

(MBAM) [22–24] has been developed to study complex and sloppy problems occurring in

physics, chemistry and biology [25–27] in order to either classify or reduce complex models,

such as the nuclear EDFs [28–30].

The complexity of nucleon-nucleon interaction in the nuclear medium, coupling between

single-nucleon and collective degrees of freedom, and finite-size effects present obstacles to

numerous attempts to establish a single theoretical framework to treat the nuclear many-body

problem. The nuclear EDFs, and structure models based on them, have become a promising

tool for the description of ground-state properties and low-energy collective excitation spectra

of medium-heavy and heavy nuclei. A variety of structure phenomena have been successfully

described using the nuclear EDF framework with a high level of global precision and accuracy

over the entire chart of nuclides, and at a very moderate computational cost.

The unknown exact nuclear EDF is approximated by functionals of powers and gradients of

ground-state nucleon densities and currents, representing distributions of matter, spin, isospin,

momentum, and kinetic energy. A generic density functional is not necessarily microscopic,

i.e., it is related to the underlying inter-nucleon interactions, but some of the most successful
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4.1. Introduction

functionals are entirely empirical. However, one can also follow the middle way between fully

microscopic and entirely empirical EDFs, and consider semi-empirical functionals that start

from a microscopically motivated ansatz for the nucleonic density dependence of the energy of

a system of protons and neutrons. Most of the parameters of such a functional are adjusted, in a

local density approximation, to reproduce a given microscopic equation of state (EoS) of infinite

symmetric and asymmetric nuclear matter, and eventually neutron matter. The remaining,

usually few, terms that do not contribute to the energy density at the nuclear matter level,

are then adjusted to selected ground-state data of an arbitrarily large set of spherical and/or

deformed nuclei. A number of semi-empirical functionals have been developed over the last

decade [5; 31–40], and very successfully applied to studies of a diversity of structure properties,

from clustering in relatively light nuclei to the stability of superheavy systems, and from bulk

and spectroscopic properties of stable nuclei to the physics of exotic nuclei at the particle drip

lines.

In the previous studies [28; 29], the authors have used concepts from information geometry

to demonstrate that nuclear EDFs are, in general, “sloppy” [22–25; 41]. The term “sloppy”

refers to the fact that the predictions of nuclear EDFs and related models are really sensitive to

only a few combinations of parameters (stiff parameter combinations) and exhibit an exponential

decrease of sensitivity to variations of the remaining combinations of parameters (soft parameter

combinations). This means that the soft combinations of parameters are only loosely constrained

by the available data, and that most nuclear EDFs in fact contain models of lower effective

dimensionality associated with the stiff combinations of model parameters. In Ref. [28], by

employing the MBAM [24] the authors have deduced the most effective functional form of

the density-dependent coupling parameters of a representative model EDF. The data used in

this calculation included a set of points on a microscopic EoS of symmetric nuclear matter

and neutron matter. This choice was motivated by the necessity to calculate the derivatives of

observables with respect to model parameters which is, of course, much easily accomplished

for nuclear matter in comparison to finite nuclei. In Ref. [29] we have extended this calculation

by employing a simple numerical approximation to calculate the derivatives of observables

with respect to model parameters. Thus we were able to apply the MBAM to realistic models
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4.2. Illustrative calculation

constrained not only by the nuclear matter EoS but also by observables measured in finite

nuclei. During our analysis of parametrizations in Ref. [29] we have noticed that the numerical

integration of the geodesic equation could reach the manifold boundary in a finite number of

integration steps, indicating the divergence of the metric tensor determinant in a particular region

of the parameter space. This surprising behavior motivated an investigation of the stability of

model reductions obtained by the manifold boundary approximation method (MBAM), since

the divergent region might be unintentionally missed by using too large integration steps.

In this chapter, we study the stability of the MBAM with respect to the variation of the

model parameters. In Sec. 4.2 we describe the numerical implementation for finding the Dirac

mass and binding energies, aided by algorithmic differentiation. The results of our investigation

are given in Sec. 4.3, while further applications of information geometry to nuclear EDFs are

discussed in Sec. 4.4.

4.2 Illustrative calculation

The density-dependent point-coupling (DD-PC1) interaction [4] is a semi-empirical relativistic

EDF that involves the point coupling [54], and has been used in many contemporary studies of

nuclear structure and dynamics. The DD-PC1 functional explicitly includes nucleon degrees of

freedom and considers only second-order interaction terms. Its applicability to a wide range of

atomic nuclei has been demonstrated, e.g., in Refs. [55; 66].

We use the Dirac mass and energy density data shown in Table 4.1 to constrain the density-

dependent coupling constants of the DD-PC1 functional, 𝛼𝑠 (𝜌), 𝛼𝑣 (𝜌) and 𝛼𝑡𝑣 (𝜌), modeled as

[28; 29]

𝛼𝑖 = 𝑎𝑖 +
(
𝑏𝑖 + 𝑐𝑖

𝜌

𝜌sat

)
𝑒
−𝑑𝑖 𝜌

𝜌sat , 𝑖 ∈ {𝑠, 𝑣, 𝑡𝑣} , (4.1)

where the indices 𝑖 = 𝑠, 𝑣, and 𝑡𝑣 correspond to the isoscalar-scalar, isoscalar-vector, and

isovector-vector channels respectively, while 𝜌sat is the saturation density. In this paper, we take

a closer look at the reduced version of the model with 𝛼𝑡𝑣 = 0 and 𝑐𝑣 = 0, which results in a

seven-parameter model involving 𝑎𝑠, 𝑏𝑠, 𝑐𝑠, 𝑑𝑠, 𝑎𝑣, 𝑏𝑣, and 𝑑𝑣.
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4.2. Illustrative calculation

Table 4.1: Pseudo-data for infinite symmetric nuclear matter used to compute the best-fitting

solution for the energy density functional. The adopted error for the 𝑦 points is 10% for energy

and 2% for the Dirac mass.

index 𝜌𝑣 [fm−3] 𝑦 1 𝜎𝑦

1 0.152 0.58 0.055

2 0.04 −6.48 0.648

3 0.08 −12.13 1.213

4 0.12 −15.04 1.504

5 0.16 −16. 1.6

6 0.2 −15.09 1.509

7 0.24 −12.88 1.288

8 0.32 −5.03 0.503

4.2.1 Numerical implementation

We solve the equation for the Dirac mass 𝑀𝐷 , that is given by [28]

𝑀𝐷 = 𝑚 + 𝛼𝑠𝜌𝑠 , (4.2)

where 𝑚 is the bare nucleon mass, and 𝜌𝑠 the scalar density

𝜌𝑠 =
2
𝜋2 𝑀𝐷

∫ 𝑝𝐹

0

𝑥2𝑑𝑥√︃
𝑥2 + 𝑀2

𝐷

, (4.3)

with 𝑝𝐹 being the Fermi momentum

𝑝𝐹 (𝜌𝑣) =
(
3
2
𝜌𝑣𝜋

2
) 1

3

. (4.4)

The equation (4.2) is solved numerically by using the Newton-Raphson algorithm. We have also

tested the Halley’s method, but found no improvement of the results in accuracy.

Upon finding 𝑀𝐷 , we compute the binding energy of symmetric nuclear matter

𝐸𝑎 =
2
𝜋2

∫ 𝑝𝐹

0

𝑥4𝑑𝑥√︃
𝑥2 + 𝑀2

𝐷

+ 𝑚(𝜌𝑠 − 𝜌𝑣) +
1
2
𝛼𝑠𝜌

2
𝑠 +

1
2
𝛼𝑣𝜌

2
𝑣 . (4.5)
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Figure 4.1: Results of extrapolating the geodesic after the det 𝑔 = 0 point. Shown are (a) the

behavior of the evaluated model for different 𝜏-s along the geodesic, (b) the model parameters,

(c) the FIM eigenvalues as functions of 𝜏, (d) the squares of the FIM eigenvector 𝑣0 components,

(e) the Ricci scalar, and (f) the FIM determinant along the geodesic. Solid, dashed, and dotted

lines stand for, respectively, the initial odeint solutions, the linear interpolation, and the values

derived using odeint starting from the endpoint of the interpolated solutions.
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The best-fitting DD-PC1 parameter set is then found by computing the least-square solution

to the set of measurements of 𝑀𝐷/𝑚 and 𝐸𝑎 presented in Table 4.1 (see Ref. [29]). Differential

equations are solved with the aid of the SciPy implementation of the ordinary differential

equation integration (odeint) library [67]. These values are then used to compute the FIM

and the Christoffel symbols using algorithmic differentiation implemented via the autograd

package. We thus eliminate numerical errors due to the approximations arising from numerical

differentiations.

4.3 Investigating stability of the MBAM method

In some cases, the numerical integration of the geodesic equation might slow down, or even

fail. This behavior is due to the divergence of the metric tensor determinant that implicitly

appears in the geodesic equation (2.7) through the metric inverse necessary for computing the

Christoffel symbols [see Eq. (2.3)]. However, this divergent behavior is confined to only a small

region in the parameter space, and therefore it might be easily missed by choosing too imprecise

an integrator. Therefore, in Sec. 4.3.1, we investigate the impact of the size of the integration

step on the MBAM procedure by artificially extrapolating the geodesic beyond the divergent

region in the parameter space. Moreover, as the parameter uncertainties become larger, small

perturbations to the starting point of the geodesic might influence the end result of the MBAM.

In Sec. 4.3.2, we describe the impact of parameter uncertainties on the MBAM conclusions for

the nuclear EDF DD-PC1 by numerical error propagation of the MBAM geodesics. Finally,

in Sec. 4.3.3 we investigate the impact of using a common, physically-motivated restrictive

reparametrization of the DD-PC coupling constants on the MBAM model manifold.
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Figure 4.2: Monte Carlo simulated sample parameters using the best-fitting covariance matrix

(black symbols and contours) and its propagation towards 𝜏 = 1.3 along the geodesic using the

Jacobi equation (4.8) (red symbols and contours).
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Figure 4.3: Monte Carlo simulations of uncertainty propagation using the Jacobi equation (4.8).

Shown are the median and its uncertainty derived using 1300 simulated samples starting from

the best fitting point. The figure shows (a) the simulated FIM 𝑣0 eigenvector components

squared, (b) FIM eigenvalues, (c) FIM determinant, and (d) scalar curvature. The shaded areas

correspond to the 1𝜎 percentile interval, while the dotted lines in panels (c) and (d) additionally

show the 5-th and the 95-the percentiles, respectively. Solid orange lines in (c) and (d) stand for

the respective quantities computed along the path of the MBAM geodesic.
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Figure 4.4: Same as Fig. 4.2, but for Monte Carlo simulated sample (base 10) logarithm of the

eigenvalues of the FIM.
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Figure 4.5: Same as Fig. 4.2, but for Monte Carlo simulated sample components of the FIM 𝑣0

eigenvector.
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4.3.1 Geodesic extrapolation

We extrapolate the geodesic by using the last point having det 𝑔 > 0 (labeled as 𝜏2) and the point

before it (𝜏1). We first extrapolate 𝜏(𝑡) = 𝜏1(1 − 𝑡) + 𝜏2𝑡 for 𝑡 > 0, i.e., a straight line joining 𝜏1

and 𝜏2. We then compute the p𝜇 (𝑡) and ¤p𝜇 (𝑡) using their corresponding values at 𝜏1 and 𝜏2 as

p𝜇 (𝑡) = p𝜇 (𝜏1) (1 − 𝑡) + p𝜇 (𝜏2)𝑡 (4.6)

¤p𝜇 (𝑡) = ¤p𝜇 (𝜏1) (1 − 𝑡) + ¤p𝜇 (𝜏2)𝑡 (4.7)

This procedure produces a linear extrapolation of the geodesics in the region where the geodesic

equation does not hold because det 𝑔 = 0. The variable 𝑡 is just an interpolation parameter, not

connected to 𝜏, so ¤p is not coupled as 𝑑p/𝑑𝜏 in this region. We find that one can safely continue

integrating the geodesic equation after 𝑡 = 2, where there are no more singularities along the

path.

In Fig. 4.1, the resulting model parameters along the extended geodesic (a), the corresponding

model evaluation (b), the FIM eigenvalues (c), the 𝑣0 eigenvector (d), the Ricci scalar (e), and

the metric determinant (f) are shown. After the 𝑡 = 2 point along the extrapolated geodesic,

the metric tensor determinant starts to rise again. In the same figure, the linearly extrapolated

geodesic, corresponding to the small region region 𝜏 ∈ [𝜏(𝑡 = 1), 𝜏(𝑡 = 2)], is shown with

dashed lines. The extrapolated geodesic computed using MBAM continuation starting from the

point 𝜏(𝑡 = 2) is shown with dotted lines. The initial odeint solutions (solid lines), which produce

results for a few points after 𝜏 = 1.3, differ significantly from the interpolated solution, indicating

numerical problems due to singularity. Upon restarting the odeint procedure after the singular

region, we find that the MBAM solution yields different contributions to the 𝑣0 eigenvector,

indicating an equal contribution of 𝜕𝑏𝑠 , 𝜕𝑐𝑠 , and 𝜕𝑏𝑣 directions, while before 𝜏 = 1.3, the MBAM

method finds that the most significant contribution is from 𝜕𝑏𝑠 . The Ricci scalar diverges at

𝜏 ∼ 1.3, but starts to fall and change signs at 𝜏 > 1.3. Since the Ricci scalar is related to the

volume element, its divergence to positive values would produce a compressed region of the

parameter manifold, that begins to expand after the singularity.

The conclusion drawn from the results given in Fig. 4.1 is that one must be careful with the

models where the metric tensor determinant shows significant variations, as choosing too big
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steps for the odeint integrator might result in “skipping” to another portion of the parameter space

and continuing along it. This yields completely different contributions to the FIM eigenvector

corresponding to its smallest eigenvalue and hence might lead to a completely different model

reduction than expected from the simple MBAM case.

4.3.2 Parameter uncertainties

Further extension of the basic model might be the propagation of its parameter uncertainties,

and this can be facilitated by looking into how the uncertainties of the best-fitting parameters

propagate along the geodesics. For this purpose, we perform Monte Carlo simulations. To

analyze the error propagation one would have to compute the geodesic equation many times,

which is not cost-efficient. We, therefore, adopt a simplified approach that makes use of

the Jacobi equation, which computes differences 𝛿p between neighboring geodesics along the

already computed MBAM geodesic.

We use the covariance matrix Σ to produce Monte Carlo simulations of 𝛿p from the normal

distribution, 𝛿p ∼ N(0, Σ). For each simulated 𝛿p, we compute its propagation by using the

Jacobi equation

𝛿 ¥p𝜇 + 𝑅
𝜇

𝛼𝜈𝛽
¤p𝛼 ¤p𝛽𝛿p𝜈 = 0 . (4.8)

We find 1300 points to sample the DD-PC1 parameter space reasonably well. Figure 4.2 shows

the distributions of the parameters at the beginning (denoted by black symbols and contours)

and at 𝜏 = 1.3 (red symbols and contours). These two distributions are almost identical since

the simulated parameters are more dispersed than the gradual changes in parameter values along

the geodesic.

Even though the parameter uncertainties in the full model are large, we can estimate the

error on the eigensolutions of the FIM along the geodesic. We do this by computing the FIM

for every simulated point propagated along the best-fitting geodesic to various values of 𝜏 using

the Jacobi equation. The results of this procedure are shown in Fig. 4.3. The top panels show

the median and the corresponding 1𝜎 confidence interval of the eigensolutions, computed using

the 16th and the 84th percentile. The simulated FIM 𝑣0 eigenvector components squared are

shown in panel (a) and FIM eigenvalues in panel (b) for each 𝜏. We see that, while the results

35



4.3. Investigating stability of the MBAM method

using the simulated sample are consistently ordered when compared to the MBAM solution,

there is a small offset between the median and the MBAM solution. The panels (c) and (d)

of Fig. 4.3 show the median and the 1𝜎 confidence interval for the FIM determinant and the

scalar curvature, respectively. The simulated scalar curvature and the metric determinant along

the geodesic show a larger variation in their values along the geodesic. In these panels we

additionally show the FIM determinant and scalar curvature along the best-fitting geodesic by

the solid orange lines. There is a large discrepancy between the behavior of the median of the

simulated quantities and the behavior of the quantities along the best-fitting geodesic. In panel

(c) [(d)] of Fig. 4.3, we see that these quantities along the best-fitting geodesic are comparable

to the 5th (95th) percentile of det 𝑔 (scalar curvature), shown as dotted lines. This behavior

indicates that only the geodesics starting at the vicinity of the best-fitting point encounter the

region corresponding to det 𝑔 = 0.

Furthermore, in Figs. 4.4 and 4.5 we show, respectively, the distributions of eigenvalues and

components of 𝑣0 at the beginning and at the end of the geodesic. These large differences in

eigenvalues and eigenvector components propagating along the geodesic are in stark contrast to

the parameter values in Fig. 4.2. The discrepancies presented in Figs. 4.3, 4.4 and 4.5 can be

explained by the sensitivity of the FIM eigenproblem to small changes in DD-PC1 parameters,

since diagonalization results are not expected to change linearly with inputs. We conclude that

the offset is due to the non-Gaussianity of the distribution of eigenvalues and 𝑣0 components,

which arises even though the parameters were sampled using the normal distribution. Even

though there is a change in the shape of these distributions, the overall qualitative MBAM

conclusions remain the same along the geodesic.
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Figure 4.6: Same as Fig. 4.3, but for the reparametrized model described in Sec. 4.3.3.
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Figure 4.7: Monte Carlo simulations of posterior distributions of the error estimates for the

reparametrized model, based on the MCMC algorithm. The figure shows the 1𝜎, 2𝜎 and 3𝜎

covariance ellipses in red, as estimated from the FIM inverse, and the estimates of the covariance

ellipses based on the MCMC sample points in blue.
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4.3.3 Model reparametrization

The authors of Ref. [28] have considered an exponential reparametrization of the seven-parameter

DD-PC1 coupling constants centered at their best-fitting values [4]. This reparametrization

transformation can be schematically represented as a vector

p(p̃) =

©«

𝑎𝑠 (𝑝𝑎𝑠 )

𝑏𝑠 (𝑝𝑏𝑠 )

𝑐𝑠 (𝑝𝑐𝑠 )

𝑑𝑠 (𝑝𝑑𝑠 )

𝑎𝑣 (𝑝𝑎𝑣 )

𝑏𝑣 (𝑝𝑏𝑣 )

𝑑𝑣 (𝑝𝑑𝑣 )

ª®®®®®®®®®®®®®®®®¬

=

©«

𝑎𝑠,bf 𝑒
−𝑝𝑎𝑠

𝑏𝑠,bf 𝑒
−𝑝𝑏𝑠

𝑐𝑠,bf 𝑒
−𝑝𝑐𝑠

𝑑𝑠,bf 𝑒
−𝑝𝑑𝑠

𝑎𝑣,bf 𝑒
−𝑝𝑎𝑣

𝑏𝑣,bf 𝑒
−𝑝𝑏𝑣

𝑑𝑣,bf 𝑒
−𝑝𝑑𝑣

ª®®®®®®®®®®®®®®®®¬

, (4.9)

where p̃ indicates multivariate distribution of parameters 𝑝𝑎𝑠 , · · · , 𝑝𝑑𝑣 , and the quantities such as

𝑎𝑠,bf, 𝑏𝑠,bf, etc. stand for the best-fitting parameter values. The exponential form of the coupling

constants is chosen by the constraints (i) that the new parameters in the geodesic equation are

dimensionless, and (ii) that the exponential form prevents the coupling functions 𝑎𝑠 and 𝑎𝑣

from changing sign along the geodesic path, thus confining them in the region described by the

inequalities 𝛼𝑠 < 0 and 𝛼𝑣 > 0. Using these constraints the scalar mean-field potential remains

attractive and the vector mean-field repulsive for all allowed parameter values [28].

We repeat the Monte Carlo analysis described in Sec. 4.3.2 for the reparametrized model.

The resulting error estimates are shown in Fig. 4.6 in the same manner as in Fig. 4.3. By

comparing the two figures panel-by-panel, we conclude that both methods produce MBAM

geodesics that are stable under perturbations, even though the two FIMs do not behave in the

same way along their respective geodesics. The reparametrized FIM determinant and the Ricci

scalar change gradually, compared to the initial model.

One may ask whether this discrepancy is due to using a too simplistic description of the

reparametrized distributions. We then employ the Bayesian statistics to check whether the

multivariate distribution p̃ has pronounced non-Gaussian features. To this end, we use the

Markov chain Monte Carlo (MCMC) technique to sample the 𝜒2 posterior distribution, as

implemented in the package emcee [68]. In Fig. 4.7 we show the behavior of the chosen 200
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Markov chains as two-dimensional sections of the parameter space. The chains have been run

for a long enough time to avoid the initial “burn-in” phase characteristic of the algorithm during

which they follow mostly the (uniform) prior distribution instead of sampling the 𝜒2 posterior

distribution. From the fact that the classical covariance ellipses (represented by red contours

in Fig. 4.7) are well-aligned with the MCMC estimates, we conclude that one can proceed

with using the simple Monte Carlo Gaussian mock sample for error propagation instead of the

computationally more expensive Bayesian MCMC mock sample.

The theoretical argument for the discrepancy between the two geodesics is based on the prop-

erties of the applied transformation. Since the exponential transformations are not bijections,

the geodesics on the manifold spanned by p̃ need not have the same behavior as the geodesics on

the manifold spanned by p. To better understand the connection between these two geodesics,

we derive the FIM determinant on the p̃-manifold by using the transformation of Eq. (4.9),

det 𝑔(p̃) = 𝑎2
𝑠 (𝑝𝑎𝑠 )𝑏2

𝑠 (𝑝𝑏𝑠 )𝑐2
𝑠 (𝑝𝑐𝑠 )𝑑2

𝑠 (𝑝𝑑𝑠 )𝑎2
𝑣 (𝑝𝑎𝑣 )𝑏2

𝑣 (𝑝𝑏𝑣 )𝑑2
𝑣 (𝑝𝑑𝑣 ) det 𝑔(p(p̃)) . (4.10)

The determinant of the metric is not an invariant quantity under reparametrizations, hence the

additional multiplicative scaling is required. Equation (4.10) shows that, if the value of det 𝑔

approaches zero for particular values of p, both geodesics terminate. However, additional sin-

gularities appear if any of the coupling constants is allowed to change sign along a particular

geodesic. In contrast to the FIM determinant, the Ricci scalar is not affected by reparametriza-

tions. The scalar curvature distributions for different points on the geodesic in Fig. 4.6 (d) do

not have the same values as those in Fig. 4.3(d). The effects of reparametrizations on the scalar

curvature can be clearly seen from the comparison between these figures.

The general conclusion is, therefore, that the MBAM method is sensitive to the way the

reparametrization is made, as has been shown above in the case of the reparametrization tied to

domain restrictions. This is related to the fact that different reparametrizations do not lead to

the same, but similar, models describing the common physical problem. Since the EDF has an

arbitrarily-chosen functional form, there is no a priori way of identifying which parametriza-

tion is optimal. This sensitivity only emphasizes the fact that different reparametrizations

may describe similar, but inherently different, physical models. Choosing a particular EDF

parametrization is equivalent to choosing a particular range model parameters can take.
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4.4 Chapter summary

Methods of information geometry have been applied to investigate the stability of reducing the

nuclear structure models. We have constrained the error estimates of the manifold boundary

approximation method (MBAM) solutions by means of the Monte Carlo simulations. In the

illustrative application to the DD-PC1 model of the nuclear EDF, it has been found that the

main conclusions obtained by using the MBAM method are stable under the variation of the

parameters within the 1𝜎 confidence interval of the best-fitting model. Moreover, we have

found that the end of the geodesic occurs when the determinant of the FIM approaches zero,

thus effectively separating the parameter space into two disconnected regions.

Further applications of information geometry to nuclear EDFs could be analyzing possible

phase transitions in models of finite nuclei using scalar curvature and their impact on nuclear

properties. The analysis could even be expanded to include an extended temperature-dependent

model or to look for model instabilities. It would be worth investigating whether information-

theoretic optimizations, could accelerate computer codes to solve nuclear many-body problems.

Such 2nd-order optimization algorithms, like the natural-gradient descent, find optimal solutions

by taking optimization steps in the parameter space informed by the behavior of the FIM.
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Chapter 5

Classical and Bayesian error analysis of

the relativistic mean-field model for

doubly-magic nuclei

Even though nuclear energy density functionals (EDFs) have already enabled the description

of nuclear structure phenomena for many different nuclei, statistical properties of nuclear EDF

models have only recently become a topic of research. Parameter estimation of such complex

models presents a difficult task due to the fact that error estimates of the model parameters

cover an exponential range of values, often requiring model reduction techniques. In the

previous chapter, published as our recent paper [M. Imbrišak and K. Nomura, Phys. Rev. C

107, 034304 (2023)], we have investigated the stability of model reductions, focusing on the

Manifold Boundary Approximation Method applied to the nuclear density-dependent point-

coupling model of infinite nuclear matter. In this chapter, we extend our information-geometric

statistical analysis to the considerably more numerically challenging case of finite nuclei.

This chapter is a new article in preparation.
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5.1 Introduction

The nuclear energy density functionals (EDFs) are a widely-used framework for describing

nuclear structure phenomena. Many such EDFs are based on the relativistic mean-field La-

grangian (RMF) in the finite-range meson-exchange model [53]. The density-dependent meson-

nucleon couplings have been successfully applied in this framework to describe asymmetric

nuclear matter [52]. Alternatively, since the exchange of heavy mesons cannot be resolved at

low energies, the self-consistent relativistic mean-field framework can be formulated in terms

of point-coupling (PC) nucleon interactions. This approach yields comparable results to the

meson-exchange coupling approach for finite nuclei [2; 3]. For example, the successful phe-

nomenological finite-range interaction DD-ME2 was mapped to the PC framework by relating

the strength parameter of the isoscalar-scalar derivative term to different values of the mass of

the phenomenological 𝜎 meson in the DD-ME2 model [4]. The resulting ‘best-fit model’ [such

as the DD-PC1 functional, see, e.g., 42] required the fine-tuning of the density dependence of

the isoscalar-scalar and isovector-vector interaction terms to nuclear matter and ground-state

properties of finite nuclei.

The issue of uncertainty quantification and error propagation in nuclear EDFs has recently

attracted attention, focusing on the study of error estimates by statistical analysis [10; 11],

assessment of systematic errors [8; 9], and correlation analysis [9; 43]. However, the statistical

analysis is more challenging for the PC models since they were found to exhibit an exponential

range of sensitivity to parameter variations [42]. This behavior was found to be a feature

of sloppy models - models that depend only on a few stiffly constrained combinations of the

parameters [44].

Recent advancements in the understanding of the behavior of sloppy models [23; 25; 26; 45]

yielded new approaches to analyzing sloppy models, such as the manifold boundary approxima-

tion method [MBAM, 24]. MBAM is a systematic procedure for reducing model sloppiness by

constructing progressively less sloppy lower-dimensional models from an initial sloppy higher-

dimensional model. This construction is based on the concepts from information geometry -

an interdisciplinary field that introduces differential geometry concepts to statistical problems

[20; 21].
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MBAM has already been used to systematically construct effective nuclear density function-

als of successively lower dimensions and smaller impact of sloppiness. This was illustrated on

the DD-PC1 functional evaluated for pseudo-data for infinite symmetric nuclear matter [28]. In

Ref. [29] we extended this analysis to calculate the derivatives of observables with respect to

model parameters, and we were able to apply the MBAM to realistic models constrained not

only by the pseudo-data related to the nuclear matter equation of state but also by observables

measured in finite nuclei. In our recent paper [50], we investigated the overall stability of the

MBAM procedure applied in the reduction of nuclear structure models using methods of infor-

mation geometry and Monte Carlo simulations. In the illustrative application to the DD-PC1

model of the nuclear EDF, we found that the main conclusions obtained by using the MBAM

method are stable under the variation of the parameters within the 1𝜎 confidence interval of the

best-fitting model.

In contrast to the simple case of infinite nuclear matter, where one would have to solve

only a simple iterative procedure to obtain the Dirac mass and binding energy, finite nuclei

require a careful description of the nuclear many-body problem. Broadly speaking, statistical

analysis can either be performed in the Bayesian framework - by employing elaborate Monte

Carlo simulations or in the ‘classical’ framework, found by computing the Fisher information

matrix (FIM) and its inverse (the covariance matrix) from the chosen statistical model [see, e.g.,

9]. The latter approach should, in principle, be less time-consuming than running a large Monte

Carlo simulation. However, when computing the FIM, one has to constrain the first derivatives

of the chosen statistical model, either numerically or analytically. Attempting a simple extension

of existing implementations of RMF fortran codes [46–49] would introduce uncertainties due

to employing numerical differentiation. We have therefore decided to implement a simple

proof-of-concept version of a finite nucleus code in Python, in which well-tested libraries for

algorithmic differentiation (AD) exist.

The analysis presented below is based on a procedure for determining the RMF binding

energies, starting from a simple and widespread [48; 49] assumption of a Woods-Saxon potential,

often used to compute the starting point for density-dependent potentials. This paper compares

numerically estimating parameter errors using a chosen Bayesian statistical technique - the
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Markov chain Monte Carlo (MCMC) to the faster method of directly determining the covariance

matrix without sampling using the AD-determined FIM.

The chapter is organized as follows. In Sec. 5.2, we give an overview of the RMF procedure

that was implemented, and in Sec. 5.3, we describe the inputs used for our Python routines. In

Sec. 5.4 we present the results of our statistical analysis.

5.2 Numerical implementation of the RMF procedure

In Sec. 5.2.1 we describe the description of the matrix elements for the Dirac equation for the

proton and neutron single-particle energies in the spherical system, and in Sec. 5.2.2, we give

the description of the functional form of the Woods-Saxon potential that was implemented in

our python codes.

5.2.1 The spherical system

The procedure is based on solving the Dirac equation for the single-particle energies for protons

and neutrons in the spherical system. First, the single-particle wavefunction is decomposed

into the isospin wavefunction, 𝜒𝑡𝑖 (𝑡), the spin wavefunction, 𝜒1/2(𝑠), the angular momentum

wavefunction, 𝑌𝑙 (𝜃, 𝜙), and two spinor radial components, 𝑓 (𝑟) and 𝑔(𝑟). Due to symmetry

considerations, the solutions are separable in terms of the total angular momentum, 𝑗 , and parity,

𝜋, yielding the following relations:

𝑙 ( 𝑗 , 𝜋) = 𝑗 + 𝜋/2 (5.1)

�̃� ( 𝑗 , 𝜋) = 𝑗 − 𝜋/2 (5.2)

𝜅( 𝑗 , 𝜋) = 𝜋( 𝑗 + 1/2) . (5.3)

In practical calculations, the maximal radial quantum number needs to be truncated to obtain

finite matrices. The maximum radial quantum number for the expansion of radial functions 𝑓

and 𝑔 (𝑛𝑚𝑎𝑥 and �̃�𝑚𝑎𝑥 , respectively) are determined as functions of the final major shell quantum

number 𝑁𝐹 . The value of the maximal radial quantum number of the function 𝑔 is greater than

the maximal value for 𝑓 to avoid spurious solutions. These states of a high radial quantum
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number close to the Fermi surface arise from the lack of coupling for the 𝑓𝑛𝑚𝑎𝑥
state to the 𝑔

states through the 𝜎 · ∇ term when a truncation of the quantum number is applied [46–48]

𝑛𝑚𝑎𝑥 =
𝑁𝐹 − 𝑙 ( 𝑗 , 𝜋)

2
(5.4)

�̃�𝑚𝑎𝑥 = 𝑁𝐹 + 1 . (5.5)

In this separation, a joint spin and angular momentum quantum numbers, |𝑙 𝑗𝑚⟩, are represented

with the two-dimensional spinor

Φ𝑙 𝑗𝑚 (𝜃, 𝜙, 𝑠) = [𝜒1/2(𝑠) ⊗ 𝑌𝑙 (𝜃, 𝜙)] 𝑗𝑚 . (5.6)

The full wavefunction can then be written as

𝜓(𝑟, 𝜃, 𝜙, 𝑠, 𝑡) = ©«
𝑓 (𝑟)Φ𝑙 𝑗𝑚 (𝜃, 𝜙, 𝑠)

𝑖𝑔(𝑟)Φ
�̃� 𝑗𝑚

(𝜃, 𝜙, 𝑠)
ª®¬ . (5.7)

After separating the isospin, spin, and angular momentum components, one can use the

simplified Hamiltonian for a single ( 𝑗 , 𝜋) block for protons and neutrons, whose solution

depends only on the radial coordinate

𝜓 𝑗𝜋 (𝑟) = ©«
𝑓 𝑗𝜋 (𝑟)

𝑖𝑔 𝑗𝜋 (𝑟)
ª®¬ . (5.8)

Both 𝑓 and 𝑔 functions are expanded using the relativistic quantum harmonic oscillator basis

𝑅𝑛,𝑙 = 𝑁𝑛,𝑙𝐿
𝑙+1/2
𝑛 (𝜉2)𝜉 𝑙𝑒−𝜉2/2 , (5.9)

where the radial coordinate has been rescaled to a dimensionless quantity 𝜉 using the scaling

parameter 𝑏0 =
√

1.011𝐴1/3. The expansion includes a finite range of radial quantum numbers

that are different for 𝑓 and 𝑔 functions

©«
𝑓

𝑔

ª®¬ =

©«
𝑛𝑚𝑎𝑥∑
𝑛

𝑓𝑛𝑅𝑛,𝑙

�̃�𝑚𝑎𝑥∑̃
𝑛

𝑔�̃�𝑅�̃�,̃𝑙

ª®®®¬ . (5.10)

The limits 𝑛𝑚𝑎𝑥 and �̃�𝑚𝑎𝑥 are dependent on the total quantum number 𝑁𝐹 and angular momentum.
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5.2. Numerical implementation of the RMF procedure

For each ( 𝑗 , 𝜋) block, the Dirac equation is solved using the effective mass 𝑀 and potential

𝑉 . The aforementioned ansatz, 𝜓 = ( 𝑓 (𝑟), 𝑖𝑔(𝑟)), yields the following matrix equation

©«
𝑉 + 𝑀 − 𝑚 ℏ𝑐

(
𝜕𝑟 − 𝜅−1

𝑟

)
−ℏ𝑐

(
𝜕𝑟 + 𝜅+1

𝑟

)
𝑉 − 𝑀 − 𝑚

ª®¬ ©«
𝑓

𝑔

ª®¬ 𝑗𝜋 = 𝜖
©«
𝑓

𝑔

ª®¬ 𝑗𝜋 . (5.11)

Using the relativistic harmonic oscillator basis introduced in Eq. 5.9, this matrix equation can

be structured as

©«
𝐴 𝐵𝑇

𝐵 −𝐶
ª®¬
©«

𝑓1
...

𝑔�̃�𝑚𝑎𝑥

ª®®®®¬
= 𝜖

©«
𝑓1
...

𝑔�̃�𝑚𝑎𝑥

ª®®®®¬
, (5.12)

using three matrices 𝐴𝑛𝑛′, 𝐵�̃�,𝑛′ and 𝐶�̃�,�̃�′:

𝐴𝑛,𝑛′ =

∞∫
0

𝑟2𝑑𝑟𝑅𝑛,𝑙𝑅𝑛′,𝑙 (𝑉 + 𝑀 − 𝑚) (5.13)

𝐵�̃�,𝑛′ = ℏ𝑐

∞∫
0

𝑟2𝑑𝑟𝑅
�̃�,̃𝑙

(
−𝜕𝑟 −

𝜅 + 1
𝑟

)
𝑅𝑛′,𝑙 (5.14)

𝐶�̃�,�̃�′ =

∞∫
0

𝑟2𝑑𝑟𝑅
�̃�,̃𝑙
𝑅
�̃�′,̃𝑙 (𝑀 + 𝑚 −𝑉). (5.15)

Once the wavefunctions are known, the pairing is introduced as an additional weight to the

density of each eigenstate, 𝑣2
𝑖
, as outlined in Sec. 1.2 using Eq. 1.27.

5.2.2 The Woods-Saxon potential

We apply the finite nucleus procedure to the simple case of the Woods-Saxon potential. The

Woods-Saxon potential is also the first step for more complex density-dependent potentials. The

shape of the Woods-Saxon potential is known, and this potential does not depend on the nucleon

densities. Therefore, in contrast to density-dependent potentials, the procedure need not be run

iteratively, reducing computational complexity for various numerical tests.

The shape of the potential has been adapted from [51], the authors of which developed a

relativistic equivalent of the simple Woods-Saxon potential. In their model, a set of twelve

parameters was used to constrain the shape of the Woods-Saxon potential by describing both the
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5.2. Numerical implementation of the RMF procedure

potential and the effective mass. Their model accomplishes this by introducing four different

potentials - the normal (𝑈𝑝 and 𝑈𝑛) and spin-orbit potentials (𝑊𝑝 and 𝑊𝑛) for protons and

neutrons. These potentials were tied to the vector, 𝑉 , and scalar, 𝑆, potentials in the Dirac

equation by considering their non-relativistic limit as

𝑈 = 𝑉 + 𝑆 (5.16)

𝑊 = 𝑉 − 𝑆. (5.17)

The strengths of all four potentials are regulated by the overall potential strength𝑉0 and modulat-

ing factors for different numbers of protons and neutrons, 𝜅, and for the strength of the spin-orbit

contribution, 𝜆𝑝 and 𝜆𝑛. The shape of the potentials is regulated by four diffusivities, 𝑎𝑝, 𝑎𝑛,

𝑎𝑙𝑠𝑝 and 𝑎𝑙𝑠𝑛 , and four radii 𝑅𝑛
0 , 𝑅𝑝

0 , 𝑅𝑛
0,𝑙𝑠, and 𝑅

𝑝

0,𝑙𝑠 1.

The resulting potentials are as follows:

𝑈𝑝 (𝑟) =
𝑉0

(
1 + 𝜅 𝑁−𝑍

𝐴

)
1 + 𝑒

𝑟−𝑅𝑝

0 𝐴1/3

𝑎𝑝

+𝑈𝐶 (𝑟) (5.18)

𝑈𝑛 (𝑟) =
𝑉0

(
1 − 𝜅 𝑁−𝑍

𝐴

)
1 + 𝑒

𝑟−𝑅𝑛0 𝐴1/3

𝑎𝑛

(5.19)

𝑊𝑝 (𝑟) =
𝑉0𝜆𝑝

(
1 + 𝜅 𝑁−𝑍

𝐴

)
1 + 𝑒

𝑟−𝑅𝑝

0,𝑙𝑠 𝐴
1/3

𝑎𝑙𝑠𝑝

+𝑊𝐶 (𝑟) (5.20)

𝑊𝑛 (𝑟) =
𝑉0𝜆𝑛

(
1 − 𝜅 𝑁−𝑍

𝐴

)
1 + 𝑒

𝑟−𝑅𝑛0,𝑙𝑠 𝐴
1/3

𝑎𝑙𝑠𝑛

. (5.21)

An additional component describing the repulsive Coulomb potential, 𝑈𝐶 , is added to the

potential of protons using the homogeneously charged sphere potential

𝑈𝐶 (𝑟) =


𝑍𝑒2

(
3

𝑅
𝑝

0 𝐴1/3 − 𝑟2

(𝑅𝑝

0 )3𝐴

)
, 𝑟 ≤ 𝑅

𝑝

0 𝐴
1/3

𝑍𝑒2

𝑟
, 𝑟 > 𝑅

𝑝

0 𝐴
1/3

(5.22)

𝑊𝐶 (𝑟) =


𝑍𝑒2

(
3

𝑅
𝑝

0 𝐴1/3 − 𝑟2

(𝑅𝑝

0 )3𝐴

)
, 𝑟 ≤ 𝑅

𝑝

0 𝐴
1/3

𝑍𝑒2

𝑟
, 𝑟 > 𝑅

𝑝

0 𝐴
1/3

. (5.23)

1The notation of [51] has been simplified, and the signature of the spin-orbit potentials has been absorbed into

𝜆𝑛 and 𝜆𝑝 for convenience.
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5.2.3 Fisher information matrix

Using indices from the beginning of the Latin alphabet for 𝑁𝑚 measurements, and the Greek

letters for 𝑁𝑝 model parameters, here labeled as

p =

©«
𝑝1

...

𝑝𝑁𝑝

ª®®®®¬
, (5.24)

we want to compute error estimates for the problem of fitting a model 𝑓 𝑎 (p) to measurements

𝑦𝑎 assuming measurement errors 𝜎𝑎.

In the standard maximum likelihood method, the best-fitting value of 𝑝𝜇 is found by mini-

mizing the 𝜒2 value

𝜒2(p) =
𝑁𝑚∑︁
𝑎=1

(
𝑦𝑎 − 𝑓 𝑎 (p)

𝜎𝑎

)2
. (5.25)

A useful derived quantity is the reduced 𝜒2 value

𝜒2
𝑟𝑒𝑑 =

𝜒2

𝑁𝑚 − 𝑁𝑝

, (5.26)

which should be close to 1 for models that are neither over-fitted nor under-fitted.

We find parameter uncertainties using the Cramer-Rao bound on the covariance matrix Σ,

which is based on the inverse of the FIM, 𝑔𝜇𝜈 [21]

𝑔𝜇𝜈 (p) =
∑︁
𝑎

𝜕𝜇 𝑓
𝑎𝜕𝜈 𝑓

𝑎

(𝜎𝑎)2 . (5.27)

We compute model derivatives using algorithmic differentiation implemented in theautograd

package. Using AD procedures, we eliminate numerical errors related to using numerical dif-

ferentiation approximations.
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Figure 5.1: Reduced 𝜒2
𝑟𝑒𝑑

value of the finite-nucleus model as a function of 𝑁𝐹 for the Woods-

Saxon potential. The dashed lines represent the execution time of the 𝜒2
𝑟𝑒𝑑

function and the

computation time of the Woods-Saxon FIM.
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Table 5.1: Charge-radius and single-particle energy data set. The dataset consists of the charge

radii, 𝑟𝑐ℎ, and single particle neutron, 𝜖𝑛, and proton, 𝜖𝑝, energies for occupied states. The

single-particle energies were computed using the Woods-Saxon potential as determined in [51].

Nucleus 𝑟𝑐ℎ (fm)

4He 1.65
16O 2.41

40Ca 3.29

𝜖𝑛 (MeV)

1𝑠1/2 1𝑝3/2 1𝑝1/2 2𝑠1/2 1𝑑5/2 1𝑑3/2

4He −25.30
16O −43.20 −24.68 −19.04

40Ca −53.34 −39.40 −35.40 −24.95 −18.51 −17.42

𝜖𝑝 (MeV)

1𝑠1/2 1𝑝3/2 1𝑝1/2 2𝑠1/2 1𝑑5/2 1𝑑3/2

4He −24.95
16O −40.08 −22.39 −18.36

40Ca −45.80 −33.08 −30.32 −19.53 −14.96 −13.23

52



5.3. Input selection

5.3 Input selection

We analyze the statistical properties of the RMF procedure on charge-radius, 𝑟𝑐ℎ, and single-

particle energy data. To this end, we chose a set of doubly-magic nuclei: 4He, 16O, and 40Ca.

Since the parameter space consists of 12 parameters and only three nuclei, the chosen data

set consisted of their charge-radii and the single-particle energies of protons and neutrons for

occupied states computed using the Koepf values [51]. For statistical analyses, these parameter

values were taken as the best-fitting values for the Woods-Saxon potential.

Using charge-radii and the energies of the occupied single-particle states resulted in 23 data

points, ensuring enough degrees of freedom for a twelve-parameter model. A further advantage

of using the aforementioned doubly-magic even-even nuclei is that they have an equal number of

protons and neutrons, resulting in removing the need for the parameter 𝜅. Hence, the parameter

space is reduced to 11 dimensions. We compute the charge-radius, 𝑟𝑐ℎ, from the root-mean-

square radius, ⟨𝑟2⟩, [as in, e.g., 49] using the proton density distribution, as 𝑟𝑐ℎ =
√︁
⟨𝑟2⟩ + 0.64.

A homoscedastic error of 0.1 fm and 0.1 MeV has been chosen arbitrarily since the data set

consists of the model evaluation, not spectral measurements.

The corresponding reduced 𝜒2
𝑟𝑒𝑑

value of the finite-nucleus model as a function of 𝑁𝐹 for

the Woods-Saxon potential is shown in Fig. 5.1. The choice of a different error would only shift

the 𝜒2
𝑟𝑒𝑑

curve upwards or downwards. The figure also shows the execution time as a function of

the maximal total quantum number 𝑁𝐹 , displayed as a dashed line. The simple relation 𝜒2
𝑟𝑒𝑑

∼ 1

should hold to minimize the impact of over-fitting and under-fitting. The model accomplishes

this near 𝑁𝐹 ∼ 5. Since the execution time of the 𝜒2
𝑟𝑒𝑑

function rises progressively with a larger

𝑁𝐹 , the value of the 𝑁𝐹 parameter was set to 5 for statistical analyses. The execution time for

the FIM matrix for this model shows similar behavior. The chosen (pseudo)dataset is shown in

Table 5.1 and is computed using a 𝑁𝐹 = 15, which is outside the examined 𝑁𝐹 range in Fig.

5.1 to avoid the model evaluations that would result in exactly 𝜒2 = 0. The value of 𝑁𝐹 was

chosen to be large enough so that the values of all computed parameters differ less than 10% of

the adopted value for the homoscedastic error between neighboring values of 𝑁𝐹 .
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5.4 Results

We applied the finite nucleus procedure to compute parameter uncertainties for the Woods-Saxon

potential. We estimate the errors of the model parameters by computing the diagonal elements

of the FIM, 𝜎𝐹𝐼𝑀 , as presented in Table 5.2. In Sec. 5.4.2 we compare the values of the FIM

components computed using AD and the values computed using numerical differentiation and

in Sec. 5.4.2 we compare the FIM-derived error estimates to the MCMC of the derived FIM

to the error estimates. In Sec. 5.4.3 we present the extension of our analysis to the case of the

DD-PC1 functional, which is subject of ongoing research and will be published as a separate

paper.

5.4.1 Comparison with numerical differentiation

The numerical differentiation is compared to the one using a symmetric differentiation step ℎ.

The figure shows the relative error, 𝑅 for the different components of the FIM computed as

𝑅(𝑔𝜇𝜈) =
�����𝑔(𝐴)𝜇𝜈 − 𝑔

(𝑁)
𝜇𝜈

𝑔
(𝐴)
𝜇𝜈

����� , (5.28)

where 𝑔(𝐴)𝜇𝜈 is our AD-derived FIM estimate of the 𝜇𝜈 matrix component of the FIM and 𝑔
(𝑁)
𝜇𝜈 is

the numerical estimate computed using a differentiation step ℎ. In Figs. 5.2-5.10, we show these

relative errors computed for different values of ℎ and 𝑁𝐹 . For very small values of ℎ < 10−7,

the numerical errors due to floating point precision accumulate, while for ℎ > 10−2, the finite

difference approximation tends to break down. As demonstrated by Figs. 5.2-5.10, this behavior

occurs for all 𝑁𝐹 , and the values of the relative error do not depend strongly on 𝑁𝐹 .

Motivated by the 𝜒2 testing procedure, we analyze the impact of the possible overall worst-

case error scenario by computing the sum of all relative errors of the FIM components in the

bottom right panel of Fig. 5.10. This worst-case error estimate suggests that the optimal ℎ is

consistently ℎ ∼ 10−4 for the entire range of 𝑁𝐹 . One can conclude that the AD implementation

provides accurate estimates of the FIM and that any discrepancy to the numerical derivative can

be attributed to the inherent issues of numeric derivatives.
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Figure 5.2: Relative error of the different FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑅𝑛
0 , color-coded as

a function of 𝑁𝐹 and numerical derivative step ℎ for the FIM components. The relative error

compares the AD-derived FIM estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.3: Relative error of the different FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑅
𝑝

0 , color-coded as

a function of 𝑁𝐹 and numerical derivative step ℎ for the FIM components. The relative error

compares the AD-derived FIM estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.4: Relative error of the different FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑅𝑛
0,𝑙𝑠, color-coded as

a function of 𝑁𝐹 and numerical derivative step ℎ for the FIM components. The relative error

compares the AD-derived FIM estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.5: Relative error of the different FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑅
𝑝

0,𝑙𝑠, color-coded as

a function of 𝑁𝐹 and numerical derivative step ℎ for the FIM components. The relative error

compares the AD-derived FIM estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.6: FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑎𝑛, color-coded as a function of 𝑁𝐹 and numerical

derivative step ℎ for the FIM components. The relative error compares the AD-derived FIM

estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.7: FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑎𝑝, color-coded as a function of 𝑁𝐹 and numerical

derivative step ℎ for the FIM components. The relative error compares the AD-derived FIM

estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.8: FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑎𝑙𝑠𝑛 , color-coded as a function of 𝑁𝐹 and numerical

derivative step ℎ for the FIM components. The relative error compares the AD-derived FIM

estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.9: FIM components 𝑅(𝑔𝜇𝜈), 𝜇 = 𝑎𝑙𝑠𝑝 , color-coded as a function of 𝑁𝐹 and numerical

derivative step ℎ for the FIM components. The relative error compares the AD-derived FIM

estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 .
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Figure 5.10: FIM components 𝑅(𝑔𝜇𝜈) for 𝜇 = 𝜆𝑛, 𝜇 = 𝜆𝑝 and 𝜇 = 𝑉0, color-coded as a function

of 𝑁𝐹 and numerical derivative step ℎ for the FIM components. The relative error compares the

AD-derived FIM estimate, 𝑔(𝐴)𝜇𝜈 , to the numerical estimate 𝑔
(𝑁)
𝜇𝜈 . In the bottom-right panel, the

sum of all relative errors,
∑

𝜇,𝜈 𝑅(𝑔𝜇𝜈), is plotted.
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5.4.2 Comparison with the Bayesian framework

We used the MCMC technique to sample the 𝜒2 posterior distribution, as implemented in the

package emcee [68]. We used samples of 24 Markov chains of length 1000. The number of

initialized chains has been chosen to fulfill the MCMC requirement that the number of Markov

chain walkers be greater than the number of dimensions of the parameter space.

In Fig. 5.11, we plot the values of the MCMC samples of the parameter space as a

function of the step in the Markov chain in which they were produced. We see that the values

stabilize after ∼ 50 initial steps, indicating the expected burn-in phase for the MCMC method

[68]. The sampled data points corresponding to the initial 50 steps have been excluded from

further analysis. In Fig. 5.12 we show both the two-dimensional and one-dimensional marginal

distributions of the MCMC samples in the parameter space. The blue lines show the value

expected from the literature, which is well aligned with the distribution of the MCMC samples

in all panels in Fig. 5.12.

The error estimates computed using MCMC sampling are listed alongside the FIM-based

technique in Table 5.2. The medians and the 1𝜎 confidence interval derived from the MCMC

sampling align well with the Koepf estimates. To assess how significant are statistical differences

between the Koepf estimates and the MCMC-based best-fitting parameter values of our dataset,

in the last two columns, we compute the Z-scores,

𝑍 𝜇 (𝜎) =
𝑝
𝜇

Koepf − 𝑝𝜇

𝜎
. (5.29)

We find that the differences are generally not statistically significant (i.e., they are less than 1𝜎)

using either 𝜎𝐹𝐼𝑀 or 𝜎𝑀𝐶𝑀𝐶 .

Reliably computing the FIM using AD enables producing error analysis without the time-

consuming sampling of the parameter space by simply considering the diagonal of the FIM

inverse. The resulting estimates of the sigma, 𝜎𝐹𝐼𝑀 , are in agreement with the MCMC estimates,

𝜎𝑀𝐶𝑀𝐶 , as shown in Table 5.2.
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Figure 5.11: Values of the individual Markov chains of the MCMC sampling as a function of

the MCMC step.
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Figure 5.12: MCMC-derived sampling of the Woods-Saxon potential shown as two-dimensional

sections of the parameter space.
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Table 5.2: Results of Woods-Saxon potential fitting using the MCMC method for the charge

radius and single-particle energy data set from Table 5.1.

Parameter unit Koepf 𝜎𝑀𝐶𝑀𝐶 𝜎𝐹𝐼𝑀 MCMC Confidence |𝑍 (𝜎𝑀𝐶𝑀𝐶) | |𝑍 (𝜎𝐹𝐼𝑀) |

estimate [51] interval

𝑅𝑛
0 [fm] 1.2334 0.01 0.0112 1.241 ± 0.01 [ 1.23, 1.25] 0.79 0.66

𝑅
𝑝

0 [fm] 1.2496 0.0108 0.0168 1.25 ± 0.01 [ 1.24, 1.26] 0.28 0.18

𝑅𝑛
0,𝑙𝑠 [fm] 1.1443 0.0273 0.0320 1.15 ± 0.03 [ 1.13, 1.18] 0.27 0.23

𝑅
𝑝

0,𝑙𝑠 [fm] 1.1401 0.0389 0.0563 1.14 ± 0.04 [ 1.10, 1.18] 0.11 0.07

𝑎𝑛 [fm] 0.6150 0.0097 0.0098 0.62 ± 0.01 [ 0.61, 0.63] 0.56 0.55

𝑎𝑝 [fm] 0.6124 0.0107 0.0108 0.61 ± 0.01 [ 0.60, 0.63] 0.20 0.20

𝑎𝑙𝑠𝑛 [fm] 0.6476 0.0601 0.0746 0.66 ± 0.06 [ 0.60, 0.72] 0.23 0.18

𝑎𝑙𝑠𝑝 [fm] 0.6469 0.0848 0.1271 0.64 ± 0.08 [ 0.56, 0.72] 0.05 0.03

𝜆𝑛 [1] -11.1175 0.3391 0.4167 −11.3 ± 0.3 [ -11.65, -10.98] 0.49 0.39

𝜆𝑝 [1] -8.9698 0.4287 0.7025 −9.0 ± 0.4 [ -9.47, -8.61] 0.07 0.04

𝑉0 [MeV] -71.2800 0.1941 0.2228 −71.2 ± 0.2 [ -71.37, -70.99] 0.45 0.39

𝜅 [1] 0.4616 N/A N/A N/A N/A N/A N/A

5.4.3 The error estimates for the DD-PC1 functional

In this section, we utilize nuclear structure codes to precisely calculate error estimates for

point-coupling models in finite nuclei. To initiate the DD-PC1 functional iteration, we compute

densities for the Woods-Saxon potential, which serve as the basis for our subsequent calculations

and analyses.

Figures 5.13, 5.14, and 5.15 showcase the charge-radius and single-particle energies behavior

of the DD-PC1 functional. These figures provide an insight into the functional’s behavior

when applied to a group of doubly magic nuclei.Through our analysis, we have found that

the iteration process shows quick stabilization within just a few steps, regardless of the 𝑁𝐹

values observed. To ensure accuracy and consistency in our calculations, we have applied the

7-parameter constraint on the DD-PC1 model parameters, which has been previously utilized

for infinite nuclear matter. Furthermore, we have incorporated homoscedastic errors of 0.1 fm

and 0.1 MeV to further enhance the precision of our calculations. The behavior of the Fisher

67



5.4. Results

Information Matrix (FIM) eigenvalues, eigenvector components, and parameter errors can be

observed through Figures 5.16, 5.17, and 5.18. These figures provide a visual representation of

the corresponding outcomes.

In like manner, the outcomes from the thorough 10-parameter model have been exhibited

and are easily discernible in Figures 5.19, 5.20, and 5.21. Based on the analysis, it is evident that

utilizing the 7-parameter model for estimating parameter errors is significantly more accurate

than relying on the 10-parameter DD-PC1 model. This outcome was predictable as the 7-

parameter model is a simplified version of the 10-parameter model, referred to as the MBAM-

reduced form. We’ve included error estimates for both the 7 and 10-parameter models based

on the FIM (Fisher Information Matrix) in Table 5.3. The information provided is crucial for

assessing and examining the effectiveness of the models and can be utilized for future research.

Table 5.3: Error estimates of the DD-PC1 model parameters.

Parameter unit 7-parameter model 10-parameter model

𝑎𝑠 [fm2] −10.0 ± 0.5 −10 ± 1

𝑏𝑠 [fm2] −9.2 ± 0.6 −9 ± 1

𝑐𝑠 [fm2] −6 ± 3 −6 ± 6

𝑑𝑠 [1] 1.4 ± 0.3 1.4 ± 0.8

𝑎𝑣 [fm2] 6 ± 1 6 ± 3

𝑏𝑣 [fm2] 8.9 ± 0.3 8.9 ± 0.4

𝑑𝑣 [1] 0.7 ± 0.2 0.7 ± 0.6

𝑏𝑡𝑣 [fm2] 𝑁/𝐴 2 ± 1

𝑑𝑡𝑣 [1] 𝑁/𝐴 0.6 ± 0.5

𝛿𝑠 [fm4] 𝑁/𝐴 −0.81 ± 0.02
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Figure 5.13: Charge-radius and single-particle energy computed using the DD-PC1 functional

for the 4He nucleus. The figure shows the values of the charge radii, 𝑟𝑐ℎ, and single particle

neutron, 𝜖𝑛, and proton, 𝜖𝑝, energies for occupied states for the different number of iterations

𝑁𝑖𝑡𝑒𝑟 .
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Figure 5.14: Charge-radius and single-particle energy computed using the DD-PC1 functional

for the 16O nucleus. The figure shows the values of the charge radii, 𝑟𝑐ℎ, and single particle

neutron, 𝜖𝑛, and proton, 𝜖𝑝, energies for occupied states for the different number of iterations

𝑁𝑖𝑡𝑒𝑟 .
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Figure 5.15: Charge-radius and single-particle energy computed using the DD-PC1 functional

for the 40Ca nucleus. The figure shows the values of the charge radii, 𝑟𝑐ℎ, and single particle

neutron, 𝜖𝑛, and proton, 𝜖𝑝, energies for occupied states for the different number of iterations

𝑁𝑖𝑡𝑒𝑟 .
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Figure 5.16: The FIM eigenvalues for the DD-PC1 functional in the 7-parameter model.
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Figure 5.17: The FIM eigenvector components corresponding to the smallest FIM eigenvalue

for the DD-PC1 functional in the 7-parameter model.
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Figure 5.19: The FIM eigenvalues for the DD-PC1 functional in the 10-parameter model.
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Figure 5.20: The FIM eigenvector components corresponding to the smallest FIM eigenvalue

for the DD-PC1 functional in the 10-parameter model.
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Figure 5.21: The FIM parameter error estimates for the DD-PC1 functional in the 10-parameter

model.

77



5.5. Chapter summary

5.5 Chapter summary

Exploring parameter estimation uncertainties in nuclear Effective Field Theories (EDFs) has

recently emerged as a compelling research area. Our team has continued to build upon our

past research [50], which delved into applying information geometry to EDFs in nuclear matter.

Our current study presents a comprehensive statistical analysis of a straightforward method

to establish the charge radius and single-particle energies in a series of doubly-magic nuclei

utilizing the Woods-Saxon potential. Our findings offer valuable insights into the nature of

nuclear matter and pave the way for future research in this field. We have evaluated the accuracy

of error estimates using two different methods. The first method is a faster procedure employing

the Fisher Information Matrix (FIM), while the second is a more intricate Bayesian Markov

Chain Monte Carlo (MCMC) approach. We compared the results obtained from both methods

to determine their effectiveness in estimating errors. When dealing with the complex situation of

finite nuclei, it can be challenging to accurately determine the uncertainties of EDF parameters.

However, by utilizing FIM in combination with algorithmic differentiation, it becomes possible

to measure these uncertainties more precisely. This method of error analysis also eliminates

the need for time-consuming sampling of the parameter space, which is usually required when

using Bayesian statistical methods.
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Chapter 6

Conclusion

The EDF framework serves as an extensive and all-encompassing theoretical methodology that

offers a global perspective on nuclear occurrences across the nuclide chart. A scientifically

sound approach to modelling nuclear interactions is the implementation of a relativistic mean-

field Lagrangian that utilizes the point-coupling model. This model is specifically tailored to

address the ground-state properties of nuclear matter and finite nuclei. Despite relying on point-

coupling interactions, the outcomes generated by this model are comparable to those obtained

from finite-range models.

The use of statistical analysis is of utmost importance in identifying errors in theoretical

models, assessing risks, and detecting instabilities in the model. When it comes to nuclear

energy density functionals, it has only recently been recognized that examining the unreliability

of individual model parameters is crucial to gaining a better understanding of nuclear structure

phenomena. However, analyzing error parameters can be challenging due to the possibility

of dealing with imprecise parameters or their linear combinations. To overcome this obstacle,

information geometry methods have been recently employed to obtain a better understanding of

parameter uncertainties and model behavior. One notable instance of sophisticated procedures

utilized in information geometry is the manifold boundary approximation method (MBAM).

This technique has been effective in reducing the number of model parameters in EDF models.

To accomplish this, MBAM relies on the principles of differential geometry to tackle statistical

problems. This approach has been successfully implemented in various scientific fields.
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In the fourth chapter, we made use of the MBAM technique to investigate the unreliability

of the parameter estimates of the point-coupling EDF functional in nuclear matter. This allowed

us to gain a deeper understanding of the behavior and properties of this functional in the

context of nuclear physics. To this end, the manifold boundary approximation method (MBAM)

solutions’ error estimates were constrained in the framework of classical statistics, by means of

the Monte Carlo simulations, as well as in the framework of Bayesian statistics, by means of the

Markov Chain Monte Carlo method. To improve the reliability of parameters and streamline

the execution time of code, we took the initiative of implementing the EDF and MBAM codes

using Python, and incorporating automatic differentiation. This implementation proved to be

highly advantageous, as it allowed for a much more accurate evaluation of the parameters, and

completely eliminated any possibility of numerical imprecision. By utilizing this approach, we

were able to ensure that the results obtained were of the highest possible quality and that the

entire process was as efficient and effective as possible. After conducting a thorough analysis of

the DD-PC1 model within the nuclear EDF, it has been confirmed that the conclusions drawn

from utilizing the MBAM method remain steadfast and unwavering, even when the parameters

are altered within the 1𝜎 confidence interval of the optimal-fit model. This indicates a strong

level of reliability and consistency in the results obtained from this methodology, lending further

credibility to its use in future research and experimentation. In order to accurately identify the

geodesic boundary, it is essential to carefully analyze the point at which the determinant of

the Fisher Information Matrix (FIM) begins to approach zero. This particular condition plays a

critical role in the formation of distinct and separate areas within the parameter space. Therefore,

it is imperative to pay close attention to this critical point during the identification process.

In the fifth section of this study, an extensive examination was conducted on finite nuclei.

The charge radius and single-particle energies of a specific set of doubly-magic nuclei were

determined through a simple yet efficient technique. The method employed the Woods-Saxon

potential and underwent a meticulous statistical analysis.
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The research focused on comparing error estimates of two methods. One involved utilizing

the FIM for a faster process, while the other required the more demanding Bayesian MCMC

method. After comparing the results of both methods, it was discovered that they varied by less

than 1𝜎. This implies that both techniques are dependable and precise.

Based on the findings, it can be deduced that the FIM-based approach combined with

algorithmic differentiation is a dependable method for accurately estimating EDF parameter

uncertainties even in the intricate scenario of finite nuclei. The proposed approach for error

analysis offers a significant advantage in that it eliminates the requirement for an exhaustive

sampling of the parameter space. This is particularly beneficial when using Bayesian statistical

techniques, which can be a tedious and time-consuming process.
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